
Meccanica Quantistica - a.a. 2015/2016

Esame scritto - 01/02/2016

Risolvere, a scelta, o Problemi 1 e 2, o Problemi 1 e 3

Tempo a disposizione 3 ore

Problema 1

Si consideri una Hamiltoniana di oscillatore armonico bidimensionale

H =
1

2m
p2x +

1

2m
p2y +

1

2
mω2(x2 + y2) (1)

1) Usando la notazioneN = nx+ny, dove nx, ny sono i numeri di occupazione
per i due oscillatori unidimensionali, si faccia un elenco degli autostati
|nx, ny〉 di H per N ≤ 2 scrivendo accanto la corrispettiva energia.

2) Si consideri l’operatore (generatore infinitesimale delle rotazioni nel piano)

Lz =
1

~
(xpy − ypx) =

1

i

(
x
∂

∂y
− y ∂

∂x

)
(2)

Si scriva Lz in termini degli operatori di creazione e distruzione dei due
oscillatori

x =
`√
2

(a+ a†) ; px =
1

i

mω`√
2

(a− a†) (3)

y =
`√
2

(b+ b†) ; py =
1

i

mω`√
2

(b− b†) (4)

dove

` ≡
√

~
mω

.

Allo stesso modo si scriva H in termini di questi operatori e si dimostri che
gli operatori commutano fra loro: [Lz, H] = 0, usando i noti commutatori
tra gli operatori di creazione e distruzione.

3) Si scriva il risultato di Lz|α〉 per ognuno degli stati scritti nel punto 1).

4) Visto che Lz ed H commutano fra loro devono essere diagonalizzabili
simultaneamente. Si scriva per ognuno dei tre sottospazi corrispondenti
agli autovalori di H trovati al punto 1) la matrice che rappresenta Lz e la
si diagonalizzi trovando gli autovalori.

Problema 2

Schematizziamo la cella di un elettrone confinato in un solido come un cubo
rettangolare di lato L in cui un singolo elettrone può muoversi liberamente.

In tutti i processi di transizione analizzati nel seguito si sottintende sempre
l’approssimazione di dipolo.
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1) Si scrivano le energie, E0, E1, E2 , e gli autostati per il livello fondamentale
ed i primi due stati eccitati del sistema. L’origine degli assi è supposta nel
centro del cubo e le facce del cubo sono ortogonali agli assi coordinati.

Nota: Per gli autostati è sufficiente scrivere la forma delle funzioni d’onda in

una coordinata ed indicare i numeri quantici con cui formare i ket per le tre

coordinate.

2) Il sistema viene immerso in un campo elettrico diretto lungo z e variabile
nel tempo della forma

E(t) = E0 exp (−|t|/τ) .

All’istante t = −∞ il sistema è nello stato fondamentale: in quale fra
gli stati elencati al punto 1) può passare al tempo t = +∞ calcolando le
ampiezze di transizione al primo ordine in E e con che probabilità?

3) Si risponda alle stesse domande se il sistema è invece sottoposto ad un
campo magnetico diretto lungo z:

B = b exp (−|t|/τ) .

Si ricordi che l’accoppiamento è della forma −µ ·B e si trascuri lo spin (µ
è il momento magnetico).

Integrali utili

2

L

∫ L/2

−L/2
x sin(2π

x

L
) cos(π

x

L
) dx =

16

9

L

π2
.

Problema 3

Si consideri uno ione con un elettrone in un orbitale p. Nel seguito si trascura
completamente lo spin. Il momento magnetico si scrive quindi

µ = −µB ` (5)

Nel problema si vuole indagare come la risposta ad un campo magnetico possa
essere modificata se lo ione è immerso in un campo cristallino.

Supponiamo che il cristallo generi una energia potenziale elettrostatica

V = Cx2 +Dy2 − (C +D)z2 (6)

nell’intorno della posizione dello ione (origine delle coordinate).

1) Si dimostri che il potenziale (6) è un potenziale possibile, i.e., soddisfa alle
equazioni di Maxwell nel vuoto, ∇ ·E = −∆V = 0 .

2) Supponendo che C,D siano dell’ordine di grandezza di tipica energia elet-
trostatica, C,D ∼ e2/a3B , si dica se per campi magnetici normali (ad
esempio al di sotto di 1 Tesla) è più importante il campo cristallino o
l’effetto magnetico.
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3) Nel campo cristallino si conservano le componenti di L? Si conserva L2?

4) Le autofunzioni dell’elettrone, in assenza della perturbazione del cam-
po cristallino, possono utilmente essere scritte nella forma cartesiana (si
suppone che gli stati siano normalizzati)

ϕx = x f(r) ; ϕy = y f(r) ; ϕz = z f(r) .

Si scriva la forma dei livelli in presenza della interzione (6) (ma senza il
campo magnetico) lasciando indicati i due integrali

I1 =

∫
d3x x4 f2(r) ; I2 =

∫
d3x x2 y2 f2(r)

5) Si accende un campo magnetico B diretto lungo uno degli assi, si ha effetto
Zeeman al primo ordine? Cosa succede se la direzione di B è arbitraria?
(Si ricordi che stiamo trascurando lo spin).

6) Come cambiano le conclusioni precedenti se C = D?
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Soluzione problema 1

1)

E0 = ~ω deg. 1 |0, 0〉
E1 = 2~ω deg. 2 |1, 0〉, |0, 1〉
E2 = 3~ω deg. 3 |2, 0〉, |0, 2〉, |1, 1〉

3) Sostituendo
Lz = −i(a†b− ab†) (7)

e
H = ~ω + ~ω(a†a+ b†b) (8)

Effettuando i commutatori si ha

[Lz, a
†a] = −i(−a†b− ab†)

[Lz, b
†b] = −i(a†b+ ab†)

quindi
[Lz, H] = 0

4) Ricordando che a†|n〉 =
√
n+ 1|n+ 1〉 e a|n〉 =

√
n|n− 1〉 si ha subito

Lz|0, 0〉 = 0

Lz|1, 0〉 = −i(−ab†)|1, 0〉 = i|0, 1〉
Lz|0, 1〉 = −i(a†b)|0, 1〉 = −i|1, 0〉

Lz|2, 0〉 = −i(−ab†)|2, 0〉 = i
√

2|1, 1〉

Lz|0, 2〉 = −i(a†b)|0, 2〉 = −i
√

2|1, 1〉

Lz|1, 1〉 = −i(a†b− ab†)|1, 1〉 = −i
√

2(|2, 0〉 − |0, 2〉)

5)
Nel sottospazio con E = E0 si ha dimensione 1 e l’autovalore Lz = 0.
Nel sottospazio E = E1 dai risultati del punto precedente la matrice Lz ha

la forma (l’elenco degli stati è quello del punto 2)

Lz =

(
0 −i
i 0

)
con autovalori Lz = ±1.

Nel sottospazio E = E2 la matrice Lz ha la forma

Lz =

 0 0 −i
√

2

0 0 i
√

2

i
√

2 −i
√

2 0


con autovalori 0, 2,−2.
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Soluzione problema 2

1) Gli autostati pari e dispari sono il prodotto, per ogni asse, di:

fn(x) =

√
2

L
cos(nπ

x

L
) n dispari ; sol. pari

gn(x) =

√
2

L
sin(nπ

x

L
) n pari ; sol. dispari

(9)

I ket possono quindi essere caratterizzati dalla scrittura |n1, n2, n2〉. L’energia
è

En1,n2,n3
=

~2

2mL2

(
n21 + n22 + n23

)
Il livello fondamentale ed il primo eccitato hanno energia

E0 =
~2

2mL2
3 ; E1 =

~2

2mL2
(1 + 1 + 4) =

~2

2mL2
6

Il fondamentale è non degenere, il primo livello eccitato è tre volte degenere con
autostati

|1, 1, 2〉 , |1, 2, 1〉 , |2, 1, 1〉 .

Il secondo livello eccitato è tre volte degenere, con autostati

|1, 2, 2〉 , |2, 2, 1〉 , |2, 1, 2〉 .

ed energia

E2 =
~2

2mL2
(4 + 4 + 1) =

~2

2mL2
9

2) L’accoppiamento è
V = ezE(t)

quindi per parità l’unico stato che può essere eccitato a partire da |1, 1, 1〉 è lo
stato |1, 1, 2〉 La frequenza di transizione è

~ω1 = E2 − E1 =
~2

2mL2
3

e l’ampiezza di transizione è

A =
1

i~
eE0

∫ ∞
−∞

eiω1t〈1, 1, 2|z|1, 1, 1〉e−t/τ

L’elemento di matrice è (vedi integrale dato nel testo)

〈1, 1, 2|z|1, 1, 1〉 =

∫ L/2

−L/2
g2(z)zf1(z)dz =

16

9

L

π2
≡ D
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L’integrale nel tempo è∫ ∞
−∞

e−|t|/τeiω1t =

∫ 0

−∞
et/τeiω1t +

∫ ∞
0

et/τeiω1t =
2τ

1 + τ2ω2
1

Per la probabilità di transizione

P = |A|2 =
e2E20D2

~2
4τ2

(1 + ω2
1τ

2)2

3) Se si trascura lo spin l’interazione è

−µzB =
e~

2mc
LzB = µBLzB

Siccome

Lz =
1

i
(x

∂

∂y
− y ∂

∂x
)

la parità in totale non deve cambiare, quindi la transizione è su uno degli stati
con energia E2 (che sono pari). Inoltre ogni addendo di Lz cambia la parità
sia in x che in y quindi l’unico stato possibile è |2, 2, 1〉. Ma Lz è dispari nello
scambio x ↔ y mentre gli stati |1, 1, 1〉 e |2, 2, 1〉 sono entrambi pari, quindi
l’elemento di matrice è nullo.

Il risultato sarebbe non nullo se si trattasse di un parallelepipedo con L1 6=
L2.

Soluzione problema 3

1. V è proporzionale al potenziale elettrostatico ϕ creato dal cristallo che deve
soddisfare all’equazione ∆ϕ = 0 nella zona esterna alle cariche (del cristallo),
ed in effetti è vero.

2. Trattandosi di interazioni elettrostatiche C,D ∼ e2/a3B . Siccome l’estensio-
ne dello ione come ordine di grandezza è anch’essa dell’ordine di aB , il contributo
all’energia è quello tipico elettrostatico cioè dell’ordine dell’eV, molto maggiore
dell’energia magnetica.

3. Le componenti di L non si conservano, in generale, perchè V = −eϕ non
è invariante sotto rotazioni. Come si verifica immediatamente l’operatore può
provocare transizioni con ∆L = 2, perchè si trasforma come una somma di
armoniche sferiche Y2m, quindi non commuta nemmeno con L2.

4. Per parità tutti gli elementi di matrice fuori diagonale di V sono nulli, quindi
nella base |ϕx〉 . . ., V è diagonale. Usando la simmetria si ha (si suppongono
gli stati normalizzati):

Vxx =

∫
V

d3x x2f(r)2(Cx2+Dy2−(C+D)z2) = CI1+DI2−(C+D)I2 = C(I1−I2)

6



ed analogamente per gli altri elementi di matrice

V =

C(I1 − I2) 0 0
0 D(I1 − I2) 0
0 0 −(C +D)(I1 − I2)

 (10)

e questi elementi di matrice danno anche lo splitting dei livelli.

5. Siccome il campo magnetico produce una piccola perturbazione rispetto al
campo cristallino, l’effetto al primo ordine dovrebbe essere 〈s|−µB|s〉, dove |s〉
è uno degli stati precedenti. Ma ricordiamo che, in coordinate cartesiane

Li = εijkxjpk (11)

quindi gli elementi diagonali di una qualunque componente di L sono nulli in
questa base, perciò non si ha effetto lineare. Per una direzione arbitraria si avrà
sempre

B = Bx x̂ +By ŷ +Bz ẑ (12)

ed ognuno dei termini precedenti ha effetto nullo al primo ordine, come appena
visto.

6. In questo caso l’energia nel campo cristallino è (in forma matriciale)

V = (I1 − I2)C

1 0 0
0 1 0
0 0 −2

 (13)

Per il livello associato allo stato ϕz non cambia nulla, ma l’altro livello è
degenere, quindi per un campo diretto lungo z, usando la (11):

(VB)ij = µB B (Lz)ij = −iµBB ε3,ij

e questa ha elementi di matrice fuori diagonale nel livello:

Veff = C(I1 − I2) + µBB

(
0 −i
i 0

)
a cui corrispondono due autovalori

C(I1 − I2)± µBB

si ha quindi effetto Zeeman, e conseguente permeabilità magnetica.
Le componenti Lx, Ly invece non hanno elementi di matrice all’interno del

blocco 2×2 e non producono nessun effetto. Questo significa che per un generico
campo magnetico, vedi (12), solo la componente Bz è efficace, z è uno degli assi
cristallini: la permeabilità magnetica è quindi anisotropa, dipende dall’angolo
fra il campo magnetico e l’asse z.

7



Meccanica Quantistica 1 - a.a. 2015/2016
Esame scritto - 1-Feb-2016

Risolvere, a scelta, due dei Problemi

Tempo a disposizione 3 ore

Problema 1

Si consideri una particella che si muove lungo l’asse x nel verso positivo, con
numero d’onda k, dove ~k = p. È presente una barriera di potenziale schema-
tizzabile forma

V (x) = f δ(x) (1)

1) Si calcoli i coefficienti di riflessione e trasmissione attraverso la barriera.

2) Si estenda ora il problema in due dimensioni, la barriera è sempre data
dalla (1) ma ora l’onda incide sulla barriera con un angolo di incidenza α
rispetto alla normale (asse x) cioè l’onda incidente è della forma

ψ(x, y) = exp(ik cosαx+ ik sinα y) = eik cosαx eik sinαy .

Si scriva l’onda riflessa e l’onda trasmessa.

Problema 2

Una particella A di spin 3
2 , a riposo, decade in due particelle B e C, rispettiva-

mente di spin sB = 1 e di spin sC = 1
2 .

1) Quali valori può assumere a priori lo spin totale Stot,

Stot = sB + sC (2)

?

2) Per ciascuno dei valori elencati al punto sopra, indicare i valori del mo-
mento angolare orbitale L del moto relativo (B − C) nello stato finale,
ammessi dalla conservazione del momento angolare.

3) Si supponga che la misura della distribuzione angolare della particella
B abbia dato il risultato consistente con una distribuzione isotropa, nel
centro di massa di B e C. Dedurre il valore di Stot.

Problema 3

Un atomo di idrogeno viene preparato nello stato con funzione d’onda (norma-
lizzata)

φ =
1

4
√

2π

x

a
a−3/2e−

r
2a , (a ≡ rB) . (3)
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1) Dire se è in un autostato dell’energia e con quale autovalore.

2) a) Si effettua una misura di Lx: quali valori si possono ottenere e con
che probabilità?

b) Si effettua una misura di Lz: quali valori si possono ottenere e con
che probabilità?

3) Si consideri ora un atomo di idrogeno preparato nello stato con funzione
d’onda

ψ =
1√
2
φ+

1√
2

1√
4π
R1,0(r)

Si risponda in questo caso alle domande 1) e 2) precedenti.

Formule utili

Le coordinate cartesiane sono legate a quelle sferiche da

x = r sin θ cosϕ ; y = r sin θ sinϕ ; z = r cos θ

Funzioni d’onda radiali Rn,` dell’atomo di idrogeno (a ≡ rB è il raggio di Bohr):

R1,0 = a−3/2 2e−r/a ; R2,0 = a−3/2
1√
2

(1− 1

2

r

a
)e−r/2a ;

R2,1 = a−3/2
1

2
√

6

r

a
e−r/2a ;

Armoniche sferiche:

Y0,0 =
1√
4π
, Y1,0 =

√
3
4π cos θ, Y1,±1 = ∓

√
3
8π sin θ e±iφ
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Soluzione

Problema 1

1) La funzione d’onda per x < 0 e x > 0 rispettivamente ha la forma

ψa(x) = eikx +Re−ikx ; ψb(x) = T eikx

Le condizioni di raccordo sono, ponendo

f =
~2

m
β , β ≡ fm

~2
,

ψa(0) = ψb(0) ;
~2

2m
(ψ′b(0)− ψ′a(0)) =

~2

m
βψa(0)

cioè

1 +R = T ; i
k

2
(T − (1−R)) = βT

da cui

R =
β

ik − β
; T =

k

k + iβ
. (4)

I coefficienti di trasmissione e di riflessione sono dati da:

D = |T |2 =
k2

k2 + β2
; D = |R|2 =

β2

k2 + β2
; (5)

2) La parte in y non risente della barriera, quindi l’onda riflessa e l’onda
trasmessa sono

ψR(x, y) = R e−ikx cosα+iky sinα ; ψT (x, y) = T eikx cosα+iky sinα

Problema 2

1) Stot = 3
2 o Stot = 1

2

2) Per Stot = 3
2 i valori possibili di L sono

L = 0, 1, 2, 3 ,

mentre per Stot = 1
2

L = 1, 2 .

3) Stot = 3
2 .
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Problema 3

1) Si’, è uno stato di n = 2, con

E = − e
2

8a
.

2a)

Lx = −i~ [y
∂

∂z
− z ∂

∂y
] ,

perciò
Lx φ = 0 :

φ è un autostato di Lx con autovalore 0. In altre parole ci si aspetta il
risultato della misura di Lx univoco, Lx = 0, con probabilià 1.

2b)

φ =
1√
2
R2,1 [Y1,−1 − Y1,1] =

1√
2

(ψ2,1,−1 − ψ2,1,1) ,

quindi la misura di Lz dà i risultati, Lz = 1 o Lz = −1 con probablità
1/2 per ciascuno.

3)

ψ =
1

2
(ψ2,1,−1 − ψ2,1,1) +

1√
2
ψ1,0,0 .

Questo stato non è un autostato di energia; la sua misura darà i possibili
valori,

E1 = − e
2

2a
, oppure E2 = − e

2

8a

con probablità 1/2 per ciascuno. Il risultato della misura di Lx è univoco,
Lx = 0, con probabilià 1. La misura di Lz dà i risultati, Lz = 1, Lz = 0,
Lz = −1, con rispettive probablità, 1/4, 1/2, 1/4.
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Meccanica Quantistica: Recupero Compitino I
1 febbraio 2016 (A.A. 15/16)
Tempo a disposizione: 3 ore

Problema 1
Si consideri una particella che si muove lungo l’asse x nel verso positivo, con numero
d’onda k, dove h̄k = p. È presente una barriera di potenziale schematizzabile forma

V (x) = f δ(x) (1)

1) Si calcolino i coefficienti di riflessione e trasmissione attraverso la barriera.

2) Si estenda ora il problema in due dimensioni, la barriera è sempre data dalla (1) ma
ora l’onda incide sulla barriera con un angolo di incidenza α rispetto alla normale
(asse x) cioè l’onda incidente è della forma

ψ(x,y) = eik cosαx+ik sinαy = eik cosαxeik sinαy

Si scriva l’onda riflessa e l’onda trasmessa.

Problema 2
Si consideri una Hamiltoniana di oscillatore armonico bidimensionale

H =
1

2m
p2

x +
1

2m
p2

y +
1
2

mω
2(x2 + y2) (2)

1) Usando la notazione N = nx +ny, dove nx,ny sono i numeri di occupazione per i due
oscillatori unidimensionali, si faccia un elenco degli autostati |nx,ny〉 di H per N ≤ 2
scrivendo accanto la corrispettiva energia.

2) Si consideri l’operatore (generatore infinitesimale delle rotazioni nel piano)

Lz =
1
h̄
(xpy− ypx) =

1
i

(
x

∂

∂y
− y

∂

∂x

)
(3)

Si scriva Lz in termini degli operatori di creazione e distruzione dei due oscillatori

x =
`√
2
(a+a†) ; px =

1
i

mω`√
2
(a−a†) (4)

y =
`√
2
(b+b†) ; py =

1
i

mω`√
2
(b−b†) (5)

dove

`≡
√

h̄
mω

.

Allo stesso modo si scriva H in termini di questi operatori e si dimostri che gli ope-
ratori commutano fra loro: [Lz,H] = 0, usando i noti commutatori tra gli operatori di
creazione e distruzione.

3) Si scriva il risultato di Lz|α〉 per ognuno degli stati scritti nel punto 1).

4) Visto che Lz ed H commutano fra loro devono essere diagonalizzabili simultanea-
mente. Si scriva per ognuno dei tre sottospazi corrispondenti agli autovalori di H
trovati al punto 1) la matrice che rappresenta Lz e la si diagonalizzi trovando gli
autovalori.
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Soluzione

Problema 1
1) La funzione d’onda per x < 0 e x > 0 rispettivamente ha la forma

ψa(x) = eikx +Re−ikx ; ψb(x) = T eikx

Le condizioni di raccordo sono, ponendo

f =
h̄2

m
β , β≡ f m

h̄2 ,

ψa(0) = ψb(0) ;
h̄2

2m
(ψ′b(0)−ψ

′
a(0)) =

h̄2

m
βψa(0)

cioè
1+R = T ; i

k
2
(T − (1−R)) = βT

da cui

R =
β

ik−β
; T =

k
k+ iβ

. (6)

I coefficienti di trasmissione e di riflessione sono dati da:

D = |T |2 = k2

k2 +β2 ; R = |R|2 = β2

k2 +β2 ; (7)

2) La parte in y non risente della barriera, quindi l’onda riflessa e l’onda trasmessa sono

ψR(x,y) = R e−ikxcosα+ikysinα ; ψT (x,y) = T eikxcosα+ikysinα

Problema 2
1)

E0 = h̄ω deg. 1 |0,0〉
E1 = 2h̄ω deg. 2 |1,0〉, |0,1〉
E2 = 3h̄ω deg. 3 |2,0〉, |0,2〉, |1,1〉

3) Sostituendo
Lz =−i(a†b−ab†) (8)

e
H = h̄ω+ h̄ω(a†a+b†b) (9)

Effettuando i commutatori si ha

[Lz,a†a] =−i(−a†b−ab†)

[Lz,b†b] =−i(a†b+ab†)

quindi
[Lz,H] = 0
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4) Ricordando che a†|n〉=
√

n+1|n+1〉 e a|n〉=
√

n|n−1〉 si ha subito

Lz|0,0〉= 0

Lz|1,0〉=−i(−ab†)|1,0〉= i|0,1〉
Lz|0,1〉=−i(a†b)|0,1〉=−i|1,0〉

Lz|2,0〉=−i(−ab†)|2,0〉= i
√

2|1,1〉

Lz|0,2〉=−i(a†b)|0,2〉=−i
√

2|1,1〉

Lz|1,1〉=−i(a†b−ab†)|1,1〉=−i
√

2(|2,0〉− |0,2〉)

5)
Nel sottospazio con E = E0 si ha dimensione 1 e l’autovalore Lz = 0.
Nel sottospazio E = E1 dai risultati del punto precedente la matrice Lz ha la forma

(l’elenco degli stati è quello del punto 2)

Lz =

(
0 −i
i 0

)
con autovalori Lz =±1.

Nel sottospazio E = E2 la matrice Lz ha la forma

Lz =

 0 0 −i
√

2
0 0 i

√
2

i
√

2 −i
√

2 0


con autovalori 0,2,−2.
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