Meccanica Quantistica - a.a. 2015/2016
Esame scritto - 01/02/2016

Risolvere, a scelta, o Problemi 1 e 2, o Problemi 1 e 3

Tempo a disposizione 3 ore

Problema 1

Si consideri una Hamiltoniana di oscillatore armonico bidimensionale

1)

1 1 1
H = —_— 2 —_— 2 7mw2 x2 2 1
5Pz + 5Py T gmw (2T + 1) (1)
Usando la notazione N = ng+n,, dove n;, n, sono i numeri di occupazione
per i due oscillatori unidimensionali, si faccia un elenco degli autostati
[ng,ny) di H per N < 2 scrivendo accanto la corrispettiva energia.

Si consideri 'operatore (generatore infinitesimale delle rotazioni nel piano)
1 1 0 0
L,=— — = — —_— —Yy— 2
= p(apy —yps) = - (xay yaz> (2)
Si scriva L, in termini degli operatori di creazione e distruzione dei due
oscillatori
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Allo stesso modo si scriva H in termini di questi operatori e si dimostri che
gli operatori commutano fra loro: [L,, H] = 0, usando i noti commutatori
tra gli operatori di creazione e distruzione.

Si scriva il risultato di L,|a) per ognuno degli stati scritti nel punto 1).

Visto che L, ed H commutano fra loro devono essere diagonalizzabili
simultaneamente. Si scriva per ognuno dei tre sottospazi corrispondenti
agli autovalori di H trovati al punto 1) la matrice che rappresenta L, e la
si diagonalizzi trovando gli autovalori.

Problema 2

Schematizziamo la cella di un elettrone confinato in un solido come un cubo
rettangolare di lato L in cui un singolo elettrone puo muoversi liberamente.

In tutti i processi di transizione analizzati nel seguito si sottintende sempre
I’approssimazione di dipolo.



1) Siscrivano le energie, Ey, E1, Es , e gli autostati per il livello fondamentale
ed i primi due stati eccitati del sistema. L’origine degli assi & supposta nel
centro del cubo e le facce del cubo sono ortogonali agli assi coordinati.

Nota: Per gli autostati é sufficiente scrivere la forma delle funzioni d’onda in
una coordinata ed indicare i numeri quantici con cui formare i ket per le tre
coordinate.

2) 1l sistema viene immerso in un campo elettrico diretto lungo z e variabile
nel tempo della forma

E(t) = Eyexp (—t|/7) .

All'istante ¢ = —oo il sistema ¢ nello stato fondamentale: in quale fra
gli stati elencati al punto 1) pud passare al tempo t = +oco calcolando le
ampiezze di transizione al primo ordine in £ e con che probabilita?

3) Si risponda alle stesse domande se il sistema ¢ invece sottoposto ad un
campo magnetico diretto lungo z:

B =bexp(—|t|/T) .
Si ricordi che I’accoppiamento & della forma —p - B e si trascuri lo spin (p
¢ il momento magnetico).

Integrali utili
2 L2 16 L

I /_L/szin(%rz)cos(wi) dx = el

Problema 3

Si consideri uno ione con un elettrone in un orbitale p. Nel seguito si trascura
completamente lo spin. Il momento magnetico si scrive quindi

n=—ppt (5)

Nel problema si vuole indagare come la risposta ad un campo magnetico possa
essere modificata se lo ione € immerso in un campo cristallino.
Supponiamo che il cristallo generi una energia potenziale elettrostatica

V = Cz*+ Dy* — (C + D)2* (6)
nell’intorno della posizione dello ione (origine delle coordinate).

1) Si dimostri che il potenziale (6) & un potenziale possibile, i.e., soddisfa alle
equazioni di Maxwell nel vuoto, V-E=—-AV =0.

2) Supponendo che C, D siano dell’ordine di grandezza di tipica energia elet-
trostatica, C,D ~ e*/a%, si dica se per campi magnetici normali (ad
esempio al di sotto di 1 Tesla) & pitt importante il campo cristallino o
Peffetto magnetico.



3) Nel campo cristallino si conservano le componenti di L? Si conserva L??

4) Le autofunzioni dell’elettrone, in assenza della perturbazione del cam-
po cristallino, possono utilmente essere scritte nella forma cartesiana (si
suppone che gli stati siano normalizzati)

pr=af(r); wy=yf(r); w.=zf(r).

Si scriva la forma dei livelli in presenza della interzione (6) (ma senza il
campo magnetico) lasciando indicati i due integrali

I = /d?’x zt f2(r); I, = /dSX > y? f3(r)

5) Siaccende un campo magnetico B diretto lungo uno degli assi, si ha effetto
Zeeman al primo ordine? Cosa succede se la direzione di B & arbitraria?
(Si ricordi che stiamo trascurando lo spin).

6) Come cambiano le conclusioni precedenti se C' = D?



Soluzione problema 1

1)
Ey= hw deg. 1 |0, 0)
By = 2hw deg. 2 [1,0), ]0,1)
Ey = 3hw deg 3 |270>a |072>7 |17 1>
3) Sostituendo
L. = —i(a'b — ab?) (7)
e
H = hw + hw(a'a + b'b) (8)

Effettuando i commutatori si ha
[L.,aTa] = —i(—a'b — ab")
[L.,b'b] = —i(ab 4 abl)
quindi

[LZ,H] =0

4) Ricordando che af|n) = v/n +1|n+1) e aln) = \/n|n — 1) si ha subito

L.]0,0) =0

L.]1,0) = —i(—ab")|1,0) = i|0,1)

L.]0,1) = —i(a'D)|0,1) = —i|1,0)

L.|2,0) = —i(—ab")|2,0) = iv2|1,1)

L.]0,2) = —i(a'D)|0,2) = —iv/2|1,1)

L.]1,1) = —i(a'd — ab")[1,1) = —iv/2(]2,0) — |0,2))

5)

Nel sottospazio con EE = Ej si ha dimensione 1 e autovalore L, = 0.

Nel sottospazio ¥ = F4 dai risultati del punto precedente la matrice L, ha
la forma (I’elenco degli stati ¢ quello del punto 2)

0 —i
= (7 )
con autovalori L, = +1.

Nel sottospazio E = F5 la matrice L, ha la forma

0 0 —iv2
L.=1| 0 0 iv2
iv2 —iV2 0

con autovalori 0, 2, —2.



Soluzione problema 2

1) Gli autostati pari e dispari sono il prodotto, per ogni asse, di:

2

fu(x) =14/ = cos nwZ n dispari; sol. pari
L L

(9)

2
gn(z) = ”f sin(mr%) n pari; sol. dispari

I ket possono quindi essere caratterizzati dalla scrittura |ny,ng, ns). L’energia
e
2
_ 2 2 2
Eﬂl,n27n3 - 2m.L2 (nl + Ny + 77‘3)

11 livello fondamentale ed il primo eccitato hanno energia

K2 K2 K2
=——3:; F ——(14+14+4) = ——
2mL? 7’ ! (1+1+4) 2mL2

p— 6
2m L2

Eq
Il fondamentale & non degenere, il primo livello eccitato e tre volte degenere con

autostati
11,1,2), [1,2,1), [2,1,1).

Il secondo livello eccitato ¢ tre volte degenere, con autostati
11,2,2), 12,2,1), [2,1,2).

ed energia
h? h?
Fy=——=44+44+1) = ——
> 7 omlL? (4+4+1) 2mL?

9
2) L’accoppiamento &
V = ez&E(t)

quindi per parita 'unico stato che pud essere eccitato a partire da |1,1,1) & lo
stato |1,1,2) La frequenza di transizione &
52

hwy =FEy —E) = ——=3
1 2 1= 572

e ampiezza di transizione e
1 > iwit —t/T
A= 7‘1@50 1 (1,1,2|z]1,1,1)e
1

— 00

L’elemento di matrice ¢ (vedi integrale dato nel testo)

L2 = [ pEah =g
9 72

—L/2



L’integrale nel tempo &

oo 0 00 2
/ €7|t\/‘reiw1t :/ et/reiw1t+/ et/Teiwlt _ T
2,2
—o0 —0o0 0 IL+7 wi

Per la probabilita di transizione

2E2D2 472
h2 (1 +wir?)?

P=|AP =

3) Se si trascura lo spin linterazione ¢

“pB= L [.B=upL.B
2me
Siccome L 8 5
L,=-(z=— —y—=—
1 (xﬁy y@x)

la parita in totale non deve cambiare, quindi la transizione & su uno degli stati
con energia Eo (che sono pari). Inoltre ogni addendo di L, cambia la parita
sia in = che in y quindi 'unico stato possibile & |2,2,1). Ma L, & dispari nello
scambio x <> y mentre gli stati |1,1,1) e |2,2,1) sono entrambi pari, quindi
I’elemento di matrice & nullo.

Il risultato sarebbe non nullo se si trattasse di un parallelepipedo con L; #
Lo.

Soluzione problema 3

1. V e proporzionale al potenziale elettrostatico ¢ creato dal cristallo che deve
soddisfare all’equazione Ay = 0 nella zona esterna alle cariche (del cristallo),
ed in effetti e vero.

2. Trattandosi di interazioni elettrostatiche C, D ~ e?/a%,. Siccome Pestensio-
ne dello ione come ordine di grandezza ¢ anch’essa dell’ordine di a g, il contributo
all’energia e quello tipico elettrostatico cioe dell’ordine dell’eV, molto maggiore
dell’energia magnetica.

3. Le componenti di L non si conservano, in generale, perche V' = —egp non
¢ invariante sotto rotazioni. Come si verifica immediatamente ’operatore puo
provocare transizioni con AL = 2, perche si trasforma come una somma di
armoniche sferiche Ys,,, quindi non commuta nemmeno con L2.

4. Per parita tutti gli elementi di matrice fuori diagonale di V' sono nulli, quindi
nella base |p,) ..., V & diagonale. Usando la simmetria si ha (si suppongono

gli stati normalizzati):

Viw = / dr 2?2 f(r)?(Cx®+Dy*—(C+D)z?) = CI14+DI,—(C+D)I, = C(I,—15)
1%



ed analogamente per gli altri elementi di matrice

oL — Ib) 0 0
V= 0 D(I1 — I) 0 (10)
0 0 —(C+D)(I; — I)

e questi elementi di matrice danno anche lo splitting dei livelli.

5. Siccome il campo magnetico produce una piccola perturbazione rispetto al
campo cristallino, effetto al primo ordine dovrebbe essere (s| — uB|s), dove |s)
e uno degli stati precedenti. Ma ricordiamo che, in coordinate cartesiane

Li = Eijkxjpk (11)

quindi gli elementi diagonali di una qualunque componente di L sono nulli in
questa base, percio non si ha effetto lineare. Per una direzione arbitraria si avra
sempre

B=B,x+B,y+DB.2 (12)

ed ognuno dei termini precedenti ha effetto nullo al primo ordine, come appena
visto.

6. In questo caso ’energia nel campo cristallino ¢ (in forma matriciale)

10 0
V=(L-L)C |0 1 0 (13)
00 -2

Per il livello associato allo stato ¢, non cambia nulla, ma l'altro livello e
degenere, quindi per un campo diretto lungo z, usando la (11):

(VB)ij = e B (L2)ij = —iupB €3 ij

e questa ha elementi di matrice fuori diagonale nel livello:

0 —i
Vers =Ch — L) + upB (Z OZ)
a cui corrispondono due autovalori
C(Il — IQ) + /LBB

si ha quindi effetto Zeeman, e conseguente permeabilitd magnetica.

Le componenti L, L, invece non hanno elementi di matrice all’interno del
blocco 2 x 2 e non producono nessun effetto. Questo significa che per un generico
campo magnetico, vedi (12), solo la componente B, ¢ efficace, z & uno degli assi
cristallini: la permeabilita magnetica € quindi anisotropa, dipende dall’angolo
fra il campo magnetico e ’asse z.



Meccanica Quantistica 1 - a.a. 2015/2016
Esame scritto - 1-Feb-2016

Risolvere, a scelta, due dei Problemi

Tempo a disposizione 3 ore

Problema 1

Si consideri una particella che si muove lungo ’asse x nel verso positivo, con
numero d’onda k, dove hk = p. E presente una barriera di potenziale schema-
tizzabile forma

V(z) = fé(x) (1)
1) Si calcoli i coefficienti di riflessione e trasmissione attraverso la barriera.

2) Si estenda ora il problema in due dimensioni, la barriera & sempre data
dalla (1) ma ora l'onda incide sulla barriera con un angolo di incidenza «
rispetto alla normale (asse x) cioe 'onda incidente ¢ della forma

ik cosax eik sinay

Y(z,y) = exp(ikcosax +iksinay) =e

Si scriva 'onda riflessa e ’onda trasmessa.

Problema 2

Una particella A di spin %, a riposo, decade in due particelle B e C, rispettiva-
mente di spin sg =1 e di spin s¢ = %

1) Quali valori pud assumere a priori lo spin totale S,

Stot =8B +sC (2)
?

2) Per ciascuno dei valori elencati al punto sopra, indicare i valori del mo-
mento angolare orbitale L del moto relativo (B — C) nello stato finale,
ammessi dalla conservazione del momento angolare.

3) Si supponga che la misura della distribuzione angolare della particella
B abbia dato il risultato consistente con una distribuzione isotropa, nel
centro di massa di B e C. Dedurre il valore di Syo;.

Problema 3

Un atomo di idrogeno viene preparato nello stato con funzione d’onda (norma-
lizzata)

1 xr _ _r
Wy CE LDk (3)



1) Dire se ¢ in un autostato dell’energia e con quale autovalore.
2) a) Si effettua una misura di L,: quali valori si possono ottenere e con
che probabilita?
b) Si effettua una misura di L,: quali valori si possono ottenere e con
che probabilita?
3) Si consideri ora un atomo di idrogeno preparato nello stato con funzione
d’onda

1 1 1
(0 Ry o(r)
4

VARV

Si risponda in questo caso alle domande 1) e 2) precedenti.

Formule utili

Le coordinate cartesiane sono legate a quelle sferiche da
r=rsinfcosy; y=rsinfsing; z=r cosh
Funzioni d’onda radiali R, ; dell’atomo di idrogeno (a = rp ¢ il raggio di Bohr):

1r

—r/2a .
Qa)e

)

1
Riog=a 3?22 7/a ; Rog=a3?2—(1
1,0 2,0 \/i(

Roy = a2 L oo,

26 a '

Armoniche sferiche:

1 L
Y0,0 = T Yip=1/% cos, Vit =Fy/ = sin 0 eTi®



Soluzione

Problema 1

1) La funzione d’onda per x < 0 e x > 0 rispettivamente ha la forma
¢a(x) _ eikw + Re—ikm; wb(x) _ Teika:

Le condizioni di raccordo sono, ponendo

B K2 _fm
f - Eﬂ ) ﬂ = ﬁ 9
K2 K2
¥a(0) = (0 ; %(%(0) — 1 (0)) = —B¥a(0)
cioe .
1+ R=T,; z?(T—(l—R)):BT
da cui

R:ikﬁfﬂ; T= kj:zﬂ'
I coefficienti di trasmissione e di riflessione sono dati da:
k‘2
el

(4)

62

2 _ :
D=|T)" = TR (5)

D= |RJ?
2) La parte in y non risente della barriera, quindi 'onda riflessa e 'onda
trasmessa sono

'Q[JR(-T,/!/) —R e—z’kw cos a+iky sina; wT(m,y) -T eikw cos a+iky sin «
Problema 2
1) Siot =3 0 Siot = 3
2) Per Sipr = % i valori possibili di L sono

L=0,1,2,3,

mentre per Sy = %

L=1,2.

3) St = 2.



Problema 3

1) Si’, & uno stato di n = 2, con

2a)

2b)

3)

__e
 8a
0 0
Ly =—ihly — — 2z —],
ihly 5 ay]
percio
L,p=0:

¢ € un autostato di L, con autovalore 0. In altre parole ci si aspetta il
risultato della misura di L, univoco, L, = 0, con probabilia 1.

1 1
¢ = ERM Y11 —Yi1] = ﬁ(¢2,1,71 —211)
quindi la misura di L, da i risultati, L, = 1 o L, = —1 con probablita

1/2 per ciascuno.

1 1
Y= 5(%,1,-1 —P21,1) + ﬁ%,o,o .
Questo stato non & un autostato di energia; la sua misura dara i possibili

valori,
02 2

e
- By — ——
2a oppure 2 8a
con probablita 1/2 per ciascuno. Il risultato della misura di L, ¢ univoco,
L, =0, con probabilia 1. La misura di L, da i risultati, L, =1, L, = 0,
L. = —1, con rispettive probablita, 1/4, 1/2, 1/4.

By =



Meccanica Quantistica: Recupero Compitino I

1 febbraio 2016 (A.A. 15/16)
Tempo a disposizione: 3 ore

Problema 1

Si consideri una particella che si muove lungo 1’asse x nel verso positivo, con numero
d’onda k, dove ik = p. E presente una barriera di potenziale schematizzabile forma

V(x) = f8(x) (1)
1) Si calcolino i coefficienti di riflessione e trasmissione attraverso la barriera.

2) Si estenda ora il problema in due dimensioni, la barriera ¢ sempre data dalla (1) ma
ora I’onda incide sulla barriera con un angolo di incidenza o rispetto alla normale
(asse x) cioe 1’onda incidente ¢ della forma

etkcosax+1k51n(xy _ etkcosaxezksm(xy

y(x,y) =

Si scriva I’onda riflessa e 1’onda trasmessa.

Problema 2

Si consideri una Hamiltoniana di oscillatore armonico bidimensionale
1 1 1
He — 24— 20 20202 142 2
amPx g Py Mot 4y @

1) Usando la notazione N = n, + n,, dove ny,n, sono i numeri di occupazione per i due
oscillatori unidimensionali, si faccia un elenco degli autostati |ny,ny) di H per N <2
scrivendo accanto la corrispettiva energia.

2) Si consideri I’operatore (generatore infinitesimale delle rotazioni nel piano)

1 1 0 d
L, = —(xpy,— =—|x=——y=— 3
o = 5 Py —ypx) = - <xay yax) 3)
Si scriva L, in termini degli operatori di creazione e distruzione dei due oscillatori
¢ . 1 mo? ;
_ Ty . _ f
x=—(a+a'); y=—-———@a—a 4
Hlata)  pe="2a—a) @
l 1 mot
= —(b+b"); =———(b—Db" 5
dove
h
(=] —.
m@

Allo stesso modo si scriva H in termini di questi operatori e si dimostri che gli ope-
ratori commutano fra loro: [L;, H] = 0, usando i noti commutatori tra gli operatori di
creazione e distruzione.

3) Si scriva il risultato di L;|ot) per ognuno degli stati scritti nel punto 1).

4) Visto che L; ed H commutano fra loro devono essere diagonalizzabili simultanea-
mente. Si scriva per ognuno dei tre sottospazi corrispondenti agli autovalori di H
trovati al punto 1) la matrice che rappresenta L, e la si diagonalizzi trovando gli
autovalori.



Soluzione

Problema 1
1) Lafunzione d’onda per x < 0 e x > 0 rispettivamente ha la forma
Val) = e+ Ry (x) = Tl

Le condizioni di raccordo sono, ponendo

2
r=np. p=1y,
h2 2
Va(0) =wp(0); 5 (¥3(0) = Wa(0) = ——Bwa(0)
cioe &
I+R=T:  io(T—(1-R)=pT
da cui

B k
R=——;, T= . 6
s K+ip ©)
I coefficienti di trasmissione e di riflessione sono dati da:
k2 BZ
| | kz _|_ Bz R. ‘ | k2 + 132 ( )

2) Laparte in y non risente della barriera, quindi I’onda riflessa e I’onda trasmessa sono

Yr(x,y) =R o~ tkxcosatikysina, vr(xy) =T plkxcosortikysina
Problema 2
1
Ep= ho  deg. 1 10,0)
E; =2ho deg. 2 |1,0), |0,1)
Er=3ho  deg.3 12,0, 10,2), [1,1)
3) Sostituendo ,
L,=—i(a'b—ab") ®)
e
H =Tho+ho(a'a+b'b) )

Effettuando i commutatori si ha
[L.,a'a) = —i(—a'b—ab")
[L.,b'b] = —i(a"b+ab")

quindi
[L;,H] =0



4) Ricordando che a'

ny=+vn+1|n+1) e aln) = /njn—1) si ha subito

L,]0,0) =0

L|1,0) = —i(—ab")|1,0) = i[0,1)

L:|0,1) = —i(a")|0,1) = —i|1,0)

L.|2,0) = —i(—ab")|2,0) = iv2[1,1)

L,]0,2) = —i(a'h)|0,2) = —iv/2|1,1)

L1,1) = —i(a'b—ab")[1,1) = —iv/2(]2,0) — 0,2))

5)

Nel sottospazio con E = Ej si ha dimensione 1 e I’autovalore L, = 0.

Nel sottospazio E = E; dai risultati del punto precedente la matrice L, ha la forma
(I’elenco degli stati ¢ quello del punto 2)

0 —i
L= 9)
con autovalori L, = £1.

Nel sottospazio E = E, la matrice L, ha la forma

0 0 —iV2
L=| 0 0 iv2
iv2 —iv2 0

con autovalori 0,2, —2.



