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Two concepts, of fundamental importance to quantum mechanics, will
be discussed in this chapter. The first is that of symmetry. Even though
the concept of symmetry is familiar in a wide range of natural sciences,
the way symmetry constrains the consequences of quantum mechanics
is rather subtle and, at the same time, far-reaching. The second is the
symmetry property of the states under the exchange of two identical
particles. Identical particles with a half-integer spin (fermions) obey
the Fermi–Dirac statistics: the wave functions are totally antisymmetric
under the exchange of the particles. Identical particles with an integer
spin (bosons) are instead subject to the Bose–Einstein statistics. Their
wave functions are totally symmetric.

5.1 Symmetries in Nature

Often the equations of a given physical system can be expressed by
using different variables, such as position variables referring to alter-
native coordinate systems. We talk in general about transformations
(e.g. canonical transformations in classical mechanics) of variables in
describing the same physics.

A concept closely related is that of symmetry. When a transformation
of variables leaves the Hamiltonian formally invariant, when expressed in
terms of the new variables1, we talk about a symmetry, or an invariance 1Sometimes not only the form but also

the value of the Hamiltonian is left in-
variant, but here we shall allow for both
possibilities.

of physical laws. In fact, the equations of motion and the physical laws
will look identical in two different descriptions of the same system.

Symmetries abound in Nature, from atoms and crystals to biological
bodies.

A possible consequence of symmetry is the conservation law. Well-
known examples from classical mechanics are energy conservation related
to the homogeneity of time (the Hamiltonian is invariant under time
translation), momentum conservation (if the Hamiltonian is invariant
under space translations), and angular momentum conservation (if the
space and the potential are isotropic). Electric charge conservation can
also be related to the invariance under phase transformations of the
wave function of charged particles. In many cases, the conservation law
in physics is indeed a consequence of some underlying symmetry.

Symmetries can be classified into two types, discrete and continu-
ous, according to whether the relevant transformations are of discrete
or continuous type. There is an approximate left–right symmetry to
many biological bodies, including human bodies, which is an example of
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a discrete symmetry. In elementary particle physics we have an analo-
gous symmetry, parity, which is a good symmetry of strong (nuclear),
electromagnetic and gravitational interactions, but is broken by weak
interactions2. CP , T , and CPT are other important examples of (very2In more modern terms, those elec-

troweak interactions associated with
the exchange of W and Z bosons vi-
olate parity.

good) discrete symmetries of Nature.3

3C is a “charge conjugation” symme-
try, i.e. symmetry under the exchange
of particle and anti-particle; T is time
reversal. See below.

Symmetries related to continuous set of transformations are known
as continuous symmetries. The three-dimensional rotational symmetry
group SO(3) (characterized by continuous Euler angles) is an example
of a continuous symmetry.

Symmetries may also be divided into two categories: space-time (such
as those involving invariance under time or space transformations) and
internal symmetries (such as isospin, see below).

A great advance in 20th century theoretical physics was the notion
that the requirement of symmetry can be strong enough to determine
even the form of the interactions (type of forces). For instance, the form
of the derivative4 interactions of a charged particle with electromagnetic

4For non-derivative interactions, like
gµB s · B in non-relativistic quantum
mechanics, the gauge principle quoted
below requires that gauge potentials
appear only as electric and magnetic
fields, E, B.

fields is determined by the so-called minimal principle, with the following
characteristic way in which the vector and scalar potentials enter the
Hamiltonian,

H =
(p− q

cA)2

2m
+ q φ+ . . . .

As is well known (see Chapter 14), such a form is dictated by the re-
quirement that it should be possible to re-parametrize the electron wave
function by an arbitrary phase factor, with time- and space-dependent
phase f(r, t), as

ψ(r, t)→ ei f(r,t) ψ(r, t).

Even the necessity of the existence of the photon, whose wave func-
tion transforms inhomogeneously under gauge transformations, follows
from such a requirement. Empirical laws such as the Lorentz force are
now understood as a consequence of the minimal principle. This strong
form of the symmetry requirement—that the system be invariant under
transformations depending on space-time, and that the form of the in-
teractions is uniquely determined by such a requirement—is known as
the gauge principle.

In the case of electromagnetism, the transformation group is sim-
ply the phase transformation—the group U(1)—which is commutative
(Abelian). C. N. Yang and R. L. Mills [Yang and Mills (1954)] and
R. Shaw [Shaw (1954)] extended the gauge principle by constructing a
model in which the requirement of local transformation is applied to a
set of multi-component wave functions, such as an isospin multiplet. The
requirement is now that the theory be invariant under the re-labelling
(gauge transformations) of the form

ψ(r, t)→ U(r, t)ψ(r, t) ,

where U(r, t) is a matrix representing a group element of SU(2), SU(3),
SO(3), etc., depending on the model considered, in general a non-
commutative (non-Abelian) group. They are known as Yang–Mills the-
ories today.
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It is a truly remarkable fact that the standard model of fundamen-
tal interactions—quantum chromodynamics for the strong interactions
and the Glashow–Weinberg–Salam model of electroweak interactions—
are all theories of this sort (with the SU(3) group in the former and the
SU(2)× U(1) group in the latter). The impressive success of the stan-
dard model in describing basically all of the known fundamental physical
phenomena, with the exclusion of gravitational ones, suggests that a very
highly nontrivial conceptual unification underlies the working of Nature
(’t Hooft).5

5To be precise, there is a part of
the Glashow–Weinberg–Salam model,
related to the so-called Higgs parti-
cle, which is not entirely determined
by gauge principles. Future experi-
ments, such as the Large Hadron Col-
lider (LHC) experiments which has just
started operating at CERN, Geneva,
are hoped to give some indications
whether the model should be extended
and if so in which way.

Finally, a symmetry can be realized in two different ways, either man-
ifest or hidden. The former is the usual way a symmetry is realized
in Nature, yielding energy degeneracy among the states belonging to
a multiplet of states, transformed among each other by the particular
symmetry operation under consideration. However, this is not the only
way a symmetry can be realized. It is possible that the physical laws
and the Hamiltonian are invariant but the ground state is not.

In the example of the left–right symmetry of the human body, an
exact symmetry may be realized in three different ways. Each individual
is left–right symmetric, with the heart in the center; or, for each left-
hearted person there is another individual with the heart on the right,
but otherwise with identical characteristics (a parity partner); or finally,
the option that everybody has the heart on the left side, even if all the
physical and biological laws are symmetric,6 i.e., might have allowed for

6Of course, this is a blatant simplifica-
tion for the sake of discussion. Biolog-
ical systems are not left–right symmet-
ric at the deeper levels also (e.g. DNA).

a left-hearted as well as right-hearted people (see Figure 5.1). This last
option, which Nature seems to have adopted, is known as “spontaneously
broken” symmetry. See Subsection 5.2.1.

Left-right
symmetry

broken
(spontaneously)

Left-right
symmetry
    OK
for world    

Each person
is left-right
symmetric    

Fig. 5.1 Left–right symmetry might
be realized in different ways

A well-known example of spontaneously broken symmetry is the spon-
taneous magnetization that occurs in certain metals (ferromagnets). Be-
low some critical temperature, all the spins are directed in the same di-
rection, thus “violating” the SO(3) rotational invariance of the Hamil-
tonian. There are many important applications in solid-state and ele-
mentary particle physics of spontaneously broken symmetries.

C. N. Yang, in the concluding talk of the TH 2002 Conference in Paris,
characterized the 20th century theoretical physics by three “melodies”:7

7For the “phase factor”, see Chapters 8
and 14.

“Symmetry, quantization, and phase factor”

The challenge today is to find out whether we need some new principles
or paradigm, in addition to these concepts, to understand Nature at a
deeper level, beyond the standard model of fundamental interactions.

5.2 Symmetries in quantum mechanics

The presence of a symmetry in a quantum mechanical system is sig-
naled by the existence of a unitary operator U which commutes with
the Hamiltonian:

[U,H ] = 0 . (5.1)
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As a unitary operator satisfies

UU † = U †U = 1 ;

eqn (5.1) is equivalent to

U †HU = H : (5.2)

U is a unitary transformation which leaves the Hamiltonian invariant.
We have already seen some examples of such operators:

U = eiĴ·ω

describes spatial rotations;

U = eip̂·r0/~

represents spatial translations.

Conservation

One of the possible consequences of a symmetry is the conservation of
an associated charge. Suppose that the state |ψ〉 is an eigenstate of a
dynamical quantity represented by a Hermitian operator G, such that

U ≃ 1− iǫG+ . . . ,

i.e. G is a generator of U . From eqn (5.1) and eqn (5.2) it follows that

[G,H ] = 0. (5.3)

By assumption
G|ψ(0)〉 = g|ψ(0)〉.

The state at time t > 0 is given by

|ψ(t)〉 = e−iHt/~|ψ(0)〉,

so that

G|ψ(t)〉 = Ge−iHt/~|ψ(0)〉 = e−iHt/~G|ψ(0)〉 = g|ψ(t)〉.

The system remains an eigenstate of G during the evolution; the charge
g is conserved.

Electric charge conservation is similar. The charge operator Q acts
on the particle state as follows:

Q|e〉 = −e|e〉; Q|p〉 = +e|p〉;
Q|n〉 = 0; Q|π+〉 = +e|π+〉,

etc., where the kets stand for the state of a single electron, a proton, a
neutron, and a pion, respectively. Q commutes with the Hamiltonian
including all the known forces (the gravitational, electroweak, and strong
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forces): this fact guarantees that the total electric charge of a system
is conserved. In the non-relativistic approximation adopted in most
of this book, charge conservation is a consequence of particle number
conservation; vice versa, in the relativistic context where particles can
be created or annihilated (only the total energy is conserved), electric
charge conservation represents a nontrivial selection rules.

In general, conservation means (see Section 2.4.2)

0 = i~
dG

dt
= i~

∂ G

∂ t
+ [G,H ] (5.4)

For operators which do not depend explicitly on time, this condition
reduces to eqn (5.3). The additional term has a simple meaning in
terms of symmetry. Let G(α, t) be a generator (or the associated unitary
operator) which depends on some parameter and on t. Equation (5.4)
is then equivalent to

G(α, t) = e−iH(t−t0)/~G(α, t0)e
iH(t−t0)/~ ,

as can be checked by taking the time derivative. The previous equation
means

G(α, t) e−iH(t−t0)/~ = e−iH(t−t0)/~ G(α, t0) . (5.5)

In words: G is conserved (is a symmetry) if the transformation of the
evolved state is equal to the evolution of the transformed state, i.e. if the
transformation commutes with dynamical evolution. An example will
be given below for Galilei boosts.

Degeneracy

Another possible consequence of a symmetry is the degeneracy of energy
levels. Consider a stationary state

H |ψn〉 = En|ψn〉,

and suppose that there exists an operator G which commutes with H .
It follows from [G,H ] = 0 that

H G |ψn〉 = GH |ψn〉 = EnG|ψn〉.

There are several possibilities. The state |ψn〉might not be in the domain
of the operator G (G|ψn〉 6∈ H); G may annihilate |ψn〉, G|ψn〉 = 0; or
|ψn〉 may happen to be an eigenstate of G:

G|ψn〉 = const.|ψn〉.

In any of these cases no interesting result follows.
If, however, none of the above cases holds (i.e., G|ψn〉 ∈ H; G|ψn〉 6=

0; G|ψn〉 6∝ |ψn〉), then it follows that the level n is degenerate: we can
find another energy eigenstate, G |ψn〉, with the same energy. By acting
upon the state |ψn〉 with the operator G repeatedly one expects to find
some degenerate set of states. We have already seen several examples of
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this sort. For instance, if the Hamiltonian commutes with the angular
momentum operators Li, i = 1, 2, 3, that is, it is invariant under three-
dimensional rotations, an energy level with a given orbital quantum
number L is (at least) 2L+ 1 times degenerate. Such a degeneracy can
be seen as the result of nontrivial actions of the operators Lx, Ly on an
energy (and Lz) eigenstate |E,L2, Lz〉.

5.2.1 The ground state and symmetry

As stated in Section 5.1 the behavior of the ground state under symme-
try transformations is of particular importance. In quantum mechanics,
with a finite number of degrees of freedom the ground state is invariant
under symmetry, and unique. Let us discuss this point informally. In
the previous paragraph we have shown that if H commutes with a (uni-
tary) operator U and if |ψ0〉 is an eigenstate of H , then also U |ψ0〉 is
an eigenstate with the same energy. If the ground state is unique, it is
therefore necessarily invariant. The uniqueness cannot be just a math-
ematical statement on self-adjoint operators, as the trivial example of
a Hamiltonian multiple of the identity clearly has a non-unique ground
state. To be a “bona fide” ground state, |ψ0〉 must be stable, i.e. if we
switch a small perturbation λV , the new ground state |λ〉 must satisfy
|λ〉 → |ψ0〉 as λ→ 0. This cannot be true for a ground state belonging
to a degenerate subspace. The example of a two-state system

H =

(
E0 λV
λV E0

)
(5.6)

is general enough: we can always think of a perturbation which acts only
on the two “degenerate” states |±〉 out of the Hilbert space. In this case
the true ground state (even for an infinitesimal non-diagonal element V )
|λ〉 = (|+〉 + |−〉)/

√
2 is not a small perturbation of a supposed ground

state |+〉 or |−〉. In any quantum mechanical system with a finite number
of degrees of freedom, tunnel effects give rise to non-diagonal elements
connecting different ground states.

It is reassuring that a very general theorem states that for “reason-
able” Hamiltonians with the usual kinetic terms and two-body inter-
action potentials, if a ground state exists at all (i.e. if we have a
discrete spectrum), then it is unique. This is a generalization of the
non-degeneracy theorem of one-dimensional systems. In fact, the theo-
rem proves more: the ground state function can be chosen to be posi-
tive everywhere. The interested reader can find a proof in Vol.4 of the
book [Reed and Simon (1980b)]. This means that in physically realistic
problems the ground state is indeed unique, and then symmetric.

An apparently harmless assumption in eqn (5.6), the existence of a
“small” perturbation which can connect different vacuum states, must be
reconsidered with more care in the case of systems with infinite degrees
of freedom. It is precisely here that the situation can change in going
from finite to infinite degrees of freedom, such as solids or quantum field
theories. In the case of spontaneous magnetization, an infinite energy
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is required to flip an infinite number of spins, and therefore no non-
diagonal elements arise. The system chooses a ground state in which
all spins are directed in one direction, at sufficiently low temperatures
(where the energetics wins against the entropy effects in the free energy,
E − T S). The rotational symmetry of the Hamiltonian is violated by
the ground state.

In systems with infinite degrees of freedom, a symmetry can thus be
realized in two ways: either having a symmetric, unique ground state—
in this case, all the excited states will be in various degenerate multi-
plets, and symmetry is realized in the standard, “manifest” way—or by
a ground state which is not symmetric. In the latter case one talks about
“spontaneously broken symmetry”, even though symmetry is not really
broken. In particular, if this second option is realized in a system with a
continuous symmetry, the system necessarily develops some excitations
of zero energy (Nambu–Goldstone excitations).8 8This is known as the Nambu–

Goldstone theorem. See [Nambu
(1960), Nambu and Jona-Lasinio
(1961), Goldstone, Salam and Wein-
berg (1962), Strocchi (1985)]. There
are many systems in Nature in which
a symmetry is realized in the Nambu–
Goldstone mode. One of the most
remarkable examples in elementary
particle physics is the light π mesons,
which are best understood as ap-
proximate Nambu-Golstone particles,
associated with a “hidden” SU(2)
symmetry.

5.2.2 Parity (P)

Parity is one of the approximate symmetries of Nature. It is a discrete
symmetry, under the spatial reflection

r→ −r .

The wave function undergoes a transformation

Pψ(r) = ψ(−r)

while the operators transform as

P O(r,p)P−1 = O(−r,−p).

If the Hamiltonian is invariant under parity,

PHP−1 = H,

or PH = HP , then parity is conserved. P is a symmetry operator. As P
commutes with H , the stationary states can be chosen to be eigenstates
of P also. The eigenvalues of the latter are limited to be ±1, as obviously

P2 = 1 .

The stationary states are then classified into parity-even states

Pψ(r) = ψ(−r) = +ψ(r)

and -odd states
Pψ(r) = ψ(−r) = −ψ(r).

Parity is a good quantum number when the potential is spherically
symmetric, V (r) = V (r). In such a case the angular momentum is
also conserved and a state with definite angular momentum will have
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a definite parity. For instance, in the simple one-particle system (or
two-particle system reduced to a one-particle problem for the relative
motions), the wave function R(r)Yℓ,m(θ, φ) is even or odd according to

P = (−)ℓ. (5.7)

Such a relation, however, should not obscure the fact that these two
symmetries (invariance under three-dimensional rotations and space re-
flections) are in principle independent concepts. For instance a reflection-
invariant potential

V (−r) = V (r),

(such as V (x2+2y2+7z2)) is not necessarily spherically symmetric. Vice
versa, there are interactions which are invariant under space rotations
but not under parity, such as

V = g r · s,

where s is the spin operator. Within the context of elementary particle
physics, the so-called weak interactions are known to violate parity.

Another example which shows that the relation between parity and
angular momentum conservation is not always as simple as eqn (5.7) is
a system of more than one particle, which do not interact but are all
moving under a common, spherically symmetric potential. (In a very
crude approximation an atomic system looks like this.)

The wave function is a product of the wave function of the individual
particles, each with a definite angular momentum ℓi. The total angular
momentum L could take one of the possible values appearing in the
decomposition

ℓ1 ⊗ ℓ2 ⊗ ℓ3 · · · = ℓ1 + ℓ2 + . . . ℓN ⊕ ℓ1 + ℓ2 + . . . ℓN − 1⊕ . . . ,

while parity is simply
P =

∏
(−)ℓi .

There is no simple relation between L and P .

Intrinsic parity

An important empirical fact is that each elementary particle carries a
definite, intrinsic parity, besides the parity due to the orbital motion. It
is a little analogous to the spin of each particle, which is unrelated to
its orbital motion. Some of the known elementary particles carry the
intrinsic parity

P|π〉 = −|π〉; P|K〉 = −|K〉; P|p〉 = +|p〉;

P|n〉 = +|n〉; P|p̄〉 = −|p̄〉;
etc. If a given interaction respects parity, the total parity (the product
of the parity of the orbital wave functions and of the intrinsic parities
of all particles involved) is conserved in any process.
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The spin operator transforms under parity as follows

P sP−1 = s,

i.e., as an orbital angular momentum. The ordinary momentum operator
p transforms like the position operator:

P pP−1 = −p.

In general, the operators can be classified according to their behavior un-
der parity. The momentum, position, vector potential, etc. are vectors;
the angular momentum operators (including spin operators) are axial
vectors. Scalar quantities (invariant under rotations) which change sign
under parity are known as pseudo-scalars, to be compared to ordinary
scalars, which are invariant under parity.

Parity, in spite of its natural definition, is not an exact symmetry of
Nature: it is only an approximate symmetry. As already anticipated
above, weak interactions (in more modern terminology, the exchange of
W or Z bosons) violate parity. This is a good reminder of the fact that
symmetry is, in general, a property of a given type of interaction (force)
rather than being some absolute principle. To the best of our knowledge
today, the electromagnetic, strong, and gravitational interactions respect
parity.

The explicit form of the parity operator P
It could be of some interest to construct the parity operator in an explicit
form, in terms of the operators q and p. Let us first consider a one-
dimensional system. For any such system, consider the operator

A =
p2

2
+
q2

2
− ~

2
.

It is, apart from an additive constant, just the Hamiltonian of a har-
monic oscillator with m = ω = 1. By using the known solution of the
Heisenberg equation for such an oscillator, see eqns (7.60) and (7.61),
we know that after half the period of the evolution q and p change sign:

ei
1
~
Aπ p e−i

1
~
Aπ = −p , ei

1
~
Aπ q e−i

1
~
Aπ = −q . (5.8)

But actually the derivation of eqn (5.8) depends only on the canonical
commutators between q and p, and hence holds in any system. The
parity operator is thus given, in any system, by

P = exp

(
i

~
Aπ

)
= exp

[
i

~

(
p2

2
+
q2

2
− ~

2

)
π

]
. (5.9)

This result might be puzzling at first sight: how can one see that operator
(5.9) commutes with a Hamiltonian which is even under parity? Also,
what is special about the frequency ω = 1 or m = 1?
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To clarify these points, first observe that the operator A is certainly
self-adjoint and admits a complete basis of orthonormal eigenvectors:
the standard eigenstates of a harmonic oscillator. On these states P
acts as follows

P|n〉 = einπ|n〉 = (−1)n|n〉 ,
so P is in fact the parity operator. As any state of any system can be
expanded in terms of {|n〉},

Ψ(x, t) =
∑

n

cn(t)ϕn(x) , ϕn(x) ≡ 〈x|n〉 , (5.10)

it follows that P always acts as the parity operator.
Let us separate all the even and odd eigenstates of A. Any operator

in any system has the form of a matrix in such a basis (ee for even–even,
etc.),

O =

(
Oee Oeo
Ooe Ooo

)
;

in particular, the operator P itself will have the form

P =

(1 0
0 −1) . (5.11)

The point is that this form remains invariant under any unitary trans-
formations (Chapter 7) which leaves the block diagonal form invariant:

S =

(
See 0
0 Soo

)
⇒ S P S† = P (5.12)

i.e., under transformations under which even and odd states do not get
mixed. Now if H is even, clearly the evolution operator is of eqn (5.12)
type, and thus commutes with parity.

What if we change the frequency or mass in the definition of the
operator A? Namely we now consider the operator

Pω = exp

[
i

~

(
p2

2m
+mω2 q

2

2
− ~ω

2

)
π

ω

]
≡ exp

(
iπAω
ω ~

)
.

Actually, nothing whatsoever changes. In fact, the eigenstates of the
new operator Aω , |nω〉, can be obtained by the scale transformation D:

D : p→ p√
mω

, D : q → q
√
mω ; |nω〉 = D |n〉

D obviously has the structure of eqn (5.12). It is evident that in the
basis |nω〉 the operator Pω has the form of eqn (5.11), but the point is
that it also has the same form in the basis |n〉; vice versa, the original
parity operator P has the same form in the basis |nω〉. Indeed, from
eqn (5.12) it follows that

〈nω|P|kω〉 = 〈n|D†PD|k〉 = 〈n|P|k〉 .
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In other words, in spite of appearances, operators Pω and P are one and
the same operator!

The generalization to higher-dimensional systems is straightforward;
it suffices to make a product of operators (5.9) for each Cartesian coor-
dinate. Obviously the result of this subsection refers only to “orbital”
parity, not to the intrinsic parity carried by elementary particles.

5.2.3 Time reversal

Another important example of a discrete symmetry is time reversal, T .
In classical mechanics, Newton’s equation for a particle moving under
the influence of a conservative force,

m r̈ = −∇V ,
is invariant under time reversal, t → −t. This means that if a mo-
tion from (r1, t1) to (r2, t2) is possible, another motion from (r2,−t2) to
(r1,−t1), tracing the same trajectory in the opposite direction, and with
r(−t) = r(t); p(−t) = −p(t), is also a possible solution of the equation
of motion. Vice versa, if the force included friction, proportional to ve-
locity, clearly the time-reversed motion would be an impossible motion.

In quantum mechanics, the dynamics is described by the Schrödinger
equation,

i~
∂

∂t
ψ(r, t) = Hψ(r, t). (5.13)

For example,

H = −~2∇2

2m
+ V (r)

for a particle moving in a three-dimensional potential V (r). The trans-
formation t→ t′ = −t gives an equation

−i~ ∂

∂t′
ψ(r,−t′) = Hψ(r,−t′),

in general having a different form from the original Schrödinger equation.
It might seem to be hardly possible that the quantum mechanical laws
be invariant under the time reversal.

Actually there is no reason that the wave function of the time-reversed
motion should be given just by ψ(r,−t). Indeed, upon taking the com-
plex conjugate of the preceding equation, one finds an equation

i~
∂

∂t′
ψ∗(r,−t′) = H∗ψ∗(r,−t′),

which more closely resembles the original equation (5.13). The origi-
nal Schrödinger equation would then be recovered if an (anti-)unitary
operator O exists such that

OH∗O−1 = H.

In such a case, the wave function for the reversed motion can be taken
to be

ψ̃(r, t) = Oψ∗(r,−t) : (5.14)
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the new wave function ψ̃(r, t) satisfies a Schrödinger equation identical
to the original one. The time-reversal motion is indeed a possible time
evolution in quantum mechanics, in this case.

An operator O such that for any state vectors ψ, φ, the relation

〈Oφ|Oψ〉 = 〈ψ|φ〉

holds (see eqn (5.14)) is known as an anti-unitary operator. In contrast,
for an ordinary unitary operator U the relation

〈Uφ|Uψ〉 = 〈φ|ψ〉

holds for any pair of state vectors. It is evident that under either uni-
tary or anti-unitary transformations, all physical predictions of the the-
ory remain the same. That these are the only possibilities to realize a
symmetry in quantum mechanics is known as

Theorem 5.1. (Wigner’s theorem) Every symmetry transformation
in quantum mechanics is realized either by a unitary or by an anti-
unitary transformation.

Again, it should be noted that time-reversal symmetry (T ) is a prop-
erty of the particular kind of interaction, rather than being an absolute
law of Nature. Although at a macroscopic level it is easy to think of
systems which are not conservative, and hence not invariant under T ,
it is known that at the level of fundamental interactions, T is an ex-
tremely good approximate symmetry. As far as we know, gravitational,
electromagnetic, and strong interactions respect T , while a small sub-
set of weak interactions due to the exchange of W bosons violate it.
(Actually these are more directly connected to the violation of so-called
CP symmetry. However, for any theory described by a local Hermitian
Hamiltonian the product CPT is a good symmetry—a result known as
the CPT theorem. If CPT is an exact symmetry of Nature, then CP
violation implies T violation and vice versa.) For a discussion on CP
violation in the K0-K̄0 system, see Supplement Section 22.1.

The great mystery of time-reversal symmetry is that, in spite of the
fact that T is almost exactly conserved in fundamental interactions, it is
grossly violated in the macroscopic world: it suffices to remember that
the second law of thermodynamics—the law of the entropy increase—
implies a preferential arrow of time, from the past to the future. It is an
extravagant idea to think that the arrow of time is in some way caused
by the very tiny amount of T -violating interactions, which are certainly
irrelevant to the vast majority of electromagnetic, chemical, and gravi-
tational processes governing the macroscopic world. It is possible that
the arrow of time is somehow related to the expansion of the universe.
We know that the concept of uniform time evolution itself would have
to be modified somehow at the time of the big bang.
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5.2.4 The Galilean transformation

Consider two systems of reference, K ′ and K, moving with respect to
each other with a constant relative velocity, V,

r = r′ + Vt . (5.15)

How is the wave function ψ′(r′, t) in one system related to ψ(r, t) in the
other? To find the transformation law, one may proceed as follows: a
plane wave in system K is also seen as a plane wave in system K ′. Once
we understand how these transform into each other, it must be possible
to find out how a generic wave function transforms, as the latter can be
composed of plane waves.

The plane waves in the two systems are

ψ(r, t) = exp

[
i

~
(p · r− Et)

]
; (5.16)

ψ(r′, t) = exp

[
i

~
(p′ · r′ − E′t)

]
. (5.17)

From classical mechanics we know that the momentum and energy in
the two systems are related as follows

p = p′ +mV E = E′ + V · p′ +
1

2
mV2 . (5.18)

By substituting eqns (5.15) and (5.18) into eqn (5.16) one finds that

e
i
~
(p·r−Et) = e

i
~
(p′·r′−E′t)e

i
~
(mV·r′+ 1

2mV2t) .

In the second phase factor on the right-hand side there are no references
left to the particular plane wave considered, so the relation should be
valid for a generic wave function which can be constructed as a linear
combination of the latter:

ψ′(r′, t) = e−
i
~
(mV·r′+ 1

2mV2t)ψ(r, t) . (5.19)

In eqn (5.19) it is understood that r is expressed in terms of r′ and t
through eqn (5.15).

In the case of a system of many particles, the phase of eqn (5.19) sums
up to give

mV·r′+ 1

2
mV2t→

∑

i

miV·r′i+
1

2
miV

2t = MtotV·RCM+
1

2
MtotV

2t .

It is thus the center-of-mass coordinate, and the total mass plays the
role of the free particle.

Transformation law (5.19) is generally valid, and does not in general
imply invariance of the dynamical law under Galilean transformations.
Of course, we expect that it is the case for the free particles. Let us
check that the Schrödinger equation for a free particle indeed remains
invariant. The wave function ψ satisfies the Schrödinger equation

i~
∂

∂t
ψ = − ~2

2m

∂2

∂r2
ψ . (5.20)
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In evaluating the partial derivative of ψ′ with respect to time, we must
keep in mind that the right-hand side of eqn (5.19) depend on time both
explicitly and implicitly through the relation r = r′ + Vt. Thus

i~
∂

∂t
ψ′ =

(
1

2
mV 2ψ + i~

∂

∂t
ψ + i~V · ∂

∂r
ψ

)
e−

i
~
(mV·r′+ 1

2mV2t)

=

(
1

2
mV 2ψ − ~2

2m

∂2

∂r2
ψ + i~V · ∂

∂r
ψ

)
e−

i
~
(mV·r′+ 1

2mV2t)

=

(
1

2
mV 2ψ − ~2

2m

∂2

∂r′2
ψ + i~V · ∂

∂r′
ψ

)
e−

i
~
(mV·r′+ 1

2mV2t) .

In the last step use was made of the fact that ∂/∂r = ∂/∂r′.
On the other hand one can evaluate the kinetic term directly for ψ′:

− ~2

2m

∂2

∂r′2
ψ′ =

− ~2

2m

[
∂2

∂r′2
ψ − 2i

1

~
mV · ∂

∂r′
ψ − m2

~2
V2

]
e−

i
~
(mV·r′+ 1

2mV2t) .

Thus one indeed has

i~
∂

∂t
ψ′ = − ~2

2m

∂2

∂r′2
ψ′ ;

that is, the evolution equation in system K ′ is identical to that in system
K.

The transformation

r→ r + Vt ; p→ p +mV

is generated by the unitary operator

U = exp

[
i

~
V(pt −mr)

]
.

This can be easily checked by considering infinitesimal V. The generator
of the transformation is

G = pt−mr

This operator is time dependent. We have, for a Hamiltonian p2/2m,

i~
∂G

∂t
+ [G,H ] = i~p +

[
pt−mr,

p2

2m

]
= 0 ,

in agreement with eqn (5.4).
We leave it as an exercise to prove the converse: if the system is in-

variant under Galileo transformation, then the dependence of the center-
of-mass coordinates in the Hamiltonian is P2/2M , where P is the total
momentum and M the total mass.
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5.2.5 The Wigner–Eckart theorem

A very powerful theorem that illustrates well the use of the symmetry
argument is due to Wigner and Eckart. Consider first a spinless parti-
cle, described by a wave function of the form ψ0(r), a function of the
radial coordinate only. Clearly it is invariant under three-dimensional
rotations: it represents a state with ℓ = 0. Now consider instead a state

ψi(r) = const. ri ψ0(r),

obtained from the first by applying the position operator. This is a
state with ℓ = 1, being proportional to some combination of Y1,m(θ, φ),
m = 1, 0,−1. The value of the angular momentum (ℓ = 1) does not
depend on the details of the nature of the operator ri; the same can be
said of the state

ψ
′

i(r) = const.pi ψ0(r) .

Under a three-dimensional rotation a generic operator O transforms
as follows:

O→ eiω·ĴO e−iω·Ĵ ,

while a state transforms like this:

| 〉 → eiω·Ĵ| 〉 .
We have already seen that certain states—those with definite angular
momentum (J,M)—transform in a simple, universal way (see eqn (4.38)):

|J,M〉 →
∑

M ′

DJ
M ′,M (ω) |J,M ′〉 .

The rotation matrix for spin J is known once and for all: it depend
only on J and does not depend on any other attributes of the particular
system considered.

Analogously, certain operators transform in simple manner. Opera-
tors such as r2, p2, U(r) are all scalars: they are invariant under rota-
tions; others, such as r, p, e J, are vectors. Quantities transforming as
products of vectors are generally known as tensors.

To study the properties of transformations of operators under ro-
tations, it is convenient to reorganize the components of tensors so
as to make them proportional to the components of some spherical
harmonics—they are known as spherical tensors—rather than using Carte-
sian components. For instance, a spherical tensor of rank 1 is equiva-
lent to a vector (Ax, Ay, Az), but its components are called T1,m, m =
1, 0,−1, where

T1,1 = −Ax + iAy√
2

; T1,0 = Az ; T1,−1 =
Ax − iAy√

2
. (5.21)

In the particular case of the position vector r, the corresponding spher-
ical tensor components are:

T1,1 = −x+ iy√
2

; T1,0 = z; T1,−1 =
x− iy√

2
. (5.22)
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They are proportional to the spherical harmonics9 Y1,1, Y1,0, e Y1,−1.9In the convention used by Landau and
Lifshitz eqns (5.21) and (5.22) are mul-
tiplied by a factor i.

(see eqn (4.20).)
The inverse of eqn (5.22) is

Ax = −T1.1 − T1,−1√
2

; Ay = −i T1,1 + T1,−1√
2

; Az = T1,0 .

The components of a spherical tensor of rank 2 (of “spin 2”) are related
to those in Cartesian components as follows:

T2,0 = −
√

1

6
(Axx +Ayy − 2Azz) ;

T2,±1 = ∓(Axz ± iAyz) ;

T2,±2 =
1

2
(Axx −Ayy ± 2iAxy) .

By construction the spherical tensor of “spin” p with 2p+1 components
transform as follows:

Tq
p ⇒ eiω·Ĵ Tq

p e−iω·Ĵ =
∑

q′

Dp
q′ qT

p
q′ .

This means that the action of Tq
p on the state |j,m;n〉 produces a state

Tq
p |j,m;n〉 ,

which transforms exactly as the direct product of two angular momen-
tum eigenstates

|p, q〉 ⊗ |j,m〉 ,
i.e.

Tq
p |j,m;n〉 ⇒ eiω·Ĵ Tq

p |j,m;n〉 = eiω·Ĵ Tq
p e−iω·Ĵ eiω·Ĵ |j,m;n〉

=
∑

q′,m′

Dp
q′ qD

j
m′m T

p
q′ |j,m′;n〉 .

As a consequence, one has the following theorem:

Theorem 5.2. (The Wigner–Eckart theorem) The matrix element

〈J,M ;n′|Tqp|j,m;n〉 ,

where n, n′ stand for all other quantum numbers (the radial quantum
number, type of particle, etc.) are proportional to the Clebsch–Gordan
coefficients:

〈J,M ;n′|Tqp|j,m;n〉 = 〈p, j; J,M |p, q, j,m〉〈J, n′‖Tp‖j, n〉 . (5.23)

The proportionality constant, indicated by 〈J, n′‖Tp‖j, n〉, called the
reduced matrix element, depends only on the absolute magnitude of the
angular momenta as well as other quantum numbers, but not on the
azimuthal quantum numbers. All the dependence on the latter is in the
universal Clebsch–Gordan coefficients. Equation (5.23) provides many
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nontrivial relations among those matrix elements which differ only in the
azimuthal quantum numbers M, q,m. In particular, it leads to a set of
selection rules: the only non-vanishing matrix elements are those with
nonzero Clebsch–Gordan coefficients. We talk about allowed transition,
a terminology borrowed from the analysis of electromagnetic transitions
(see Section 9.5).

Let us list some examples, which the reader can verify as an exercise:

1. Scalar, p = 0. Only the transitions

j = J m = M

are allowed.

2. Vector, p = 1. The allowed transitions are

|J − j| = ±1, 0 ((J = 0)− (j = 0) forbidden) ; M = m+ q .

5.3 Identical particles: Bose–Einstein and
Fermi–Dirac statistics

Closely related to the general concept of symmetry discussed in the
preceding section is that of a symmetry under exchange of identical par-
ticles. Nature abounds with systems made of more than one particle of
the same kind; it suffices to think of an atom (with many electrons), a
metal (with many atoms of the same species and with many electrons),
and in fact, any constituent of the universe.

In quantum mechanics, the wave function of such systems turns out to
obey precise properties under the exchange of identical particles: they
must be either totally symmetric (for particles with integer spins, known
as bosons) or totally antisymmetric (for particles with half-integer spins,
known as fermions). The wave functions are said to obey Bose–Einstein
(BE) statistics or Fermi–Dirac (FD) statistics, respectively.

The restrictions imposed by BE or FD statistics bring about far-
reaching and profound consequences in all applications of quantum me-
chanics, from atoms to macroscopic systems.

Note that by definition two identical particles cannot be distinguished
by their intrinsic properties, such as mass, charge, spin. From this point
of view, there is no difference between classical and quantum mechanics.
What makes particles distinguishable in all cases in classical mechanics
is the existence of a definite trajectory (history) for each particle. This
allows the particles to be labeled in a convenient way at any reference
time, e.g., by the positions they occupy at that precise moment; each
particle will maintain its identity during the subsequent time evolution,
however complicated it might be.

In quantum mechanics the situation is very different. Owing to the
uncertainty relations, there is no precisely defined trajectory for each
particle, and the physical state of a system composed, for example, of
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two identical particles is simply described by a wave function with two
sets of arguments,

ψ(ξ1, ξ2), ξ ≡ {r, σ}, σ = s, s− 1, . . . ,−s,

where σ stands for the third component of the spin. The exchange of
the two particles gives rise to the state

ψ(ξ2, ξ1),

which, owing to the identity of the two particles, must represent the
same quantum state as ψ(q1, q2). According to the principles of quantum
mechanics, this implies that

ψ(ξ2, ξ1) = eiα ψ(ξ1, ξ2), (5.24)

where α is some phase. By repeating the exchange of the two identical
particles twice, one must get back to the original wave function, so that

e2iα = 1 . (5.25)

It follows then that
eiα = ±1, (5.26)

in eqn (5.24). This argument can be generalized to a system consisting
of N identical particles. The wave function must be either symmetric or
antisymmetric under the exchange of any two identical particles.

Which sign should we choose? As already anticipated, in Nature all
particles with integer spins (bosons) are described by wave functions
which are totally symmetric, while the wave functions of identical par-
ticles with half-integer spins (fermions) are totally antisymmetric, i.e.,
they change sign under the exchange of any pair of particles. We say that
bosons obey Bose–Einstein statistics, while fermions satisfy Fermi–
Dirac statistics. Or simply BE or FD statistics, respectively.

For instance, the wave function of two identical spin- 1
2 fermions (two

electrons, two protons, etc.) has the form

Ψ =
1√
2
(ψ(ξ1, ξ2)−ψ(ξ2, ξ1)) =

1√
2
(ψ(r1, σ1; r2, σ2)−ψ(r2, σ2; r1, σ1)),

(5.27)
where σ1,2 =↑, ↓ .

In the general case, the identity of the particles is formally expressed
by the statement that every observable A(ξ1, . . . , ξn) is symmetric under
any permutation of the single particle variables. We note that this is
a restriction on the number of physically acceptable observables; as an
example, for two particles the operator r1 is not an observable, while
r1 + r2 is. Following our discussion in Chapter 2 we see that in this case
not every self adjoint operator corresponds to an observable.
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Remarks

(i) Within non-relativistic quantum mechanics, the correlation be-
tween the spin of the particle and the statistics such a parti-
cle obeys (called the spin–statistics relation) is an empirical law.
However, it is one of the fundamental results of relativistic quan-
tum mechanics that the spin–statistics correlation follows from the
principles of special relativity, of quantum mechanics, and of the
positivity of energy. See Section 17.2.3.

(ii) The rule that all particles with half-integer spin (or integer spin)
obey Fermi–Dirac (vis à vis Bose–Einstein) statistics, is internally
consistent. Consider the nucleon (a collective name for the two
constituent particles of atomic nuclei—the proton and neutron)
which has spin 1

2 and is therefore a fermion. Two identical nuclei,
composed of n nucleons, would have integer or half-integer spins,
according to whether n is even or odd, respectively. But as the
exchange of the two identical nuclei is equivalent to the exchange
of n pairs of nucleons, it follows that the wave function of the
former is either symmetric (n even) or antisymmetric (n odd).

(iii) From a formal point of view, the wave function of N identical
particles can be regarded as a representation of the permutation
groups of N objects. The (standard) assumption that the wave
function for definite positions and for definite spin components is
a well-defined complex number, apart from an arbitrary phase,
corresponds to the hypothesis that the wave functions form a one-
dimensional representation of the permutation group. Under this
condition result (5.25), and hence eqn (5.26), follows inevitably.10

10By losing this assumtion, it is logi-
cally possible to construct a quantum
theory with a more general type of
statistics (parastatistics). However, no
physical particles or systems are known
which make use of such unusual kinds
of statistics.

(iv) The above consideration hinges upon one more aspect of the phys-
ical world: the topological structure of the configuration space. In
fact, in order to discuss the meaning of the exchange of the two
particles clearly, it is necessary to place the two particles at two
distinct points. Say one of the particles is at {0} and the other
particle is at a generic point {x}. Clearly the repeated exchange of
the two particles is equivalent to the particle at {x} going around
the point {0} and coming back to the original point. The three-
dimensional space minus a point, R3/{0}, is simply - connected,11 11The symbol π1(M) (the fundamen-

tal group of the space M) represents
the group of equivalent classes of the
map from a circle S1 to the space M .
Any space in which a closed loop can
be smoothly shrunk to a point is sim-

ply connected, with the trivial funda-
mental group, π1(M) = 1; a map from
a circle to a circle can be classified by
positive or negative winding numbers,
so π1(S1) = Z; a torus has π1(T 1) =Z× Z, and so on.

π1(R
3/{0}) = 1 .

Therefore property (5.25) is necessary for the theory to be con-
sistent: the wave function cannot make a jump as the loop is
gradually shrunk to zero.

(v) The above discussion shows, however, that some two-dimensional
systems may admit exceptions to the rule. Indeed a two-dimensional
space minus a point is topologically equivalent to a circle, S1, and
its fundamental group is Z. In this case a more general statistics
is possible. Excitations (called the anyons) obeying these more
general statistics with a nontrivial phase in eqns (5.25) and (5.26),
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known as the fractional statistics, are known to play an important
role in the physics of the quantum Hall effect, and, perhaps, in
high-T superconductors.

The operation of symmetrization or antisymmetrization of the wave
function with respect to the exchanges of identical particles can be re-
alized by

S =
1

N !

∑

P

P ; A =
1

N !

∑

P

ǫP P , (5.28)

where P represents all possible permutations of (12 . . .N) particles and
ǫP = ±1 according to the whether P is an even or odd permutation.1212Any permutation can be constructed

as a product of an even or odd num-
ber of exchanges of a pair of objects:
even though the way a given permuta-
tion can be constructed this way is not
unique, the parity of each permutation
is well defined.

They act as projection operators,

S2 = S; A2 = A; SA = 0 .

On the other hand, the Hamiltonian of N identical particles is clearly
invariant under the exchange of the operators (momenta, position, spin,
etc.) referring to these particles. Therefore the operation of symmetriza-
tion or antisymmetrization commutes with the evolution operator,

e−iHt/~ :

the statistics is consistent with and maintained during the time evolution
of the system.

As the symmetric states and antisymmetric states are orthogonal,

〈ψS |ψA〉 = 〈ψS |SA|ψA〉 = 0 ,

a given system of N identical particles (with a definite statistics) will
never mix with or leak to systems with a “wrong” statistics. This guar-
antees that all the constructions of quantum mechanics, completeness,
unitarity (total probability is equal to unity), etc. remain valid even
under the restriction of states with definite statistics.

5.3.1 Identical bosons

Consider now systems of N identical bosons. In the simplest case of two
identical particles without spin, interacting with a potential V (r), where
r = r1 − r2, the wave function can be factorized as

Ψ = Φ(R)ψ(r), R =
r1 + r2

2
,

where Φ(R) describes the center of mass, ψ(r) the relative motion. The
condition that Ψ be symmetric under the exchange of the two particles
implies that

ψ(−r) = ψ(r).

Thus only those motions with even values of angular momenta ℓ =
0, 2, . . . are allowed.
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To discuss the more general case, it is often useful to consider as a
basis of the states

|pi1〉 ⊗ |pi2〉 . . . |piN 〉 ≡ |pi1 , pi2 . . . , piN 〉 , (5.29)

with reference to the composite system

H(N) = H1 ⊗H2 ⊗ . . .⊗HN . (5.30)

Such a description in terms of single-particle states |pik〉 (k = 1, . . . , N) is
particularly useful in the case of N particles weakly interacting (so that
in the first approximation they can be considered to be non-interacting).
Of course, the states (5.29) form a valid basis of the composite system
even when the interactions are important.

For general N the state vector has the form

|pi1 , . . . , piN 〉S =

(
N1!N2! . . . Nr!

N !

)1/2∑

P ′

P ′ |pi1 , . . . , piN 〉, (5.31)

N1 +N2 + . . .+Nr = N,

where Ni stands for the number of particles which “occupy” the single-
particle state, pi, which labels all the quantum numbers, including spin.

For N = 2, and in the coordinate representation, the wave function
takes the possible form

ψ(r1, r2) =

{
1√
2
[ψp1(r1)ψp2(r2) + ψp2(r1)ψp1(r2) ] , (p1 6= p2),

ψp1(r1)ψp1(r2) , (p1 = p2).

Note that the probability that the particles occupy the same position
r1 ≃ r2 is twice what is expected in classical mechanics. An analogous
argument can be made in the momentum representation.

A word of caution is appropriate here. The states (5.31) form a basis
in the tensor space (5.30). A generic state is described by a linear
combination of such vectors. This means that while it is true that any
N -boson wave function satisfies the symmetry property

Φ(ξ1, ξ2, . . . , ξN ) = Φ(ξi1 , ξi2 , . . . , ξiN ) ,

for every permutation (1, 2, . . . , N) → (i1, i2, . . . , iN ), this does not im-
ply that it can be written as a symmetrization of a product of single
particle wave functions.13 13For example, ψ(x1, x2) =

e−(x1+x2)2 is symmetric but is
not a symmetrization of a prod-
uct. Of course, ψ can be ex-
panded in series of plane waves
(eik1x1eik2x2 + eik2x1eik1x2 ) of the
form (5.31).

These properties of the wave functions of the identical bosons, whether
they are elementary particles, atoms, or molecules, underlie certain
extraordinary phenomena. An example is the phenomenon of Bose–
Einstein condensation, in which a macroscopic number of, for example,
atoms occupy the same quantum states, behaving as if described by a
single wave function. These states are realized in Nature at very low tem-
peratures, near absolute zero, such as liquid helium (superfluidity); more
recently, BE condensation of gaseous atoms has been realized [Ketterle
(2002)] or more recently, even for various molecules. The phenomenon
of superconductivity is also related to this.
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5.3.2 Identical fermions and Pauli’s exclusion
principle

Again let us start with the simplest case of two identical spin- 1
2 particles

(e.g., two protons), described by a wave function of the same form as
eqn (5.27). If the two particles interact through a potential depending
on the relative position r only, the wave function can be factorized as

Ψ = Φ(R)ψ(r), R =
r1 + r2

2
,

where Φ(R) describes the free motion of the center of mass. The relative
wave function now depends on the spin states as well. The spin states
of of two spin- 1

2 particles can always be decomposed into states of spin
1 (the spin triplet),

|↑↑〉, |↑↓〉+ |↓↑〉√
2

, |↓↓〉,

and a state of spin 0 (the spin singlet),

|↑↓〉 − |↓↑〉√
2

.

The triplet states are symmetric under the exchange of two spins, while
the singlet state is antisymmetric. It follows that the corresponding
orbital wave function must have the opposite parity,

ψ1m(−r) = −ψ1m(r), (m = 1, 0,−1), ψ0 0(−r) = ψ0 0(r).

Thus the angular momenta of the relative motion of two identical spin- 1
2

particles are restricted to odd (total spin 1) or even (total spin 0) values
only.

If the basis of direct-product states (5.29) is used, one has, for N = 2,
a wave function of the form

|p1, p2〉A =
1√
2

(|p1〉|p2〉 − |p2〉|p1〉) . (5.32)

More generally, the states of a system composed of N identical fermions
can be written as

A |p1〉 |p2〉 . . . |pN 〉 =
1

N !

∑

P

ǫP P |p1〉 |p2〉 . . . |pN 〉 ,

which in the coordinate representation takes the form of the Slater de-
terminant

ψ{pi}(ξ1, ξ2, . . . ξN ) =
1√
N !

det

∣∣∣∣∣∣∣∣∣

ψp1(ξ1) ψp1(ξ2) . . . ψp1(ξN )
ψp2(ξ1) ψp2(ξ2) . . . ψp2(ξN )

...
. . .

. . .
...

ψpN (ξ1) ψpN (ξ2) . . . ψpN (ξN )

∣∣∣∣∣∣∣∣∣

.
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The ξs denote both orbital and spin variables.
Thus the wave functions of more than one identical fermion vanish

whenever two fermions occupy the same state,

ψ{pi}(ξ1, ξ2, . . . ξN ) = 0, if pj = pk, j 6= k .

The rule that the two identical fermions cannot occupy the same quan-
tum state is known as Pauli’s exclusion principle. Pauli’s exclusion
principle is absolutely fundamental in all applications of quantum me-
chanics to systems involving identical fermions, such as atomic nuclei,
atoms, molecules, solids, gases and neutron stars.

The Slater determinants can thus be regarded as the basis in the
Hilbert space of N fermions. A general wave function is given by a
linear combination of Slater determinants. For the application of these
constructions to atoms, see Chapter 15.

In a more general case, one has, in the presence of identical fermions,

Ψ(ξ1, ξ2, . . . , ξN ) = ǫPΨ(ξi1 , ξi2 , . . . , ξiN )

for each permutation P : (1, 2, . . . , N) → (i1, i2, . . . , iN ). Note that
Pauli’s principle in the restricted sense stated above refers to those situ-
ations in which single-particle quantum numbers give a good description
of the system, which is not always the case.

In atoms, the electronic configurations are basically constrained by
Pauli’s principle becasuse two electrons (in the same spin state) cannot
stay in the same atomic orbit. The periodic nature of elements essen-
tially originates from Pauli’s principle and the quantization of the atomic
orbits. See Chapter 15.

Guide to the Supplements

In Supplement 20.8 we give a brief account of the per-
mutation group SN and of the Young tableaux. In Sup-
plement 20.9 a practical problem is solved: how to write
the matrix elements of operators between multi-particle
states. These formulas will be used in the construction of
wave functions for heavy atoms.

Supplements 20.10 and 20.11 are a brief introduction

to the Fock representation and to the non-relativistic
version of second quantization. These supplements are
meant to help in understanding the relation between non-
relativistic quantum mechanics and quantum field theory.
See Chapter 17 for more about relativistic quantum field
theories and the theory of elementary particles.



134 Problems

Problems

(5.1) A particle of spin J = 1 and unknown parity decays
at rest into two identical spin- 1

2
particles.

(a) Compute the orbital angular momentum of
the final particles and the total spin.

(b) Determine the parity of the decaying parti-
cle, assuming that in the decay, parity is con-
served.

(c) Let us suppose that the initial particle is in
the state |J, Jz〉 = |1, 0〉. Write explicitly the
final state with an unknown radial function,
but with explicit use of spherical harmonics
and spin states.

Let us now suppose that one measures the spin pro-
jections of the final particles with Stern–Gerlach-
type apparatus, for two particles emitted in the di-
rections (θ, ϕ) and

(π − θ, ϕ+ π) .

(d) For fixed values of (θ, ϕ), write the normalized
spin wave function of the final state.

(e) Compute the probability that a particle is
emitted in the direction (θ, ϕ) with sz = 1

2
.

(f) Compute the probability that a simultaneous
measurement of (sy(1), sy(2)) gives ( 1

2
, 1

2
).

(5.2) A deuteron d is a nucleus with charge +1, com-
posed of a proton (p) and a neutron (n). The
deuteron has spin 1 and parity +. A negative pion
π−, with charge −1 and spin 0, can be bound to
the deuteron to form a sort of “deuterium atom”.
Let us suppose that this system is formed in the
lowest Bohr orbit.

(a) Compute the ratio between the Bohr radius
of this system and the standard Bohr radius,

and compute the binding energy of the sys-
tem. Some masses needed for the computa-
tion are listed below, in MeV/c2:

Mπ− = 139.6 ; Me− = 0.51 ;

Md = 1875.6 ; Mp = 938.3 .

(b) The bound system described above decays
with the reaction π− + d → n + n. Both
angular momentum and parity are conserved
in the decay. Discuss if one can determine the
intrinsic parity of the π− from these data.

(c)) Compute the angular distribution of neutrons
in the final state, knowing that in the initial
state Jz = 0.

(d)) Explain why the hydrogen atom does not de-
cay via a somewhat analogous process, e− +
p→ n+ν, where ν is the (electron) neutrino.

(5.3) Write the explicit form of the completeness relation
for a system of two free identical particles.

(5.4) Write the Hamiltonian and the Heisenberg equa-
tions for a system of particles interacting with a
potential U(x1,x2) in the second quantization for-
malism.

(5.5) Consider a simplified version of the Young experi-
ment, limiting the dynamics to two single “modes”
of the electromagnetic field that describe a photon
passing from slit 1 or 2 respectively. Use a Fock
formalism to describe the photon’s beam, and com-
pute the probability of measuring a photon through
slit 1 k times in a single-photon experiment re-
peated n times. Show that the same probability
is obtained by measuring k photons in a single ex-
periment with a beam of n photons. Describe in
this model the interference.


