# Advent of non-Abelian Vortices

K. KONISHI <u>Un</u>iv.Pisa/INFN Pisa

# Plan

### I. Non-Abelian vortices in 3+1 dim gauge theories

- Topology and duality in non-Abelian gauge theories
- Supersymmetry
- Vortex solutions with non-Abelian moduli SU(2)xU(1) models with  $N_f=2$  flavors: U(N) vortices, higher-winding vortices, non-BPS, etc.
- Vortex-monopole connection (homotopy sequence and symmetry)

#### II. Non-Abelian vortices: generalizations

- Vortices in general gauge systems
- Vortices with product moduli space
- Fractional vortices
- Monopole-vortex complex

# Lecture

# Electromagnetic duality and topological solitons

Vacuum Maxwell equations

$$\nabla \cdot (E+iB) = 0; \ \nabla \times (E+iB) = i \partial_t (E+iB)$$
  
inv under  $E+iB \rightarrow e^{i\phi} (E+iB)$  (broken by charges)

• Magnetic monopole possible (Dirac 1931) in quantum field theory if

g. 
$$g_m = n/2$$
,  $n=0,1,2,...$  quantization of electric charges

't Hooft, Polyakov

- Soliton monopoles in spont. broken gauge theories (1974)
  - GUT (grand-unified models) monopoles?
- Soliton vortices (Abrikosov '57, Nielsen-Olesen '74) (superconductor, Landau-Ginzburg model, Abelian Higgs model)
- Other applications in condensed matter physics / cosmology, etc
- Confinement ~ dual superconductor?

```
Quark Confinement in QCD = Dual superconductor
```

.... of Non-Abelian variety?

G->H 
$$\prod_2(G/H) \neq I$$

't Hooft-Polyakov monopole ('74)

ANO vortex ('73)  $H=U(1)$ 
 $\prod_1(H) \neq I$ 

('94 - '05)

#### Key developments:

Quantum behavior of Abelian and non-Abelian monopoles

Seiberg-Witten, Argyres,Douglas, Shenker Carlino,Konishi,Murayama

• Discovery of non-Abelian vortices ('03-)

Hanany-Tong, Auzzi,Bolognesi,Evslin,Konishi,Yung

⇒ Rich variety of new results

Konishi, a review hep-th/0702102

# Non-Abelian Vortices

L= - 
$$(I/4 g^2) (F_{\mu\nu})^2 + |D_{\mu}\varphi|^2 - V$$
,

$$V = \lambda (|\phi|^2 - v^2)^2 /2$$

$$D\phi \rightarrow 0$$
;  $|\phi|^2 \rightarrow V^2$ 

$$\varphi \sim v e^{i \varphi}$$
 far from the vortex core

 $D_{\mu} = \partial_{\mu} - i A_{\mu}$ 

$$\prod_{I}(U(I))=Z$$

• 
$$\lambda$$
>  $g^2/2$  type I

• 
$$\lambda$$
<  $g^2/2$  type II

• 
$$\lambda = g^2/2$$
 BPS \*

\* BPS-saturated
(Bogomolnyi-Prasad-Sommerfield)
= Self dual case

Vachaspati, Achucarro, ...

Extended Abelian Higgs (EAH) model

$$|\varphi|^2 \Rightarrow \sum_i |\varphi_i|^2$$

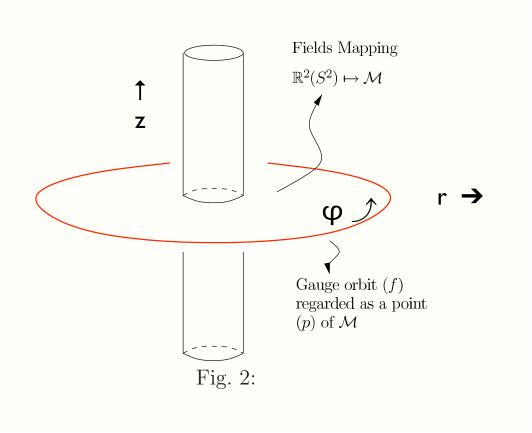
$$\prod_{I}(CP^{N-I})=I$$

but 
$$\prod_2(\mathbb{CP}^{N-1})=\mathbb{Z}$$

• 
$$\lambda > g^2/2$$
 type I: ANO stable

• 
$$\lambda < g^2/2$$
 type II: ANO unstable

• 
$$\lambda = g^2/2$$
 BPS: semi-local vortices



Cylindrical coordinates  $r, \varphi, z$ 

M= vacuum configurations  $\{\phi\}$ ; F= gauge orbits

f, p = point of F,  $\mathcal{M}$ , respectively  $\mathcal{M}$  = vacuum moduli space = M/F

$$\mathcal{M} = S/S = 1$$
, AH  
=  $S^{2N-1}/S = CP^{N-1}$ , EAH

- •A vortex defined at each point p of the base space *M* (vacuum degeneracy)
- Vortex solutions possess in general nontrivial vortex moduli VA symmetry broken by the individual soln (e.g.  $\mathbf{R}^2$  for AH); or due to  $\mathcal{M}$
- Semilocal Vortex ~ sigma model lump ( $\prod_2(\mathcal{M})$ )

# Non-Abelian vortex \*

Hanany-Tong, '03 Auzzi-Bolognesi-Evslin-Konishi-Yung. '03

Φ<sub>2</sub> ≠ 0• H ⇒ 1 with Π<sub>1</sub> (H) ≠ 1

H: non-Abelian (\*\*)

Shifman-Yung, ... (Minnesota). Eto-Nitta-Ohashi-Sakai- ... (TiTech, Tokyo). Tong, (Cambridge). Pisa group, '03-'09

• \*\* not sufficient.

N.B. 
$$H=SU(N)/Z_N \Rightarrow Z_N \text{ vortex }! (\Pi_1(H)=Z_N)$$

- Need a global (flavor) symmetry:
   U(N) theory with N<sub>f</sub> = N squarks in the fundamental repres. of SU(N)
- Color-flavor locked vacuum

$$\langle q \rangle \propto 1_{NxN}$$

$$(q)_{lpha}^{i} = \left(egin{array}{cccc} q_{1}^{(1)} & q_{1}^{(2)} & \cdots & q_{1}^{(N)} \ q_{2}^{(1)} & q_{2}^{(2)} & dots & dots \ dots & dots & \ddots & \ddots \ dots & dots & dots & dots \ q_{N}^{(1)} & q_{N}^{(2)} & \cdots & q_{N}^{(N)} \end{array}
ight)$$

Vortex solutions with continuous non-Abelian moduli

 $U(N) \mod el$  (with  $N_f = N$  "flavors" of complex scalar fields -- squarks)

$$\mathcal{L} = \operatorname{Tr} \left[ -\frac{1}{2g^2} F_{\mu\nu} F^{\mu\nu} - \frac{2}{g^2} \mathcal{D}_{\mu} \phi^{\dagger} \mathcal{D}^{\mu} \phi - \mathcal{D}_{\mu} H \mathcal{D}^{\mu} H^{\dagger} - \lambda \left( c \, \mathbb{1}_N - H \, H^{\dagger} \right)^2 \right]$$

$$+ \operatorname{Tr} \left[ \left( H^{\dagger} \phi - M \, H^{\dagger} \right) (\phi \, H - H \, M) \right]$$

$$F_{\mu\nu} = \partial_{\mu} W_{\nu} - \partial_{\nu} W_{\nu} + i \left[ W_{\mu}, W_{\nu} \right] \text{ and } \mathcal{D}_{\mu} H = (\partial_{\mu} + i \, W_{\mu}) \, H,$$

 $(H)^i_lpha\equiv q^i_lpha$  : N complex scalar fields in the fundamental representation of SU(N), written in color-flavor mixed matrix form

 $\phi$  A complex scalar field in the adjoint representation of SU(N)

 $M=diag\left(m_1,m_2,\ldots,m_N
ight)$  is the mass matrix for the squarks q

- For a critical coupling constant  $\lambda=\frac{g^2}{4}$  \*) BPS (self-dual) (automatic in Susy) the model can be regarded as a truncation of the bosonic sector of a N=2 supersymmetric model, with  $(H)^i_\alpha\equiv q^i_\alpha,\quad \tilde{q}^\alpha_i\equiv 0$
- In this case c comes from the Fayet-Iliopoulos term  $L = c V|_{D}$
- For unequal masses  $\langle \phi \rangle = M = \begin{pmatrix} m_1 & 0 & 0 & 0 \\ 0 & m_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & m_N \end{pmatrix} \text{ breaks } U(N) \rightarrow U(I)^N$   $U(I), \text{ s broken by the squark vac. exp. value } \rightarrow \text{ANO vortex nothing really new}$

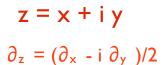
Auzzi-Bolognesi-Evslin-Konishi-Yung, Hanany-Tong, Shifman-Yung, Eto, et. al.

$$\langle \phi 
angle = m \, \mathbb{1}_N, \qquad \langle H 
angle = \sqrt{c} \, \left( egin{array}{ccc} 1 & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & 1 \end{array} 
ight)$$



- The SU(N)xU(I) gauge group broken completely;
- $U \langle H \rangle U^{-1} =$ • The  $SU(N)_{C+F}$  flavor symmetry intact color flavor
- The BPS (self-dual) vortex equations

$$(\mathcal{D}_1 + i \mathcal{D}_2) \,\, H = 0, \quad F_{12} + rac{g^2}{2} \left( c \, \mathbb{1}_N - H \, H^\dagger 
ight) = 0.$$



Eto-Nitta-Ohashi-Sakai...

The solutions holomorphic

$$H = S^{-1}(z, ar{z}) \, H_0(z), \quad W_1 + i \, W_2 = -2 \, i \, S^{-1}(z, ar{z}) \, ar{\partial}_z S(z, ar{z}).$$

•  $\Omega = S S^{\dagger}$  satisfies the master equation

$$\partial_z \left(\Omega^{-1}\partial_{\bar{z}}\,\Omega
ight) = rac{g^2}{4} \left(c\, \mathbb{1}_N - \Omega^{-1}\, H_0\, H_0^\dagger
ight).$$

any non-singular holomorphic NxN matrix

S: complex extension of  $U(N) \sim GL(N,C)$ 

 The moduli matrix H<sub>0</sub> defined up to V equivalence relations

$$H_0(z) 
ightarrow V(z) H_0(z)$$

$$H_0(z) 
ightarrow V(z) \, H_0(z), \qquad S(z,ar z) 
ightarrow V(z) \, S(z,ar z),$$

# The problem: Master (gauge field) equation

 $\Omega = S S^{\dagger}$ S: complex extension of  $U(N) \sim GL(N,C)$ : any regular NxN matrix \*\*

 $\Omega^{\dagger} = \Omega$ (i) Solve for the Hermitian NxN matrix  $\Omega$ ,

$$\partial_z \left(\Omega^{-1}\partial_{ar z}\,\Omega
ight) = rac{g^2}{4}\,(c\,1_N-\Omega^{-1}\,H_0\,H_0^\dagger).$$

(g, c are constants, set to 1), given a holomorphic moduli matrix  $H_0(z)$ , with the boundary condition

$$\Omega \rightarrow (I/c) H_0 H_0^{\dagger}$$
,  $|z| \rightarrow \infty$ 

 $\det H_0(z) \sim z^k + ...$ k= the winding number

(ii) Show the existence and uniqueness of the solution for each H<sub>0</sub>

e.g., 
$$H_0^{(1,0,\ldots,0)} = \begin{pmatrix} z-z_0 & 0 & 0 & \ldots & 0 \\ b_1 & 1 & 0 & \ldots & 0 \\ b_2 & 0 & \ddots & 0 \\ \vdots & 0 & \ldots & 0 \\ b_{N-1} & 0 & 0 & \ldots & 1 \end{pmatrix}$$
 (z<sub>0</sub>, b<sub>i</sub> are complex moduli parameters) (\*\*) for other gauge groups see later

#### $U(2) \sim SU(2) \times U(1)$ model as the low-energy effective theory from SU(3) theory

Adjoint scalar VEV 
$$\phi=-rac{1}{\sqrt{2}}\left(egin{array}{ccc} m&0&0\ 0&m&0\ 0&0&-2m \end{array}
ight)$$

$$SU(3) \rightarrow SU(2) \times U(1)/Z_2$$

Bogomolnyi completion

for static vortex soln

$$S=\int d^4x \left[rac{1}{4g_2^2} \left(F_{\mu
u}^a
ight)^2 +rac{1}{4g_1^2} \left(F_{\mu
u}^8
ight)^2 +\left|
abla_\mu q^A
ight|^2$$

$$+rac{g_{2}^{2}}{8}\left(ar{q}_{A} au^{a}q^{A}
ight)^{2}+rac{g_{1}^{2}}{24}\left(ar{q}_{A}q^{A}-2\xi
ight)^{2}
ight],$$

$$T \; = \; \int d^2x \left( \sum_{a=1}^3 \left[ rac{1}{2g_2} F^{(a)}_{ij} \pm rac{g_2}{4} \Big( ar{q}_A au^a q^A \Big) \, \epsilon_{ij} 
ight]^2$$

$$egin{align} \hat{F}^{(8)} &= rac{1}{2} F_{ij}^{(a)} \pm rac{g_2}{4} \left( ar{q}_A au^a q^A 
ight) \epsilon_{ij} \ &= rac{1}{2} \epsilon_{ij} F_{ij}^{(8)} \ &= rac{1}{2} \epsilon_{ij} F_{ij}^{(8)} \ &= rac{1}{2} \left( |q^A|^2 - 2 \xi 
ight) \epsilon_{ij} \ &= rac{1}{2} \left| 
abla_i q^A \pm i \epsilon_{ij} 
abla_j q^A 
ight|^2 \pm rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A \pm i \epsilon_{ij} 
abla_j q^A 
ight|^2 = rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A \pm i \epsilon_{ij} 
abla_j q^A 
ight|^2 = rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A \pm i \epsilon_{ij} 
abla_j q^A 
ight|^2 = rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A \pm i \epsilon_{ij} 
abla_j q^A 
ight|^2 = rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A \pm i \epsilon_{ij} 
abla_j q^A 
ight|^2 = rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A \pm i \epsilon_{ij} 
abla_j q^A 
ight|^2 = rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A \pm i \epsilon_{ij} 
abla_j q^A 
abla_j q^A 
ight|^2 = rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A + i \epsilon_{ij} 
abla_j q^A 
abla_j q^A 
abla_j q^A 
abla_j q^A \ &= rac{\xi}{\sqrt{3}} ilde{F}^{(8)} \ &= rac{1}{2} \left| 
abla_i q^A + i \epsilon_{ij} 
abla_j q^A 
abla_j q^A 
abla_j q^A 
abla_j q^A \ &= rac{1}{2} \left| 
abla_i q^A 
abla_j q^$$

Non-Abelian BPS (self-dual) equations

$$rac{1}{2g_2}F_{ij}^{(a)}+rac{g_2}{4}arepsilon\left(ar{q}_A au^aq^A
ight)\epsilon_{ij}=0, \qquad a=1,2,3;$$

$$\frac{1}{2g_1}F_{ij}^{(8)} + \frac{g_1}{4\sqrt{3}}\varepsilon\left(|q^A|^2 - 2\xi\right)\epsilon_{ij} = 0; \qquad i, j = 1, 2$$

$$abla_i\,q^A+iarepsilon\epsilon_{ij}
abla_j\,q^A=0, \qquad A=1,2,\ldots,N_f.$$

# Vortex Ansatz and profile fns (SU(2)xU(1) case)

$$(A_8 = A_0)$$

$$\mathsf{q}(\mathsf{r},\,\varphi) = \left( \begin{array}{cc} e^{i\,n\,\varphi}\phi_1(r) & 0 \\ 0 & e^{i\,k\,\varphi}\phi_2(r) \end{array} \right) \qquad A_i^3(x) = -\varepsilon\epsilon_{ij}\,\frac{x_j}{r^2}\,\left((n-k) - f_3(r)\right),$$
 
$$A_i^8(x) = -\sqrt{3}\,\,\varepsilon\epsilon_{ij}\,\frac{x_j}{r^2}\,\left((n+k) - f_8(r)\right)$$

Self-dual equations:

$$egin{aligned} rrac{\mathrm{d}}{\mathrm{d}r}\,\phi_1(r) - rac{1}{2}\left(f_8(r) + f_3(r)
ight)\phi_1(r) &= 0, \ & rrac{\mathrm{d}}{\mathrm{d}r}\,\phi_2(r) - rac{1}{2}\left(f_8(r) - f_3(r)
ight)\phi_2(r) &= 0, \ & -rac{1}{r}\,rac{\mathrm{d}}{\mathrm{d}r}f_8(r) + rac{g_1^2}{6}\left(\phi_1(r)^2 + \phi_2(r)^2 - 2\xi
ight) &= 0, \ & -rac{1}{r}\,rac{\mathrm{d}}{\mathrm{d}r}f_3(r) + rac{g_2^2}{2}\left(\phi_1(r)^2 - \phi_2(r)^2
ight) &= 0. \end{aligned}$$

Boundary conditions:

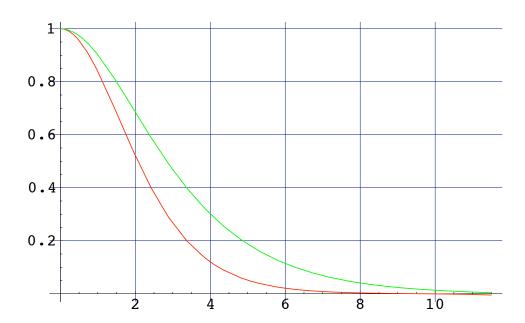
$$f_3(0)=arepsilon_{n,k}\left(n-k
ight), \quad f_8(0)=arepsilon_{n,k}\left(n+k
ight), \ f_3(\infty)=0, \quad f_8(\infty)=0 \ \phi_1(\infty)=\sqrt{\xi}, \quad \phi_2(\infty)=\sqrt{\xi}$$

 $\Phi$  regular everywhere (e.g.,  $\phi_1(0)=0$ , if  $n\neq 0,\ k=0$ )

# 0.8 0.6 0.4 0.2 2 4 6 8 10

# A minimal vortex: n=1; k=0

$$\phi_1(r)$$
,  $\phi_2(r)$ 



 $f_3(r)$ ,  $f_8(r)$ ,

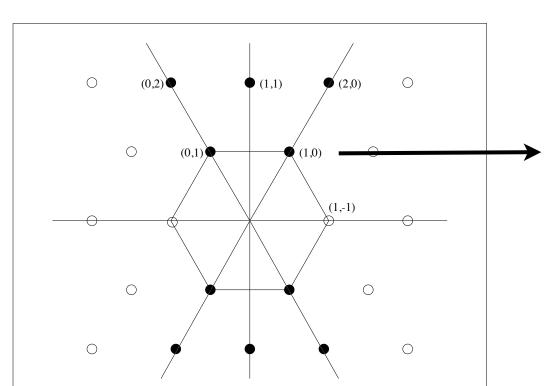
# Vortex tension and degeneracy

$$egin{align} T &= \int d^2x \left( \sum_{a=1}^3 \left[ rac{1}{2g_2} F^{(a)}_{ij} \pm rac{g_2}{4} \Big( ar{q}_A au^a q^A \Big) \, \epsilon_{ij} 
ight]^2 \ &+ \left[ rac{1}{2g_1} F^{(8)}_{ij} \pm rac{g_1}{4\sqrt{3}} \left( |q^A|^2 - 2 \xi 
ight) \epsilon_{ij} 
ight]^2 + \, rac{1}{2} \left| 
abla_i \, q^A \pm i \epsilon_{ij} 
abla_j \, q^A 
ight|^2 \pm rac{\xi}{\sqrt{3}} ilde{F}^{(8)} 
ight) \ \end{split}$$

where

$$ilde{F}^{(8)} \equiv rac{1}{2} \epsilon_{ij} F_{ij}^{(8)}$$

Tension:



$$T_{n,k}=\ 2\pi\,\xi\,|n+k|.$$

e.g., (1,0) and (0,1) vortices have the same tension

Actually, the vortex degeneracy is actually larger

$$S = s S', \quad \omega = s s^{\dagger}$$
 
$$T = 2\xi \int d^2x \, \partial \bar{\partial} \log \omega$$

#### Orientational zero modes

Exact  $SU(2)_{C+F}$  symmetry of the system (eq. of motion and the vacuum) broken by individual vortex solution:

$$SU(2)_{C+F} \rightarrow U(1)$$

Orientational zeromodes  $U \subset SU(2)/U(1) \sim {
m CP}^1 \sim S^2$ 

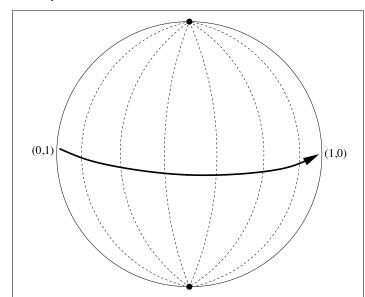
$$q^{kA} = U \left(egin{array}{cc} e^{i\,arphi}\phi_1(r) & 0 \ 0 & \phi_2(r) \end{array}
ight) U^{-1} = e^{rac{i}{2}\,arphi\,(1+n^a au^a)}\,U \left(egin{array}{cc} \phi_1(r) & 0 \ 0 & \phi_2(r) \end{array}
ight) U^{-1}$$

$$\mathrm{A}_i(x) = U[-rac{ au^3}{2}\,\epsilon_{ij}\,rac{x_j}{r^2}\,[1-f_3(r)]]U^{-1} = -rac{1}{2}\,n^a au^a\epsilon_{ij}\,rac{x_j}{r^2}\,[1-f_3(r)],$$

(Tension invariant)

$$A_i^8(x) = -\sqrt{3} \; \epsilon_{ij} \, rac{x_j}{r^2} \, [1 - f_8(r)],$$

$$U au^3U^{-1}=n^a au^a, \quad A_\mu=A_\mu^a au^a/2.$$
  $n^2=1,$  parametrizes  $\mathsf{S}^2$ 



#### Moduli-matrix formalism

$$V=egin{pmatrix} 0 & -1/b' \ b' & z-z_0 \end{pmatrix} \in GL(2,{f C}).$$
 except at b'=0

$$b = rac{1}{b'}$$
 the inhomogeneous coordinate of the Riemann sphere  $S^2 = \mathbb{CP}^1$ 

• In general, the vortex moduli space is a complex manifold. V transformations provide the transition functions among the local coordinates

• U(2) with  $N_f=2$  ( $a_0=1/b_0;\,CP^1\sim SU(2)/U(1)$ ),  $H_0(z)\sim V(z)\,H_0(z)$ 

$$H_0^{(1,0)} \simeq \left( \begin{array}{cc} z - z_0 & 0 \\ -b_0 & 1 \end{array} \right); \qquad H_0^{(0,1)} \simeq \left( \begin{array}{cc} 1 & -a_0 \\ 0 & z - z_0 \end{array} \right),$$

•  $(U(2) \text{ with } N_f = 2)$ 

$$H_0 \to U H_0 U^{-1} \sim H_0', \qquad U = \begin{pmatrix} \alpha & \beta \\ -\beta^* & \alpha^* \end{pmatrix}$$

$$a_0 \to \frac{\alpha a_0 + \beta}{\alpha^* + \beta^* a_0}.$$

OK with

$$\left(\begin{array}{c} a_1 \\ a_2 \end{array}\right) \rightarrow \left(\begin{array}{cc} \alpha & \beta \\ -\beta^* & \alpha^* \end{array}\right) \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right), \quad \frac{a_1}{a_2} = a_0.$$

 $\bullet$  Precisely the SU(2) transformation of a two-state quantum mechanical system

$$a_1 |1\rangle + a_2 |2\rangle$$
.

#### Vortices in $U(N) = SU(N)xU(I)/Z_N$ theory

$$\mathsf{U(3)} \qquad q^{kA} = \begin{pmatrix} e^{i\,n\,\varphi}\phi_1(r) & 0 & 0 \\ 0 & e^{i\,k\,\varphi}\phi_2(r) & 0 \\ 0 & 0 & e^{i\,p\,\varphi}\phi_3(r) \end{pmatrix}, \qquad \phi_1,\phi_2,\phi_3 \to \sqrt{\xi}, \qquad r \to \infty.$$
 
$$A_i^3(x) = -\epsilon_{ij}\frac{x_j}{r^2}\Big((n-k) - f_3(r)\Big), \qquad \qquad i,j = 1,2$$
 
$$A_i^8(x) = -\frac{1}{\sqrt{3}}\epsilon_{ij}\frac{x_j}{r^2}\Big((n+k-2p) - f_8(r)\Big), \qquad \qquad i,j = 1,2$$
 
$$A_i(x) = -\frac{1}{3}\epsilon_{ij}\frac{x_j}{r^2}\Big((n+k+p) - f_0(r)\Big).$$

Self-dual equations in terms of the profile functions

$$\begin{split} r\frac{\mathrm{d}}{\mathrm{d}r}\,\phi_1(r) - \left(\frac{1}{2}f_3(r) + \frac{1}{6}f_8(r) + \frac{1}{3}f_0(r)\right)\phi_1(r) &= \ 0, \\ r\frac{\mathrm{d}}{\mathrm{d}r}\,\phi_2(r) - \left(-\frac{1}{2}f_3(r) + \frac{1}{6}f_8(r) + \frac{1}{3}f_0(r)\right)\phi_2(r) &= \ 0, \\ r\frac{\mathrm{d}}{\mathrm{d}r}\,\phi_3(r) - \left(-\frac{1}{3}f_8(r) + \frac{1}{3}f_0(r)\right)\phi_3(r) &= \ 0, \\ -\frac{1}{r}\,\frac{\mathrm{d}}{\mathrm{d}r}f_3(r) + g^2\left(\frac{1}{2}\phi_1(r)^2 - \frac{1}{2}\phi_2(r)^2\right) &= \ 0. \\ -\frac{1}{r}\,\frac{\mathrm{d}}{\mathrm{d}r}f_8(r) + g^2\left(\frac{1}{2}\phi_1(r)^2 + \frac{1}{2}\phi_2(r)^2 - \phi_3(r)^2\right) &= \ 0, \\ -\frac{1}{r}\,\frac{\mathrm{d}}{\mathrm{d}r}f_0(r) + 3e^2\left(\phi_1(r)^2 + \phi_2(r)^2 + \phi_3(r)^2 - 3\xi\right) &= \ 0. \end{split}$$

the tension is given by

$$T_{n,k,p} = 2 \pi \xi |n+k+p|.$$

#### But for k=1 e.g., (1,0,0) vortex in U(3) theory,

$$\phi_2=\phi_3=\phi, \qquad f_3=f_8=f_{NA}$$

the vortex equations simplify to

$$egin{aligned} r rac{\mathrm{d}}{\mathrm{d}r} \, \phi_1(r) - \Big(rac{2}{3} f_{NA}(r) + rac{1}{3} f(r)\Big) \phi_1(r) &= 0, \ r rac{\mathrm{d}}{\mathrm{d}r} \, \phi(r) - \Big(-rac{1}{3} f_{NA}(r) + rac{1}{3} f(r)\Big) \phi(r) &= 0, \ -rac{1}{r} rac{\mathrm{d}}{\mathrm{d}r} f_{NA}(r) + g^2 \left(rac{1}{2} \phi_1(r)^2 - rac{1}{2} \phi(r)^2
ight) &= 0. \ -rac{1}{r} rac{\mathrm{d}}{\mathrm{d}r} f(r) + 3e^2 \left(\phi_1(r)^2 + 2\phi(r)^2 - 3\xi
ight) &= 0. \end{aligned}$$

An individual vortex respects SU(2)xU(1), yielding a four-parameter family of vortex solutions of equal tension

$$q^{kA} = U \left(egin{array}{ccc} e^{iarphi}\phi_1(r) & 0 & 0 \ 0 & \phi_2(r) & 0 \ 0 & 0 & \phi_2(r) \end{array}
ight) U^\dagger, \ A_i = U A_i^{(1,0,0)} U^\dagger,$$

$$rac{SU(3)}{SU(2) imes U(1)} \sim \mathrm{CP}^2.$$

#### Generalization to U(N) theory straightforward:

A priori need 2N profile functions

$$\phi_1,\ldots,\phi_N, \qquad f_3,\ldots,f_{N^2-1}, \quad f,$$

$$\begin{split} q^{kA} &= \begin{pmatrix} e^{i\,n_1\alpha}\phi_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{i\,n_N\alpha}\phi_N \end{pmatrix}, \\ A_i^3(x) &= -\epsilon_{ij}\,\frac{x_j}{r^2}\Big((n_1-n_2)-f_3\Big), \\ & \vdots \\ A_i^{N^2-1}(x) &= -\sqrt{\frac{2}{N(N-1)}}\epsilon_{ij}\,\frac{x_j}{r^2}\Big((n_1+\ldots+n_{N-1}-(N-1)n_N)-f_{N^2-1}\Big), \\ A_i(x) &= -\frac{1}{N}\epsilon_{ij}\,\frac{x_j}{r^2}\Big((n_1+\ldots+n_N)-f\Big). \end{split}$$

But for k=1 e.g. (0,0,..,1), vortex, can reduce to four profile functions by

$$\phi_1 = \ldots = \phi_{N-1} = \phi,$$
  $f_3 = \ldots = f_{(N-1)^2-1} = 0, \;\; f_{N^2-1} = -(N-1)f_{NA}$ 

Each vortex solution respects U(N-I)

2N-parameter family of degenerate vortices on

$$\frac{SU(N)}{SU(N-1) \times U(1)} \sim CP^{N-1}$$

#### In terms of the moduli-matrix:

$$H = S^{-1} H_0(z),$$
  $A_1 + iA_2 = -2 i S^{-1}(z, \bar{z}) \,\bar{\partial}_z \, S(z, \bar{z})$   
 $H_0 = N \times N$  matrix, holomorphic in z

k=1 vortex in the (1,0,..,0) patch

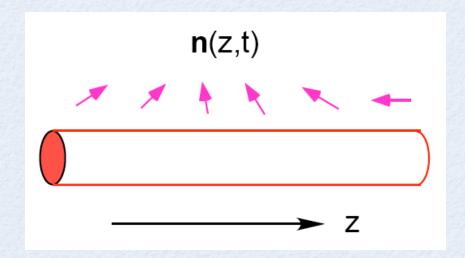
$$H_0^{(1,0,\dots,0)} = \begin{pmatrix} z - z_0 & 0 & 0 & \dots & 0 \\ b_1 & 1 & 0 & \dots & 0 \\ b_2 & 0 & \ddots & & 0 \\ \vdots & 0 & \dots & & 0 \\ b_{N-1} & 0 & 0 & \dots & 1 \end{pmatrix}$$

 $(b_1, b_2, ... b_{N-1}) \sim local coordinates of CP^{N-1}$ 

# Non-Abelian orientational modes of U(N) vortices

Broken to U(N-1) by the soliton vortex ("Nambu-Goldstone modes")

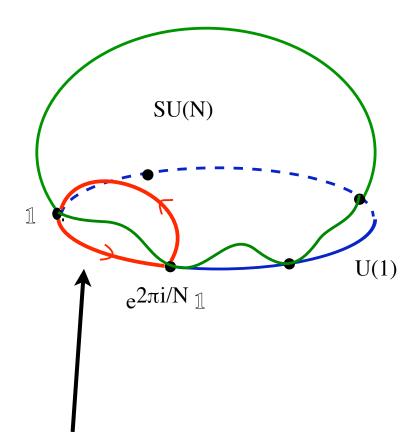
Vortex moduli = 
$$SU(N)/U(N-1) = CP^{N-1}$$
 (=  $CP^{1} \sim S^{2}$  for  $U(2)$ )



living only inside the vortex (orientational zero modes)

Auzzi-Bolognesi-Evslin-Konishi-Yung, Hanany-Tong, Shifman-Yung

#### Topological stability of non-Abelian vortices



Minimum noncontractible loop in the group (color) space  $SU(N)xU(1)/Z_N$ 

 $\prod_{I} (SU(N)xU(I)/Z_N) = Z$  but the U(I) "charge" is I/N

# Intermezzo: supersymmetry

- Models with color-flavor locked vacuum natural (N=2 susy QCD)
- Supersymmetry  $\Rightarrow$  self-dual vortices ( $\lambda = g^2/2$ )
- Non-renormalization theorem: the form of the potential protected from renormalization
- Dynamics under better control
- Physics depends on the parameter (e.g. masses) analytically (vortex vs monopoles)

$$\delta\psi_{\alpha} = i\sqrt{2}(\sigma_{\mu})_{\alpha\dot{\alpha}}\bar{\epsilon}^{\dot{\alpha}}D^{\mu}q + \sqrt{2}(\sigma_{\mu})_{\alpha\dot{\alpha}}\bar{\xi}^{\dot{\alpha}}D^{\mu}\bar{q}$$

$$\delta\lambda^{\alpha} = i(\sigma^{\mu\nu})^{\alpha}_{\beta}\epsilon^{\beta}F_{\mu\nu} + iD\epsilon^{\alpha} + \dots \qquad \left(D = \sqrt{2}(\bar{q}q - c)\right)$$

 $\epsilon^{\alpha}$ ,  $\xi^{\alpha}$ ,  $\alpha=1,2$ , and c.c. are the parameters of  $\mathcal{N}=2$  susy

By setting  $i T_3 \xi = \varepsilon$ , the above becomes

$$F_{12}=\sqrt{2}(ar q q-c)$$
 self-dual vortex equations ( $\mathcal N$  = (2,2) supersymmetric)  $(D_1+iD_2)\,q=0$ 

half of supersymmetry broken by vortex 

 fermion zeromodes

## Effective 2D sigma model

dt dz

- Allow for the dependence U= U(z,t): the orientation fluctuates
- Vortex 2D dynamics in <u>Higgs</u> phase (U(2))

$$S_{\sigma}^{(1+1)}=eta\int d^2xrac{1}{2}\left(\partial\,n^a
ight)^2$$
 + fermionic terms

N=(2,2) supersymmetric CP¹ sigma model:
strongly coupled at low-energies
2 vacua → kinks = (Abelian) monopoles!

Vafa, Hori ABEKY, Shifman-Yung

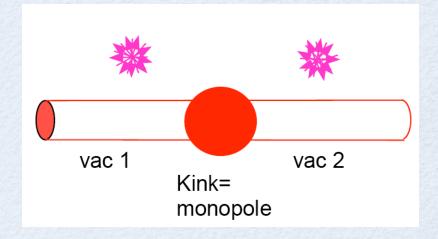
■ Gauge dynamics in 4D in <u>Coulomb</u> phase
 (Seiberg-Witten)

Tong, Shifman-Yung

2D - 4D duality

Dorey

- Global SU(2) unbroken (Coleman)
- Vortex dynamically Abelianizes



# Summary (up to this point):

U(N) gauge theory with  $N_f = N$  squarks fields:

- SU(N)xU(I) gauge group broken completely
- $\prod_{I} (SU(N)xU(I)/Z_N) = Z \Rightarrow vortex$
- $SU(N)_{C+F}$  flavor symmetry unbroken  $U \langle H \rangle U^{-1} = \langle H \rangle *$
- Each vortex breaks the  $SU(N)_{C+F}$  flavor symmetry to U(N-I)
- The orientational zeromodes on  $CP^{N-1} = SU(N)/U(N-1)$ 
  - The moduli-matrix formalism: tool for studying the vortex Moduli Space
  - The orientational zeromodes may fluctuate along (z,t): effective 2D supersymmetric  $CP^{N-1}$  sigma model. Dynamically Abelianize to  $U(1)^N$

• Search for systems with non-Abelian vortices of a more general types

\*) System with "color-flavor locked phase" appears naturally and automatically in  $\mathcal{N}=2$  supersymmetric Quantum Chromodynamics (SQCD), in the equal mass case

Higgs mechanism

topological stability

exact symmetry

symmetry broken by soliton and vortex moduli

techniques

vortex quantum dynamics

supersymmetry

#### Generalizations ('04-'09)

- Higher-winding vortices (k>1), the vortex moduli space
- $\bullet$   $N_f > N$  systems: semi-local vortices; the vortex moduli space
- Systems with a non BPS (non self-dual) term: vortex interactions
- Stability of non BPS (non self-dual) semi-local vortices
- Non-Abelian vortices in Chern-Simons and Chern-Simons-YM systems in 2+1 D (S.B.Gudnason, 2009, 2010)
- Non-Abelian vortices in U(N) gauge theory, with product moduli space e.g.,  $CP^n \times CP^r$ , N=n+r
- Non-Abelian vortices in more general class of gauge theory,  $G = G' \times U(1)$ , G' = SO(N), USp(2N), ...
- Fractional vortices

next lecture

Relevance to the non-Abelian monopoles

below

#### Generalizations '06-'07

#### EAH model

Vachaspati-Achucarro, Hindmarsh

• Semilocal vortices  $(U(N) \text{ with } N < N_f)$ 

Tong, Shifman-Yung, Eto-Evslin-KK-Marmorini-Nitta-Ohashi-Vinci-Yokoi

New (Seiberg-like) duality

$$N_f=3,N_c=2$$

 $WCP^2[1,1,-1]$   $\tilde{\mathbf{C}}^2$  Seiberg duality  $\mathbf{C}^2$   $\tilde{g}^2 \to \infty$   $(\mathbf{C}^2)^*$ 

 $N_f=3,N_c=1$ 

Non-BPS vortices

Nontrivial interactions among the vortices

Type III vortices

Shifman-Yung; Auzzi-Eto-Vinci; Gudnason-Bolognesi

Vortices in SO(N)xU(1) theories

GNO duality:

$$SO(2N+1) \Leftrightarrow USp(2N);$$

$$SO(2N) \Leftrightarrow SO(2N)$$
, etc

Ferretti-Gudnason-KK '07 Eto-Fujimori-Gudnason-KK-Nagashima-Nitta-Ohashi '08

# Further generalizations: '08-'09

Non-BPS Non-Abelian vortices: stability

Auzzi-Eto-Gudnason-KK-Vinci '08

• Non-Abelian vortices with product moduli (no dynamical Abelianization)

Dorigoni-KK-Ohashi '08

General gauge groups

Vortex for G= G' x U(1): arbitrary G'

Eto-Fujimori-Gudnason-KK-Nagashima-Nitta-Ohashi '08

Fractional vortices

# Vortices with higher winding numbers '06 -

Detailed study of k=2 (axially symmetric) vortices of U(N) theory

$$\square \otimes \square = \square \oplus \square$$
 under SU(N)<sub>C+F</sub>

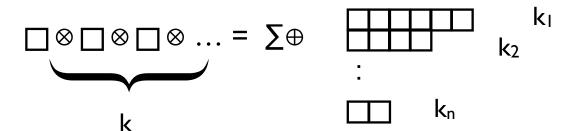
Hashimoto-Tong; Auzzi-Shifman-Yung; Pisa-TiTech '06-07

For U(2), k=2 case: the vortex moduli space = WCP<sub>(2,1,1)</sub> ( $\rightarrow$  next pages)

Vortices for generic k in U(N) theory

transform as

Pisa-Tokyo-Kyoto '09 (preliminary)



Sum of the Young tableaux ~ Irreps of SU(N)

Points in classical vortex moduli space transform as quantum mechanical states in various (in general reducible) representations of SU(N)

# Higher-winding vortices

$$(z = x + i y)$$

$$H_0^{(1,0)}(z)=\left(egin{array}{ccc} z-z_0 & 0 \ -b' & 1 \end{array}
ight), \qquad H_0^{(0,1)}(z)=\left(egin{array}{ccc} 1 & -b \ 0 & z-z_0 \end{array}
ight) \ b=rac{1}{b'} \qquad ext{CPI} \ egin{array}{cccc} \mathsf{k=I} & \mathsf{vortex} \end{array}$$

Moduli matrix in three local patches (related by V transf.)

$$H_0^{(2,0)} = \left(egin{array}{ccc} z^2 & 0 \ -a'\,z - b' & 1 \end{array}
ight), \; H_0^{(1,1)} = \left(egin{array}{ccc} z - \phi & -\eta \ - ilde{\eta} & z + \phi \end{array}
ight), \; H_0^{(0,2)} = \left(egin{array}{ccc} 1 & -a\,z - b \ 0 & z^2 \end{array}
ight)$$

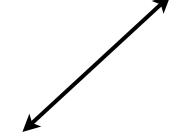
$$XY \equiv -\phi, \quad X^2 \equiv \eta, \quad Y^2 \equiv - ilde{\eta}. \qquad \phi^2 + \eta\, ilde{\eta} = 0.$$

$$\phi^2 + \eta \, \tilde{\eta} = 0.$$

$$\det H = z^2$$

$$\left(egin{array}{c} a' \ 1 \ b' \end{array}
ight) \sim \left(egin{array}{c} 1 \ X \ Y \end{array}
ight) \sim \left(egin{array}{c} -a \ b \ 1 \end{array}
ight)$$

$$egin{aligned} ilde{\mathcal{M}}_{N=2,k=2} &\simeq W\mathrm{C}P_{(2,1,1)}^2 &\simeq \ &\simeq \mathrm{C}P^2/\mathrm{Z}_2 &\simeq \mathrm{C}P^2 \end{aligned}$$



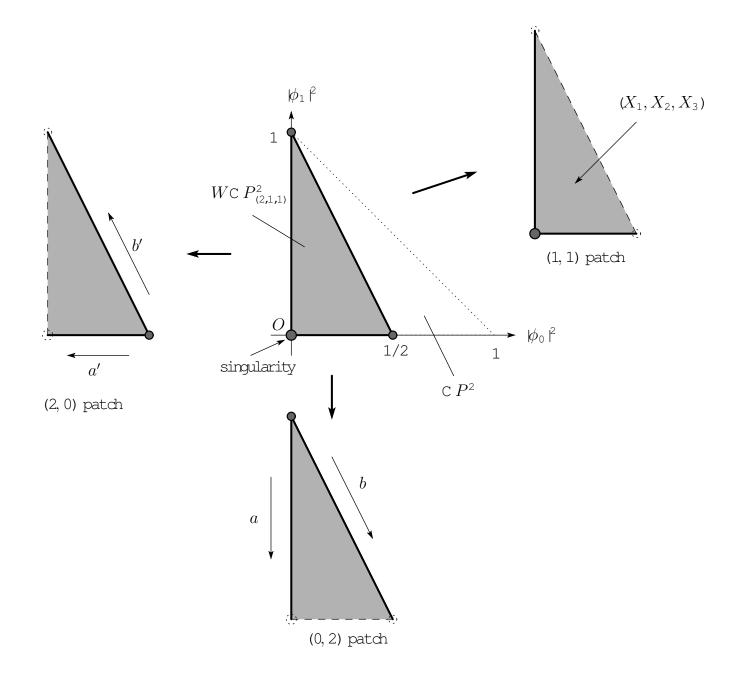
WCP<sub>(2,1,1)</sub>: 
$$(z_1, z_2, z_3) \sim (\lambda^2 z_1, \lambda z_2, \lambda z_3), \lambda \in C^*$$

 $\mathcal{M}_{k=2}^{\text{separated}} \simeq \left(\mathbf{C} \times \mathbf{C} P^{1}\right)^{2} / \mathfrak{S}_{2},$ 

Eto, Konishi, Marmorini, Nitta, Ohashi, **'06** Vinci. Yokoi

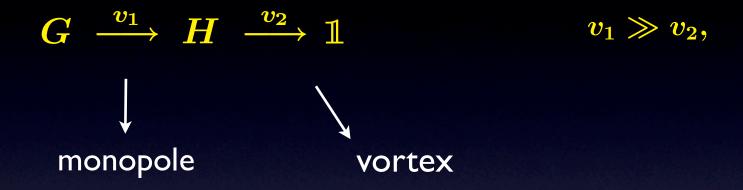
Hashimoto-Tong, Shifman-Yung '06

 $SO(5) \Rightarrow U(2) \Rightarrow I$  : k=2 vortices are in 3 + I of  $SU(2) \Rightarrow I$ Monopoles (E.Weinberg)  $\sim 3$  or 1 of SU(2)!



# Monopole-vortex connection

Consider hierarchical symmetry breaking



- Apparent paradox (no monopoles, no vortices)  $\Rightarrow$
- Topology and symmetry connect monopoles and vortices
- Non-Abelian vortices ⇒ non-Abelian monopoles

A 30-years old problem, possibley relevant to quark confinement

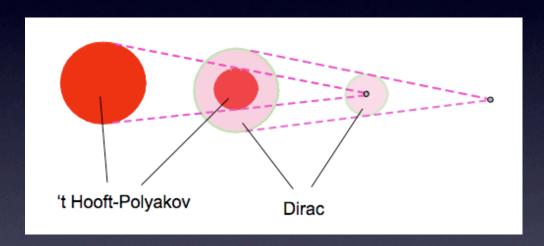
# Homotopy-group map

 $v_1\gg v_2,$ 

Vortex! (but also monopole)

Homotopy-group exact sequence:

$$\cdots o \pi_2(G) o \pi_2(G/H) o \pi_1(H) o \pi_1(G) o \cdots$$



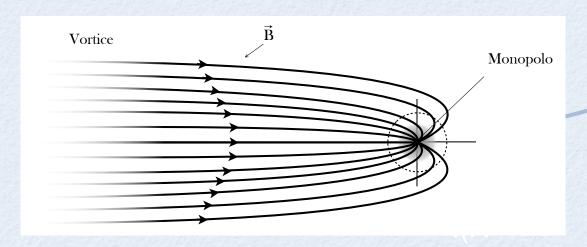
- $\pi_2(G) = I \Rightarrow \text{Regular monopoles confined by vortices}$

 $\left\{ \begin{array}{l} \bullet \quad \pi_{l}(G) = I \implies \text{All vortices "end" at regular monopoles} \\ \bullet \quad \pi_{l}(G) = Z_{2} \implies \quad \text{k=2 vortices "end" at regular monopoles!} \end{array} \right.$ 

't Hooft SO(3)/U(1)

k=1 vortices are there: confine Dirac monopoles cfr., SO(N)

# Non-Abelian monopole moduli from vortex moduli in the system $G \xrightarrow{v_1} H \xrightarrow{v_2} 1$





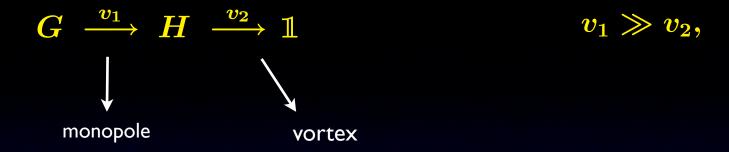
(Auzzi-Bolognesi-Evslin-KK; Kneipp)

$$SU(N+1) \Rightarrow SU(N) \times U(1)$$
  
 $\Rightarrow 1$ 

Exact H<sub>C+F</sub> induces continuous transformation of vortex -- and monopole

Study in more detail this!

# A tricky point



- Vortices of the low-energy theory  $(v_1 = \infty)$  are BPS
- Monopoles of the high-energy theory ( $v_2 = 0$ ) are stable by  $\prod_2 (G/H)$
- Together, they are not BPS, only approximately BPS
  - bad: the monopole-vortex complex is not a solution (not stable)
  - good: Non-Abelian vortices ⇒ non-Abelian monopoles; good: real mesons

$$egin{aligned} E &= \int d^3x [\,rac{1}{4}F^{a\,2}_{ij} + rac{1}{2}(D_i\phi^a)^2 + rac{\lambda}{8}(\phi^{a\,2} - F^2)^2\,] \ &= \int d^3x [\,rac{1}{4}(F^a_{ij} - \epsilon_{ijk}\,D_k\phi^a)^2 + rac{1}{2}\epsilon_{ijk}\,F^a_{ij}\,D_k\,\phi^a + rac{\lambda}{8}(\phi^{a\,2} - F^2)^2 \ &F^a_{ij} = \epsilon_{ijk}D_k\phi^a, \quad rac{1}{2}\epsilon_{ijk}\,F^a_{ij}\,D_k\,\phi^a = \partial_k\,B_k, \qquad B_k = rac{1}{2}\epsilon_{ijk}\,F^a_{ij}\,\phi^a. \end{aligned}$$

# Non-Abelian monopoles

$$G \stackrel{\langle \phi 
angle 
eq 0}{\longrightarrow} H$$

Goddard-Nuyts-Olive, E.Weinberg, Lee, Yi, Bais, Schroer, .... '77-80

H: non-Abelian

$$F_{ij} = \epsilon_{ijk} rac{r_k}{r^3} (eta \cdot \mathrm{T}), \qquad \mathbf{2}\,eta \cdot lpha \in \mathbf{Z}$$

cfr. (Dirac)

 $2 m \cdot e \in Z$ 

"Monopoles are multiplets of  $\widetilde{H}$  (GNOW)"

$$eta$$
= weight vector of the group  $\widetilde{\mathsf{H}}$  generated by  $\alpha^* \equiv \frac{\alpha}{\alpha \cdot \alpha}$ .

$$\langle \Phi \rangle = v_i = h \cdot T$$

| Н                     | Ĥ                    |
|-----------------------|----------------------|
| U(N)                  | U(N)                 |
| SU(N)                 | SU(N)/Z <sub>N</sub> |
| SO(2N)/Z <sub>2</sub> | SO(2N)               |
| SO(2N+1)              | USp(2N)              |

$$SU(3) \xrightarrow{\langle \phi \rangle} \frac{SU(2) \times U(1)}{\mathbb{Z}_2}, \qquad \langle \phi \rangle = \begin{pmatrix} v & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & -2v \end{pmatrix}$$

# **Difficulties**

```
① Topological obstructions (Abouelsaad et.al. '83) \Phi = \text{diag}(v,v,-2v) e.g., SU(3) → SU(2)×U(1), \# monopoles ~ (2, \# l* ) "No colored dyons exist" (Coleman, et.al. '84)
```

② Non-normalizable gauge zero modes:
Monopoles not multiplets of H

(Dorey, et.al. '96)

cfr.
Jackiw-Rebbi
Flavor Q.N. of monopoles
via
fermion zeromodes

The real issue: how do they transform under  $\widetilde{H}$ ?

- H and H relatively nonlocal
- $\widetilde{H}$  theory in confinement phase  $\Leftrightarrow H$  theory in Higgs phase

# Light non-Abelian monopoles ('94-'00)

Fully quantum-mechanical non-Abelian monopoles in N=2 supersymmetric theories (also N=1, N=4)

**Table** 

Seiberg-Witten '94 Argyres, Plesser, Seiberg, '96 Hanany-Oz, '96 Carlino-KK-Murayama '00

- Colored dyon  $\sim (2, 1)$  in  $SU(3) \rightarrow SU(2) \times U(1)$  do exist!
- Non-Abelian dual groups (monopoles) only in theories with flavors
  - Renomalization-Group effect: the dual SU(r) group only for  $r < N_f/2$
  - Only Abelian monopoles in pure N=2 YM or with SU(2) group

## Softly broken N=2 supersymmetric SU, SO, USp

$$G \stackrel{v_1}{\longrightarrow} H \stackrel{v_2}{\longrightarrow} \mathbb{1}$$

$$v_1\gg v_2,$$

mass parameters

G=SU(N+1); H=U(N)

$$\mathcal{L} = rac{1}{8\pi} ext{Im} \, S_{cl} \left[ \int d^4 heta \, \Phi^\dagger e^V \Phi + \int d^2 heta \, rac{1}{2} WW 
ight] + \mathcal{L}^{(quarks)} + \int d^2 heta \, \mu \, ext{Tr} \Phi^2 
ight]$$

$$\mathcal{L}^{(quarks)} = \sum_i [\int d^4 heta \, \{Q_i^\dagger e^V Q_i + ilde{Q}_i e^{-V} ilde{Q}_i^\dagger\} + \int d^2 heta \, \{\sqrt{2} ilde{Q}_i \Phi Q^i + m ilde{Q}_i Q^i\} ]$$

#### Bosonic Lagrangean

$$m \gg \mu \gg \Lambda$$
:  
semi-classical

$$\mathcal{L}=rac{1}{4g^2}F_{\mu
u}^2+rac{1}{g^2}|\mathcal{D}_{\mu}\Phi|^2+|\mathcal{D}_{\mu}Q|^2+\left|\mathcal{D}_{\mu}ar{ ilde{Q}}
ight|^2-V_1-V_2, \quad egin{matrix} \mathsf{m}\sim \mu \sim \Lambda: \ \mathsf{fully quar} \end{matrix}$$

$$m \sim \mu \sim \Lambda$$
: fully quant. mech.

$$\langle \Phi 
angle = -rac{1}{\sqrt{2}} \left( egin{array}{cccc} m & 0 & 0 & 0 \ 0 & \ddots & dots & dots \ 0 & \ldots & m & 0 \ 0 & \ldots & 0 & -N \, m \end{array} 
ight);$$

$$\mathbf{v}_1 = \mathbf{m}$$
  
 $\mathbf{v}_2 = \sqrt{\mu}\mathbf{m}$ 

$$SU(N+1) \Rightarrow U(N)$$

$$Q = \tilde{Q}^{\dagger} = \begin{pmatrix} d & 0 & 0 & 0 & 0 & \dots \\ 0 & \ddots & 0 & \vdots & \vdots & \dots \\ 0 & 0 & d & 0 & 0 & \dots \\ 0 & \dots & 0 & -N & d & 0 & \dots \end{pmatrix}, \quad d = \sqrt{(N+1) \mu m} \ll m.$$

$$d=\sqrt{(N+1)\,\mu\,m}\ll m.$$

### Phases of Softly Broken $\mathcal{N}=2$ Gauge Theories

| label $(r)$                         | Deg.Freed.   | Eff. Gauge Group                                  | Phase         | Global Symmetry            |
|-------------------------------------|--------------|---------------------------------------------------|---------------|----------------------------|
| 0                                   | monopoles    | $U(1)^{n_c-1}$                                    | Confinement   | $\overline{U(n_f)}$        |
| 1                                   | monopoles    | $U(1)^{n_c-1}$                                    | Confinement   | $U(n_f-1)\times U(1)$      |
| $\leq \left[\frac{n_f-1}{2}\right]$ | NA monopoles | $SU(r) \times U(1)^{n_c-r}$                       | Confinement   | $U(n_f - r) \times U(r)$   |
| $n_f/2$                             | rel. nonloc. | -                                                 | Confinement   | $U(n_f/2) \times U(n_f/2)$ |
| BR                                  | NA monopoles | $SU(\tilde{n}_c) \times U(1)^{n_c - \tilde{n}_c}$ | Free Magnetic | $U(n_f)$                   |

#### Table 1: Phases of $SU(n_c)$ gauge theory with $n_f$ flavors. $\tilde{n}_c \equiv n_f - n_c$ .

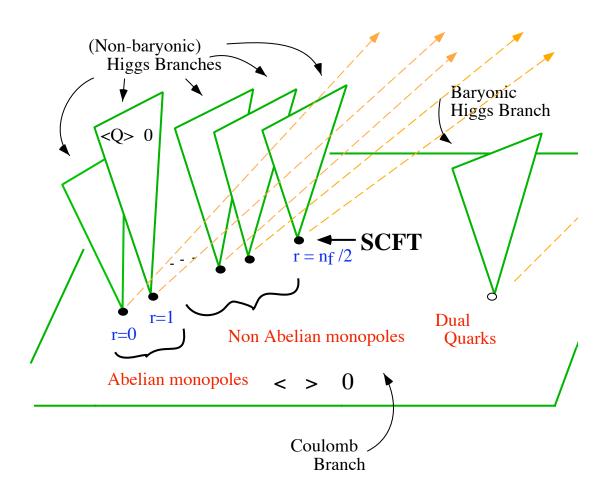
|           | Deg.Freed.   | Eff. Gauge Group                                    | Phase         | Global Symmetry |
|-----------|--------------|-----------------------------------------------------|---------------|-----------------|
| 1st Group | rel. nonloc. | -                                                   | Confinement   | $U(n_f)$        |
| 2nd Group | dual quarks  | $USp(2\tilde{n}_c) \times U(1)^{n_c - \tilde{n}_c}$ | Free Magnetic | $SO(2n_f)$      |

Table 2: Phases of  $USp(2n_c)$  gauge theory with  $n_f$  flavors with  $m_i \to 0$ .  $\tilde{n}_c \equiv n_f - n_c - 2$ .

$$\mathcal{W}(\phi, Q, \tilde{Q}) = \mu \operatorname{Tr}\Phi^2 + m_i \tilde{Q}_i Q^i, \qquad m_i \to 0$$

Dual qualks of r vacua are GNO monopoles

#### QMS of N=2 SQCD (SU(n) with nf quarks)



- N=1 Confining vacua (with  $\Phi^2$  perturbation)
- $\circ$  N=1 vacua (with  $\Phi^2$  perturbation) in free magnetic pha

# Summary: Lecture I

- Non-Abelian vortices in U(N) gauge theory with  $N_f = N$  matter fields
- Color-flavor locked vacuum
- Vortex moduli in CP<sup>N-1</sup>
- Supersymmetry: marginal role classically, but more important in the dynamics. Self-dual equations

#### Generalization:

- Vortices in general gauge systems
- Vortices with product moduli space
- Fractional vortices
- Monopole-vortex complex



# Lecture II

- Vortices in general gauge systems
- Vortices with product moduli space
- Fractional vortices
- Monopole-vortex complex

# § 1. Vortex in general gauge theories

- G= U(I) x G'
- G'= SU(N), SO(N),  $US_p(N)$ , ... ...

('08,'09) M. Eto, M. Nitta, S.B. Gudnason, W. Vinci, K.K. T. Fujimori, T. Nagashima, K.Ohashi (Pisa, Tokyo, Cambridge)

- FI term for the U(I) factor (vortex)
- Color-flavor locked phase with exact, unbroken G'<sub>C+F</sub> symmetry

$$\mathcal{L}=\mathrm{Tr}_c\left[-rac{1}{2e^2}F_{\mu
u}F^{\mu
u}-rac{1}{2g^2}\hat{F}_{\mu
u}\hat{F}^{\mu
u}+\mathcal{D}_{\mu}H\left(\mathcal{D}^{\mu}H
ight)^{\dagger}-rac{e^2}{4}\left|X^0t^0-2\xi t^0
ight|^2-rac{g^2}{4}\left|X^at^a
ight|^2
ight]$$

$$X = HH^{\dagger} = X^0t^0 + X^at^a + X^{\alpha}t^{\alpha}$$

$$\langle H 
angle = rac{v}{\sqrt{N}} \mathbb{1}_N \ , \qquad \xi = rac{v^2}{\sqrt{2N}}$$

$$ar{H} = S^{-1}(z,ar{z}) H_0(z) \; , \qquad ar{A} = -i S^{-1}(z,ar{z}) ar{\partial} S(z,ar{z})$$

$$egin{align} ar{\mathcal{D}}H &= ar{\partial}H + iar{A}H = 0 \;, \ F_{12}^0 &= e^2 \left[ \operatorname{Tr}_c \left( HH^\dagger t^0 
ight) - \xi \, 
ight] \;, \ F_{12}^a &= g^2 \operatorname{Tr}_c \left( HH^\dagger t^a 
ight) \;. \ \end{matrix}$$

 $H_0(z)$  moduli matrix

## General Procedure (SO(2M), USp(2M), SO(2M+1))

Self-dual equations

Matter equation (\*) solved by the Ansatz

$$egin{align} W_1 + i W_2 &= -2i S^{-1}(z,ar{z}) ar{\partial} S(z,ar{z}) \ &H = S^{-1} H_0(z) = S_e^{-1} S'^{-1} H_0(z) \ &S(z,ar{z}) = S_e(z,ar{z}) S'(z,ar{z}) \qquad S_e \in U(1)^\mathbb{C} \simeq \mathbb{C}^* \ \end{aligned}$$

 $H_0$ , S defined up to

$$(H_0,S) \sim V_e \, V'(z) (H_0,S), \quad V'(z)^T J V'(z) = J.$$

Define now

$$\Omega_e \equiv S_e S_e^\dagger \equiv e^{\psi 1_{2N}} \in U(1)^\mathbb{C}, \quad \Omega' \equiv S' S'^\dagger \in G'^\mathbb{C},$$

$$\Omega_0 \equiv H_0 H_0^\dagger$$

Gauge-field equations become (master eq.) given  $H_0$  (z),

$$ar{\partial}\partial\psi = -rac{e^2}{4N}ig(\mathrm{tr}\,(\Omega_0\Omega'^{-1})e^{-\psi}-v^2ig), \ ar{\partial}(\Omega'\partial\Omega'^{-1}) = rac{g^2}{8}ig(\Omega_0\Omega'^{-1}-J^\dagger(\Omega_0\Omega'^{-1})^TJig)e^{-\psi},$$

(\*\*) 
$$J = \begin{pmatrix} \mathbf{0}_M & \mathbf{1}_M \\ \epsilon \mathbf{1}_M & \mathbf{0}_M \end{pmatrix}$$
  $\epsilon = \pm 1, \quad SO(2M), USp(2M)$ 

#### Holomorphic Invariants

= 1 SO(2N+1); = N for SU(N)

$$I_{G'}^i(H) = I_{G'}^i\left(s^{-1}S'^{-1}H_0
ight) = s^{-n_i}I_{G'}^i(H_0(z))$$
 $G'$  - invariants made of H
 $n_i$ : U(I) charge
$$I_{G'}^i(H) = I_{\text{vev}}^i e^{i\nu n_i \theta}$$
 $I_{G'}^i(H) = I_{\text{vev}}^i e^{i\nu n_i \theta}$ 
 $I_{G'}^i(H_0) = s^{n_i}I_{G'}^i(H) \stackrel{|z| \to \infty}{\longrightarrow} I_{\text{vev}}^i z^{\nu n_i}.$ 
 $\nu n_i \in \mathbb{Z}_+ \longrightarrow \nu = \frac{k}{n_0}, \quad k \in \mathbb{Z}_+$ 

$$n_0 \equiv \gcd\left\{n_i \mid I_{\text{vev}}^i \neq 0\right\}$$
 $G = [U(1) \times G'] / \mathbb{Z}_{n_0}$ 
 $G = [U(1) \times G'] / \mathbb{Z}_{n_0}$ 
 $G = [U(1) \times G'] / \mathbb{Z}_{n_0}$ 
 $G = [U(1) \times G'] / \mathbb{Z}_{n_0}$ 

### GNOW (Goddard-Nuyts-Olive-E. Weinberg) quantization

#### Representative (vortex) solutions

#### Remarks:

- (\*) formally identical to the GNOW "quantization" for the monopoles (Goddard-Nuyts-Olive, E.Weinberg)
- (\*) formally identical to that found for "non-Abelian vortices" for YM (Spanu-Konishi)
- The latter are actually  $Z_N$  vortices
- The former has the well-known difficulties
- Our vortices have continuous (orientational) moduli
- Their transformation  $\sim$  various irred. representations of the dual G' group,  $\tilde{G}'$
- Explicitly checked with G'= SU(N), SO(2N); Other groups under study

#### Vortex in $SO(2N)xU(1)/Z_2$ models

Gudnason-Ferretti-KK

$$q(r, artheta) = egin{pmatrix} M_1(r, artheta) & 0 & 0 & \cdots \ 0 & M_2(r, artheta) & 0 & \cdots \ 0 & 0 & M_3(r, artheta) & \cdots \ dots & dots & dots & dots \end{pmatrix} egin{pmatrix} M_{ ext{i}} \sim 2 \text{x2 matrices} \ H^{(a)} = \left(egin{array}{ccc} 0 & -i \ i & 0 \end{array}
ight)_{2a+1,2a+2} \end{split}$$

$$H^{(a)}=\left(egin{array}{cc} 0 & -i \ i & 0 \end{array}
ight)_{2a+1,2a+2}$$

Squark fields at large  $r = SO(2N)xU(1)/Z_2$ closed (non-contractible) gauge orbits

$$q(\varphi) \sim e^{i\left[\frac{1}{2}T_0 + \sum_i (\pm \frac{1}{2})T_i\right]\varphi}$$

Minimum vortices classified by the  $U_0(1)$  and Cartan U(1) charges

$$V \sim SO(2N)/U(N)$$

Each of them leaves an  $U(N) \subset$ SO(2N)<sub>C+F</sub> unbroken

 $\sim$  2<sup>N-1</sup> dim spinor representations of an SO(2N)

Vortex moduli space ~ quantum states of a particle in 2<sup>N-1</sup> dim spinor repr.

Examples: k=1 vortices for G' = SO(2N) and USp(2N) Moduli matrices

skew-diagonal basis 
$$Q^T J Q = inv$$
,

$$H_0(z) = egin{pmatrix} z \, \mathbf{1}_{N \times N} & \mathbf{0} \\ \mathbf{B} & \mathbf{1}_{N \times N} \end{pmatrix}$$

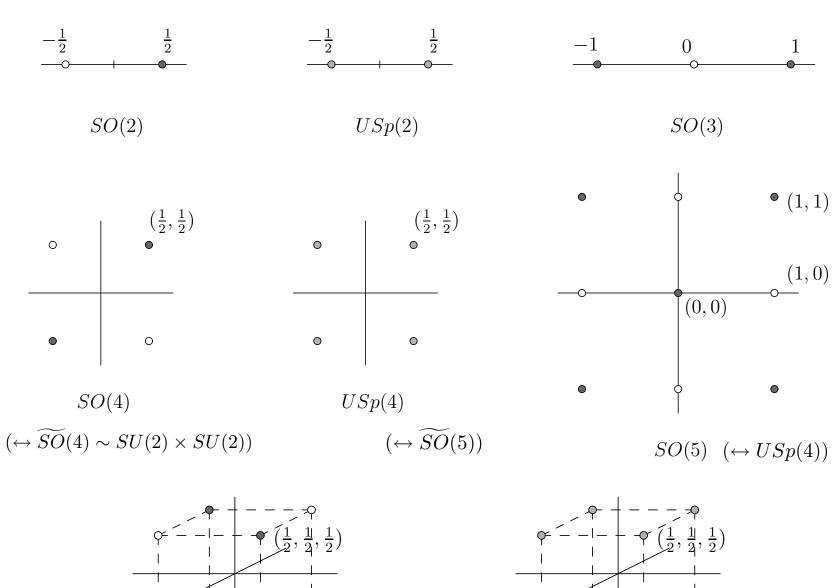
$$\mathsf{J} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \pm \mathbf{1} & \mathbf{0} \end{pmatrix}$$

Complex matrix B, are symmetric or antisymetric  $B^T = B$ , - B for USp(2N), SO(2N), respectively

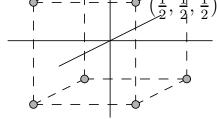
Complex matrix B contain

$$\frac{N(N+1)}{2} \qquad \text{free (complex) parameters labeling the coset USp(2N)/U(N)} \\ \frac{N(N-1)}{2} \qquad \text{free (complex) parameters labeling the coset SO(2N)/U(N)}$$

Elements of B are the local coordinates



$$SO(6) \ (\leftrightarrow \widetilde{SO}(6))$$



k=I vortices

$$USp(6) \ (\leftrightarrow \widetilde{SO}(7))$$

# § 2. Vortex with product moduli

- The non-Abelian vortex in U(N) theory with  $N_f = N$  (\*) dynamically Abelianizes
- Correspondence classical-quantum r vacua in fact suggests that the original "non-Abelian vortex" (\*) is related to the quantum r=0 vacuum (with Abelian monopoles)
- In 4D  $\mathcal{N}=2$  Supersymmetric QCD, there are vacua with light non-Abelian monopoles
- There must be, in semi-classical region, corresponding vortices which do not completely Abelianize

**4D:** • U(N) low-energy model from  $SU(N+1) \Rightarrow SU(N) \times U(1)/Z$ 

• r= N<sub>f</sub> vacuum (classical) 
$$\langle \Phi \rangle = -\frac{1}{\sqrt{2}} \begin{pmatrix} m & 0 & 0 & 0 \\ 0 & \ddots & \vdots & \vdots \\ 0 & \dots & m & 0 \\ 0 & \dots & 0 & -N \, m \end{pmatrix};$$
 • quantum mechanically only r < N<sub>f</sub>/2

- classical (r)  $\Leftrightarrow$  quantum (N<sub>f</sub> r) vacua

$$m \gg \mu \gg \Lambda: \qquad \Longleftrightarrow \qquad m \sim \mu \sim \Lambda: \qquad \qquad \text{(Vacuum counting; symmetry)}$$

• U(N) model: quantum r = 0 vacua! (Abelian monopoles only)

N.B.

|                                                              | Confinement | $U(n_f)$                 |
|--------------------------------------------------------------|-------------|--------------------------|
|                                                              |             |                          |
| 1 monopoles $U(1)^{N-1}$                                     | Confinement | $U(N_f-1)	imes U(1)$     |
| $[2,,[rac{N_f-1}{2}]]$ NA monopoles $SU(r)	imes U(1)^{N-r}$ | Confinement | $U(N_f-r)	imes U(r)$     |
| $N_f/2$ rel./nonloc A                                        | Almost SCFT | $U(N_f/2)	imes U(N_f/2)$ |

Q: Non-Abelian vortices which do not dynamically Abelianize?

(&) U(N) model (with  $N_f = N$  "flavors" of complex scalar fields -- squarks)

$$\mathcal{L} = \operatorname{Tr} \left[ -\frac{1}{2g^2} F_{\mu\nu} F^{\mu\nu} - \frac{2}{g^2} \mathcal{D}_{\mu} \phi^{\dagger} \mathcal{D}^{\mu} \phi - \mathcal{D}_{\mu} H \mathcal{D}^{\mu} H^{\dagger} - \lambda \left( c \, \mathbb{1}_N - H \, H^{\dagger} \right)^2 \right]$$

$$+ \operatorname{Tr} \left[ (H^{\dagger} \phi - M \, H^{\dagger}) (\phi \, H - H \, M) \right]$$

$$F_{\mu\nu} = \partial_{\mu} W_{\nu} - \partial_{\nu} W_{\nu} + i \left[ W_{\mu}, W_{\nu} \right] \text{ and } \mathcal{D}_{\mu} H = (\partial_{\mu} + i \, W_{\mu}) \, H,$$

 $(H)^i_lpha\equiv q^i_lpha$  : N complex scalar fields in the fundamental representation of SU(N), written in color-flavor mixed matrix form

 $\phi$  A complex scalar field in the adjoint representation of SU(N)

 $M=diag\left(m_1,m_2,\ldots,m_N
ight)$  is the mass matrix for the squarks q

- For a critical coupling constant  $\lambda=\frac{g^2}{4}$  \*) BPS (self-dual) (automatic in Susy) the model can be regarded as a truncation of the bosonic sector of a N=2 supersymmetric model, with  $(H)^i_{\alpha}\equiv q^i_{\alpha},\quad \tilde{q}^{\alpha}_i\equiv 0$
- In this case c comes from the Fayet-Iliopoulos term  $L = c V|_D$
- For unequal masses  $\langle \phi \rangle = M = \begin{pmatrix} m_1 & 0 & 0 & 0 \\ 0 & m_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & m_N \end{pmatrix} \text{ breaks } U(N) \rightarrow U(I)^N$   $U(I), \text{ s broken by the squark vac. exp. value } \rightarrow \text{ANO vortex nothing really new}$

# The Model: the same SU(N), $N = N_f$ , softly broken N=2 SQCD (&) but with appropriately tuned masses

N=1 SQCD QMS  $\Leftrightarrow m_i$ ,  $m_i \Rightarrow 0$ 

$$M = \left(egin{array}{cc} m^{(1)}\,\mathbb{1}_{n imes n} & 0 \ 0 & m^{(2)}\,\mathbb{1}_{r imes r} \end{array}
ight)$$

$$N=n+r$$
;

i.e., 
$$n m^{(1)} + r m^{(2)} = 0$$

or 
$$m^{(1)}=rac{r\,m_0}{\sqrt{r^2+n^2}}, \quad m^{(2)}=-rac{n\,m_0}{\sqrt{r^2+n^2}},$$

$$|m_0|\gg |\mu|\gg \Lambda$$
 .

Adjoint scalar VEV 
$$\langle \Phi 
angle = -rac{1}{\sqrt{2}} \left(egin{array}{cc} m^{(1)} \, \mathbb{1}_{n imes n} & 0 \ 0 & m^{(2)} \, \mathbb{1}_{r imes r} \end{array}
ight)$$

$$\mathsf{SU}(\mathsf{N})|_{\mathsf{CFF}} \Rightarrow \ \ G = rac{SU(n) imes SU(r) imes U(1)}{\mathbb{Z}_K}, \ \ K = \mathrm{LCM}\left\{n,r
ight\}$$

$$Q(x) = \left(egin{array}{ccc} q^{(1)}(x)_{n imes n} & 0 \ 0 & q^{(2)}(x)_{r imes r} \end{array}
ight) \, ,$$

$$ilde{Q}(x) = \left(egin{array}{ccc} ilde{q}^{(1)}(x)_{n imes n} & 0 \ 0 & ilde{q}^{(2)}(x)_{r imes r} \end{array}
ight)$$

| fields           | U(1)                      | SU(n)                        | SU(r)                        |
|------------------|---------------------------|------------------------------|------------------------------|
| $q^{(1)}$        | $\lambda_1$               | $\underline{\boldsymbol{n}}$ | <u>1</u>                     |
| $	ilde{q}^{(1)}$ | $-\boldsymbol{\lambda_1}$ | $\underline{n}^*$            | <u>1</u>                     |
| $q^{(2)}$        | $-\boldsymbol{\lambda_2}$ | <u>1</u>                     | $\underline{\boldsymbol{r}}$ |
| $	ilde{q}^{(2)}$ | $\boldsymbol{\lambda_2}$  | <u>1</u>                     | $\underline{r}^*$            |

$$\lambda_1 \equiv rac{r}{\sqrt{2\,n\,r\,(r+n)}}; \qquad \lambda_2 \equiv rac{n}{\sqrt{2\,n\,r\,(r+n)}}$$

vortex Ansatz:

$$V_D = 0$$

$$ilde{q}^{(1)} = (q^{(1)})^{\dagger},$$

$$q^{(2)} = -( ilde{q}^{(2)})^{\dagger} \; ;$$

$$\langle Q 
angle = \left(egin{array}{ccc} v^{(1)} \, \mathbbm{1}_{n imes n} & 0 \ 0 & -v^{(2)} \, ^* \, \mathbbm{1}_{r imes r} \end{array}
ight) \,, \quad \langle ilde{Q} 
angle = \left(egin{array}{ccc} v^{(1)} \, ^* \, \mathbbm{1}_{n imes n} & 0 \ 0 & v^{(2)} \, \mathbbm{1}_{r imes r} \end{array}
ight) \,,$$

breaks G completely

$$|v^{(1)}|^2 + |v^{(2)}|^2 = \sqrt{rac{n+r}{n\,r}}\,\mu\,m_0$$

$$\mathcal{L} = -\frac{1}{4g_0^2} F_{\mu\nu}^{0\,2} - \frac{1}{4g_n^2} F_{\mu\nu}^{n\,2} - \frac{1}{4g_r^2} F_{\mu\nu}^{r\,2} + \frac{1}{g_0^2} |\mathcal{D}_{\mu}\Phi^{(0)}|^2 + \frac{1}{g_n^2} |\mathcal{D}_{\mu}\Phi^{(n)}|^2 + \frac{1}{g_r^2} |\mathcal{D}_{\mu}\Phi^{(r)}|^2 + \left|\mathcal{D}_{\mu}\bar{q}^{(1)}\right|^2 + \left|\mathcal{D}_{\mu}\bar{q}^{(1)}\right|^2 + \left|\mathcal{D}_{\mu}q^{(2)}\right|^2 + \left|\mathcal{D}_{\mu}\bar{q}^{(2)}\right|^2 - V_D - V_F, \tag{2.11}$$

$$V_D = rac{1}{8} \sum_A \left( \operatorname{Tr} t^A \left[ rac{2}{g^2} \left[ \Phi, \Phi^\dagger 
ight] + \sum_i (Q_i Q_i^\dagger - ilde{Q}_i^\dagger ilde{Q}_i) \, 
ight] 
ight)^2;$$

$$\begin{array}{l} \mathsf{V}_{\mathsf{F}} \ = \\ g_0^2 \, |\mu \, \Phi^{(0)} + \sqrt{2} \, \tilde{Q} \, t^{(0)} \, Q|^2 + g_n^2 \, |\mu \, \Phi^{(a)} + \sqrt{2} \, \tilde{Q} \, t_{su(n)}^{(a)} \, Q|^2 + g_r^2 \, |\mu \, \Phi^{(b)} + \sqrt{2} \, \tilde{Q} \, t_{su(r)}^{(b)} \, Q|^2 \end{array}$$

$$+\tilde{Q} [M + \sqrt{2}\Phi] [M + \sqrt{2}\Phi]^{\dagger} \tilde{Q}^{\dagger} + Q^{\dagger} [M + \sqrt{2}\Phi]^{\dagger} [M + \sqrt{2}\Phi] Q, \qquad (2.13)$$

$$\begin{array}{c} \mathsf{Minimum\;loop} \\ \mathsf{U_l} \\ \left( \begin{array}{cccc} e^{i\alpha r} \mathbb{1}_{n \times n} & 0 \\ 0 & e^{i\alpha n} \mathbb{1}_{r \times r} \end{array} \right), \quad \alpha: 0 \to \frac{2\pi}{n\,r}, \end{array} \qquad \begin{array}{c} \mathsf{SU_n} \\ \left( \begin{array}{cccc} e^{i\beta(n-1)/n} & 0 \\ 0 & e^{-i\beta/n} \, \mathbb{1}_{(n-1) \times (n-1)} \end{array} \right) \\ \left( \begin{array}{ccccc} e^{i\alpha r} \mathbb{1}_{n \times n} & 0 \\ 0 & e^{-i\gamma/r} \, \mathbb{1}_{(r-1) \times (r-1)} \end{array} \right) \end{array}$$

## Global (color-flavor diagonal) symmetry:

$$U(1) \times [SU(n) \times SU(r) \times U(1)]_{C+F}$$
  $\sim U(n) \times U(r)$ 

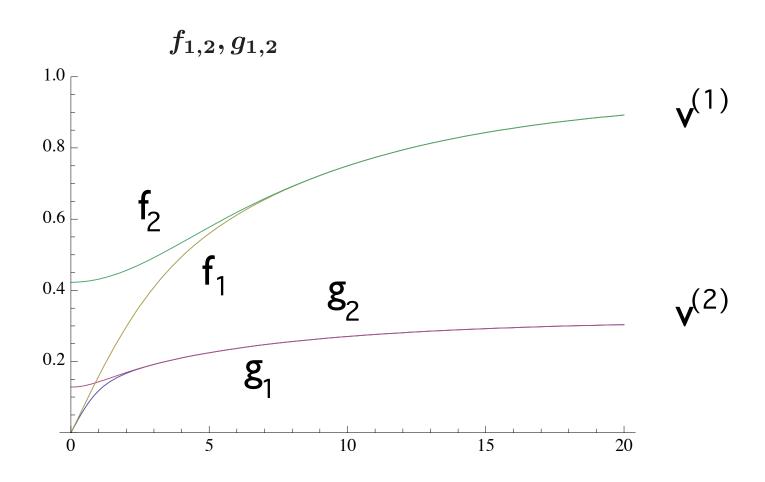
#### Minimum vortex:

$$\prod_{1} \left( \frac{SU(n) \times SU(r) \times U(1)}{\mathbb{Z}_{K}} \right) = \mathbf{Z}$$

$$q^{(1)} = \left(egin{array}{ccc} e^{i\phi}\,f_1(
ho) & 0 \ 0 & f_2(
ho)\,\mathbb{1}_{(n-1) imes(n-1)} \end{array}
ight)$$

$$ilde{q}^{(2)} = \left(egin{array}{ccc} e^{i\phi}\,g_1(
ho) & 0 \ 0 & g_2(
ho)\,\mathbb{1}_{(r-1) imes(r-1)} \end{array}
ight)$$

### SU(3) imes SU(2) imes U(1)



# Global symmetry "broken" by the vortex:

$$[SU(n) \times SU(r) \times U(1)]_{C+F} \rightarrow SU(n-1) \times SU(r-1) \times U(1)^3$$

Nambu-Goldstone modes propagating only inside the vortex:

⇒ vortex moduli:

$$CP^{n-1} imes CP^{r-1}$$

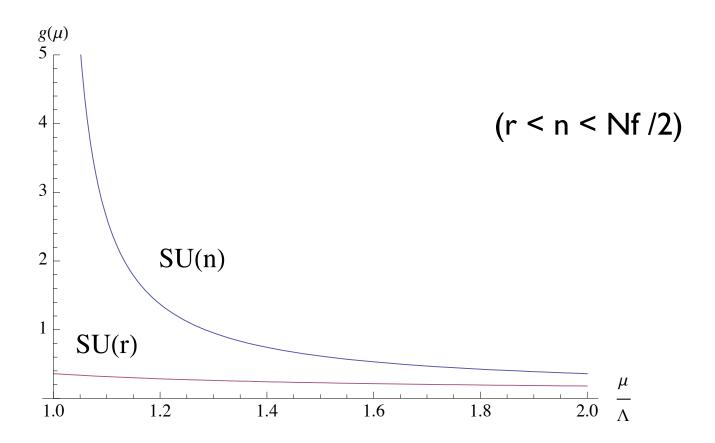
 $\begin{pmatrix} 0 & \mathbb{b}^{\dagger} & 0 & 0 \\ \mathbb{b} & 0_{(n-1)\times(n-1)} & 0 & 0 \\ 0 & 0 & 0 & \mathbb{c}^{\dagger} \\ 0 & 0 & \mathbb{c} & 0_{(r-1)\times(r-1)} \end{pmatrix}$ 

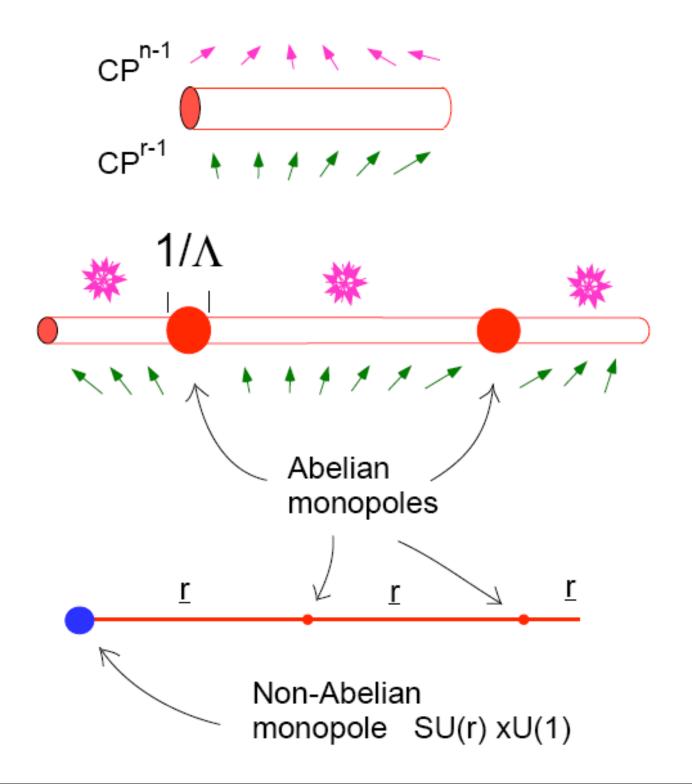
Vortex orientation can fluctuate along  $(z, t) \Rightarrow$ 

2 D vortex dynamics = 
$$CP^{n-1} \times CP^{r-1}$$
 sigma model

For n > r,  $CP^{n-1}$  interactions become strong and Abelianize, but  $CP^{r-1}$  fluctuate still weakly

Monopoles at the end of the vortex carry  $SU(r) \times U(1)$  quantum number





# 4D-2D duality

Vortex dynamics in 2D in 4D (H) theory in Higgs phase ⇔

4D gauge dynamics in G/H theory in Coulomb phase (no H breaking)

Why?

"Ans: H gauge group restored in the vortex center"?

No.

$$q=U egin{pmatrix} e^{i\phi}\,\phi(r) & 0 & \cdots & 0 \ 0 & \chi(r) & 0 & dots \ dots & 0 & \chi(r) & 0 \ 0 & \cdots & 0 & \ddots \end{pmatrix} U^\dagger \quad \Longrightarrow \quad U egin{pmatrix} 0 & 0 & \cdots & 0 \ 0 & w & 0 & dots \ 0 & 0 & \cdots & 0 \ 0 & \cdots & 0 & w \end{pmatrix} U^\dagger$$

Actually, gauge group restored only partially to U(I) in the core On the other hand, global group smaller inside the vortex NG modes propagating inside the vortex core

# § 3. Fractional Vortices

```
('09) M. Eto, M. Nitta, S.B. Gudnason, W. Vinci,
K.K. T. Fujimori, T. Nagashima, K.Ohashi
            (Pisa, Tokyo, Cambridge)
B. Collie, D. Tong
                      (Cambridge)
E. Babaev
```

Def. (here): Vortices with minimum vorticity but with non-trivial tension substructures

(Known examples in EAH; also torons, calorons ....)

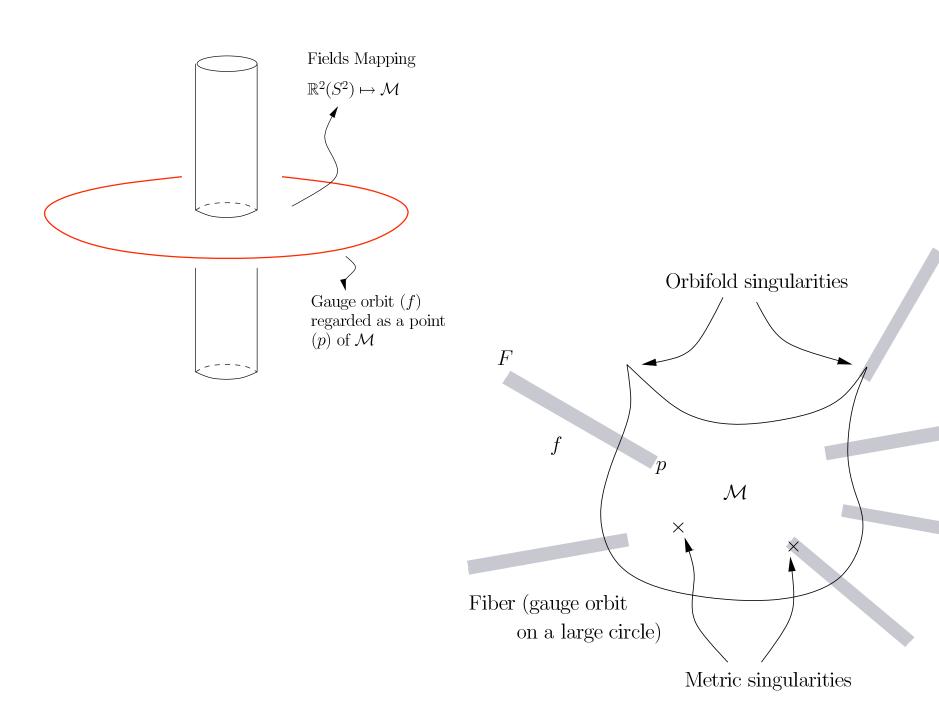
- Various Abelian and non-Abelian generalizations of Abelian Higgs model

  - BPS (self-dual) natureVacuum degeneracy (M)



Basic ingredients

- $\bullet$  All vortices  $\frac{1}{\sqrt{2}}$  defined at various points of  $\frac{1}{\sqrt{2}}$  simultaneously
- $\mathcal{M}$  a singular manifold:  $\Rightarrow$  "fiber bundles over a singular manifold"
- Two distinct mechanisms for fractional peaks



#### Exact sequences of fiber bundles

$$\cdots 
ightarrow \pi_2\left(M,f
ight) 
ightarrow \pi_2\left(M,p
ight) 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \ 
ightarrow \pi_1\left(M,f
ight) 
ightarrow \pi_1\left(M,p
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(M,f
ight) 
ightarrow \pi_1\left(M,p
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(M,p
ight) 
ightarrow \pi_1\left(M,p
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(M,p
ight) 
ightarrow \pi_1\left(M,p
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(M,p
ight) 
ightarrow \pi_1\left(M,p
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \cdots \ 
ightarrow \pi_1\left(F,f
ight) 
ightarrow \pi_1\left(F,$$

The minimum vortex corresponds to a minimum CPN-I lump

### Two types of fractional vortices (lumps)

(I) When  $p = p_0$  (a  $Z_N$  orbifold point) both  $\pi_1(F, f)$  and  $\pi_2(\mathcal{M}, p)$  make a discontinuous change.

Vortex defined near  $p = p_0$  feels the presence of  $p_0$  and look like a k=N vortex

(II) Even when p is a regular point (not near any singularity), the fields  $\{q\}$  inside  $S^I$  (a disk  $D^2$ ) ~  $\mathcal{M}$ : may hit either one of the singularities or simply pass the region of a large scalar curvature. (Deformed geometry of the sigma model)

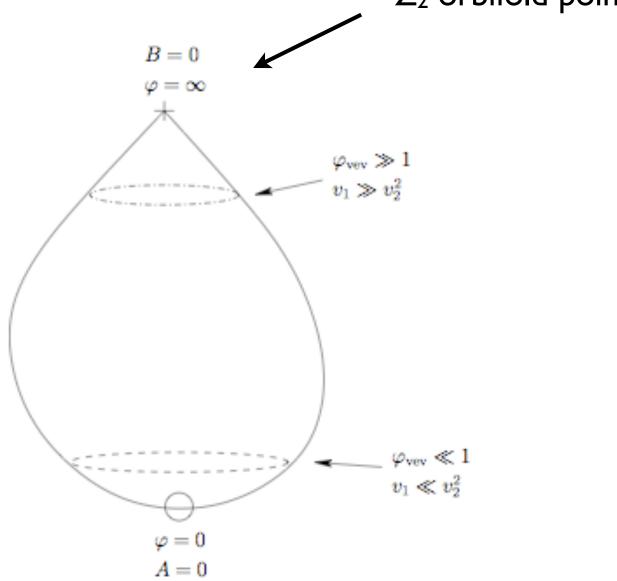
Fractional vortex substructures caused either by one of these or by a collaboration of the two -> examples

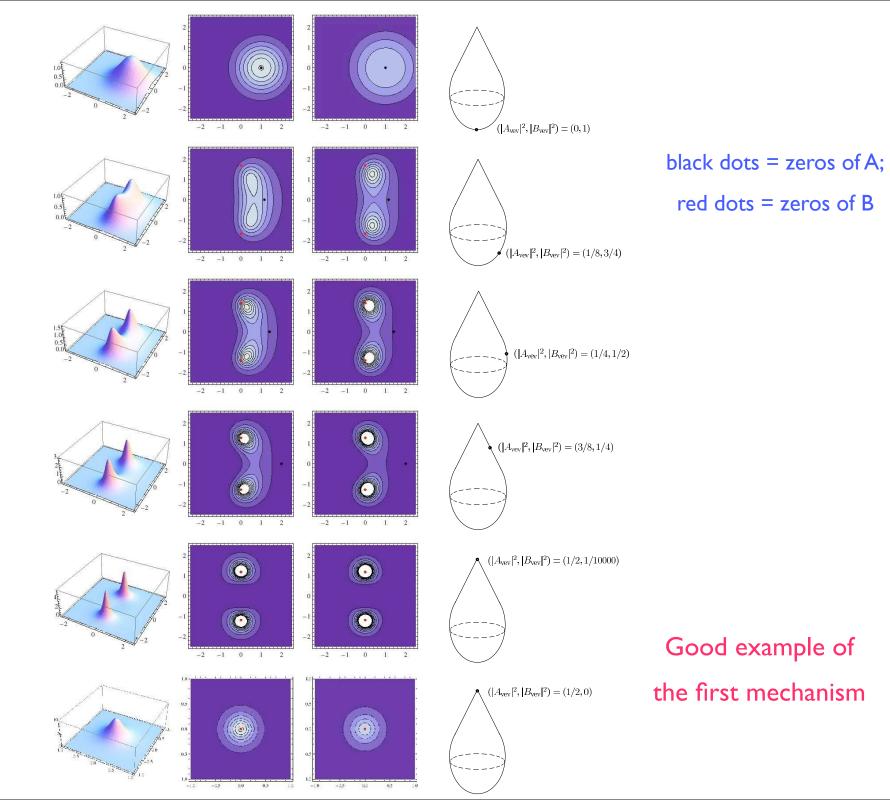
# Models based on CP<sup>1</sup> (1)

Abelian Higgs model with (A,B), with charges (2, I)

Vacuum config. 
$$2|A|^2+|B|^2=\xi\;,$$
 Gauge transf:  $A\sim e^{2i\alpha(x)}A, \quad B\sim e^{i\alpha(x)}B.$  
$$\rightarrow \qquad \mathcal{M}=W\mathbb{C}P_{2,1}^1\sim \frac{\mathbb{C}P^1}{\mathbb{Z}_2} \quad \text{(Fig.)}$$
 The coordinate of 
$$\mathcal{M} \text{ is } \varphi=2A/B^2$$
 p generic 
$$H_0^{[11]}=\begin{pmatrix} \frac{v_1}{\sqrt{2}}(z-z_1)(z-z_2) & 0\\ 0 & v_2(z-z_3) \end{pmatrix}\;, \quad v_1^2+v_2^2=\xi$$
 p=\infty \text{(B=0)} \quad \text{H}\_0^{[10]}=\left(\sqrt{\xi}\xi(z-z\_1) & 0\\ 0 & \xi\_1\right) = \mathbb{Z}\_2 \text{(M,p)} \\ \frac{\pi\_2(M,p)}{\pi\_1(K,f\_0)}=\mathbb{Z}\_2\;, \quad \frac{\pi\_1(F,f\_0)}{\pi\_1(F,f\_0)}=\mathbb{Z}\_2 \end{array}

# Z<sub>2</sub> orbifold point





## Models based on CP<sup>1</sup> (2)

--- U(I)xU(I) Higgs model with (A,B,C) with charges:

$$egin{aligned} Q_1 &= (2,1,1) & Q_2 &= (0,1,-1) \ & (A,B,C) 
ightarrow \left(e^{i2lpha(x)}A,e^{ilpha(x)+ieta(x)}B,e^{ilpha(x)-ieta(x)}C
ight) \ & U(1)_1 imes U(1)_2/\mathbb{Z}_2. \ & M &= \{A,B,C \mid 2|A|^2+|B|^2+|C|^2=\xi_1,\ |B|^2-|C|^2=\xi_2\} \ & \mathcal{M} &= M/\left[\left(U(1)_1 imes U(1)_2
ight)/\mathbb{Z}_2
ight] \;. \end{aligned}$$

No orbifold singularity

No doubling of  $\pi_1\left(F,f
ight)$  or  $\pi_2\left(\mathcal{M},p
ight)$ 

An extra peak at  $\sim z=z_0$ , where B( $z_0$ ) =0

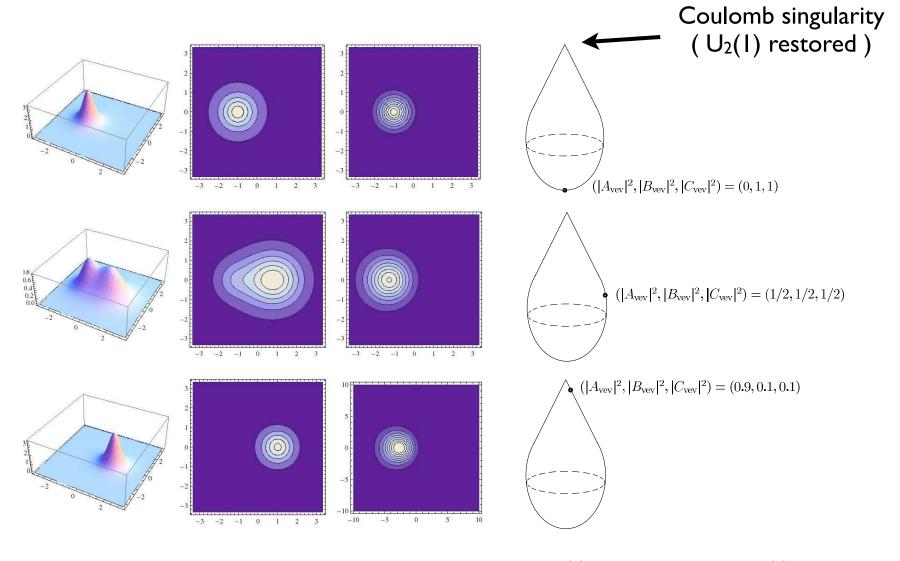


Fig. 6: The energy density (left-most) and the magnetic flux density  $F_{12}^{(1)}$  (2nd from the left),  $F_{12}^{(1)}$  (2nd from the right) and the boundary condition (right-most). We have chosen  $\xi_1 = 2$ ,  $\xi_2 = 0$ ,  $e_1 = 1$ ,  $e_2 = 2$  and a = -1, b = 1 in Eq. (4.34).

Good example of the second mechanism

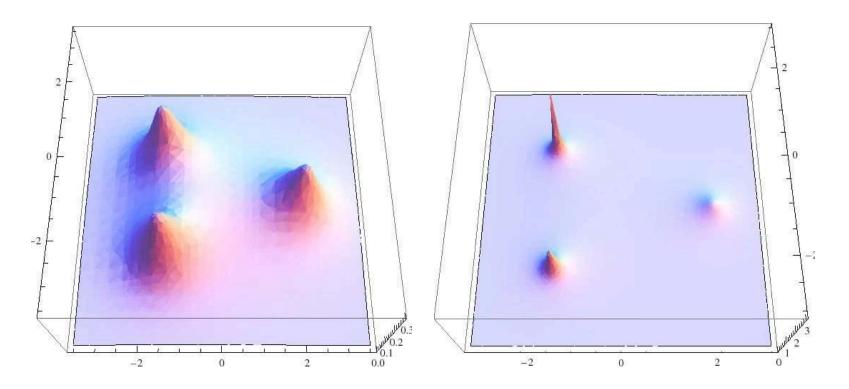


Fig. 11: The energy density of three fractional vortices (lumps) in the  $U(1) \times SO(6)$  model in the strong coupling approximation. The positions are  $z_1 = -\sqrt{2} + i\sqrt{2}, z_2 = -\sqrt{2} - i\sqrt{2}, z_3 = 2$ . Left panel: the size parameters are chosen as  $c_1 = c_2 = c_3 = 1/2$ . Right panel: the size parameters are chosen as  $c_1 = 0, c_2 = 0.1, c_3 = 0.3$ . Notice that one peak is singular  $(z_1)$  and the other two are regularized by the finite (non-zero) parameters  $c_{2,3}$ .

# § 4 Monopole - Vortex complex

--- Why the non-Abelian vortices imply non-Abelian monopoles ---

## Hierarchical symmetry breaking



- Apparent paradox (no monopoles, no vortices) ⇒
- Topology and symmetry connect monopoles and vortices

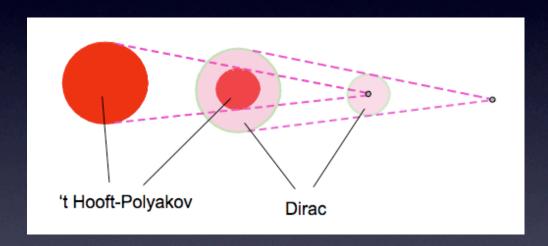
### Homotopy-group map

 $v_1\gg v_2,$ 

Vortex! (but also monopole)

Homotopy exact sequence:

$$\cdots o \pi_2(G) o \pi_2(G/H) o \pi_1(H) o \pi_1(G) o \cdots$$



•  $\pi_1$  (G) = I  $\Rightarrow$  Regular monopoles confined by vortices

• 
$$\pi_1(G) = I \Rightarrow All \text{ vortices "end" at regular monopoles}$$

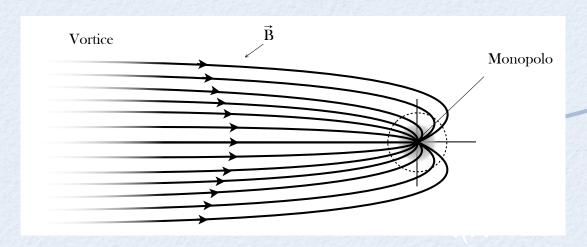
e.g. SU(N)

• 
$$\pi_1(G) = Z \Rightarrow k=2$$
 vortices "end" at regular monopoles!

't Hooft SO(3)/U(1)

k=1 vortices are there: confine Dirac monopoles cfr., SO(N)

# Non-Abelian monopole moduli from vortex moduli in the system $G \xrightarrow{v_1} H \xrightarrow{v_2} 1$





(Auzzi-Bolognesi-Evslin-KK; Kneipp)

$$SU(N+1) \Rightarrow SU(N) \times U(1)$$
  
 $\Rightarrow 1$ 

Exact H<sub>C+F</sub> induces continuous transformation of vortex -- and monopole

Study in more detail this!

$$SU(3)
ightarrow rac{SU(2) imes U(1)}{Z_2}
ightarrow 1.$$

Embedding of 't Hooft-Polyakov soln in S<sub>i</sub> = U or V spin

$$\phi({f r}) \; = \; \left( egin{array}{ccc} -rac{1}{2} v & 0 & 0 \ 0 & v & 0 \ 0 & 0 & -rac{1}{2} v \end{array} 
ight) + 3 \, v \, ec{S} \cdot \hat{m r} \phi(m r),$$

Monopole of the HE theory

$$ec{f A}({f r}) \; = \; ec{m S} \wedge \hat{r} rac{A(r)}{r} \; ;$$

BPS equation

$$B_k^A = -(\mathcal{D}_k \phi)^A$$

Vortex of the LE theory

(BPS) 
$$q(x) = \begin{pmatrix} e^{i\phi}w_1(\rho) & 0 \\ 0 & w_2(\rho) \end{pmatrix}, \quad \phi(\mathbf{r}) = \begin{pmatrix} v & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & -2v \end{pmatrix};$$
 
$$A_i^3(x) = \epsilon_{ij}\frac{x_j}{\rho^2} \, \left(1 - f_3(\rho)\right), \qquad A_\phi^3(\rho) = \frac{1}{\rho}(1 - f_3(\rho)),$$
 
$$A_i^8(x) = \sqrt{3} \, \varepsilon \epsilon_{ij} \, \frac{x_j}{\rho^2} \, \left(1 - f_8(\rho)\right), \qquad A_\phi^8(\rho) = \sqrt{3} \frac{1}{\rho}(1 - f_8(\rho)).$$

Interpolating solutions? Need to take into account a non BPS terms (Actually both monopole and vortex must be set in the singular gauge)

#### Ansätze

$$A_{\phi}=t_{3}A_{\phi}^{3}(
ho,z)+t_{8}A_{\phi}^{8}(
ho,z);$$
  $A_{\phi}^{3}=-rac{1}{
ho}f_{3}(
ho,z), \qquad A_{\phi}^{8}=-\sqrt{3}rac{1}{
ho}f_{8}(
ho,z),$  Keep this term  $\phi(\mathbf{r})=egin{pmatrix} v & 0 & 0 \ 0 & v & 0 \ 0 & 0 & -2v \end{pmatrix}+\lambda(
ho,z), \qquad \lambda(
ho,z)=t_{3}\lambda_{3}(
ho,z)+t_{8}\lambda_{8}(
ho,z) \ q(x)=egin{pmatrix} w_{1}(
ho,z) & 0 \ 0 & w_{2}(
ho,z) \end{pmatrix}.$ 

Coupled (quadratic) equations for 6 profile functions which reduce to the linear BPS equations for  $\lambda = 0$ 



- The Dirac string of the monopole hidden deep in the vortex core
- The whole monopole-vortex complex breaks  $SU(2)_{C+F}$ : orientational zeromodes of  $SU(2)/U(1) \sim CP^1$
- The degeneracy between the monopole solution living in (13) SU(2) subgroup and that in (23) SU(2) subgroup is explicitly broken by the vortex -- failure of the naïve "non-Abelian monopole" concept (multiplet of H)
- An exact  $SU(2)_{C+F}$  symmetry  $\Rightarrow$  Degeneracy (and indeed continous  $CP^1$  degeneracy) under the simultaneous color-flavor rotations for the monopole -- vortex complex
- It is a magnetic symmetry, i.e., symmetry of magnetic-flux orientation
- A new exact symmetry for the monopole: the origin of the dual SU(2) group (multiplet of  $\widetilde{H}$ )

# Conclusion

- Non-Abelian vortices and generalizations -- a vast variety of phenomena implied by such solutions: true reach of these equations and solutions yet to be seen
- Many intriguing results encompassing physics of strong gauge dynamics, confinement and symmetry breaking, and perhaps, interesting mathematics
- Non-Abelian monopoles (GNO duality) from the monopole-vortex complex

$$\stackrel{\sim}{H} \sim H_{C+F}$$

(Dual) confinement mechanism of non-Abelian variety

### Thanks to the collaborations ('00-'09) with:

Takenaga, Terao, Carlino, Murayama, Spanu, Grena, Auzzi, Yung, Bolognesi, Evslin, Nitta, Ohashi, Yokoi, Eto, Marmorini, Ferretti, Vinci, Fujimori, Gudnason, Dorigoni, Michelini, Jiang, Giacomelli, Cipriani, ...

(Italy-Japan-USA-Russia-Denmark-China)