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As recent developments show, supersymmetric gauge theories reveal surprisingly

deep features of the nonperturbative dynamics of non-Abelian gauge theories, notably
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the quantum behavior of solitons, such as magnetic monopoles and vortices. Some
of these findings might be relevant to the understanding of confinement in QCD. In
these lectures an elementary introduction to this field of research will be given, with

an emphasis on

(i) Characteristic features of supersymmetric gauge theories;
(ii) Introductory account of anomalies;

(iii) Instantons;

(iv) Solitons and non-abelian electromagnetic duality;

(v) Seiberg-Witten exact soluition of N' = 2 gauge theories;

(vi) CDSW, generalized Konishi anomalies and exact results on N/ = 1 gauge theo-

ries.

2. Two-component spinors

Let us review first the notation and conventions on spinors, following Wess and

Bagger[1]. Note however that our convention for the metric tensor is that of Bjorken-
Drell:

1 0 0 0
0 -1 0 0
w 9.1
g 0 0 -1 0 (2.1)

0o 0 0 -1
Two-component spinors are objects which transform according to the representations
Y ~ (1/2,0), ¥ ~ (0,1/2) of the Lorentz group Ll = SL(2,C) ~ SU(2) x SU(2).
They trasform as

Yo — Ui = MY g; Y = = (Mg =Py, (2.2)
Go =y = My %= Y = (M) PR = ey, (23)
=¥ = —¢y =€y = 1; (2.4)

under Lorentz transformation. The M matrix (det M = 1) is of the form M = 397

for rotations and M = e3%° for boosts. Note that

P =Yy, Py = ol (2.5)



The vectors
0 .3 1 ;2
—p + —p +1 , ,
P=p,ot = ( pl ?2 po p3 ) : ot =(-1,0"), o' =(-1,-0"), (2.6)
—p —1p —p =D
where the o’s are Pauli matrices, transform as
PP =MPM! (2.7)
under which
det P = (p°)* — p° (2.8)

is invariant as det M = 1. In fact, Lorentz vectors transform in the same way as the

product of two spinors,
Vas ~ kot ~ (1/2,1/2) (2.9)

while

1/1& '1/10” ’l/_}d wa7 wa (O-“)Olda,u’l/_}d (210)
summed over the indices, are invariant, i.e. belong to the representation (0,0). The

four dimensional gamma matrices are (in the chiral representation)

= (fﬂ ‘70“) (2.11)

. 10
P =iyt = (0 _1> (2.12)

The Dirac spinors are given by

bp = (j}z) : (2.13)

they are equivalent to two independent Weyl (two-component) spinors; while the

Majorana spinors have the form

Xa
np = ( d) , (2.14)
X
The Dirac conjugates of these are
Up = Uhn° = (=0, —Xa); (2.15)
the Majorana spinors satisfies
,QZ_)M = (_Xaa _Xd) = ?/)cha (216)

4



where

0O 1 0 0
C=—i'~?= _01 8 8 _01 = <60ﬁ Ejﬁ) (2.17)
0 0 1 0
is a real matrix. We use the convention
UX =Y Xa = —Xa¥® = X a = XV, (2.18)
UX = YaX® = —X " = XU (2.19)
Namely, spinors are anticommuting (Grassmannian) quantities. Other useful formulas
are
Wx)'=vx (2.20)
Ypp = —x =YX, (2.21)
Up iy dbp = =i o 0,0 — i x 7" DX, (2.22)
(0)% = €9 ¢%(0) 45 (2.23)
Looking at the Weyl equation
iot 0 =0 (2.24)
E=i0y) = —0-p (2.25)

one sees that F > 0 implies o - p < 0: 1 is the wave function of a spinor of negative
helicity. Vice versa, x describes a positive helicity spinor. As an operator x creates

negative helicity (or destroy a positive-helicity) state.

3. Supersymmetry algebra

Supersymmetry charges are

In the four-spinor notation (C = iv?4°)

s (7 2)(3)-(5) o



From now on however we switch to two-component spinor notation. N = 1,2,...4

susy algebra are (i = 1,2,...N)
(@0 Q4 = —20" P, {QLQ4} = (@0 @) =0 (),

[P, QI =[P",Q =0,  [P",P"]=0,

Q) = (0" Qe (™) = Jlo0" — 0"0"]
Z'[M!W, Qa] _ (5#1/@)027 (5_uu)d6 — i[a.ﬂo.u o 5_1/0#]@6’

The rest is the standard Poincaré group algebra
,l»[M,ul/’ P)\] — gp)\Pu o gu)\P;L
Z'[M!W, M}\Ii’] — gp)\Ml/n 4 gl/nM;L)\ o gl/)\M,u/i o gu)\M,u/i

where the metric tensor is taken to be
diagglﬂ/ = (]-7 _]-7 _]-7 _1)

(Bjorken-Drell).

3.1. Note

(3.4)

(i) [Haag-Sohnius-Lopszanski theorem]: supersymmetry algebra is the only algebra

which contains the Poincaré algebra, which generalizes it by additional Grass-

mann algebra, and that is consistent with nontrivial S-matrix of quantum field

theory. This evades and in a sense generalizes the Coleman-Mandula theorem.

The latter states that the only symmetry algebra (without Grassmannian ex-

tension) which generalizes the Poincaré algebra to include internal symmetry

algebra, and that is consistent with nontrivial S-matrix of quantum field theory,

is of the form

g ~ GPoincare & Ginternal»

a direct product.
(ii) Jacobi’s identity reads

(A, {B,C) + {B,{C, Al + {C, {A, B]] = 0.

(3.11)

(3.12)



where either the anticommutator should be chosen when both operators are
fermionic, and the signs are determined by whether in that term the Grassman-
nian operators appear in the even (4) or odd (—) permution with respect to

the first term. For instance, if A = bosonic, B, C are fermionic, then it reads

[A,{B,C}|+{B,[C,A]} - {C,[A, B]} = 0. (3.13)

(iii) For N' = 2 it allows the supersymmetry algebra to be generalized with central

3.2.

extension,
{QL, QLY = €ap e (U +1iV) (3.14)

where U, V are the central charges (i.e, they commute with all the generators. )
It has been shown explicitly (Olive, Witten) that in N' = 2 non-Abelian gauge

theories U, V' do appear and correspond to the electric and magnetic charges.

One particle representations

Let us consider now the representation of supersymmetry algebra on one particle

states.

(i) For a massive N/ = 1 supersymmetric particle states, one has (P* = (M,0,0,0))

{Qa;@d} = 5ad 2M7 Oé,(jé = 1727 (315)

or, by defining
Qo bo = ——=CQq- (3.16)

These can be regarded as two pairs of annihilation and creation operators,
{bs, b} = 6aa. The complete set of one particle states can then be conctructed

by defining the vacuum state by (i = 1, 2)
b; |0) = 0; (3.17)
the full set of states are
0}, 0}[0),  BY[0),  BiB[O), (3.18)

they form a degenerate supersymmetry multiplet (two bosons and two fermions).



For N supersymmetry, the same argument shows that the multiplicity of a

massive multiplet is
2N
2
> < N) — oW, (3.19)
n=0 n

(il) Massless N/ = 1 supersymmetric particle states: In this case it is not possible
to go to the rest frame but the momentum can be chosen as P* = (p,0,0,p).
Then

@.03- (7 ) (320

The state b}, |0) have a zero norm. The particle states are given by the positive
norm states, half of (3.18),
0y, bl[0). (3:21)

The multiplicily of a massless N' = 1 supersymmetry multiplet is

i (QnN) =2V (3.22)

n=0

(iii) Massive N = 2 supersymmetric particle states with central charges. In the rest

frame (P* = (M,0,0,0)) the supersymmetry algebra reduces to
(Q, QL) =0 60a2M,  a,a=1,2, 4,j=1,2, (3.23)

{QL, QL) = €ap e (U +1iV) (3.24)
Within an irreducible representation U and V are just numbers (electric and

magnetic charges of these particles). There are three cases:

2M < /U? + V2 : It is not possible to find a positive-norm representation of
the algebra;

2M = U2+ V? : A representation exists with multiplicity 2V = 4 (short
multiplet) (“BPS” saturated case);

2M > /U2 + V2 : A representation exists with multiplicity 2%V = 16 (long
multiplet).

Proof: Define

1 1 2 2
\/Cgl—M = Q2 = b2 Ql = b3 <2 _ b4 (325)




U V
\/TW:u _W:U (3.26)

then

{bi, bT} = 5@']’ {bl, b4} =u+1w {bg, bg} = —u—wW (327)

J
(oY =u—iv  {bl, b1} = —u+iv (3.28)
Now make the change of variables
Qo —€"Qn Qo — @ (3.29)
by — €e7by by — €7 by (3.30)
to have {by, by} real and positive:

2 2
b} = (B0 =0 = YO L (3.31)

{bs, b3} = {b}, b}} = - (3.32)

In order to see the spectrum, it is convenient to set

A=bycost?+bisind B = —bysind+ b} cosv. (3.33)

The condition {A, B} = {A, B'} = 0 yields ¥ = Z: A and B satisfy separate
anticommutators

{A,B}=0 {AAY=1+a {B,B}=1-a (3.34)

Thus if |a| < 1 there are two creation operators AT, B, while if a = +1 BT (or
AT) creates zero-norm states and only A" (or BT) survives. Repeating the same

passages for by and b;g leads to an identical result.

The net result is that the absence of negative norm states requires |a| < 1, or

VU2 + V2
M > % (3.35)
Particles with mass M > 7”122“/2 come in “long multiplets” with multiplicity
22N = 8, while the BPS particles with mass M = 7”]22“/2 come in “short

multiplets” of multiplicity 2V = 4.



3.3. Field transformations

Now we wish to find the representation of supersymmetry algebra in the space
of fields rather than in one-particle states. Now the operators appearing in the
algebra

act on the space of fields. Introduce superfields living in superspace (Salam and

Stradthee 1974), considering them as power series in the coordinates 6, 0:

F(z,0,0) = f(z) + 0(x) + 0x(x) + 00m(x) + 00n(x) +
+0c"0v,(z) + 000 XN(z) + 000 ¢(x) + 0000D(x) (3.37)

where 0% and 65 are Grassmannian coordinates,

{01, 02} = 0, (01)2 = (02)2 = 0, 00 = 00‘0a = 20201, éé = édéd = 2@162
(3.38)
etc. For Grassmannian coordinates the integration and derivation is the same:

/d@:%, /d&lelz/d0292:1, /d011=0, 6(0) =0,

(3.39)

/d2090 =1, /d2§§§ =1, /d26’1 = /d2001 =0, (3.40)

where d?6 is defined as d#'df*. The same rules apply to 6, with d*6 = 1df,d#,.
Note that the differentials of Grassmannian variables are Grassmannian and
anticommute. In the expansion of F(z,6,0) in powers of 6,0 there is a finite
number of terms because 6% = > = 0. The fields that appear in the expansion
are called component fields. It is possible to see supersymmetry transformations

on these fields as translations in superspace:
G(x,0,0) = 2" Put0Q+0Q) (3.41)
and using Baker-Hausdorff formula
G(0,£,9)G(x,0,0) = G(z# + ifo"E —i€a"0,0 + £,0 + €) (3.42)

Then the infinitesimal translation operator in superspace is £Q + £Q, where

Qo = 8%; — ioh;0%0, (3.43)
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Q% = % — 00" 70, (3.44)

and its action on superfields is
0ecF =[EQ+EQ,F] =6 f(x) + 06v(x) + 00x(x) + 60 dm(x) + ... (3.45)

The above equation defines the action of infinitesimal supersymmetry transfor-
mations on component fields. Note that these representations are in general re-
ducible; the usual way to obtain irreducible ones is to find covariant constraints
which reduces the number of component fields. Note that these constraints must
not impose conditions on the x-dependence of the component fields. The most
important examples of constraints of this kind are chiral and vector superfields.

Before introducing them, we define a covariant derivative in superspace:

D, = 8% 1 i(0"0).0), (3.46)
_ o .
Dd = —% — 10 Uadau (347)

which satisfies

{Dom Dd} = _2iagdaﬂ {Qa D} = {Qa D} = {Qa D} - {Qa D} =0 (348)

(D)= (D)*=0 (3.49)

3.4. Chiral superfields
A chiral superfields is defined by
Dy®=0  (chiral) (3.50)
D,®=0 (antichiral) (3.51)
This constraint is easier to understand if we introduce chiral coordinates
y" =zt + ifo"0 Yy =2t —ifotf (3.52)
and change coordinates (r,60,0) — (y, 0, 0); in the new coordinates

b 0 0

11



and the constraint (3.50) can be solved by the functions of the form
® = 0(y,0) = Aly) + V209 (y) + 00 F(y) (3.54)

or, going back to the variables (z,, 0),

?

® = A(x)+v20(x)+66 F(x)+ibo"0 9, A(x) 7

_ 1 __
00 9,:1)(x)0"0+00 00 DA().
(3.55)

0,0 have the dimension of —3, so if A(z) is a scalar field of dimension 1 ¢(z)

is a spinor field of dimension 2; F(z) is a scalar field of a wrong dimension
(2). In fact, we shall see that it is an auxiliary field, entering the Lagrangean
without derivatives, and consequently can be eliminated through the equations

of motion.

Chiral superfields for a ring under addition and product,

Dg(®1®Py) = Dy(P1)Py + P Dg®Py = 0 Ds(®) + @) = Dg®y + Dg®Py = 0

(3.56)
The product ®'® is not a chiral superfield, because Dy®' # 0. ®T® is a real
superfield: it can be used in constructing supersymmetric Lagrangians, as we

see later.

Upon applying a supersymmetry transformation to a superfield, a component
field of dimension n gets transformed to & ¢((z) = £ 6¢(z) + £ 6((x) containing
terms that have dimension n+%, as & and € carry the dimension —%. These terms
can be fields of higher dimension, or derivatives of fields of lower dimension. It
is easy to see that the 66 term (usually called F-term) of a chiral superfield or
a composite theirof, always transforms into is the spacetime derivative. The
same can be shown for the highest 0900 term (also called D-term) of a generic
superfield. These observations are used to construct a supersymmetric action

with a given set of superfields.

3.5. Vector superfields

Another possible covariant constraint on a superfield V' is

Vi=Vv (3.57)

12



A superfield of this kind is called a vector (or real) superfield. The generic form
for V' is

V = CO(x) +i6 x(z) — 0 x(x) + %96 [M(x) +iN(z)] — =00 [M(x) — iN(x)] +

DN | .

0000, () + 000 [A(x) + *Dx(@)] — 000 [\ (x) — *D,x(x)] +
+%w§mD@g+%DC@n@5&

with all the bosonic fields real. Chiral superfields can be used to describe
describe quarks and leptons (and their superpartnes), while vector superfields

can be used to describe the gauge bosons.

As ® + & is a real superfield. the concept of gauge transformation can be

generalized to supersymmetric gauge transformations,
V—V+&+ ! (3.59)
which for the 60 term reads
v, — v, — i0,(A — AT) (3.60)

which is the ordinary Abelian gauge transformation. In nonabelian gauge the-
ories the supersymmetric extension of gauge transformation takes a more com-

plicated form.

There is a gauge (the Wess-Zumino gauge) in which most of the components of

the vector superfield are zero:
_ - _ 1
V =—05"0v,(x) +i00 0 X\(x) —i00 0 X\(x) + 599 00 D(x) (3.61)

In this gauge V3 = 0 and supersymmetry is broken, but it is still possible a usual
gauge transformation like v, — v, + d,A. Now we want to find an equivalent
of the field strength. The lower-dimensional gauge invariant component field is

A(z), so we can try

1 - _ 1
Wa=—,DDD.V  Wi=— DDD:V (3.62)

which are gauge-invariant chiral superfields; in fact DgWj = DQWB = 0 because
D? = D? = 0. They also satisfy DYW, = DsW?. If we switch to chiral

13



coordinates W, assume the form

. (A <
Wal(y,0) = —ida(y) +0aD(y) = 5(0"0"0)a(0uvs(y) = Bovau(y)) + 00(0"0uA(Y))a
(3.63)
so it contains the field strength F},, = 0,v, — d,v,, A and D which are gauge-

invariant fields, and it is a good candidate for a superfield strength.

4. Supersymmetric gauge theories

The simplest nontrivial supersymmetric theory is the Wess-Zumino model for

chiral fields, in which the Lagrangian kinetic term is constructed from
i Py aOAs toata— Lo af Lo dabi—

which contains the usual kinetic terms for scalar and spinor fields. The complete
Lagrangian is

L= ®|p+P(®)|r+h.c (4.2)

where P is the superpotential. If we restrict to renormalizable interactions ! we

have ]

In terms of component fields, it reads (for a single chiral field)
L= —ipgon) + 9, Al A — (%W +hee) — (oA + hee) — V(A AT (4.5)
V =FF=|\+mA+ gA*> (4.6)
For a vector superfield a kinetic Lagrangian can be constructed from the term
WoW,|r = —2iA" O\ — %F“”FW + EF“”FW + D? (4.7)

Now it is easy to construct the Lagrangian of the supersymmetric quantum elec-
trodynamics (SQED). We have left and right-handed electrons and positrons,

Tf the condition of renormalizability is not needed (e.g. effective action) the supersymmetric
Lagrangian of chiral superfields have the general form,

02K
06100,

i.e. it is given in terms of a Kihler potential K (&, ®).

/d4xd29 0K (®T,®) = /d4x Dl + ... (4.3)

14



so we must have two chiral fields in the theory, ® and ®. We introduce a global

U(1) transformation corresponding to the electric charge
d— e e P — D (4.8)

and consider the Lagrangian invariant under this transformation, that will gen-
erally contain only the mass term in the superpotential. When we see A as
a function of spacetime coordinates, we must promote it to a full chiral mul-
tiplet to transform a chiral field into a chiral field; but then the kinetic term
transforms as

TP —s Pl M-Ag (4.9)

We must introduce a vector gauge field with the transformation property
V — V +i(A - AT) (4.10)

so as to make a gauge invariant such as ®Te®V®. Now the complete SQED

Lagrangian is

1 ~ ~ -
LICED — TV Walp+h.c)+ (BT D+ DTe VD) p +m(PD|p+h.c) (4.11)
Actually, another term (Fayet-Iliopoulos term)

Vip (4.12)

can be added without breaking the gauge symmetry. Also, a superpotential
P(®)|r + h.c., can be added.

These results can be generalized to non-abelian gauge theories such as SQCD.
We choose a set {T“}azl___ch_l of N. x N, hermitian matrices that belong to

the fundamental representation of the Lie algebra of SU(N,)
1
a __ arby __ © a bl __ - paberpe
TrT* =0, Tr(TT)—Qab [T%,T°] = E ifeer (4.13)

C

V' is a matrix V' =) T*V* and the field strength is defined as
1~
W, = —ZDQe_VDaeV. (4.14)
The gauge transformation (4.10) in this case takes the form,

e

I

sAatpa _sAaTa
1% GZA T eve AT . (415)

15



Figure 1:

while the chiral superfields Q;, Q; transform as

Qi — €iAaTan'7 Q;[ - QzefiAaTTaa Qz - €7iAaTa@z'a @I - Qlemwa-
(4.16)
A gauge invariant SQCD Lagrangian takes the form,

1 ~ ~ .
L£594P = @(WWWS\F +h.c)+ (Qieri + Qle‘in) 0+ (P(Q,Q)|r+h.c.).
(4.17)
This Lagrangian takes its usual form after eliminating the auxiliary fields and

after a rescaling V' — 2¢gV.

5. Nonrenormalization theorem and NSVZ ( function

5.1. Superspace propagator and nonrenormalization the-
orem

The Wess-Zumino lagrangian is
L= /d20d20 (cp*cb + %m(I)ZcSQ(H) + h.c. + g ®*6%(0) + h.c.) (5.1)
The superfield propagator is
(T{®(x,0,0)®(',0,0)}) = —ms>(6 — §)e 07" 000N (z — ') (5.2)
(T{®(,0,0)07(2/,0,0)}) = e OO0 D0%N (3 — ') (5.3)

where A.(z — 2’) is the usual 2-point function. Consider loop corrections

x 620 —0)5%0—0") =6*6—0)5*(0) =0 (5.4)

while that of Fig. (2) is nonvanishing and gives the wave function renormaliza-

16



Figure 2:

tion. Similarly the chiral graph of

o 0%(0) =0 (5.5)

Note that no superpotential term can be generated by perturbative corrections.
Only D-terms can be generated.

In general, if ® is a chiral superfield,
(O---®) =0  perturbatively (5.6)

that is it receives zero contribution from any order of perturbation theory; the
only contributions come from those terms which are present in the original (tree-
level) lagrangian, such as g®3 in the Wess-Zumino model. In other words there
are no terms generated by supergraphs with loops. Thus, after wave-function

renormalization, we have (the subscript R stays for ”renormalized”)
g®* = gr®% (5.7)

®=7210p=g=Z2gp (5.8)

5.2. Nonrenormalization theorem and anomalous and
non-anomalous symmetries

The above proof is essentially perturbative (diagrammatic). Certain superpo-
tentials are protected by some symmetry, such as U(1), SU(ny), etc. If such
symmetry is exact and non-anomalous, then these superpotential are not renor-
malized both perturbatively and non-perturbatively. If such terms are absent

in the Lagrangian, they cannot be generated by quantum effects.

If instead this symmetry is anomalous (as in Uy (1) in QCD-like theories), then
terms violating non-renormalization theorems can be generated nonperturba-

tively, e.g. by instantons. This will be the subject of the next Section.
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5.3. Perturbative anomalies due to massless loops

If however the theory contains massless particles, the non-renormalization the-

orem can be violated apparently. Consider a N' = 1 Yang=Mills lagrangian

7]
_ 1
L=93"(")®| +SW'Wa|l +hc + dpP*®D°| + h.c. (5.9)
D g F F

Consider the graph

_$2D%P
~/d20d20 5 (5.10)

This is a non local term. In a background field framework, when external
momenta tends to 0, D? = (& + iéa“@u)z ~ 6?0 and

_92D%P
/ dQHdQH? ~ / d*0d3 (5.11)

which imitates a F-term. Clearly this process is not possible if we ca write a
Wilsonian action Sy, and we can make all quantities infrared-free.
It is important to note that, in general, we have a non-analytic function of

original couplings in front of 5.11. Let’s take, for example, the Wess-Zumino

L= /dgz Z O,D, + /d6zP + h.c. (5.12)

model

It can be shown that the superpotential receives a 2-loop contribution

~ (A])2N303. (5.14)

18



5.4. Gauge kinetic terms and generalized non-renormalization
theorem

Gauge kinetic terms in gauge theories provides another kind of subtlety in the

consideration of non-renormalization theorem.
1 _ _
/ d*x / d2oWew, = G / d*z / d*0(D*e™Y D*e")(D?* ™V Dye)
1 _ _
=5 / d*x / d*0D?*(e”V D*e")(D%* Y Dye)

1 _ _
= Z/c1l4x/ci20/(1l29(6VDaeV)(Dze‘/Daev) (5.15)

and it is really a D-term, so it may receive contributions from radiative cor-
rections. However, it turns out that graphs higher than 1 loop do not con-
tribute. (More precisely, it has been shown (see [?]) in the framework of
Wilsonian action, where all quantities are infrared-free, while in a standard
background field method there are in general multiloop corrections). This gen-
eralized non-renormalization theorem played important role in the subsequence

developments.

5.5. NSVZ g function in N = 1 supersymmetric gauge
theories

The bare Lagrangian of an N = 1 supersymmetric gauge theory with generic

matter content is given by

1 1
L=- /d20 ( ) WeW® + h.c. + /d40 dle?Vi, 5.16
y g2(00) 2 (5.16)
where 1 1 o(M) (M)
T
= ] =3 5.17
200 " 20n s = (5.17)

and g(M) and 6(M) stand for the bare coupling constant and vacuum param-
eter, M being the ultraviolet cutoff. “h” stays for “holomorphic” (we will omit
it in the sequel). Note that with this convention the vector fields A, (z) and
the gaugino (gluino) fields A\, (z) contain the coupling constant and hence, in

accordance with the non Abelian gauge symmetry, are not renormalized. By a
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generalized nonrenormalization theorem [?] the effective Lagrangian at scale u

takes the form,

1 1 b M
L=- /d29 < + " log —) W“W“+h.c.+/ d*0> " Zi(u, M)®le? @,
K i

4 g?(M) = 8n?
(5.18)
(plus higher dimensional terms). Here
1
bp = —3N. + Z Tri; Tp; = 3 (quarks) . (5.19)

Novikov et. al. then invoked the 1PI effective action to define a “physical” cou-
pling constant for which they obtained the well-known [ function (Eq.(5.23)
below) [?]. Recently the derivation of the NVSZ beta function was somewhat
streamlined by Arkani-Hamed and Murayama [?]. (See also [?].) They ob-
tained the NVSZ beta function in the standard Wilsonian framework, without
appealing to the 1PT effective action (hence no subtleties due to zero momentum
external lines, such as those leading to apparent violation of nonrenormaliza-
tion theorem[?, ?]). They insist simply that at each infrared cutoff i the matter
kinetic terms be re-normalized so that it resumes the standard canonical form,
which is the standard procedure in the Wilsonian renormalization group. But
the field rescaling

o, = 7o\ (5.20)

introduces necessarily anomalous functional Jacobian [?], and one gets

1 1 bo M Ty
bl cglog— — > ——5log Zi(p, M) | WW* + h.c(5.21
4/ (92(M) + {72 og 7 XZ: 372 og z(,u, )) Wewe + 0(5 )

/ d4ezq> fTe2VipP) = = 21( ) / BPOWW + h.c.+ / d'0y " Mol
g i

where

! 1 bo M Tri
- §n2 08~ log Z;(p, M) . 22
92(M) gQ(M) + {72 0og 1 ; - og Z(Ma ) (5 )

This leads to the beta function (call it 5, to distinguish it from the more com-

monly used definition):

Biulg) = ud(ig = 167T2 ( ZTFZ ) ) : (5.23)
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where 9
Yilg(p)) = en log Zi(pt, M) | ar,g(01), (5.24)

is the anomalous dimension of the ¢—th matter field. The same result follows
by differentiating (5.22) with respect to M with p and g(u) fixed. For SQCD

these read
Bn(9) = =765 BNe = N;(1=7) . 9)=—¢— N
Eq.(5.23) and Eq.(5.25) are the NSVZ (3 functions [?]. Note that the “holo-

morphic” coupling constant g(u) is a perfectly good definition of the effective

g’ gt N -1

+0(g"), (5.25)

coupling constant: it is finite as M — oo; pu = finite, and physics below u
can be computed in terms of it. Vice versa, the coupling constant defined as
the inverse of the coefficient of W*W* in (5.18), (W + 2 log %)*1, is not
a good definition of an effective coupling constant, as long as Ny # 0: it is
divergent in the limit the ultraviolet cutoff is taken to infinity. In other words,
the renormalization of the matter fields (5.20) is the standard, compulsory step
of renormalization, such that the low energy physics is independent of the ul-
traviolet cutoff, M. Let us also note that, in spite of its name, the holomorphic
coupling constant gets renormalized in a non-holomorphic way, due to the fact
that Z;(u, M) is real. Another consequence of the reality of Z;(u, M) is that 0
is not renormalized: this is evident from the same RG equation (5.23) written

in terms of 7 variable ,

showing that the NSVZ beta function is essentially perturbative. It is interesting
to observe that the above procedure parallels nicely the original derivation by
Novikov et. al. of the beta function by use of some instanton-induced correlation
functions. More recently the NSVZ (3 function in N = 1 supersymmetric QCD
has been rederived by Arnone, Fusi and Yoshida [?], by using the method of

exact renormalization group.

5.6. Zero of the NVSZ beta function, Seiberg’s duality
and CFT in SQCD

For the range of the flavor 8= < N; < 3N, (conformal window) Seiberg dis-
covered by using the NVSZ [ function that the theory at low-energy is at a
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nontrivial infrared fixed point [?]. At the zero of the § function the anomalous
dimension of the matter field is found to be:
_ 3N.— Ny

7 (5.27)

1(97)
It turns out that this result is in agreement with that determined from the
superconformal algebra, which contains the non-anomalous Ug(1) symmetry.
This and many other consistency checks allowed Seiberg to conclude that in
the conformal window, and at the origin of the moduli space (namely, in the
theory where all VEV’s vanish), the theory flows into a nontrivial infrared fixed
point. Such a theory has no particle description, and as such, can be described
by more than one type of gauge theory. In fact, in SU(N,.) theory, the theory
can be either described as the standard SQCD with Ny flavors, or in terms of
a dual theory, which is an SU (NC) gauge theory with Ny sets of dual quarks,
plus singlet meson fileds, where N, = N § — N¢. They have the same infrared
behavior. This is the first example of the N = 1 non-Abelian duality, found in

many other theories subsequently.

This development enabled Seiberg to complete the picture of dynamical prop-
erties of N = 1 supersymetric QCD in all cases. Phase, the low-energy effective
degrees of freedom, effective gauge group, etc. are summarized in Table 1 (where

the bare quark masses are taken to be zero).

6. Anomalies

An important role is played in the analysis of dynamics in gauge theories by

various quantum anomalies.

6.1. Uy(l) anomaly

The first example, found by Steinberger, Schwinger, Adler, Bell and Jackiw, is
the axial anomaly in QED:
2

e o T
8;“]; = @FMVFM s ng :?/1175’)/M’17Z) (6].)

where F = letvro [ and €"123 = 1. This appears as the “triagle anomaly”:

namely due to the linearly divergent triangle fermion 1 loop graph, the three
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| Ny Deg.Freed. Eff. Gauge Group Phase Symmetry

0 (SYM) - - Confinement -
1< Ny <N - - no vacua -
N, M,B, B - Confinement U(Ny)

N.+1 M,B,B - Confinement  Unbroken
Ne+1< Ny <3 q,q, M SU(N,) Free-magnetic ~ Unbroken
e < Ny <3N.  ¢q,§,MorQ,Q SU(N,) or SU(N.) SCFT Unbroken
N; = 3N, Q,Q SU(N.) SCFT (finite)  Unbroken
N; > 3N, Q,Q SU(N.) Free Electric ~ Unbroken

Table 1: Phases of N = 1 supersymmetric SU(N,) gauge theory with Ny flavors.
M;; = QiQ; and B = €4,0,..ay, €2 "N Q Q2 .. QN (B is constructed similarly

IN,

from the antiquarks, @)’s) stand for the meson and baryon like supermultiplets. ” Un-
broken” means that the full chiral symmetry Gp = SUL(Ny) x SUR(Ny) x U(1) is
realized linearly at low energies. Actually, for Ny > N, continuous vacuum degen-
eracy of the theory survives quantum effects, and the entities in the table refers to

a representative vacuum at the origin of the quantum moduli space (QMS). For the
special case of Ny = N., the QMS is parametrized by det M — BB = A*7 and the
U(Ny) symmetry is the unbroken symmetry of the vaccum with M = 1-A? B =0.

point function
G“;)"V - <TJ;(1‘)J)\(?/)JV(Z)> (6.2)

satisfies an anomalous Ward-Takahashi identity

DEGHN A0, i DGR = 95 QRN =0, (6.3)

6.2. mH— 27

Historically, the first physics result involved the process m_.2~, which, in the
naive chiral limit, would bbe zero (Sutherland-Veltman theorem). Let us con-

sider the amplitude,

A = (e"(p) € (k) |0, J5(a) 0) (6.4)
where €(p), €’(k) are two external photons, |0) is the vacuum state, and
JE=Y" iy (6.5)
quarks

is the quark axial current. The axial anomaly gives

2 2

€ v rpo
C (e (p) (k) | FporFom 0) = -

A —
1672

C'2€pe PK°, (6.6)
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where

C:QNC[<§)2+ (—%)2] (6.7)

C takes into account the electric charges of u and d quarks, their color mul-
tiplicity, and pair of graphs in which quarks loop around i the graph in the
opposite directions. On the other hand, by assuming that the intermediate

state is dominated by a massless pion, one has

L rl0,7(0) [0) = () (R |7 -~ - Fr, (6.8)

A" = (e"(p) € (k) |m) - 7 =

where

(w[J*(q) |0) = iq"Fx (6.9)

defines the pion decay constant Fy. F) is known experimentally from the decay
process, m — uv to be Fp ~ 130 (MeV). Now,

N, e? 2\’ 1\° ,
,(g) + (-g) Euypappk? s (610)

Aoy = (€"(p) €’ (k) |T) = 2.
pi

and thus

a? m3 2\ 2 "
r(ﬂoﬁzy)zmww—gzvf (§> +<—§) ~1-10°MeV,  (6.11)

to be compared with the empirical pion lifetime

T~ (8.4+0.6)- 1077 sec, (6.12)
which implies
Rl
[(n° —2y) = — ~ — - 107° MeV. 1
(7" — 27) - = Ts 0 eV (6.13)

Thus the theory predicts the decay width correctly within 20 % which is not
bad at all, if one takes into account the extrapolation involved from the massless

(soft) pion limit to the on-shell pion mass value.

Note that the factor N? ~ 10 is essential to get such an agreement: this process

can be regarded as providing a direct test of the color.
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Figure 3:

6.3. Ux(1l) anomaly in QCD, Solution of the “U(1) prob-
lem”.

In QCD, the quark axial current suffers from an axial anomaly due to the gluon

fields (as well as due to the photon fields which we neglect in this section):

2

g a Tuva 7.
Ouls = 2Ny B 10 J§ = iy (6.14)
Note that
g9 ~ 9 s 2
977 FSVF‘“““ = 0,K", KH = = " Tr (Fop Ay — ngcAﬁA'y) (6.15)

so that the axial charge Q5 might seem to be conserved. Actually in QCD there
are nontrivial boundary terms which contribute. In the Euclidean path integral,

there are are finite action contributions which behaves asymtotically as
A, ~U Y 2)0,U(x), (6.16)

where U(z) € SU(2) C G, G = SU(3) for QCD. These represent a map S° —
SU(2), but since
m3(SU(2)) ~ m3(S?) = Z, (6.17)

they are labeld by an integer winding number (Pontryagin number)

2
g a UV a
/d4a; 39,7 o Fe =, n=0,+1,+2,.... (6.18)

The n = 1 configuration is called an instanton (see below).

As AQ5 # 0 in general, Us(1) is not conserved, although SU(Ny) x SUR(Ny)
chiral symmetries are respected. In fact, as shown explicitly by 't Hooft, an

effective Lagrangian of the form
11,725-+-7 3 ZN n n
Lepy = const. €,y iy, €7D b T pg, YRy, (6.19)

is dynamically (by the instanton) generated. The inti-instanton gives h.c. of this.

The light Nambu-Golstone boson of the spontaneously broken global Ux(1) is
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not expected to be there, in contrast to the pions of mass ~ 140 MeV are pseudo
Goldstone boson of the broken SU,4(2). This basically solves the U(1) problem.
A quantitative explanation of the mass of the “failed Goldstone boson” - the n
meson - involves a more careful analysis. In the large N, approximation it is

given by (Witten, Veneziano ’79)

AN; d*F
2 _ f YM
"= g

4Nf 4 g2 a pva 92 a pva YM
R [ ) s F P 0) )
(6.20)

where the correlation function on the right hand side is defined in the pure

Yang-Mills theory (i.e., without quarks).

6.4. Nonconservation of chirality and 6 term in QCD:
the Strong CP Problem

The fact that 33; F SVF’ Hva is a nontrivial operator means that in the Lagrangian

of QCD an extra term

g° -
0 sy b (6.21)

Thie term breaks P and CP. Actually a more carefull definition is needed. As

the axial transformation

b=, P pe (6.22)
generates the change of the action
2
) . . g -
2N 4 o pve 2
expiS — exp[iS + 2Nyi /d T 2o Fw ] (6.23)

the tht parameter is not defined unless the phase convention of the fermions is

not fixed. One my choose

Argm; > 0, (6.24)
then the physical parameter is
O,p, = Argdetm + 6. (6.25)
Experimentally,
0,1 < 1077, (6.26)

from the absence of the observed electric dipole moment of the neutron.
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The problem is then why 6,, is so small (“strong CP problem”). There are sev-
eral solutions: Peccei-Quinn mechanism and its various variations all of which

lead to the existence of a light axion; another possibility is m, = 0.

6.5. Spectral Flow

A way to study the chirality nonconservation is to study the spectral flow. In a
gauge background of nonvanishing Pontryagin number n, there are n_ (or n, )

chirality fermion zero modes such that
n_—mny =n. (6.27)

It is known that in the instanton background (n = 1) there is one zero mode of

negative chirality

N O (6.29)
and no zeromode of positive chirality. In the Ay = 0 gauge, this can be written
as 9

(——= + HP"e)y0 = 0. (6.29)
ot
Since 1 is normalizable in (Euclidean) 4D it means that at 7 — 400
Y0 — e BT, (6.30)
with
E(c0) > 0, E(—0) < 0. (6.31)

Thus E(7) changes the sign of energy as 7 varies from —oo to oc.

On the other hand, one can show that in the Ay = 0 gauge, the background
field A,(T = o0) is a gauge transformation of A,(7 = —oo): the spectrum
of the Dirac Hamiltonian must be the same at 7 — +o0o0. It means that the
whole energy spectrum gets shifted upwards, and precisely one mode (for each
fermion flavor) has moved from the negative Dirac sea to the positive value. For
consistency, the three-dimensional Dirac operator HP7%(¢ = () must possess

one (3D-normalizable) zeromode, which can be easily found (Kiskis).
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6.6. Ay =0 Gauge

Take 24
05 T;
Ut = ; dpg —20 6.32
then . 1
7 g; T; ins
Lo ut =2 Tl gt plinst) g 6.33
g g af+x>+p? ! (039
S0 1
Aflznst) —U (Aflznst) + 5 84) UT =0. (634)
But then T
Ut(—o0,x) =1, Ut (oo, x) = e+, (6.35)

Ai(—00,x)t) = 0 and A;(c0, %)) = U(oo,x) é 0; UT(c0,x) are thus obviously related

by a gauge transformation in this gauge.

6.7. Chiral anomalies; non-Abelian anomalies; Wess-Zumino
consistency condition; Witten’s quantization

From the viewpoint that the chiral (Weyl) fermions are more fundamental than
Dirac fermions, it is natural to interpret the axial anomaly as due to the anomaly
of the chiral current,

Jh=Jp — Jg, (6.36)
1+4°

1 — 5
=iy T =iy, (6.37)
The derivation is almost identical to the case of the axial anomaly: the result

is
2
g a Tuva
@LJE = 592 FWF“ (6.38)

for one lefthanded fermion.

The crucial generalization is the nonabelian anomaly. Consider a theory with
a chiral fermion, with a (continuous) global symmetry Gr. Suppose that the

group G is “gauged”, by coupling to external gauge fields A:
e T = / Dip Dip e~/ ¥ (6.39)
Now, under the gauge transformation

A, — A, —D,v, D,v = 0,v+ig[A,, v, (6.40)
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I'A) —-T(A)+ /dx v D, ort4) (6.41)
o Af,
If the theory is invariant under G one should have
SD(A) oI'(A)
=0, .. D,(JY = S = 42
500 0, W) =0, J; 5 Az (6.42)
Actually, the variation is nonvanishing and is given by
1 4 Aua3 1
0y, [(A) = Y d*z Tro(z)e™™ 0\ (A0, A8 + éA“AaAB)
- / iz / Tro(z) d(AdA + - 4%) (6.43)
- 24m? 27 7 '
Note that it is proportional to the group constant
TeT{TT} = d™(r) (6.44)

which depends on the representation to which the fermions ¢ belong. In par-
ticular, the ratio d®(r)/d®“(r,) where r, is the fundamental representation,

depends only on r. For SU(N) see Appendix.

The fact that the anomaly (6.43) emerges as a variation of the effective action

['(A) implies a consistency condition (Wess-Zumino [?]),
(51)1 ’ 51}2 - 51}2 ’ 51}1) F(A) = 5[1)17@2} F<A)7 (645>

and this fixes the anomalous part of I'(A) modulo normalization, as the integral

of the anomaly.

As the low-energy effective action in QCD contains pions and kaons (pseudo-
Nambu-Golstone bosons) coupled to the external Gp = SU(Ny x SU(Ny) X
Uy (1) gauge bosons (the physical photon, W, Z bosons couple to a subgroup
of Gr ), the consequence of the anomaly involves precise physical prediction
on certain hadronic processes involving weak gauge bosons (mg — 27 discussed
above being an example). Actually, there are some purely hadronic process due

to the anomaly.

Witten [?] observed that the integrated anomaly - the so-called Wess-Zumiino
effective action - can be written as a boundary term on S* ~ R* of R®. For

Ny = 3, the integrated anomaly takes the form,
Feff =n /dzilig...i5 Wiyig..is = TLP(U), (646)
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Wiy i = —m Te (U0, U) U 9,U) ... (U19,.U), (6.47)
where U(a*,y) = exp [;—i YA 7e(z# y) | represents the Goldstone modes of
%@){](3) ~ SU(3) suitably continued to R®. As

75(SU(3)) ~ Z, (6.48)

the coefficcient n turns out to be quantized to integer values. The actual Wess-
Zumino effective action of QCD contains n = N, = 3, but the fact that n should

be a priori an integer, is highly non-trivial.

In the presence of external gauge fields coupled to the global symmetry, the
latter must be “gauged”, and the Wess-Zumino-Witten action must be made
gauge invariant under the anomaly-free part of local G (in this case the vec-
torial SU(3)): the result is

[(U,A,) =T(U) +

yr / Az e " 7 1o, (6.49)

where (U, = (0,U)U, U,g =U"19,U)),
Z;waﬁ = —TT[AMLUVLUQLUQL + (L — R)] + ... (6.50)

given in Eq.(24) of Witten, NPB223(1983) 422. This effective action reproduces

the anomalous variations under SU4(3) calculated in the underlying theory.

6.8. Cancellation of gauge anomalies in the Standard
model

As the Glashow-Weinberg-Salam theory is chiral, the anomaly discussed above
is potentially dangerous for the consistency of SU(3) x SUL(2) x Uy (1) gauge
theory: the presence of the anomaly implies the failure of gauge invariance.
In the satndard model with quarks and leptons, these anomalies cancel out

completely, due to the particular charges these known fermions carry.

6.9. ’t Hooft’s anomaly matching conditions

The nonabelian anomaly implies very nontrivial consistency condition on pos-

sible realization of symmetries at low energies. The anomaly represents the
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way the system responds to the variation of the external gauge fields A}, in G
(whether or not they represent actual, physical particles): the answer must be
the same whether the action of the fundamental system or the effective action

valid at low energies, is used to calculate it.

In the first case, the quantum loop calculation gives the anomaly discussed
in the previous subsection. If instead one uses an effective low-energy action,
which takes into account all quantum effects integrated down to the infrared
scale considered and which describe the low-energy degrees of freedom such as
the Nambu-Goldstone bosons or composite massless fermions. If the relevant
degrees of freedom involves only the latter (symmetry broken spontaneously),
then the consequence is the my — 27 and other anomalous amplitudes contained
in the Wess-Zumino- Witten action (6.47).

Suppose instead that a global symmetry G in a strongly interacting theory
(with guge group Gyg), remains unbroken. In such a case, the low-energy ef-
fective theory must contain massless, composite fermions, so that the loops of
these massless “baryons” reproduce exactly the anomaly of the underlying the-
ory. See Fig. . As in general composite fermions, being singlets of Gg, are
in different representations than those of the fundamental fermions, such an
agreement involves very nontrivial, algebraic relations about their numbers and
charges. Thus if the theory confines, without breaking the global symmetry,
these “’t Hooft anomaly matching conditions” imposes a stringent constraints

on possible dynamical outcome of the theory.

N. B The idea behind the 't Hooft’s conditions is thus essentially the same
as that led to the determination of the my — 2 amplitude. The anomaly of
the system must be carried either by massless Nambu-Goldstone bosons or by
massless composite fermion loops. Both produce - effectively - a pole at ¢> = 0

in the amplitude (Fig.)

N. B Even if the theory does not confine, if the theory approach a nontriv-
ial fixed-point in the infrared, any alternative description of the system must
involve the set of fermions with an appropriate amount of anomaly. This con-

straint was used by Seiberg in his discovery of the conformal Window in SQCD.

N. B In a supersymmetric strongly interacting theory, with a spontaneouly
broken global symmetry G g, the anomaly matching is subtler, as the fermionic

partners of the Nambu-Goldstone bosons are massless, and carry nontrivial
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charges. In the calculation of the “pion decay amplitude” in such a context,
the contribution of the loops due to the low-enrgy fermions must be subtracted

from the fundamental anomaly.

6.10. Fujikawa’s derivation of anomalies

Consider
W = / Dip Dy ¢~ S 00D (6.51)
Dy DY =[] dandb,, (6.52)
where
VDA, = Aythn, (6.53)
and

Let us consider the change of variable,

P — e Dygap ah — P ey, (6.55)

which has the form of a Uy(1) transformation. Namely

V=9 tia(a)sys =9 i)y, (6.56)

As
V= gty =Y a, Oyl =Y " ali, (6.57)
da,, = Z[/dw r (14 a(x)vs) ¥, | da, = Z Crnn day; (6.58)

[1dd, =detC [[dan,  []dan = (detC)™" [] dai, (6.59)

and analogously

[ dbn =[] avi, (det C) . (6.60)

The functional Jacobian is J = (det C')~2. By using (for a matrix of the form
C=1+A4),

det C' = elogdetC — eTrlog(1+A) ~ €T1"A7 (661)
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J = exp [—Qi/da:a Zw L) Y5 Vn(z)s |- (6.62)

Naively,
Z 1/} /75 wn (z) TIVYES = 07 (663>

but actually it is an indeﬁnlte sum of the form, 0 - oco. In order to define better

the sum, we introduce the regulator factor following Fujikawa,

Z¢ 757%(3; - hm Z'@Z) 756 —An/M 2?%(;);

= lim Z@/} x) Vs (VD) /M Qw @) = hm Tr%,e(“/D)Q/MQ. (6.64)

M—oo

The sum, now well defined, can be evaluated in any basis, e.g., in plane wave

basis,
d* ‘ .
Tr(---) — / (27:;4 ePrtr(---)e P (6.65)
where tr (- - -) stands for the spin trace. Now
(’7 . D)2 _ Di 4 O F‘u”, O = W’ (666)

D,=0,—igA,=1P,—igA, =1i(P—gA), P, = —i0,, (6.67)

and

D = —(P —igA)* = =P + g(P,A, + A P,) — ¢°A%, = P> = A*,  (6.68)

p p
A=—g(PA,+AP) + g* A (6.69)
Thus
dp Y
Tr 5 PV — / 0P ey [y5 € P Atou P ] g=ive (6.70)
(2m)t

We now expand in the “small” operators (—A + o, F*)/M?, as P? ~ O(M?).
The three operators in the exponent do not commute; one can however use the

formula

1
6A+B — 6A +/ dov 6ozABe(l—oz)A +
0

3
+ /Hdaﬁ(l —Za) e BeA Bt (6.71)
i=1
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d*p
~ O(M* 6.72
| G5 ~ o), (6.72)
the terms higher than quadratic in (—A + o, F*)/M? are negligible in the
limit M — oo. On the other hand, the spin trace trys---| vanishes unless at

least four v matrices appear. It follows that the only term surviving in the limit

M — oo is the quadratic term in o, F**)/M?. This can be easily evaluated as

F“VFPJ/ d4p eip2/M2
(

1
étr(f}%auu Opo

M4 om)
1 F,F 4 1 7T2 2 2
—  _pimvlee 2y Yo Ne) - | d(?) p2ePtM
92 r M4 16 r(757u7 ’YP’Y ) (27T)4 1—\(2) / (p )p €
1 1 0 a
= Do st Futpr = 55 FuE (6.73)

By introducing appropriate source termsand by considering the change of vari-
ables

6.11. Konishi anomaly

In supersymmetric gauge theories, the chiral U(1) anomaly associated with each
matter field is promoted to supersymmetric multiplet of anomalies. In a theory

with chiral superfields ®; and superpotential P(®), it reads

M2 2
_%(qﬂie‘/@i) - @i% + O, <3§’W2) ww (6.74)
where Cg, is the quadratic Casimir of the gauge group associated with the
representation to which ®; belongs. The first term on the r.h.s. is the normal
field variation and the second term is the anomaly. Written this way this can
be seen as the anomalous equation of motion. The point is that this relation
holds exactly as a relation among the chiral ring of operators and hence among
the VEV of the terms involved.

Eq.(6.74) can be derived in various ways, by using (supersymmetric) point-
splitting method, supergraph 1 loop calculation, BPHZ regularization, Pauli-
Villars regularization, and in the functional (& la Fujikawa) method.? We discuss

below this last method, as it is easiest then to generalize such identity to much

2The proof has been given by using these techniques also in the component formalism (Konishi).
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more general identities. Also this method can be used in chiral gauge theories
while some method (e.g., Pauli-Villars) requires the model to be vectorlike. Let’s
study a supersymmetric gauge theory with generic field content {®;}. Consider

the functional integral,

GZ[J] = /,Z)(I> tee eXp[i(Smatter + Sgauge + SSources]a (675)

Satter = Z / [ DTV ®,] + / d®zP(®) + h.c. (6.76)
1 6

Sgauge = 7 [ dZTIWW (6.77)

and Sgources 1S @ generic source term. For SQCD {®;} = {Q, Q} Let us now

consider the change of variable for one of the chiral superfield

Ul P — 1P (6.78)
with other variables kept fixed, where A(z) is a generic chiral superfield. This
introduces 5P

8 Somatter = / Bz ®TeViA(2)D + / dﬁzz’A(z)(I)é—q) (6.79)
(for SQCD the variation of the superpotential is m®iA(z)® ) Naively one would
have 55 -, 5
D P
—=0=—"—(PTe"®) + d—— :
5 0 1 (d'e" D) + 50 + 0Ssources (6.80)

but actually one must also take into account the anomalous jacobian of the
transformation 6.78, which is given by

2
J(®'/®) =det | 09, /6D, |= det(z' | exp {z’A <—%)} | 2)

= exp {Trc ll’A (—%2)] } (6.81)

where the subscript “c” stays for “chiral measure”, that is d®z = d*zd?0. Note
that, being the delta function in the superspace (2’ | z) = 6%(z — 2/), the correct
delta function for the chiral measure is (2’ | —%2 | 2) = 85(2 — ') = 09,/ /69...
Apparently the exponent in 6.81 vanishes because §°(0) = 0, but actualyy it
is an infinite sum and it needs to be regularized. For this purpose we adopt a
generalization of the Fujikawa method and write the trace as

DQ
lim Tr, [z Aen? (_T)} (6.82)

M—o0
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1 -
L= 1—602€*VD26V =D+ - (6.83)

The choice of L is justified by the fact that it is the simplest operator with the

following remarkable properties

1. L is manifestly supersymmetric
2. L is manifestly chiral

3. L is gauge-covariant, in particular it transforms
L — e Lt (6.84)

4. L contains /D? as a component (see the original Fujikawa method)

Let’s evaluate the trace in 6.82, remembering that D? = 0

L =1 1L" D?
M=) 1 =-—— 6.85
=3 4 (65)
1 = Nna,—V o 4
L1 = E[DdD e DDye” |1__
1 _ _
= 1—6[D26_V(D26V) +2D% Y (Dne")D* + D*D?1__  (6.86)
D?’D?*1__ = {D4[D* D?| + [D4, D} D*}1__
= D4(D*{D% D,} — {D% D*}D,)1__
= 2audapu(2{bd>Da})
= 85"*a¥ . pp’l__ = 169" p,p"1__ =16p*1__  (6.87)
D?e™V(DyeV)D*1__ = —AW*D,, + 8C*p, (6.88)
1 _ .
CH= —Eagd(Dae—VDaeV) (6.89)
1
Ll1__ = (p* - §W°‘Da + Ctp, + F)1__; (6.90)
1 -
F= 1—6(D26_VD26V). (6.91)
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To select the non-vanishing part of 6.82 we need 2 covariant derivatives from

the expansion of L; indeed
(0,0 | DoaDgD? | 0,0) = 8eap (6.92)
while a different number of D’s would yield zero. Furthermore

(x| exp [%} | 2) :/%efé (1+0(%))

?

= M? M? :
162 + O(M?) (6.93)
so we need just the second order in WD, and after a rescaling V' — 2gV we
are led to
. . LQ D2 6 _ - g2 a
]\}Enoo Tr, leeM (—T)} = /d 21 A(2) <327T2 WeW, (6.94)

We remark that the result is stable respect to the choice of the regulator; a
generic function f(L/M?) such that f(oco) = f'(0c0) =... =0, f(0) =1 would
be a good cutoff.

The correct relation that follows from the invariance of the action is then

D? oP 2
_T(q)Tqu)) + @5_(1) + <3gﬂ2) WW,, + 0S50urces = 0 (6.95)

Actually the whole derivation of the anomalous WT identities goes through
almost unmodified if A(z) is considered to be an arbitrary chiral functions of
®’s and W*’s,

A= f(O,W). (6.96)

A systematic study of the complete set of relations and the solution of those,

has recently been given by Cachazo, Douglas, Seiberg and Witten.

7. Instantons in gauge field theories

The Lagrangian for a gauge theory is

n . 1 a apv
L = wkfy“(ﬁu — ZgAH)’l/Jk — ZGHVG # (71)
where G}, = 0, A, — 0, A, + gf“bcAZAf,.
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We are interested in the Yang-Mills Euclidean action

]_ a ]- a apy 1a
SE: Z/d4l‘Fu3 - g/d4x[(F;ﬁ/q:Fﬂu)2i2F g FHV] (72)

where Fﬁy = %ewagFmﬁ is the ’dual’ of Fj,. The second term
1 4 apv Tra
P = 1 A"z " F, (7.3)

in the Euclidean action is a topological invariant, because F ;}Vﬁ’““” =0,CMis a
total derivative. P is called (up to a constant factor) the Pontryagin invariant

and 5
CH = e P(ALDAG + 39 feeAL AL AG) (7.4)
is called a Chern-Simons secondary characteristic class term.

If we look for solutions that minimize the Euclidean action for a certain value
of the Pontryagin invariant, we must minimize only the first term of equation

7.2, i.e. we must solve the equation
Fi, = *F], (7.5)

These solutions are called self-dual and antiself-dual, respectively. To construct
some explicit solutions for a SU(2) gauge group, we introduce the equivalent of

o-matrices in an Euclidean space:

™= (1ic) T=(1,—io) (7.6)

1, ~ _ 1, i
Ty = Z(TMTV — TuTy) T = Z(TMTV — TyTy) (7.7)

Now an explicit solution is
T 21 T (x — x9)"
AiNST — _AZ _ _ = Ty ( : 0) (78)
2 g (x —x0)? + p?
where z is the center of the instanton and p is its size. 7, is selfdual and so

the entire solution, in fact

E5 = 4p (@) f(2) = CEESEY (7.9)
The corresponding antiself-dual solution is
20 Tz —x0)
ANTIINST _ % 0
A, =—-—" (7.10)

g (x —x0)? + p?
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We can calculate now
1 872
INST __ 4 2 _
Sg'7h = 3 d*xTrF,, = 7 (7.11)

872

and the factor e ™2 = e ¢* that appear in the functional integral is the non-

perturbative tunnelling instantonic factor.

Note that we have

Tr

FF=0,K"  KF = —— choSTy(Fy A, — gAaAﬁAv) (7.12)

1672 1672

so one can construct a topological invariant

1 .
q= / d*x Tr167T2 FF = / d*z 9,K" (7.13)
and if A, tends to a pure gauge field in all directions
A, —iU'9,U  for_|z| — +oo (7.14)

then ¢ can be expressed as

B 1
2472

q / dS* €,asTr[(U TP U) (U 0°U)(U0°U)) (7.15)

which is an integer: it is the winding number of the function which goes from
the boundary of R* to SU(2), so it is topologically equivalent to a function
S3 — 83 and T13(S®) = Z. As a geometric example of this behaviour we can

consider a vector field n®(z) : S* — 52, [n%(2)]* = 1:

1
C A4r

N / e®n®(z)dn’dn® = I1,(SO(3)) = Z (7.16)

Back to physics, we can write these quantities for the instanton solution above:
Tulp

2
U= NG UaﬂUT:—pTW:c” (7.17)

8. Instanton calculus

We are interested in the Euclidean path integral
/DA e A,=ANT1Q, (8.1)
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around the local instanton minimum of the action instead of around the vacuum

solution. We find immediately
/ DAe® = / DQ e~ SetQMQ+-) — o=Set(Det M)~ (8.2)

This kind of contribution to the functional integral exists in every gauge theory

with a gauge group G which contains SU(2) as a subgroup.

Note that Sgassicat does not depend on some parameters of the instanton, like
xg, p, or the gauge SU(2)/G. This means that there are 'zero modes’. We can

treat this problem with a bosonic field B as an example. We can write
1
B=B"+B! S=S,+ 5B MB .. (8.3)

then we can find a complete orthogonal set of eigenfunctions for M:
Mo=ax (hoh = [de@n@ -l 6
and we can expand B? as a linear superposition with functional coefficients &;

B = Zfimx) (8.5)

Now we consider a parameter v which appears in B9 = B%(y), and suppose

the action doesn’t depend on it; then there is a mode with zero eigenvalue

_ chl
Xo = oy

Then the functional integral is

/DB:/DBQ:/H<%>%d§i:/(;—;fd&]ﬂ(%)%d@ (8.7)

where the product in the last tern is taken without the zero mode. We know
that My, =0, so

g0 =0 (8.6)

1 /
_ Qcl E : 2
S _gecl E % ’ 7%
/DBe —e / (2ﬂ> dgo (Det’ M) (8.9)

Now we use the fact that B(v) ~ B(yo) + %Ay = B(y0) + xo(70)A~v and
insert the identity

1= / a7 (B — B (70) [xo(10))) = to / dy(uts)  (8.10)
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in the functional integral. Finally we obtain

1 . 1 . 1
/DBe_S = /dv (3—0)2 e_sl(Det'M)_% = (;—0>2 e 5" r (8.11)
T T ‘

where I' = [ d~.

In the case of the instanton previously considered, there are

e 4 zero modes for zf;

e 1 zero mode for p;

e 3 zero modes due to rotations;

e 4N-8 modes due to gauge choice (called 'gauge zero modes’) for the gauge

group SU(N).

There are some fine points related to transformations and gauge choices (t’Hooft,
Bernard). The result is

_ 4 (472)2N dp [4m2\*N 2 _(5—gel

DAe™® = — die =2 2 4N Q/DA/ (S—5¢t)
/ ‘ w?(N—l)!(N—m!/ e\ ) e ‘
(

8.12)

It is possible to repeat these passages for fermionic fields, i.e. in SQCD La-
grangian

L = ipa" Db + V2ighpd* + h.c. (8.13)

Now we define

St = S b / P&t = 3 anbyunk, (8.16)

where [ d*x &&= Un0my,. There is a zero mode ko = 0, so

/le)z/_z = /Hdam ot 1 db. un? (8.17)

/
/szwes - /dao up? [ Fn = /dao uy 2Det' D (8.18)

because for fermionic integrals [ da, db,, eP¢ = ¢ In QCD and SQCD the

quark fields have one zero mode; in SYM there are gluinos A in the adjoint
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representation, so there are 2N zero modes, where 2N in the Dinkin index of

the anomaly 0, J§ = (QNC)%F&F’“W. For No = 2, a zero modes is

1
0 —_—
a,r ﬂ_garpf('r)

Njw

(8.19)

where « refers to spin degrees of freedom, while 7 refers to color. This mode
solves " Dby = 0; for |z| — oo goes ~ 272 and it is possible to find a gauge
(called singular gauge) so that this solution goes asimptotically as the fermionic
propagator Sr. The singular gauge transformation and the corresponding in-

stanton solution are

U= ("L‘ - :L‘O)MT# INST _ 2iTMV(x — xo)y (8 20)
(x — ) . (x — x0)? + p?

To see a useful application of instanton calculus, consider the following VEV in

QCD, which is not invariant under axial U(1) transformation:

(OIT (w3, (w0) iy (22) - gy (Yvp—1) g, (y))10) (8.21)

The idea is that f dag; is zero unless there is an ag contribution for every field.

The result is

~ const 8i1---iNf 8j1~..ij / d4370 wO i1 (371)% i2 ('TQ) cee IZOij_l (nyflﬁ/;Oij (ny)
(8.22)
and in singular gauge it becomes

~ const H Sp(xi — x0)Sr(y; — yo) (8.23)

i,J
t’"Hooft recognized in this result a generation of instantonic Lgpp,
LE'FF = const. ’l/)il (.Tl)wb (.]72) c. ’l/;ij_l(nyfl)’l/;ij (ny) + h.c. (824)

Unfortunately the constant factor
o0 1ING-2N; 8%
const. = / dpp 3 e % (8.25)
0

is infrared divergent. Although in the actual world there is a cutoff of order
of ﬁ in the integration over p due to confinement, this makes a quantitative

calculation of Lgppr more difficult.

42



In any event, there is no doubt that an effective interaction of the type (8.25) is
generated. but As it respects SUL(Ny) x SUL(Ny) but breaks Uj(1) symmetry,
it consitutes the solution to the U(1) problem.

A more quantitative analysis of the solution requires a certain analytic consid-

eration based on 1/N, expansion followed by a numerical analysis based on the
lattice QCD.

8.1. Determination of gaugino condensates in supersym-

metric Yang-Mills theories: “°

1 puzzle”

In N = 1 supersymmetric Yang-Mills (SYM) theories, with fields (Af, \?) it is

possible to calculate the value of gluino condensates like
(T(AA(21) - .- Az, ) (8.26)

which is constant and position independent because of SUSY3. Using the cluster

decomposition principle, we can write

872

(T(AX1) ... A (zn,)) = AN = const A*N = const e B0 NN (8.27)

with const # 1 (strong coupling instanton). So we have N vacua characterized
by
(AX) = const e’ N A (8.28)

with Us(1) D ZyN 2N Zs the pattern of symmetry breaking.

It turns out that the “vacuum disentanglement” argument used in [] does not
give the correct value of the gaugino condensate. In the case of SU(2) SYM,
there is a famous

the calculation of (A\) along flat directions for (@) > A, and the limit m¢g — oo
and A — oo with Ay fixed. The result is, for the SU(N) Yang-Mills theory

2mik

(A\) =e v A% (8.29)

0.

3In fact A\ is the lowest component of —W®W, which is a chiral superfield, so [Q, )]
This implies, if the vacuum is invariant under supersymmetry, -2 (A\(z1)A\(z2)...)

([P, A\ (1) A (z2) - - )

<)\)\($1)Qa)\)\($2) N Qd)

Oxq \
. ({Qa: Qa}, M(@1)IM(@2) ) = (AM(@1)QaQarA(2) .. )
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while for other groups

<Tr)\2> _ N
= .
1672 SU(r+1)
2
<Tr>\2> = Zﬁil‘/\?\le )
167 / so(2r-41)
2
<Tr)\2> — 217%/\?\/’:1 bl
167 USp(2r)
Tr\?
B g e
SO(2r)

up to the phase factor e*™**¥/Tc¢ that distinguishes the Ty vacua, in agreement
with [?7, 7, 7].

9. Homotopy Groups

9.1. Differential manifolds

Def.

An n-dimensional differential manifold is a set M of the points with the following

properties:

(i) The set M is the union of a finite or numerable number of neighborhoods
Uy

(ii) Each of U, is endowed with coordinates ry, @ = 1,...,n, called local

coordinates;

(iii) If U, U U, # 0, then U, U U, itself forms a coordinate neighborhood,

10. Elliptic Functions

11. Monopoles, Dyons and Vortices in Non-Abelian Gauge
Theories

In this section the issues concerning monopoles and vortices in spontaneopusly

broken gauge theoris are reviewed. In particular it is shown that the concept
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of nonabelian monopoles and nonabelian vortices is an intrinsically quantum
mechanical one, and requires an appropriate massless flavors for their very ex-

1stence.

11.1. Semiclassical Results

We study the general setting of a spontaneously broken gauge theory, with its
gauge group G broken as

(¢)#0
—

G H (11.1)

by some scalar vevs, where H is in general non-Abelian. The aim of this section
is to identify the relevant homotopy group elements and prepare for the subse-
quent sections where we explicitly construct the semi-classical BPS monopole
solutions and compare them with the infrared degrees of freedom appearing in

the softly broken N = 2 gauge theories.
In order to have a nontrivial finite-energy configuration, the scalar fields and

gauge field must behave asymptotically as

Do =E 0 = GmU () U AU -OU ey G0, (112)

representing nontrivial elements of I1y(G/H ). By an appropriate choice of gauge,

the function G(r) can be taken as
G(r) = BT, T; € Cartan Subalgebra of H. (11.3)

Topological quantization leads to the result [11] that the “charges” f3; take values
such that

expdmi Y BT =1, (11.4)
1

where r is the rank of H. By commuting this relation with the nondiagonal

generators F, and by using

[E)Ea] = Oy Eom (115)
where a = (a, ..., a,) are the root vectors of H, one finds that
20-a="17. (11.6)

This relation shows that

45



SUN)/Zxy & SUN)
SO(2N) & SO(2N)
SO(2N +1) <« USp(2N)

Table 2: Some examples of dual pairs of groups

which are weight vectors of the group H where H = dual of H. The dual of a
group (whose roots vectors are «’s) is defined by the root vectors which span

the dual lattice, i.e., @ = a/a?. Examples of pairs of the duals are:

Here we consider the case in which h is orthogonal to the root vectors of a
SU(r) subgroup. The simplest way to detect the presence of the non-Abelian

monopoles is to consider various SU(2) subgroups generated by

1 )
t= (Bt E_o);  to=—
! \/2a2( ) ? 202

where « is a root vector associated with broken generators E, and o* = a/a?.

(Ea - E—a); lg = a’- Ha (117)

In particular we consider those SU(2) groups which do not commute with the
unbroken subgroup SU(r). In the notation of Eq.(11.12) these correspond to
SU(2) subgroups acting in the [i — k] subspaces, where i = 1,2,...,r, and
k'=r+1,7r+2,...n.. The symmetry breaking (11.11) induces the Higgs

mechanism in such an SU(2) subgroup,
SU(2) = U(1). (11.8)

By embedding the known 't Hooft-Polyakov monopole [?] lying in this subgroup,
and adding a constant term for ¢ so that it behaves correctly asymptotically, one

easily constructs a solution of the SU(n.) equation of motion (see E. Weinberg
[7):
Ai(r) = Af(r,h - ) t; o(r) =x*(r,h-a)t,+ (h—(h-a)a®)-H, (11.9)
where
a /r] a r
Aj(r) = 6aij§A<T); X'(r) = 7X(7’)a X(00) =h- (11.10)
is the standard 't Hooft-Polyakov solution. Note that ¢(r = (0,0, 00)) = ¢y.

To be concrete we consider a general (supersymmetric or non supersymmetric)

SU(n.) gauge theory with an appropriate set of scalar fields in the adjoint
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representation. As will be mentioned at the end, our analysis applies equally
well to other gauge groups. We assume that the minimum of the potential is

such that the gauge group is broken spontaneously as
SU(ne) — SU(r) x U(1)™"". (11.11)

For instance the VEV of a scalar can be taken in the diagonal form

U01r><r 0 e 0
0 Uy ... 0 e
= . A I R ) (11.12)
: R =
0 0 ... vy

where v;’s are all different. Let us write the asymptotic Higgs field more com-
pactly as
¢o=h -H, (11.13)

where the n. — 1 rank vector h describes the scalar VEV, while H represents
the generators in the Cartan subalgebra of SU(n.). If h had non-zero inner
products with all of the root vectors of SU(n.) then the gauge group would be
maximally broken to U(1)"~! group and Abelian monopoles having respective

U(1) charges would appear. We have nothing to add about such a system.

Here we consider the case in which h is orthogonal to the root vectors of a
SU(r) subgroup. The simplest way to detect the presence of the non-Abelian
monopoles is to consider various SU(2) subgroups generated by

1 {

t= ——(E.+E_o);  ty=—
! \/2a2( ) 2 V202

where « is a root vector associated with broken generators Ei, and o* = a/a?.

(Eo — E_4); ts =" -H, (11.14)

In particular we consider those SU(2) groups which do not commute with the
unbroken subgroup SU(r). In the notation of Eq.(11.12) these correspond to
SU(2) subgroups acting in the [i — k] subspaces, where i = 1,2,...,r, and
k=r+1,7r+42,...n.. The symmetry breaking (11.11) induces the Higgs

mechanism in such an SU(2) subgroup,
SU(2) = U(1). (11.15)

By embedding the known ’t Hooft-Polyakov monopole [?] lying in this subgroup,

and adding a constant term for ¢ so that it behaves correctly asymptotically, one
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easily constructs a solution of the SU(n.) equation of motion (see E. Weinberg

[7):
Ai(r) = Al (r,h-a)ty; o(r) =x(r,h-a)t,+ (h—(h-a)a”)-H, (11.16)

where

rd T

A(0) = g A ()= a), x(eo)=hea (1117)

is the standard 't Hooft-Polyakov solution. Note that ¢(r = (0,0, 00)) = ¢y.

The mass of this monopole for the minimum magnetic charge is given by the

standard formula, in the case of BPS monopoles,

4 4
M="h a="|u— vl (11.18)
g g

By an appropriate field redefinition vy can be always taken to be positive. Also,
for generic, unequal values of v;, it is possible, by using a Weyl transformation,
to take the scalar VEV so that

[vo — Urg1] < |vo — vk, kE=r+2,r+3, ... 0. (11.19)

By considering various SU(2) subgroups acting on [i,r + 1] subspaces, where
1 =1,2,...,r, we find that there are precisely r degenerate solutions with the

same mimimum mass,
41

M = —|’U0—’UT+1|. (1120)

9
They are transformed to each other by the Weyl transformations. By con-
struction these solutions carry also a unit (magnetic) charge with respect to the

Up(1) gauge group, which is generated by

11 0
0 -1 0 ...
—| 11.21
@o S0 0 ... ( )
0

The system, furthermore, has n. — r — 1 Abelian monopoles, each with the

minimal charge in

DiagQ, =[0,0,...,0,1,—-1,0,...,0], r<{<n,—1, (11.22)
V4
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and with mass 4
T
Mg = ?|Ug—vg+1|. (1123)
For appropriate choice of the scalar vacuum expectation values (VEVS) (and
arranging them appropriately by Weyl transformations) there are thus an r-plet
of “non-Abelian” monopoles and n. — r — 1 Abelian monopoles with minimum

charges and minimum masses that are stable .

12. Seiberg-Witten Solution of N' =2 Gauge Theories

13. Quantum Behavior of Solitons in A/ = 2 Gauge The-
ories

14. Solutions for the Chiral Condensates for V' = 1 Gauge
Theories
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