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1. Introduction

As recent developments show, supersymmetric gauge theories reveal surprisingly

deep features of the nonperturbative dynamics of non-Abelian gauge theories, notably
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the quantum behavior of solitons, such as magnetic monopoles and vortices. Some

of these findings might be relevant to the understanding of confinement in QCD. In

these lectures an elementary introduction to this field of research will be given, with

an emphasis on

(i) Characteristic features of supersymmetric gauge theories;

(ii) Introductory account of anomalies;

(iii) Instantons;

(iv) Solitons and non-abelian electromagnetic duality;

(v) Seiberg-Witten exact soluition of N = 2 gauge theories;

(vi) CDSW, generalized Konishi anomalies and exact results on N = 1 gauge theo-

ries.

2. Two-component spinors

Let us review first the notation and conventions on spinors, following Wess and

Bagger[1]. Note however that our convention for the metric tensor is that of Bjorken-

Drell:

gµν =








1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







. (2.1)

Two-component spinors are objects which transform according to the representations

ψ ∼ (1/2, 0), ψ̄ ∼ (0, 1/2) of the Lorentz group L↑
+ = SL(2,C) ∼ SU(2) × SU(2).

They trasform as

ψα → ψ′
α = Mβ

α ψβ ; ψα → ψα ′ = (M−1)αβ ψ
β; ψα ≡ ǫαβψβ , (2.2)

ψ̄α̇ → ψ̄′
α̇ = M∗ β̇

α̇ ψ̄β̇ ; ψ̄α̇ → ψ̄α̇′ = (M∗)−1 α̇

β̇
ψ̄β̇; ψ̄α̇ ≡ ǫα̇β̇ψ̄β̇ , (2.3)

ǫ12 = −ǫ21 = −ǫ12 = ǫ21 = 1; (2.4)

under Lorentz transformation. The M matrix (detM = 1) is of the form M = e
i
2
φ·σ

for rotations and M = e
1
2
ω·σ for boosts. Note that

ψ̄1 ≡ ψ1
†, ψ̄2 ≡ ψ2

†. (2.5)
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The vectors

P ≡ pµσ
µ =

( −p0 + p3 −p1 + ip2

−p1 − ip2 −p0 − p3

)

; σµ = (−1, σi), σ̄µ = (−1,−σi), (2.6)

where the σi’s are Pauli matrices, transform as

P → P ′ = M P M † (2.7)

under which

detP = (p0)2 − p2 (2.8)

is invariant as detM = 1. In fact, Lorentz vectors transform in the same way as the

product of two spinors,

ψα ψ̄α̇ ∼ kµ σ
µ
αα̇ ∼ (1/2, 1/2) (2.9)

while

ψα ψα, ψ̄α̇ ψ̄
α̇, ψα(σµ)αα̇∂µψ̄

α̇ (2.10)

summed over the indices, are invariant, i.e. belong to the representation (0, 0). The

four dimensional gamma matrices are (in the chiral representation)

γµ =

(
0 σµ

σ̄µ 0

)

(2.11)

γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)

(2.12)

The Dirac spinors are given by

ψD =

(
χα

ψ̄α̇

)

: (2.13)

they are equivalent to two independent Weyl (two-component) spinors; while the

Majorana spinors have the form

ψM =

(
χα

χ̄α̇

)

. (2.14)

The Dirac conjugates of these are

ψ̄D ≡ ψ†
Dγ

0 = (−ψα,−χ̄α̇); (2.15)

the Majorana spinors satisfies

ψ̄M = (−χα,−χ̄α̇) = ψTMC, (2.16)
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where

C = −i γ0 γ2 =








0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0








=

(
ǫαβ 0

0 ǫα̇β̇

)

(2.17)

is a real matrix. We use the convention

ψχ ≡ ψαχα = −χαψα = χαψα = χψ, (2.18)

ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ = −χ̄α̇ψ̄α̇ = χ̄ψ̄. (2.19)

Namely, spinors are anticommuting (Grassmannian) quantities. Other useful formulas

are

(ψ χ)† = ψ̄ χ̄ (2.20)

ψ̄D ψD = −ψ χ− ψ̄ χ̄, (2.21)

ψ̄D iγ
µ ∂µψD = −i ψ σµ ∂µψ̄ − i χ̄ σ̄µ ∂µχ, (2.22)

(σ̄)α̇α = ǫα̇β̇ ǫαβ(σ)ββ̇. (2.23)

Looking at the Weyl equation

i σµ ∂µψ̄ = 0 (2.24)

E ψ̄ = i ∂0ψ̄ = −σ · p ψ̄ (2.25)

one sees that E > 0 implies σ · p < 0: ψ̄ is the wave function of a spinor of negative

helicity. Vice versa, χ describes a positive helicity spinor. As an operator χ creates

negative helicity (or destroy a positive-helicity) state.

3. Supersymmetry algebra

Supersymmetry charges are

Qα =

(
Qα

Q̄α̇

)

. (3.1)

In the four-spinor notation (C = iγ2γ0)

Q̄ ≡ CQT = −
(
ǫαβ 0

0 ǫα̇β̇

)(
Qα

Q̄α̇

)

= −
(
Qα

Q̄α̇

)

(3.2)

{Qα, Q̄β} = 2

(
0 σµ

αβ̇
Pµ

σ̄µα̇αPµ 0

)

(3.3)
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From now on however we switch to two-component spinor notation. N = 1, 2, . . . 4

susy algebra are (i = 1, 2, . . .N )

{Qi
α, Q̄

j

β̇
} = −2 σµ

αβ̇
Pµδ

ij, {Qi
α, Q

j
β} = {Q̄i

α̇, Q̄
j

β̇
} = 0 (∗), (3.4)

[P µ, Q] = [P µ, Q̄] = 0, [P µ, P ν] = 0, (3.5)

i[Mµν , Qα] = (σµνQ)α, (σµν) βα =
1

4
[σµσ̄ν − σν σ̄µ] βα , (3.6)

i[Mµν , Q̄α̇] = (σ̄µνQ̄)α̇, (σ̄µν)α̇
β̇

=
1

4
[σ̄µσν − σ̄νσµ]α̇

β̇
, (3.7)

The rest is the standard Poincaré group algebra

i[Mµν , P λ] = gµλP ν − gνλP µ (3.8)

i[Mµν ,Mλκ, ] = gµλMνκ + gνκMµλ − gνλMµκ − gνλMµκ (3.9)

where the metric tensor is taken to be

diag gµν = (1,−1,−1,−1) (3.10)

(Bjorken-Drell).

3.1. Note

(i) [Haag-Sohnius-Lopszanski theorem]: supersymmetry algebra is the only algebra

which contains the Poincaré algebra, which generalizes it by additional Grass-

mann algebra, and that is consistent with nontrivial S-matrix of quantum field

theory. This evades and in a sense generalizes the Coleman-Mandula theorem.

The latter states that the only symmetry algebra (without Grassmannian ex-

tension) which generalizes the Poincaré algebra to include internal symmetry

algebra, and that is consistent with nontrivial S-matrix of quantum field theory,

is of the form

g ∼ gPoincare ⊗ ginternal, (3.11)

a direct product.

(ii) Jacobi’s identity reads

{A, {B,C]] ± {B, {C,A]] ± {C, {A,B]] = 0. (3.12)

6



where either the anticommutator should be chosen when both operators are

fermionic, and the signs are determined by whether in that term the Grassman-

nian operators appear in the even (+) or odd (−) permution with respect to

the first term. For instance, if A = bosonic, B,C are fermionic, then it reads

[A, {B,C}] + {B, [C,A]} − {C, [A,B]} = 0. (3.13)

(iii) For N = 2 it allows the supersymmetry algebra to be generalized with central

extension,

{Qi
α, Q

j
β} = ǫαβ ǫ

ij (U + iV ) (3.14)

where U, V are the central charges (i.e, they commute with all the generators. )

It has been shown explicitly (Olive, Witten) that in N = 2 non-Abelian gauge

theories U, V do appear and correspond to the electric and magnetic charges.

3.2. One particle representations

Let us consider now the representation of supersymmetry algebra on one particle

states.

(i) For a massive N = 1 supersymmetric particle states, one has (P µ = (M, 0, 0, 0))

{Qα, Q̄α̇} = δαα̇ 2M, α, α̇ = 1, 2, (3.15)

or, by defining

b†α =
1√
2M

Qα, bα̇ =
1√
2M

Q̄α̇. (3.16)

These can be regarded as two pairs of annihilation and creation operators,

{bα̇, b†α} = δαα̇. The complete set of one particle states can then be conctructed

by defining the vacuum state by (i = 1, 2)

bi |0〉 = 0; (3.17)

the full set of states are

|0〉, b†1|0〉, b†2|0〉, b†1b
†
2|0〉, (3.18)

they form a degenerate supersymmetry multiplet (two bosons and two fermions).
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For N supersymmetry, the same argument shows that the multiplicity of a

massive multiplet is
2N∑

n=0

(
2N
n

)

= 22N . (3.19)

(ii) Massless N = 1 supersymmetric particle states: In this case it is not possible

to go to the rest frame but the momentum can be chosen as P µ = (p, 0, 0, p).

Then

{Qα, Q̄α̇} =

(
2p 0

0 0

)

αα̇

(3.20)

The state b†2 |0〉 have a zero norm. The particle states are given by the positive

norm states, half of (3.18),

|0〉, b†1|0〉. (3.21)

The multiplicily of a massless N = 1 supersymmetry multiplet is

N∑

n=0

(
2N
n

)

= 2N . (3.22)

(iii) Massive N = 2 supersymmetric particle states with central charges. In the rest

frame (P µ = (M, 0, 0, 0)) the supersymmetry algebra reduces to

{Qi
α, Q̄

j
α̇} = δij δαα̇ 2M, α, α̇ = 1, 2, i, j = 1, 2, (3.23)

{Qi
α, Q

j
β} = ǫαβ ǫ

ij (U + iV ) (3.24)

Within an irreducible representation U and V are just numbers (electric and

magnetic charges of these particles). There are three cases:

2M <
√
U2 + V 2 : It is not possible to find a positive-norm representation of

the algebra;

2M =
√
U2 + V 2 : A representation exists with multiplicity 2N = 4 (short

multiplet) (“BPS” saturated case);

2M >
√
U2 + V 2 : A representation exists with multiplicity 22N = 16 (long

multiplet).

Proof: Define

Q1
1√

2M
= b1

Q1
2√

2M
= b2

Q2
1√

2M
= b3

Q2
2

2M
= b4 (3.25)
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− U√
2M

= u − V√
2M

= v (3.26)

then

{bi, b†j} = δij {b1, b4} = u+ iv {b2, b3} = −u− iv (3.27)

{b†1, b†4} = u− iv {b†2, b†3} = −u+ iv (3.28)

Now make the change of variables

Q1
α −→ eiγ Q1

α Q2
α −→ Q2

α (3.29)

b1 −→ eiγ b1 b2 −→ eiγ b2 (3.30)

to have {b1, b4} real and positive:

{b1, b4} = {b†1, b†4} = α =

√
U2 + V 2

2M
(3.31)

{b2, b3} = {b†2, b†3} = −α (3.32)

In order to see the spectrum, it is convenient to set

A = b1 cosϑ+ b†4 sinϑ B = −b1 sinϑ+ b†4 cos ϑ. (3.33)

The condition {A,B} = {A,B†} = 0 yields ϑ = π
4
: A and B satisfy separate

anticommutators

{A,B} = 0 {A,A†} = 1 + α {B,B†} = 1 − α (3.34)

Thus if |α| < 1 there are two creation operators A†, B†, while if α = ±1 B† (or

A†) creates zero-norm states and only A† (or B†) survives. Repeating the same

passages for b2 and b†3 leads to an identical result.

The net result is that the absence of negative norm states requires |α| ≤ 1, or

M ≥
√
U2 + V 2

2
. (3.35)

Particles with mass M >
√
U2+V 2

2
come in “long multiplets” with multiplicity

22N = 8, while the BPS particles with mass M =
√
U2+V 2

2
come in “short

multiplets” of multiplicity 2N = 4.
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3.3. Field transformations

Now we wish to find the representation of supersymmetry algebra in the space

of fields rather than in one-particle states. Now the operators appearing in the

algebra

{Qi
α, Q̄

j

β̇
} = −2 σµ

αβ̇
Pµδ

ij , Pµ = i∂µ (3.36)

act on the space of fields. Introduce superfields living in superspace (Salam and

Stradthee 1974), considering them as power series in the coordinates θ, θ̄:

F (x, θ, θ̄) = f(x) + θ ψ(x) + θ̄ χ̄(x) + θθm(x) + θ̄θ̄ n(x) +

+ θσµθ̄ vµ(x) + θθ θ̄ λ̄(x) + θ̄θ̄ θ φ(x) + θθ θ̄θ̄D(x) (3.37)

where θα and θ̄β̇ are Grassmannian coordinates,

{θ1, θ2} = 0, (θ1)
2 = (θ2)

2 = 0, θθ ≡ θαθα = 2θ2θ1, θ̄θ̄ ≡ θ̄α̇θ̄
α̇ = 2θ̄1θ̄2

(3.38)

etc. For Grassmannian coordinates the integration and derivation is the same:
∫

dθ =
∂

∂θ
,

∫

dθ1θ1 =

∫

dθ2θ2 = 1,

∫

dθ1 1 = 0, δ(θ) = θ,

(3.39)∫

d2θ θθ = 1,

∫

d2θ̄ θ̄θ̄ = 1,

∫

d2θ 1 =

∫

d2θ θ1 = 0, (3.40)

where d2θ is defined as 1
2
dθ1dθ2. The same rules apply to θ̄, with d2θ̄ = 1

2
dθ̄2dθ̄1.

Note that the differentials of Grassmannian variables are Grassmannian and

anticommute. In the expansion of F (x, θ, θ̄) in powers of θ, θ̄ there is a finite

number of terms because θ3 = θ̄3 = 0. The fields that appear in the expansion

are called component fields. It is possible to see supersymmetry transformations

on these fields as translations in superspace:

G(x, θ, θ̄) = ei(−x
µPµ+θQ+θ̄Q̄) (3.41)

and using Baker-Hausdorff formula

G(0, ξ, ξ̄)G(x, θ, θ̄) = G(xµ + iθσµξ̄ − iξσµθ̄, θ + ξ, θ̄ + ξ̄) (3.42)

Then the infinitesimal translation operator in superspace is ξQ+ ξ̄Q̄, where

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ (3.43)
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Qα̇ =
∂

∂θ̄α̇
− iθασµ

αβ̇
εβ̇α̇∂µ (3.44)

and its action on superfields is

δξ,ξ̄F = [ξQ+ ξ̄Q̄, F ] = δf(x) + θ δψ(x) + θ̄ δχ̄(x) + θθ δm(x) + . . . (3.45)

The above equation defines the action of infinitesimal supersymmetry transfor-

mations on component fields. Note that these representations are in general re-

ducible; the usual way to obtain irreducible ones is to find covariant constraints

which reduces the number of component fields. Note that these constraints must

not impose conditions on the x-dependence of the component fields. The most

important examples of constraints of this kind are chiral and vector superfields.

Before introducing them, we define a covariant derivative in superspace:

Dα =
∂

∂θα
+ i(σµθ)α∂µ (3.46)

D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ (3.47)

which satisfies

{Dα, D̄α̇} = −2iσµαα̇∂µ {Q,D} = {Q, D̄} = {Q̄,D} = {Q̄, D̄} = 0 (3.48)

(D)3 = (D̄)3 = 0 (3.49)

3.4. Chiral superfields

A chiral superfields is defined by

D̄α̇Φ = 0 (chiral) (3.50)

DαΦ = 0 (antichiral) (3.51)

This constraint is easier to understand if we introduce chiral coordinates

yµ = xµ + iθσµθ̄ y†µ = xµ − iθσµθ̄ (3.52)

and change coordinates (x, θ, θ̄) −→ (y, θ, θ̄); in the new coordinates

D̄α̇ = − ∂

∂θ̄α̇
≡ − ∂

∂θ̄α̇
|y, (3.53)
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and the constraint (3.50) can be solved by the functions of the form

Φ = Φ(y, θ) = A(y) +
√

2θ ψ(y) + θθ F (y) (3.54)

or, going back to the variables (x, θ, θ̄),

Φ = A(x)+
√

2θ ψ(x)+θθ F (x)+iθσµθ̄ ∂µA(x)− i√
2
θθ ∂µψ(x)σµθ̄+

1

4
θθ θ̄θ̄�A(x).

(3.55)

θ, θ̄ have the dimension of −1
2
, so if A(x) is a scalar field of dimension 1 ψ(x)

is a spinor field of dimension 3
2
; F (x) is a scalar field of a wrong dimension

(2). In fact, we shall see that it is an auxiliary field, entering the Lagrangean

without derivatives, and consequently can be eliminated through the equations

of motion.

Chiral superfields for a ring under addition and product,

D̄α̇(Φ1Φ2) = D̄α̇(Φ1)Φ2 + Φ1D̄α̇Φ2 = 0 D̄α̇(Φ1 + Φ2) = D̄α̇Φ1 + D̄α̇Φ2 = 0

(3.56)

The product Φ†Φ is not a chiral superfield, because D̄α̇Φ
† 6= 0. Φ†Φ is a real

superfield: it can be used in constructing supersymmetric Lagrangians, as we

see later.

Upon applying a supersymmetry transformation to a superfield, a component

field of dimension n gets transformed to δξ,ξ̄ζ(x) = ξ δζ(x) + ξ̄ δ̄ζ(x) containing

terms that have dimension n+ 1
2
, as ξ and ξ̄ carry the dimension −1

2
. These terms

can be fields of higher dimension, or derivatives of fields of lower dimension. It

is easy to see that the θθ term (usually called F-term) of a chiral superfield or

a composite theirof, always transforms into is the spacetime derivative. The

same can be shown for the highest θθθ̄θ̄ term (also called D-term) of a generic

superfield. These observations are used to construct a supersymmetric action

with a given set of superfields.

3.5. Vector superfields

Another possible covariant constraint on a superfield V is

V † = V (3.57)
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A superfield of this kind is called a vector (or real) superfield. The generic form

for V is

V = C(x) + iθ χ(x) − iθ̄ χ̄(x) +
i

2
θθ [M(x) + iN(x)] − i

2
θ̄θ̄ [M(x) − iN(x)] +

−θσµθ̄ vµ(x) + iθθ θ̄ [λ̄(x) +
i

2
σ̄µ∂µχ(x)] − iθ̄θ̄ θ [λ(x) − i

2
σµ∂µχ̄(x)] +

+
1

2
θθ θ̄θ̄ [D(x) +

1

2
�C(x)] (3.58)

with all the bosonic fields real. Chiral superfields can be used to describe

describe quarks and leptons (and their superpartnes), while vector superfields

can be used to describe the gauge bosons.

As Φ + Φ† is a real superfield. the concept of gauge transformation can be

generalized to supersymmetric gauge transformations,

V −→ V + Φ + Φ† (3.59)

which for the θθ̄ term reads

vµ −→ vµ − i∂µ(A− A†) (3.60)

which is the ordinary Abelian gauge transformation. In nonabelian gauge the-

ories the supersymmetric extension of gauge transformation takes a more com-

plicated form.

There is a gauge (the Wess-Zumino gauge) in which most of the components of

the vector superfield are zero:

V = −θσµθ̄ vµ(x) + iθθ θ̄ λ̄(x) − iθ̄θ̄ θ λ(x) +
1

2
θθ θ̄θ̄ D(x) (3.61)

In this gauge V 3 = 0 and supersymmetry is broken, but it is still possible a usual

gauge transformation like vµ −→ vµ + ∂µΛ. Now we want to find an equivalent

of the field strength. The lower-dimensional gauge invariant component field is

λ(x), so we can try

Wα = −1

4
D̄D̄DαV W̄α̇ = −1

4
DDD̄α̇V (3.62)

which are gauge-invariant chiral superfields; in fact D̄α̇Wβ = DαW̄β̇ = 0 because

D3 = D̄3 = 0. They also satisfy DαWα = D̄α̇W̄
α̇. If we switch to chiral
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coordinates Wα assume the form

Wα(y, θ) = −iλα(y) + θαD(y)− i

2
(σµσ̄νθ)α(∂µvν(y)− ∂νvµ(y))+ θθ(σµ∂µλ̄(y))α

(3.63)

so it contains the field strength Fµν = ∂µvν − ∂νvµ, λ and D which are gauge-

invariant fields, and it is a good candidate for a superfield strength.

4. Supersymmetric gauge theories

The simplest nontrivial supersymmetric theory is the Wess-Zumino model for

chiral fields, in which the Lagrangian kinetic term is constructed from

Φ†Φ|θθθ̄θ̄ = F †F+
1

4
A†

�A+
1

4
�A†A− 1

2
∂µA

†∂µA+
i

2
∂µψ̄σ̄

µψ− i

2
ψ̄σ̄µ∂µψ (4.1)

which contains the usual kinetic terms for scalar and spinor fields. The complete

Lagrangian is

L =
∑

i

Φ†
iΦi|D + P(Φ)|F + h.c. (4.2)

where P is the superpotential. If we restrict to renormalizable interactions 1 we

have

P =
mij

2
ΦiΦj +

1

3
gijk ΦiΦjΦk + λiΦi (4.4)

In terms of component fields, it reads (for a single chiral field)

L = −iψ̄σ̄∂ψ + ∂µA
†∂µA− (

m

2
ψψ + h.c.) − (gψψA+ h.c.) − V (A,A†) (4.5)

V = F †F = |λ+mA+ gA2|2. (4.6)

For a vector superfield a kinetic Lagrangian can be constructed from the term

W αWα|F = −2iλσµ∂µλ̄− 1

2
F µνFµν +

i

4
F µνF̃µν +D2 (4.7)

Now it is easy to construct the Lagrangian of the supersymmetric quantum elec-

trodynamics (SQED). We have left and right-handed electrons and positrons,

1If the condition of renormalizability is not needed (e.g. effective action) the supersymmetric
Lagrangian of chiral superfields have the general form,

∫

d4xd2θ d2θ̄ K(Φ†, Φ) =

∫

d4x
∂2K

∂φ
†
i∂φj

∂µφ
†
i∂

µφj + . . . (4.3)

i.e. it is given in terms of a Kähler potential K(Φ†, Φ).
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so we must have two chiral fields in the theory, Φ and Φ̃. We introduce a global

U(1) transformation corresponding to the electric charge

Φ −→ e−ieΛΦ Φ̃ −→ eieΛΦ̃ (4.8)

and consider the Lagrangian invariant under this transformation, that will gen-

erally contain only the mass term in the superpotential. When we see Λ as

a function of spacetime coordinates, we must promote it to a full chiral mul-

tiplet to transform a chiral field into a chiral field; but then the kinetic term

transforms as

Φ†Φ −→ Φ†e−ie(Λ−Λ†)Φ (4.9)

We must introduce a vector gauge field with the transformation property

V −→ V + i(Λ − Λ†) (4.10)

so as to make a gauge invariant such as Φ†eeV Φ. Now the complete SQED

Lagrangian is

LSQED =
1

4
(W αWα|F +h.c.)+(Φ†eeV Φ+Φ̃†e−eV Φ̃)|D+m(ΦΦ̃|F +h.c.) (4.11)

Actually, another term (Fayet-Iliopoulos term)

V |D (4.12)

can be added without breaking the gauge symmetry. Also, a superpotential

P(Φ)|F + h.c., can be added.

These results can be generalized to non-abelian gauge theories such as SQCD.

We choose a set {T a}a=1...N2
c −1 of Nc × Nc hermitian matrices that belong to

the fundamental representation of the Lie algebra of SU(Nc)

TrT a = 0, Tr (T aT b) =
1

2
δab [T a, T b] =

∑

c

ifabcT c (4.13)

V is a matrix V =
∑

a T
aV a and the field strength is defined as

Wα = −1

4
D̄2e−VDαe

V . (4.14)

The gauge transformation (4.10) in this case takes the form,

eV −→ eiΛ
a†Ta

eV e−iΛ
aTa

; (4.15)
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Figure 1:

while the chiral superfields Qi, Q̃i transform as

Qi −→ eiΛ
aTa

Qi, Q†
i −→ Q†

ie
−iΛa†Ta

, Q̃i −→ e−iΛ
aTa

Q̃i, Q̃†
i −→ Q̃†

ie
iΛa†Ta

.

(4.16)

A gauge invariant SQCD Lagrangian takes the form,

LSQCD =
1

16g2
(W aαW a

α |F +h.c.)+(Q†
ie
VQi+ Q̃†

ie
−V Q̃i)|D+(P(Q, Q̃)|F +h.c.).

(4.17)

This Lagrangian takes its usual form after eliminating the auxiliary fields and

after a rescaling V −→ 2 g V .

5. Nonrenormalization theorem and NSVZ β function

5.1. Superspace propagator and nonrenormalization the-
orem

The Wess-Zumino lagrangian is

L =

∫

d2θd2θ̄

(

Φ†Φ +
1

2
mΦ2δ2(θ̄) + h.c. + gΦ3δ2(θ̄) + h.c.

)

(5.1)

The superfield propagator is

〈T{Φ(x, θ, θ̄)Φ(x′, θ′, θ̄′)}〉 = −mδ2(θ − θ′)e−i(θσ
µθ̄−θ′σµ θ̄′)∂µ∆c(x− x′) (5.2)

〈T{Φ(x, θ, θ̄)Φ†(x′, θ′, θ̄′)}〉 = e−i(θσ
µ θ̄+θ′σµθ̄′−2θσµθ′)∂µ∆c(x− x′) (5.3)

where ∆c(x− x′) is the usual 2-point function. Consider loop corrections

∝ δ2(θ − θ′)δ2(θ − θ′) = δ2(θ − θ′)δ2(0) = 0 (5.4)

while that of Fig. (2) is nonvanishing and gives the wave function renormaliza-
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Figure 2:

tion. Similarly the chiral graph of

∝ δ2(0) = 0 (5.5)

Note that no superpotential term can be generated by perturbative corrections.

Only D-terms can be generated.

In general, if Φ is a chiral superfield,

〈Φ · · ·Φ〉 = 0 perturbatively (5.6)

that is it receives zero contribution from any order of perturbation theory; the

only contributions come from those terms which are present in the original (tree-

level) lagrangian, such as gΦ3 in the Wess-Zumino model. In other words there

are no terms generated by supergraphs with loops. Thus, after wave-function

renormalization, we have (the subscript R stays for ”renormalized”)

gΦ3 = gRΦ3
R (5.7)

Φ = Z− 1
2 ΦR ⇒ g = Z

3
2gR (5.8)

5.2. Nonrenormalization theorem and anomalous and

non-anomalous symmetries

The above proof is essentially perturbative (diagrammatic). Certain superpo-

tentials are protected by some symmetry, such as U(1), SU(nf ), etc. If such

symmetry is exact and non-anomalous, then these superpotential are not renor-

malized both perturbatively and non-perturbatively. If such terms are absent

in the Lagrangian, they cannot be generated by quantum effects.

If instead this symmetry is anomalous (as in UA(1) in QCD-like theories), then

terms violating non-renormalization theorems can be generated nonperturba-

tively, e.g. by instantons. This will be the subject of the next Section.
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5.3. Perturbative anomalies due to massless loops

If however the theory contains massless particles, the non-renormalization the-

orem can be violated apparently. Consider a N = 1 Yang=Mills lagrangian

[?]

L = Φ̄a(eV )abΦ
b
∣
∣
∣
D

+
1

g2
W αWα

∣
∣
∣
F

+ h.c. + dabcΦ
aΦbΦc

∣
∣
∣
F

+ h.c. (5.9)

Consider the graph

∼
∫

d2θd2θ̄
Φ2D2Φ

�
(5.10)

This is a non local term. In a background field framework, when external

momenta tends to 0, D2 =
(
∂
∂θ

+ iθ̄σµ∂µ
)2 ∼ θ̄2

� and

∫

d2θd2θ̄
Φ2D2Φ

�
∼
∫

d2θΦ3 (5.11)

which imitates a F-term. Clearly this process is not possible if we ca write a

Wilsonian action SW and we can make all quantities infrared-free.

It is important to note that, in general, we have a non-analytic function of

original couplings in front of 5.11. Let’s take, for example, the Wess-Zumino

model

L =

∫

d8z
∑

i

Φ̄iΦi +

∫

d6zP + h.c. (5.12)

P = λ1Φ
3
1 + λ2Φ1Φ

2
2 + µΦ1 (5.13)

It can be shown that the superpotential receives a 2-loop contribution

∼ (λ⋆1)
2λ3

2Φ
3
2. (5.14)
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5.4. Gauge kinetic terms and generalized non-renormalization

theorem

Gauge kinetic terms in gauge theories provides another kind of subtlety in the

consideration of non-renormalization theorem.
∫

d4x

∫

d2θW αWα =
1

16

∫

d4x

∫

d2θ(D̄2e−VDαeV )(D̄2e−VDαe
V )

=
1

16

∫

d4x

∫

d2θD̄2(e−VDαeV )(D̄2e−VDαe
V )

=
1

4

∫

d4x

∫

d2θ

∫

d2θ̄(e−VDαeV )(D̄2e−VDαe
V ) (5.15)

and it is really a D-term, so it may receive contributions from radiative cor-

rections. However, it turns out that graphs higher than 1 loop do not con-

tribute. (More precisely, it has been shown (see [?]) in the framework of

Wilsonian action, where all quantities are infrared-free, while in a standard

background field method there are in general multiloop corrections). This gen-

eralized non-renormalization theorem played important role in the subsequence

developments.

5.5. NSVZ β function in N = 1 supersymmetric gauge
theories

The bare Lagrangian of an N = 1 supersymmetric gauge theory with generic

matter content is given by

L =
1

4

∫

d2θ

(
1

g2
h(M)

)

W aW a + h.c. +

∫

d4θ
∑

i

Φ†
ie

2ViΦi (5.16)

where
1

g2
h(M)

=
1

g2(M)
+ i

θ(M)

8π2
≡ i

τ(M)

4π
(5.17)

and g(M) and θ(M) stand for the bare coupling constant and vacuum param-

eter, M being the ultraviolet cutoff. “h” stays for “holomorphic” (we will omit

it in the sequel). Note that with this convention the vector fields Aµ(x) and

the gaugino (gluino) fields λα(x) contain the coupling constant and hence, in

accordance with the non Abelian gauge symmetry, are not renormalized. By a
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generalized nonrenormalization theorem [?] the effective Lagrangian at scale µ

takes the form,

L =
1

4

∫

d2θ

(
1

g2(M)
+

b0
8π2

log
M

µ

)

W aW a+h.c.+

∫

d4θ
∑

i

Zi(µ,M)Φ†
ie

2ViΦi ,

(5.18)

(plus higher dimensional terms). Here

b0 = −3Nc +
∑

i

TF i; TF i =
1

2
(quarks) . (5.19)

Novikov et. al. then invoked the 1PI effective action to define a “physical” cou-

pling constant for which they obtained the well-known β function (Eq.(5.23)

below) [?]. Recently the derivation of the NVSZ beta function was somewhat

streamlined by Arkani-Hamed and Murayama [?]. (See also [?].) They ob-

tained the NVSZ beta function in the standard Wilsonian framework, without

appealing to the 1PI effective action (hence no subtleties due to zero momentum

external lines, such as those leading to apparent violation of nonrenormaliza-

tion theorem[?, ?]). They insist simply that at each infrared cutoff µ the matter

kinetic terms be re-normalized so that it resumes the standard canonical form,

which is the standard procedure in the Wilsonian renormalization group. But

the field rescaling

Φi = Z
−1/2
i Φ

(R)
i , (5.20)

introduces necessarily anomalous functional Jacobian [?], and one gets

L =
1

4

∫

d2θ

(

1

g2(M)
+

b0
8π2

log
M

µ
−
∑

i

TF
8π2

logZi(µ,M)

)

W aW a + h.c.(5.21)

+

∫

d4θ
∑

i

Φ
(R)†
i e2ViΦ

(R)
i ≡ 1

4g2(µ)

∫

d2θW aW a + h.c.+

∫

d4θ
∑

i

Φ
(R)†
i e2ViΦ

(R)
i .

where
1

g2(µ)
≡ 1

g2(M)
+

b0
8π2

log
M

µ
−
∑

i

TF i
8π2

logZi(µ,M) . (5.22)

This leads to the beta function (call it βh to distinguish it from the more com-

monly used definition):

βh(g) ≡ µ
d

dµ
g = − g3

16π2

(

3Nc −
∑

i

TF i(1 − γi)

)

, (5.23)

20



where

γi(g(µ)) = −µ ∂

∂µ
logZi(µ,M)|M,g(M), (5.24)

is the anomalous dimension of the i−th matter field. The same result follows

by differentiating (5.22) with respect to M with µ and g(µ) fixed. For SQCD

these read

βh(g) = − g3

16π2
(3Nc −Nf(1 − γ)) , γ(g) = − g2

8π2

N2
c − 1

Nc

+O(g4), (5.25)

Eq.(5.23) and Eq.(5.25) are the NSVZ β functions [?]. Note that the “holo-

morphic” coupling constant g(µ) is a perfectly good definition of the effective

coupling constant: it is finite as M → ∞; µ = finite, and physics below µ

can be computed in terms of it. Vice versa, the coupling constant defined as

the inverse of the coefficient of W aW a in (5.18), ( 1
g2(M)

+ b0
8π2 log M

µ
)−1, is not

a good definition of an effective coupling constant, as long as Nf 6= 0: it is

divergent in the limit the ultraviolet cutoff is taken to infinity. In other words,

the renormalization of the matter fields (5.20) is the standard, compulsory step

of renormalization, such that the low energy physics is independent of the ul-

traviolet cutoff, M . Let us also note that, in spite of its name, the holomorphic

coupling constant gets renormalized in a non-holomorphic way, due to the fact

that Zi(µ,M) is real. Another consequence of the reality of Zi(µ,M) is that θ

is not renormalized: this is evident from the same RG equation (5.23) written

in terms of τ variable ,

µ
d

dµ
τ(µ) = − i

2π

(

3Nc −
∑

i

TF i(1 − γi)

)

, (5.26)

showing that the NSVZ beta function is essentially perturbative. It is interesting

to observe that the above procedure parallels nicely the original derivation by

Novikov et. al. of the beta function by use of some instanton-induced correlation

functions. More recently the NSVZ β function in N = 1 supersymmetric QCD

has been rederived by Arnone, Fusi and Yoshida [?], by using the method of

exact renormalization group.

5.6. Zero of the NVSZ beta function, Seiberg’s duality
and CFT in SQCD

For the range of the flavor 3Nc

2
< Nf < 3Nc (conformal window) Seiberg dis-

covered by using the NVSZ β function that the theory at low-energy is at a
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nontrivial infrared fixed point [?]. At the zero of the β function the anomalous

dimension of the matter field is found to be:

γ(g∗) =
3Nc −Nf

Nf
. (5.27)

It turns out that this result is in agreement with that determined from the

superconformal algebra, which contains the non-anomalous UR(1) symmetry.

This and many other consistency checks allowed Seiberg to conclude that in

the conformal window, and at the origin of the moduli space (namely, in the

theory where all VEV’s vanish), the theory flows into a nontrivial infrared fixed

point. Such a theory has no particle description, and as such, can be described

by more than one type of gauge theory. In fact, in SU(Nc) theory, the theory

can be either described as the standard SQCD with Nf flavors, or in terms of

a dual theory, which is an SU(Ñc) gauge theory with Nf sets of dual quarks,

plus singlet meson fileds, where Ñc ≡ Nf − Nc. They have the same infrared

behavior. This is the first example of the N = 1 non-Abelian duality, found in

many other theories subsequently.

This development enabled Seiberg to complete the picture of dynamical prop-

erties of N = 1 supersymetric QCD in all cases. Phase, the low-energy effective

degrees of freedom, effective gauge group, etc. are summarized in Table 1 (where

the bare quark masses are taken to be zero).

6. Anomalies

An important role is played in the analysis of dynamics in gauge theories by

various quantum anomalies.

6.1. UA(1) anomaly

The first example, found by Steinberger, Schwinger, Adler, Bell and Jackiw, is

the axial anomaly in QED:

∂µJ
µ
5 =

e2

16π2
FµνF̃

µν , Jµ5 = ψ̄iγ5γ
µψ (6.1)

where F̃ µν = 1
2
ǫµνρσFρσ, and ǫ0123 = 1. This appears as the “triagle anomaly”:

namely due to the linearly divergent triangle fermion 1 loop graph, the three
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Nf Deg.Freed. Eff. Gauge Group Phase Symmetry

0 (SYM) - - Confinement -
1 ≤ Nf < Nc - - no vacua -

Nc M, B, B̃ - Confinement U(Nf)

Nc + 1 M, B, B̃ - Confinement Unbroken

Nc + 1 < Nf < 3Nc

2 q, q̃, M SU(Ñc) Free-magnetic Unbroken
3Nc

2 < Nf < 3Nc q, q̃, M or Q, Q̃ SU(Ñc) or SU(Nc) SCFT Unbroken

Nf = 3Nc Q, Q̃ SU(Nc) SCFT (finite) Unbroken

Nf > 3Nc Q, Q̃ SU(Nc) Free Electric Unbroken

Table 1: Phases of N = 1 supersymmetric SU(Nc) gauge theory with Nf flavors.
Mij = Q̃iQj and B = ǫa1a2...aNc

ǫi1i2...iNcQa1
i1
Qa2
i2
. . . Q

aNc

iNc
(B̃ is constructed similarly

from the antiquarks, Q̃’s) stand for the meson and baryon like supermultiplets. ”Un-
broken” means that the full chiral symmetry GF = SUL(Nf) × SUR(Nf) × U(1) is
realized linearly at low energies. Actually, for Nf > Nc continuous vacuum degen-
eracy of the theory survives quantum effects, and the entities in the table refers to
a representative vacuum at the origin of the quantum moduli space (QMS). For the
special case of Nf = Nc, the QMS is parametrized by detM − BB̃ = Λ2Nf and the
U(Nf ) symmetry is the unbroken symmetry of the vaccum with M = 1 · Λ2, B = 0.

point function

Gµ;λ,ν ≡ 〈TJµ5 (x)Jλ(y)Jν(z)〉 (6.2)

satisfies an anomalous Ward-Takahashi identity

∂xµ G
µ;λ,ν 6= 0, if ∂yλG

µ;λ,ν = ∂zν G
µ;λ,ν = 0. (6.3)

6.2. π0 → 2 γ

Historically, the first physics result involved the process π0→2 γ, which, in the

näıve chiral limit, would bbe zero (Sutherland-Veltman theorem). Let us con-

sider the amplitude,

Aµν = 〈ǫµ(p) ǫν(k) |∂µ Jµ5 (q) |0〉 (6.4)

where ǫµ(p), ǫν(k) are two external photons, |0〉 is the vacuum state, and

Jµ5 =
∑

quarks

iψ̄γ5γµψ (6.5)

is the quark axial current. The axial anomaly gives

Aµν =
e2

16π2
C 〈ǫµ(p) ǫν(k) |FρσF̃ ρσ |0〉 =

e2

16π2
C 2 ǫµνρσ p

ρkσ, (6.6)
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where

C = 2Nc [

(
2

3

)2

+

(

−1

3

)2

] (6.7)

C takes into account the electric charges of u and d quarks, their color mul-

tiplicity, and pair of graphs in which quarks loop around i the graph in the

opposite directions. On the other hand, by assuming that the intermediate

state is dominated by a massless pion, one has

Aµν = 〈ǫµ(p) ǫν(k) |π〉 · 1

q2
〈π|∂µJµ(q) |0〉 = 〈ǫµ(p) ǫν(k) |π〉 · 1

q2
· q2 · Fπ, (6.8)

where

〈π|Jµ(q) |0〉 = i qµFπ (6.9)

defines the pion decay constant Fπ. Fπ is known experimentally from the decay

process, π → µν to be Fπ ≃ 130 (MeV). Now,

Aπ→2γ = 〈ǫµ(p) ǫν(k) |π〉 =
Nc e

2

4π2Fpi

[

,

(
2

3

)2

+

(

−1

3

)2
]

ǫµνρσ p
ρkσ, (6.10)

and thus

Γ(π0 → 2γ) =
α2

64π3

m3
π

F 2
π

N2
c

[(
2

3

)2

+

(

−1

3

)2
]2

≃ 1 · 10−5 MeV, (6.11)

to be compared with the empirical pion lifetime

τ ≃ (8.4 ± 0.6) · 10−17 sec, (6.12)

which implies

Γ(π0 → 2γ) =
~

τ
≃ 1

1.2
· 10−5 MeV. (6.13)

Thus the theory predicts the decay width correctly within 20 % which is not

bad at all, if one takes into account the extrapolation involved from the massless

(soft) pion limit to the on-shell pion mass value.

Note that the factor N2
c ∼ 10 is essential to get such an agreement: this process

can be regarded as providing a direct test of the color.
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Figure 3:

6.3. UA(1) anomaly in QCD, Solution of the “U(1) prob-

lem”.

In QCD, the quark axial current suffers from an axial anomaly due to the gluon

fields (as well as due to the photon fields which we neglect in this section):

∂µJ
µ
5 = 2Nf

g2

32π2
F a
µνF̃

µν a, Jµ5 = ψ̄iγ5γ
µψ (6.14)

Note that

g2

32π2
F a
µνF̃

µν a = ∂µK
µ, Kµ =

g2

16π2
ǫµαβγ Tr (Fαβ Aγ −

2

3
AαAβAγ ) (6.15)

so that the axial charge Q5 might seem to be conserved. Actually in QCD there

are nontrivial boundary terms which contribute. In the Euclidean path integral,

there are are finite action contributions which behaves asymtotically as

Aµ ∼ U−1(x)∂µ U(x), (6.16)

where U(x) ∈ SU(2) ⊂ G, G = SU(3) for QCD. These represent a map S3 →
SU(2), but since

π3(SU(2)) ∼ π3(S
3) = Z, (6.17)

they are labeld by an integer winding number (Pontryagin number)

∫

d4x
g2

32π2
F a
µνF̃

µν a = n, n = 0,±1,±2, . . . . (6.18)

The n = 1 configuration is called an instanton (see below).

As ∆Q5 6= 0 in general, UA(1) is not conserved, although SUL(Nf ) × SUR(Nf)

chiral symmetries are respected. In fact, as shown explicitly by ’t Hooft, an

effective Lagrangian of the form

Leff = const. ǫi1,i2,...iNf
ǫj1,j2,...jNf ψi1L · · ·ψiNf

L ψ̄R j1 · · · ψ̄R jNf
(6.19)

is dynamically (by the instanton) generated. The inti-instanton gives h.c. of this.

The light Nambu-Golstone boson of the spontaneously broken global UA(1) is
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not expected to be there, in contrast to the pions of mass ∼ 140 MeV are pseudo

Goldstone boson of the broken SUA(2). This basically solves the U(1) problem.

A quantitative explanation of the mass of the “failed Goldstone boson” - the η

meson - involves a more careful analysis. In the large Nc approximation it is

given by (Witten, Veneziano ’79)

m2
η =

4Nf

F 2
π

d2E

d2θ
|YM =

4Nf

F 2
π

∫

d4x 〈 [
g2

32π2
F a
µνF̃

µν a(x)
g2

32π2
F a
µνF̃

µν a(0) ]〉YM

(6.20)

where the correlation function on the right hand side is defined in the pure

Yang-Mills theory (i.e., without quarks).

6.4. Nonconservation of chirality and θ term in QCD:

the Strong CP Problem

The fact that g2

32π2F
a
µνF̃

µν a is a nontrivial operator means that in the Lagrangian

of QCD an extra term

θ
g2

32π2
F a
µνF̃

µν a. (6.21)

Thie term breaks P and CP. Actually a more carefull definition is needed. As

the axial transformation

ψ → ei αψ, ψ̄ → ψ̄ ei α, (6.22)

generates the change of the action

exp iS → exp[iS + 2Nf i α

∫

d4x
g2

32π2
F a
µνF̃

µν a ] (6.23)

the tht parameter is not defined unless the phase convention of the fermions is

not fixed. One my choose

Argmi > 0, (6.24)

then the physical parameter is

θph = Arg detm+ θ. (6.25)

Experimentally,

|θph| < 10−9, (6.26)

from the absence of the observed electric dipole moment of the neutron.
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The problem is then why θph is so small (“strong CP problem”). There are sev-

eral solutions: Peccei-Quinn mechanism and its various variations all of which

lead to the existence of a light axion; another possibility is mu = 0.

6.5. Spectral Flow

A way to study the chirality nonconservation is to study the spectral flow. In a

gauge background of nonvanishing Pontryagin number n, there are n− (or n+ )

chirality fermion zero modes such that

n− − n+ = n. (6.27)

It is known that in the instanton background (n = 1) there is one zero mode of

negative chirality

D̄ψ0 = 0,

∫

d4x |ψ0(x)|2 = 1, (6.28)

and no zeromode of positive chirality. In the A0 = 0 gauge, this can be written

as

(− ∂

∂t
+HDirac)ψ0 = 0. (6.29)

Since ψ0 is normalizable in (Euclidean) 4D it means that at τ → ±∞

ψ0 → e−E(τ)τ , (6.30)

with

E(∞) > 0, E(−∞) < 0. (6.31)

Thus E(τ) changes the sign of energy as τ varies from −∞ to ∞.

On the other hand, one can show that in the A0 = 0 gauge, the background

field Aµ(τ = ∞) is a gauge transformation of Aµ(τ = −∞): the spectrum

of the Dirac Hamiltonian must be the same at τ → ±∞. It means that the

whole energy spectrum gets shifted upwards, and precisely one mode (for each

fermion flavor) has moved from the negative Dirac sea to the positive value. For

consistency, the three-dimensional Dirac operator HDirac(t = 0) must possess

one (3D-normalizable) zeromode, which can be easily found (Kiskis).
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6.6. A0 = 0 Gauge

Take

U † = exp [ i

∫ x4

infty

dx4
σi xi

x2
4 + x2 + ρ2

], (6.32)

then
i

g
∂4 U † = −1

g

σi xi

x2
4 + x2 + ρ2

U † = −A
(inst)
4 U † (6.33)

so

Ã
(inst)
4 = U (A

(inst)
4 +

1

g
∂4)U † = 0. (6.34)

But then
U †(−∞,x) = 1, U †(∞,x) = e

iπ
σi xi

x
2+ρ2 . (6.35)

Ai(−∞,x)(inst) = 0 and Ai(∞,x)(inst) = U(∞,x) i
g

∂i U †(∞,x) are thus obviously related

by a gauge transformation in this gauge.

6.7. Chiral anomalies; non-Abelian anomalies; Wess-Zumino
consistency condition; Witten’s quantization

From the viewpoint that the chiral (Weyl) fermions are more fundamental than

Dirac fermions, it is natural to interpret the axial anomaly as due to the anomaly

of the chiral current,

JµA = JµL − JµR, (6.36)

JµL = iψγµ
1 − γ5

2
ψ; JµR = iψγµ

1 + γ5

2
ψ. (6.37)

The derivation is almost identical to the case of the axial anomaly: the result

is

∂µJ
µ
L =

g2

32π2
F a
µνF̃

µν a (6.38)

for one lefthanded fermion.

The crucial generalization is the nonabelian anomaly. Consider a theory with

a chiral fermion, with a (continuous) global symmetry GF . Suppose that the

group GF is “gauged”, by coupling to external gauge fields A:

e−Γ(A) =

∫

DψDψ̄ e−
R

dx ψ̄iγDAψ. (6.39)

Now, under the gauge transformation

Aµ → Aµ −Dµv, Dµv = ∂µv + ig[Aµ, v], (6.40)
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Γ(A) → Γ(A) +

∫

dx vaDµ
δΓ(A)

δ Aaµ
. (6.41)

If the theory is invariant under GF one should have

δΓ(A)

δ va
= 0, ... Dµ〈Jaµ〉 = 0, Jaµ =

δΓ(A)

δ Aaµ
. (6.42)

Actually, the variation is nonvanishing and is given by

δvL
Γ(A) =

1

24π2

∫

d4xTr v(x)ǫλµαβ ∂λ (Aµ∂αAβ +
1

2
AµAαAβ)

=
1

24π2

∫

d4x

∫

Tr v(x) d(AdA+
1

2
A3). (6.43)

Note that it is proportional to the group constant

TrT a{T aT c} = dabc(r) (6.44)

which depends on the representation to which the fermions ψ belong. In par-

ticular, the ratio dabc(r)/dabc(r0) where r0 is the fundamental representation,

depends only on r. For SU(N) see Appendix.

The fact that the anomaly (6.43) emerges as a variation of the effective action

Γ(A) implies a consistency condition (Wess-Zumino [?]),

(δv1 · δv2 − δv2 · δv1) Γ(A) = δ[v1,v2] Γ(A), (6.45)

and this fixes the anomalous part of Γ(A) modulo normalization, as the integral

of the anomaly.

As the low-energy effective action in QCD contains pions and kaons (pseudo-

Nambu-Golstone bosons) coupled to the external GF = SU(Nf × SU(Nf ) ×
UV (1) gauge bosons (the physical photon, W , Z bosons couple to a subgroup

of GF ), the consequence of the anomaly involves precise physical prediction

on certain hadronic processes involving weak gauge bosons (π0 → 2γ discussed

above being an example). Actually, there are some purely hadronic process due

to the anomaly.

Witten [?] observed that the integrated anomaly - the so-called Wess-Zumiino

effective action - can be written as a boundary term on S4 ∼ R4 of R5. For

Nf = 3, the integrated anomaly takes the form,

Γeff = n

∫

dΣi1i2...i5 ωi1i2...i5 ≡ nΓ(U), (6.46)
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ωi1i2...i5 = − i

240 π2
Tr (U−1∂i1U)(U−1∂i2U) . . . (U−1∂i5U), (6.47)

where U(xµ, y) = exp [ 2i
Fπ

Σλa πa(xµ, y) ] represents the Goldstone modes of
SU(3)×SU(3)

SU(3)
∼ SU(3) suitably continued to R5. As

π5(SU(3)) ∼ Z, (6.48)

the coefficcient n turns out to be quantized to integer values. The actual Wess-

Zumino effective action of QCD contains n = Nc = 3, but the fact that n should

be a priori an integer, is highly non-trivial.

In the presence of external gauge fields coupled to the global symmetry, the

latter must be “gauged”, and the Wess-Zumino-Witten action must be made

gauge invariant under the anomaly-free part of local GF (in this case the vec-

torial SU(3)): the result is

Γ̃(U,Aµ) = Γ(U) +
1

48π2

∫

d4x ǫµναβ Zµναβ , (6.49)

where (UνL = (∂νU)U−1, UνR = U−1∂νU) ),

Zµναβ = −Tr[AµLUνLUαLUβL + (L↔ R) ] + . . . (6.50)

given in Eq.(24) of Witten, NPB223(1983) 422. This effective action reproduces

the anomalous variations under SUA(3) calculated in the underlying theory.

6.8. Cancellation of gauge anomalies in the Standard
model

As the Glashow-Weinberg-Salam theory is chiral, the anomaly discussed above

is potentially dangerous for the consistency of SU(3) × SUL(2) × UY (1) gauge

theory: the presence of the anomaly implies the failure of gauge invariance.

In the satndard model with quarks and leptons, these anomalies cancel out

completely, due to the particular charges these known fermions carry.

6.9. ’t Hooft’s anomaly matching conditions

The nonabelian anomaly implies very nontrivial consistency condition on pos-

sible realization of symmetries at low energies. The anomaly represents the
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way the system responds to the variation of the external gauge fields Aaµ in GF

(whether or not they represent actual, physical particles): the answer must be

the same whether the action of the fundamental system or the effective action

valid at low energies, is used to calculate it.

In the first case, the quantum loop calculation gives the anomaly discussed

in the previous subsection. If instead one uses an effective low-energy action,

which takes into account all quantum effects integrated down to the infrared

scale considered and which describe the low-energy degrees of freedom such as

the Nambu-Goldstone bosons or composite massless fermions. If the relevant

degrees of freedom involves only the latter (symmetry broken spontaneously),

then the consequence is the π0 → 2γ and other anomalous amplitudes contained

in the Wess-Zumino- Witten action (6.47).

Suppose instead that a global symmetry GF in a strongly interacting theory

(with guge group GS), remains unbroken. In such a case, the low-energy ef-

fective theory must contain massless, composite fermions, so that the loops of

these massless “baryons” reproduce exactly the anomaly of the underlying the-

ory. See Fig. . As in general composite fermions, being singlets of GS, are

in different representations than those of the fundamental fermions, such an

agreement involves very nontrivial, algebraic relations about their numbers and

charges. Thus if the theory confines, without breaking the global symmetry,

these “’t Hooft anomaly matching conditions” imposes a stringent constraints

on possible dynamical outcome of the theory.

N. B The idea behind the ’t Hooft’s conditions is thus essentially the same

as that led to the determination of the π0 → 2γ amplitude. The anomaly of

the system must be carried either by massless Nambu-Goldstone bosons or by

massless composite fermion loops. Both produce - effectively - a pole at q2 = 0

in the amplitude (Fig.)

N. B Even if the theory does not confine, if the theory approach a nontriv-

ial fixed-point in the infrared, any alternative description of the system must

involve the set of fermions with an appropriate amount of anomaly. This con-

straint was used by Seiberg in his discovery of the conformal Window in SQCD.

N. B In a supersymmetric strongly interacting theory, with a spontaneouly

broken global symmetry GF , the anomaly matching is subtler, as the fermionic

partners of the Nambu-Goldstone bosons are massless, and carry nontrivial
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charges. In the calculation of the “pion decay amplitude” in such a context,

the contribution of the loops due to the low-enrgy fermions must be subtracted

from the fundamental anomaly.

6.10. Fujikawa’s derivation of anomalies

Consider

W =

∫

Dψ D̄ψ e−
R

d4ψ̄ iγDAψ (6.51)

Dψ D̄ψ =
∏

dandb̄n, (6.52)

where

iγDA ψn = λnψn, (6.53)

and

ψ =
∑

n

anψn; ψ̄ =
∑

n

b̄nψ
†
n. (6.54)

Let us consider the change of variable,

ψ → eiα(x)γ5 ψ, ψ̄ → ψ̄ eiα(x)γ5, (6.55)

which has the form of a UA(1) transformation. Namely

ψ = ψ′ + iα(x)γ5ψ
′; ψ̄ = ψ̄′ + iα(x)ψ̄′γ5. (6.56)

As

ψ =
∑

n

anψn =
∑

n

an e
iα(x)γ5ψ

′
n =

∑

a′nψn, (6.57)

da′m =
∑

n

[

∫

dxψ∗
m (1 + α(x) γ5 )ψn ] dan ≡

∑

n

Cmn dan; (6.58)

∏

m

da′m = detC
∏

dan,
∏

dan = (detC)−1
∏

m

da′m (6.59)

and analogously
∏

n

db̄n =
∏

n

db̄′n (detC)−1. (6.60)

The functional Jacobian is J = (detC)−2. By using (for a matrix of the form

C = 1 + A),

detC = elog detC = eTr log(1+A) ≃ eTrA, (6.61)
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J = exp [−2i

∫

dxα(x)
∑

n

ψ∗
n(x)γ5ψn(x), ]. (6.62)

Näıvely,
∑

n

ψ∗
n(x) γ5 ψn(x) = Trγ5 = 0, (6.63)

but actually it is an indefinite sum of the form, 0 · ∞. In order to define better

the sum, we introduce the regulator factor following Fujikawa,

∑

n

ψ∗
n(x)γ5ψn(x) = lim

M→∞

∑

n

ψ∗
n(x) γ5 e

−λ2
n/M

2

ψn(x)

= lim
M→∞

∑

n

ψ∗
n(x) γ5 e

(γ·D)2/M2

ψn(x) = lim
M→∞

Tr γ5e
(γ·D)2/M2

. (6.64)

The sum, now well defined, can be evaluated in any basis, e.g., in plane wave

basis,

Tr (· · ·) →
∫

d4p

(2π)4
eipx tr (· · ·)e−ipx (6.65)

where tr (· · ·) stands for the spin trace. Now

(γ · D)2 = D2
µ + σµν F

µν , σµν =
γµγν − γνγµ

4
, (6.66)

Dµ = ∂µ − i g Aµ = iPµ − i g Aµ = i (P − gA), Pµ = −i∂µ, (6.67)

and

D2
µ = −(P − igA)2 = −P 2

µ + g(PµAµ + AµPµ) − g2A2
µ ≡ P 2 − ∆2, (6.68)

∆ = −g(PµAµ + AµPµ) + g2A2
µ. (6.69)

Thus

Tr γ5 e
(γ·D)2/M2

=

∫
d4p

(2π)4
eipx tr [γ5 e

−P 2−∆+σµν Fµν

] e−ipx. (6.70)

We now expand in the “small” operators (−∆ +σµν F
µν)/M2, as P 2 ∼ O(M2).

The three operators in the exponent do not commute; one can however use the

formula

eA+B = eA +

∫ 1

0

dα eαAB e(1−α)A +

+

∫ 3∏

i=1

dαi δ(1 −
∑

α) eα1AB eα2AB eα3A + . . . . (6.71)
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As ∫
d4p

(2π)4
∼ O(M4), (6.72)

the terms higher than quadratic in (−∆ + σµν F
µν)/M2 are negligible in the

limit M → ∞. On the other hand, the spin trace trγ5 · · · ] vanishes unless at

least four γ matrices appear. It follows that the only term surviving in the limit

M → ∞ is the quadratic term in σµν F
µν)/M2. This can be easily evaluated as

1

2
tr(γ5σµν σρσ

F µνF ρσ

M4

∫
d4p

(2π)4
e−p

2/M2

=
1

2
Tr
FµνFρσ
M4

4

16
tr(γ5γµ γν γρ γσ) ·

1

(2π)4
· π2

Γ(2)
·
∫

d(p2) p2e−p
2/M2

= Tr
1

32π2
ǫµνρσFµνFρσ =

1

32π2
F a
µνF̃

a
µν . (6.73)

By introducing appropriate source termsand by considering the change of vari-

ables

6.11. Konishi anomaly

In supersymmetric gauge theories, the chiral U(1) anomaly associated with each

matter field is promoted to supersymmetric multiplet of anomalies. In a theory

with chiral superfields Φi and superpotential P(Φ), it reads

−D̄
2

4
(Φ†

ie
V Φi) = Φi

δP
δΦi

+ CΦi

(
g2

32π2

)

WW (6.74)

where CΦi
is the quadratic Casimir of the gauge group associated with the

representation to which Φi belongs. The first term on the r.h.s. is the normal

field variation and the second term is the anomaly. Written this way this can

be seen as the anomalous equation of motion. The point is that this relation

holds exactly as a relation among the chiral ring of operators and hence among

the VEV of the terms involved.

Eq.(6.74) can be derived in various ways, by using (supersymmetric) point-

splitting method, supergraph 1 loop calculation, BPHZ regularization, Pauli-

Villars regularization, and in the functional (à la Fujikawa) method.2 We discuss

below this last method, as it is easiest then to generalize such identity to much

2The proof has been given by using these techniques also in the component formalism (Konishi).
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more general identities. Also this method can be used in chiral gauge theories

while some method (e.g., Pauli-Villars) requires the model to be vectorlike. Let’s

study a supersymmetric gauge theory with generic field content {Φi}. Consider

the functional integral,

eZ[J ] =

∫

DΦ . . . exp[i(Smatter + Sgauge + SSources], (6.75)

Smatter =
∑

i

∫

d8z[ Φ†
ie
V Φi] +

∫

d6zP(Φ) + h.c. (6.76)

Sgauge =
1

4

∫

d6zTrWW (6.77)

and SSources is a generic source term. For SQCD {Φi} = {Q, Q̃}. Let us now

consider the change of variable for one of the chiral superfield

U(1)Φ : Φ → eiA(z)Φ (6.78)

with other variables kept fixed, where A(z) is a generic chiral superfield. This

introduces

δSmatter =

∫

d8zΦ†eV iA(z)Φ +

∫

d6z iA(z)Φ
δP
δΦ

(6.79)

(for SQCD the variation of the superpotential is mΦ̃iA(z)Φ ) Naively one would

have
δS

δA
= 0 = −D̄

2

4
(Φ†eV Φ) + Φ

δP
δΦ

+ δSSources (6.80)

but actually one must also take into account the anomalous jacobian of the

transformation 6.78, which is given by

J (Φ′/Φ) = det
c

| δΦ′
z′/δΦz |= det

c
〈z′ | exp

{

iA

(

−D̄
2

4

)}

| z〉

= exp

{

Trc

[

iA

(

−D̄
2

4

)]}

(6.81)

where the subscript “c” stays for “chiral measure”, that is d6z = d4xd2θ. Note

that, being the delta function in the superspace 〈z′ | z〉 = δ8(z−z′), the correct

delta function for the chiral measure is 〈z′ | − D̄2

4
| z〉 = δ6(z − z′) = δΦz′/δΦz.

Apparently the exponent in 6.81 vanishes because δ6(0) = 0, but actualyy it

is an infinite sum and it needs to be regularized. For this purpose we adopt a

generalization of the Fujikawa method and write the trace as

lim
M→∞

Trc

[

i A e
L

M2

(

−D̄
2

4

)]

(6.82)

35



L =
1

16
D̄2e−VD2eV = 6 D2 + · · · (6.83)

The choice of L is justified by the fact that it is the simplest operator with the

following remarkable properties

1. L is manifestly supersymmetric

2. L is manifestly chiral

3. L is gauge-covariant, in particular it transforms

L→ e−iALeiA (6.84)

4. L contains 6 D2 as a component (see the original Fujikawa method)

Let’s evaluate the trace in 6.82, remembering that D̄2 = 0

e
L

M2 =
∞∑

n=0

1

n!

L

M2

n

; 1−− ≡ −D̄
2

4
(6.85)

L1−− =
1

16
[D̄α̇D̄

α̇e−VDαDαe
V ]1−−

=
1

16
[D̄2e−V (D2eV ) + 2D̄2e−V (Dαe

V )Dα + D̄2D2]1−− (6.86)

D̄2D21−− = {D̄α̇[D̄
α̇, D2] + [D̄α̇, D

2]D̄α̇}1−−

= D̄α̇(D
α{D̄α̇, Dα} − {D̄α̇, Dα}Dα)1−−

= 2σ̄µα̇αpµ(2{D̄α̇, Dα})

= 8σ̄µα̇ασναα̇pµp
ν1−− = 16gµνpµp

ν1−− = 16p21−− (6.87)

D̄2e−V (Dαe
V )Dα1−− = −4W αDα + 8Cµpµ (6.88)

Cµ ≡ −1

2
σµαα̇(D̄

α̇e−VDαeV ) (6.89)

L1−− = (p2 − 1

2
W αDα + Cµpµ + F ) 1−−; (6.90)

F ≡ 1

16
(D̄2e−VD2eV ). (6.91)
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To select the non-vanishing part of 6.82 we need 2 covariant derivatives from

the expansion of L; indeed

〈θ, θ̄ | DαDβD̄
2 | θ, θ〉 = 8ǫαβ (6.92)

while a different number of D’s would yield zero. Furthermore

〈x | exp

[
p2 + O(p)

M2

]

| x〉 =

∫
d4p

(2π)4
e−

k2

M2

(

1 + O
(

1

M

))

=
i

16π2
M4 + O(M3) (6.93)

so we need just the second order in W αDα and after a rescaling V → 2gV we

are led to

lim
M→∞

Trc

[

iAe
L

M2

(

−D̄
2

4

)]

=

∫

d6ziA(z)

(
g2

32π2

)

W αWα (6.94)

We remark that the result is stable respect to the choice of the regulator; a

generic function f(L/M2) such that f(∞) = f ′(∞) = . . . = 0, f(0) = 1 would

be a good cutoff.

The correct relation that follows from the invariance of the action is then

−D̄
2

4
(Φ†eV Φ) + Φ

δP
δΦ

+

(
g2

32π2

)

W αWα + δSSources = 0 (6.95)

Actually the whole derivation of the anomalous WT identities goes through

almost unmodified if A(z) is considered to be an arbitrary chiral functions of

Φ’s and W α’s,

A = f(Φ,W ). (6.96)

A systematic study of the complete set of relations and the solution of those,

has recently been given by Cachazo, Douglas, Seiberg and Witten.

7. Instantons in gauge field theories

The Lagrangian for a gauge theory is

L = ψ̄kγ
µ(∂µ − igAµ)ψk −

1

4
Ga
µνG

aµν (7.1)

where Ga
µν = ∂µAν − ∂νAµ + gfabcAbµA

c
ν .
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We are interested in the Yang-Mills Euclidean action

SE =
1

4

∫

d4xF a2
µν =

1

8

∫

d4x [(FA
µν ∓ F̃ a

µν)
2 ± 2F aµνF̃ a

µν ] (7.2)

where F̃ a
µν = 1

2
εµναβF

aαβ is the ’dual’ of F a
µν . The second term

P =
1

4

∫

d4xF aµν F̃ a
µν (7.3)

in the Euclidean action is a topological invariant, because F a
µνF̃

aµν = ∂µCµ is a

total derivative. P is called (up to a constant factor) the Pontryagin invariant

and

Cµ = εµναβ(Aaν∂αA
a
β +

2

3
gfabcAaνA

b
αA

c
β) (7.4)

is called a Chern-Simons secondary characteristic class term.

If we look for solutions that minimize the Euclidean action for a certain value

of the Pontryagin invariant, we must minimize only the first term of equation

7.2, i.e. we must solve the equation

F a
µν = ±F̃ a

µν (7.5)

These solutions are called self-dual and antiself-dual, respectively. To construct

some explicit solutions for a SU(2) gauge group, we introduce the equivalent of

σ-matrices in an Euclidean space:

τµ = (1, iσ) τ̄ = (1,−iσ) (7.6)

τµν =
1

4
(τµτ̄ν − τν τ̄µ) τ̄µν =

1

4
(τ̄µτν − τ̄ντµ) (7.7)

Now an explicit solution is

AINSTµ =
T a

2
Aaµ = −2i

g

τµν(x− x0)
ν

(x− x0)2 + ρ2
(7.8)

where x0 is the center of the instanton and ρ is its size. τµν is selfdual and so

the entire solution, in fact

F INST
µν = 4ρ2f 2(x)τµν f(x) =

1

(x− x0)2 + ρ2
(7.9)

The corresponding antiself-dual solution is

AANTIINSTµ = −2i

g

τ̄µν(x− x0)
ν

(x− x0)2 + ρ2
(7.10)
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We can calculate now

SINSTE =
1

2g2

∫

d4xTrF 2
µν =

8π2

g2
(7.11)

and the factor e−SE = e
− 8π2

g2 that appear in the functional integral is the non-

perturbative tunnelling instantonic factor.

Note that we have

Tr
1

16π2
FF̃ = ∂µKµ Kµ =

1

16π2
εµαβγTr(FαβAγ −

2

3
AαAβAγ) (7.12)

so one can construct a topological invariant

q =

∫

d4xTr
1

16π2
FF̃ =

∫

d4x ∂µKµ (7.13)

and if Aµ tends to a pure gauge field in all directions

Aµ −→ iU−1∂µU for |x| → +∞ (7.14)

then q can be expressed as

q =
1

24π2

∫

dSµ εµναβTr[(U−1∂νU)(U−1∂αU)(U−1∂βU)] (7.15)

which is an integer: it is the winding number of the function which goes from

the boundary of R
4 to SU(2), so it is topologically equivalent to a function

S3 → S3, and Π3(S
3) = Z. As a geometric example of this behaviour we can

consider a vector field na(x) : S2 → S2, [na(x)]2 = 1:

N =
1

4π

∫

∂V

εabcna(x)dnbdnc = Π2(SO(3)) = Z (7.16)

Back to physics, we can write these quantities for the instanton solution above:

U =
τµxµ√
x2

U∂µU
† = − 2

x2
τµνx

ν (7.17)

8. Instanton calculus

We are interested in the Euclidean path integral
∫

DAe−S Aµ = AINSTµ +Qµ (8.1)
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around the local instanton minimum of the action instead of around the vacuum

solution. We find immediately
∫

DAe−S =

∫

DQe−(Scl+QMQ+...) = e−Scl(DetM)−
1
2 (8.2)

This kind of contribution to the functional integral exists in every gauge theory

with a gauge group G which contains SU(2) as a subgroup.

Note that Sclassical does not depend on some parameters of the instanton, like

x0, ρ, or the gauge SU(2)/G. This means that there are ’zero modes’. We can

treat this problem with a bosonic field B as an example. We can write

B = Bcl +Bq S = Scl +
1

2
BqMBq + . . . (8.3)

then we can find a complete orthogonal set of eigenfunctions for M :

Mχi = εiχi 〈χi|χj〉 =

∫

d4xχ∗
i (x)χj(x) = uiδij (8.4)

and we can expand Bq as a linear superposition with functional coefficients ξi

Bq =
∑

i

ξiχi(x) (8.5)

Now we consider a parameter γ which appears in Bcl = Bcl(γ), and suppose

the action doesn’t depend on it; then there is a mode with zero eigenvalue

χ0 =
∂Bcl

∂γ
ε0 = 0 (8.6)

Then the functional integral is

∫

DB =

∫

DBq =

∫
∏( ui

2π

) 1
2
dξi =

∫ (u0

2π

) 1
2
dξ0

′∏( ui
2π

) 1
2
dξi (8.7)

where the product in the last tern is taken without the zero mode. We know

that Mχ0 = 0, so

S = Scl +
1

2

′∑
εiuiξ

2
i + . . . (8.8)

∫

DB e−S = e−S
cl

∫ (u0

2π

) 1
2
dξ0 (Det′M)−

1
2 (8.9)

Now we use the fact that B(γ) ≈ B(γ0) + ∂Bcl

∂γ
△γ = B(γ0) + χ0(γ0)△γ and

insert the identity

1 = u0

∫

dγ δ(〈B − Bcl(γ0)|χ0(γ0)〉) = u0

∫

dγ δ(u0ξ0) (8.10)
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in the functional integral. Finally we obtain

∫

DB e−S =

∫

dγ
(u0

2π

) 1
2
e−S

cl

(Det′M)−
1
2 =

(u0

2π

) 1
2
e−S

cl 1

(
∏′ εi)

1
2

Γ (8.11)

where Γ =
∫
dγ.

In the case of the instanton previously considered, there are

• 4 zero modes for xµ0 ;

• 1 zero mode for ρ;

• 3 zero modes due to rotations;

• 4N -8 modes due to gauge choice (called ’gauge zero modes’) for the gauge

group SU(N).

There are some fine points related to transformations and gauge choices (t’Hooft,

Bernard). The result is

∫

DAe−S =
4

π2

(4π2)2N

(N − 1)!(N − 2)!

∫

d4x
dρ

ρ5

(
4π2

g

)2N

(ρµ)4Ne
− 8π2

g2

∫

DA′ e−(S−Scl)

(8.12)

It is possible to repeat these passages for fermionic fields, i.e. in SQCD La-

grangian

L = iψ̄σ̄µDµψ +
√

2igλψφ∗ + h.c. (8.13)

Now we define

ψ =
∑

amηm(x) ψ̄ =
∑

b̄nξ̄
∗
n(x) (8.14)

D̄ηm = k̄mξ̄m Dξ̄n = knηn , D̄ = τ̄µ(∂µ − igAµ) (8.15)

Smat =
∑

anb̄m

∫

d4x ξ̄∗mξnk̄n =
∑

anb̄nunk̄n (8.16)

where
∫
d4x ξ̄∗mξn = unδmn. There is a zero mode k̄0 = 0, so

∫

DψDψ̄ =

∫
∏

m

dam u
− 1

2
m

∏

n

db̄n u
− 1

2
n (8.17)

∫

DψDψ̄ e−S =

∫

da0 u
− 1

2
0

′∏
k̄n =

∫

da0 u
− 1

2
0 Det′D̄ (8.18)

because for fermionic integrals
∫
dan db̄n e

−an b̄nc = c. In QCD and SQCD the

quark fields have one zero mode; in SYM there are gluinos λ in the adjoint
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representation, so there are 2NC zero modes, where 2NC in the Dinkin index of

the anomaly ∂µJ
µ
λ = (2NC) g2

32π2F
a
µνF̃

aµν . For NC = 2, a zero modes is

ψ0
α,r =

1

π
εαrρf(x)

3
2 (8.19)

where α refers to spin degrees of freedom, while r refers to color. This mode

solves σ̄µνDνψ0 = 0; for |x| → ∞ goes ∼ x−
3
2 and it is possible to find a gauge

(called singular gauge) so that this solution goes asimptotically as the fermionic

propagator SF . The singular gauge transformation and the corresponding in-

stanton solution are

U =
(x− x0)µτ

µ

√

(x− x0)
AINSTµ =

2iτµν(x− x0)
ν

(x− x0)2 + ρ2
(8.20)

To see a useful application of instanton calculus, consider the following VEV in

QCD, which is not invariant under axial U(1) transformation:

〈0|T (ψi1(x1)ψi2(x2) . . . ψ̃jNf−1
(yNf−1)ψ̃jNf

(yNf
))|0〉 (8.21)

The idea is that
∫
da0 i is zero unless there is an a0 contribution for every field.

The result is

∼ const εi1...iNf
εj1...jNf

∫

d4x0 ψ0 i1(x1)ψ0 i2(x2) . . . ψ̃0 jNf−1
(yNf−1)ψ̃0 jNf

(yNf
)

(8.22)

and in singular gauge it becomes

∼ const
∏

i,j

SF (xi − x0)SF (yj − y0) (8.23)

t’Hooft recognized in this result a generation of instantonic LEFF ,

LEFF = const.ψi1(x1)ψi2(x2) . . . ψ̃jNf−1
(yNf−1)ψ̃jNf

(yNf
) + h.c. (8.24)

Unfortunately the constant factor

const. =

∫ ∞

0

dρ ρ
11NC−2Nf

3 e
− 8π

g2
0 (8.25)

is infrared divergent. Although in the actual world there is a cutoff of order

of 1
ΛC

in the integration over ρ due to confinement, this makes a quantitative

calculation of LEFF more difficult.
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In any event, there is no doubt that an effective interaction of the type (8.25) is

generated. but As it respects SUL(Nf)×SUL(Nf) but breaks UA(1) symmetry,

it consitutes the solution to the U(1) problem.

A more quantitative analysis of the solution requires a certain analytic consid-

eration based on 1/Nc expansion followed by a numerical analysis based on the

lattice QCD.

8.1. Determination of gaugino condensates in supersym-

metric Yang-Mills theories: “5
4 puzzle”

In N = 1 supersymmetric Yang-Mills (SYM) theories, with fields (Aaµ, λ
a) it is

possible to calculate the value of gluino condensates like

〈T (λλ(x1) . . . λλ(xNf
)〉 (8.26)

which is constant and position independent because of SUSY3. Using the cluster

decomposition principle, we can write

〈T (λλ(x1) . . . λλ(xNf
)〉 = 〈λλ〉N = constΛ3N = const e

− 8π2

g2
0(M)M3N (8.27)

with const 6= 1 (strong coupling instanton). So we have N vacua characterized

by

〈λλ〉 = const e
2πik

N Λ3 (8.28)

with UA(1) ⊃ Z2N
〈λλ〉−→ Z2 the pattern of symmetry breaking.

It turns out that the “vacuum disentanglement” argument used in [] does not

give the correct value of the gaugino condensate. In the case of SU(2) SYM,

there is a famous

the calculation of 〈λλ〉 along flat directions for 〈Q〉 ≫ λ, and the limit mQ → ∞
and Λ → ∞ with ΛYM fixed. The result is, for the SU(N) Yang-Mills theory

〈λλ〉 = e
2πik

N Λ3, (8.29)

3In fact λλ is the lowest component of −WαWα which is a chiral superfield, so [Q̄, λλ] =
0. This implies, if the vacuum is invariant under supersymmetry, ∂

∂x1
〈λλ(x1)λλ(x2) . . .〉 =

〈[P, λλ(x1)]λλ(x2) . . .〉 = 〈[{Qα, Q̄α̇}, λλ(x1)]λλ(x2) . . .〉 = 〈λλ(x1)QαQ̄α̇λλ(x2) . . .〉 =
〈λλ(x1)Qαλλ(x2) . . . Q̄α̇〉 = 0.
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while for other groups
〈

Trλ2

16π2

〉

SU(r+1)

= Λ3
N=1 ,

〈
Trλ2

16π2

〉

SO(2r+1)

= 2
4

2r−1
−1Λ3

N=1 ,

〈
Trλ2

16π2

〉

USp(2r)

= 21− 2
r+1Λ3

N=1 ,

〈
Trλ2

16π2

〉

SO(2r)

= 2
2

r−1
−1Λ3

N=1 , (8.30)

up to the phase factor e2πi k/TG that distinguishes the TG vacua, in agreement

with [?, ?, ?].

9. Homotopy Groups

9.1. Differential manifolds

Def.

An n-dimensional differential manifold is a setM of the points with the following

properties:

(i) The set M is the union of a finite or numerable number of neighborhoods

Uq;

(ii) Each of Uq is endowed with coordinates xαq , α = 1, . . . , n, called local

coordinates;

(iii) If Uq ∪ Up 6= ∅, then Uq ∪ Up itself forms a coordinate neighborhood,

10. Elliptic Functions

11. Monopoles, Dyons and Vortices in Non-Abelian Gauge

Theories

In this section the issues concerning monopoles and vortices in spontaneopusly

broken gauge theoris are reviewed. In particular it is shown that the concept
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of nonabelian monopoles and nonabelian vortices is an intrinsically quantum

mechanical one, and requires an appropriate massless flavors for their very ex-

istence.

11.1. Semiclassical Results

We study the general setting of a spontaneously broken gauge theory, with its

gauge group G broken as

G
〈φ〉6=0−→ H (11.1)

by some scalar vevs, where H is in general non-Abelian. The aim of this section

is to identify the relevant homotopy group elements and prepare for the subse-

quent sections where we explicitly construct the semi-classical BPS monopole

solutions and compare them with the infrared degrees of freedom appearing in

the softly broken N = 2 gauge theories.

In order to have a nontrivial finite-energy configuration, the scalar fields and

gauge field must behave asymptotically as

Dφ r→∞−→ 0 ⇒ φ ∼ U · 〈φ〉 · U−1, Aai ∼ U · ∂iU † → ǫaij
rj
r3
G(r), (11.2)

representing nontrivial elements of Π2(G/H). By an appropriate choice of gauge,

the function G(r) can be taken as

G(r) = βiTi, Ti ∈ Cartan Subalgebra of H. (11.3)

Topological quantization leads to the result [11] that the “charges” βi take values

such that

exp 4π i
r∑

1

βiTi = 1, (11.4)

where r is the rank of H . By commuting this relation with the nondiagonal

generators Eα and by using

[Ti, Eα ] = αiEα, (11.5)

where α = (α1, . . . , αr) are the root vectors of H , one finds that

2 β · α = Z. (11.6)

This relation shows that
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SU(N)/ZN ⇔ SU(N)
SO(2N) ⇔ SO(2N)

SO(2N + 1) ⇔ USp(2N)

Table 2: Some examples of dual pairs of groups

which are weight vectors of the group H̃ where H̃ = dual of H. The dual of a

group (whose roots vectors are α’s) is defined by the root vectors which span

the dual lattice, i.e., α̃ = α/α2. Examples of pairs of the duals are:

Here we consider the case in which h is orthogonal to the root vectors of a

SU(r) subgroup. The simplest way to detect the presence of the non-Abelian

monopoles is to consider various SU(2) subgroups generated by

t1 =
1√
2α2

(Eα + E−α); t2 = − i√
2α2

(Eα −E−α); t3 = α∗ · H, (11.7)

where α is a root vector associated with broken generators E±α and α∗ ≡ α/α2.

In particular we consider those SU(2) groups which do not commute with the

unbroken subgroup SU(r). In the notation of Eq.(11.12) these correspond to

SU(2) subgroups acting in the [i − k] subspaces, where i = 1, 2, . . . , r, and

k = r + 1, r + 2, . . . nc. The symmetry breaking (11.11) induces the Higgs

mechanism in such an SU(2) subgroup,

SU(2) =⇒ U(1). (11.8)

By embedding the known ’t Hooft-Polyakov monopole [?] lying in this subgroup,

and adding a constant term for φ so that it behaves correctly asymptotically, one

easily constructs a solution of the SU(nc) equation of motion (see E. Weinberg

[?]):

Ai(r) = Aai (r,h · α) ta; φ(r) = χa(r,h · α) ta + (h − (h · α)α∗) · H, (11.9)

where

Aai (r) = ǫaij
rj

r2
A(r); χa(r) =

ra

r
χ(r), χ(∞) = h · α (11.10)

is the standard ’t Hooft-Polyakov solution. Note that φ(r = (0, 0,∞)) = φ0.

To be concrete we consider a general (supersymmetric or non supersymmetric)

SU(nc) gauge theory with an appropriate set of scalar fields in the adjoint
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representation. As will be mentioned at the end, our analysis applies equally

well to other gauge groups. We assume that the minimum of the potential is

such that the gauge group is broken spontaneously as

SU(nc) → SU(r) × U(1)nc−r. (11.11)

For instance the VEV of a scalar can be taken in the diagonal form

〈φ〉 =








v01r×r 0 . . . 0

0 vr+1 . . . 0
...

...
. . .

...

0 0 . . . vnc







, r v0 +

nc∑

j=r+1

vj = 0, (11.12)

where vi’s are all different. Let us write the asymptotic Higgs field more com-

pactly as

φ0 = h · H, (11.13)

where the nc − 1 rank vector h describes the scalar VEV, while H represents

the generators in the Cartan subalgebra of SU(nc). If h had non-zero inner

products with all of the root vectors of SU(nc) then the gauge group would be

maximally broken to U(1)nc−1 group and Abelian monopoles having respective

U(1) charges would appear. We have nothing to add about such a system.

Here we consider the case in which h is orthogonal to the root vectors of a

SU(r) subgroup. The simplest way to detect the presence of the non-Abelian

monopoles is to consider various SU(2) subgroups generated by

t1 =
1√
2α2

(Eα + E−α); t2 = − i√
2α2

(Eα − E−α); t3 = α∗ · H, (11.14)

where α is a root vector associated with broken generators E±α and α∗ ≡ α/α2.

In particular we consider those SU(2) groups which do not commute with the

unbroken subgroup SU(r). In the notation of Eq.(11.12) these correspond to

SU(2) subgroups acting in the [i − k] subspaces, where i = 1, 2, . . . , r, and

k = r + 1, r + 2, . . . nc. The symmetry breaking (11.11) induces the Higgs

mechanism in such an SU(2) subgroup,

SU(2) =⇒ U(1). (11.15)

By embedding the known ’t Hooft-Polyakov monopole [?] lying in this subgroup,

and adding a constant term for φ so that it behaves correctly asymptotically, one
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easily constructs a solution of the SU(nc) equation of motion (see E. Weinberg

[?]):

Ai(r) = Aai (r,h · α) ta; φ(r) = χa(r,h · α) ta + (h− (h · α)α∗) ·H, (11.16)

where

Aai (r) = ǫaij
rj

r2
A(r); χa(r) =

ra

r
χ(r), χ(∞) = h · α (11.17)

is the standard ’t Hooft-Polyakov solution. Note that φ(r = (0, 0,∞)) = φ0.

The mass of this monopole for the minimum magnetic charge is given by the

standard formula, in the case of BPS monopoles,

M =
4π

g
h · α =

4π

g
|v0 − vk|. (11.18)

By an appropriate field redefinition v0 can be always taken to be positive. Also,

for generic, unequal values of vi, it is possible, by using a Weyl transformation,

to take the scalar VEV so that

|v0 − vr+1| < |v0 − vk|, k = r + 2, r + 3, . . . , nc. (11.19)

By considering various SU(2) subgroups acting on [i, r + 1] subspaces, where
i = 1, 2, . . . , r, we find that there are precisely r degenerate solutions with the

same mimimum mass,

M =
4π

g
|v0 − vr+1|. (11.20)

They are transformed to each other by the Weyl transformations. By con-

struction these solutions carry also a unit (magnetic) charge with respect to the

U0(1) gauge group, which is generated by

Q0 =








1
r
1 0 . . . . . .

0 −1 0 . . .
... 0 0 . . .
... 0 . . .

. . .








(11.21)

The system, furthermore, has nc − r − 1 Abelian monopoles, each with the

minimal charge in

Diag Qℓ = [ 0, 0, . . . , 0
︸ ︷︷ ︸

ℓ

, 1,−1, 0, . . . , 0 ], r ≤ ℓ ≤ nc − 1, (11.22)
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and with mass

Mℓ =
4π

g
|vℓ − vℓ+1|. (11.23)

For appropriate choice of the scalar vacuum expectation values (VEVS) (and

arranging them appropriately by Weyl transformations) there are thus an r-plet

of “non-Abelian” monopoles and nc − r − 1 Abelian monopoles with minimum

charges and minimum masses that are stable .

12. Seiberg-Witten Solution of N = 2 Gauge Theories

13. Quantum Behavior of Solitons in N = 2 Gauge The-

ories

14. Solutions for the Chiral Condensates for N = 1 Gauge

Theories
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