
Capitolo 6

Approssimazione semiclassica

Il problema che affronteremo in questo capitolo è lo studio del limite~ → 0 in meccani-
ca quantistica, passo necessario per comprendere come si possa passare da una descrizione
quantistica ad una trattazione classica dei fenomeni.

L’approssimazione semiclassica ha un “antenato” che precede la stessa formulazione della
meccanica quantistica: la cosiddetta vecchia teoria dei quanti. Molti dei problemi di connes-
sione con la meccanica classica si erano presentati negli anni compresi fra il 1900 ed il 1927,
e non sempre avevano trovato una soluzione soddisfacente, e spesso nemmeno una parvenza
di soluzione. Fino alla metà del secolo scorso l’approssimazione semiclassica era progredita
come studio di una trattazione approssimata dell’equazione di Schródinger ma non aveva fatto
passi avanti significativi dal punto di vista di principio. I fatti nuovi che hanno cambiato le
prospettive sono diversi: da una parte riscoprendo alcuni vecchi risultati di Einstein si è giunti
ad una comprensione più profonda della quantizzazione di sistemi classicamente integrabili,
dall’altra, sul versante classico, la formulazione del teorema KAM (Kolmogorov, Arnold, Mo-
ser) ha permesso di capire in modo più profondo i fenomeni nuovi che si presentano in sistemi
classicamente non integrabili. Come conseguenza di queste indagini, dello sviluppo di metodi
come il path integral, dello studio più approfondito delle proprietà degli sviluppi asintotici e
di alcuni risultati nuovi nello studio del calcolo delle variazioni, si è cominciato ad esplorare il
campo della interpretazione della quantizzazione in sistemi classicamente non integrabili, ed
eventualmente in sistemi caotici.

In questo testo, per ovvi motivi di opportunità e di spazio, tratteremo solo gli aspetti ele-
mentari del problema, accennando quando possibile alle generalizzazioni ed agli sviluppi. Nel
testo principale, come al solito, concentreremo i risultati essenziali, alcuni risultati particolari e
alcune osservazioni di carattere più tecnico, saranno esposti nei complementi o proposti come
problemi.

6.1 Approssimazione WKB

WKB sta per Wentzel, Kramers, Brillouin, che, contemporaneamente ad altri autori, hanno
fra i primi proposto uno schema di approssimazione per il limite~ → 0. L’approssimazione
è sostanzialmente identica all’approssimazione di ottica geometrica per le equazioni di Max-
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252 CAPITOLO 6. APPROSSIMAZIONE SEMICLASSICA

well, nel seguente senso: per piccole variazioni di lunghezza d’onda rispetto ai cammini ottici
caratteristici ha senso descrivere la propagazione delle onde elettromagnetiche in termini di
raggi e fronti d’onda, le cui leggi di evoluzione (l’equazione dell’iconale) costituiscono la
base matematica della teoria dell’ottica geometrica. Una procedura simile può essere segui-
ta approssimando la funzione d’onda di Schrödinger,ψ, in termini dell’analogo dell’iconale.
Originariamente lo scopo era sicuramente quello di dare un’interpretazione “corpuscolare”
alle onde descritte daψ, ma occorre ricordare che laψ rappresenta in realtà un’onda di pro-
babilità e, soprattutto, mentre esiste una certa analogia fra la descrizione matematica di una
funzione d’onda di singola particella,ψ(x, t) e quella di un campo elettromagnetico, questa
analogia viene a mancare nel caso di molti gradi di libertà: perN particelle la funzione d’onda
è un’ampiezza di probabilità in uno spazio delle configurazioni a3N dimensioni, cosa che non
ha nessun corrispettivo in elettromagnetismo. Quindi prima di capire se, ed in che senso, vale
l’analogia soffermiamoci sul perché è complicato, e singolare, il limite~→ 0.

Consideriamo l’equazione di Schrödinger nel suo contesto più semplice: la determinazione
degli stati stazionari per una particella in una sola dimensione in un potenzialeV (x):

− ~2

2m
ψ′′ + V (x)ψ = E ψ . (6.1)

Dalla (6.1) è ovvio che il limite~→ 0 è singolare: in questo limite cambia l’ordine dell’equa-
zione differenziale e quindi cambia la classe stessa di soluzioni possibili, addirittura nel caso
della (6.1) si passa da un’equazione differenziale ad una equazione algebrica.

L’idea per capire la procedura di limite corretta è fornita dall’esempio più semplice, una
particella libera. Sappiamo che in questo caso una funzione di Schrödinger corrispondente ad
un autostato dell’energia, e dell’impulso, ha la forma

ψ(x) = e
i
~px .

Per~ → 0, a fissop, la funzione ha delle oscillazioni sempre più rapide in un tratto finito
dell’asse reale, la lunghezza d’onda va a zero conλ = h/p, ma è proprio questa rapida oscil-
lazione che permette l’eliminazione del fattore~2 davanti alla derivata seconda nella (6.1):
ogni derivata produce un fattore~−1 e quindi la derivata seconda fornisce un fattore~−2 che
cancella il termine~2. Si potrà quindi parlare del limite~ → 0 solo come una correzione a
questo tipo di comportamento obbligato dalla struttura della (6.1). È naturale quindi cercare
un’approssimazione scrivendo

ψ(x) = exp(i
σ

~
) , (6.2)

e assumere cheσ, nonψ, sia una funzione sviluppabile in~:

σ(x) =
∞∑
k=0

(
~
i

)k
σk = σ0 +

~
i
σ1 +

(
~
i

)2

σ2 + . . . (6.3)

I fattori 1/i nella (6.3) sono introdotti convenzionalmente per semplificare le formule seguenti.
Sostituendo la (6.2) nella (6.1) si ottiene

(σ′)2 − i ~σ′′ = p2(x) . (6.4)
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Abbiamo introdotto la notazione

p2(x) = 2m (E − V (x)) , (6.5)

che rappresenta, perE > V (x), l’impulso classico. L’equazione (6.3) è equivalente all’equa-
zione originaria (6.1), ed è un’equazione1 delprimo ordine, non lineare, nella variabiley = σ′.
Una delle due costanti arbitrarie della soluzione generale della (6.1) è semplicemente la co-
stante d’integrazione per passare day aσ. Sostituendo lo sviluppo (6.3) nella (6.4) si ottiene,
all’ordine 0

(σ′0)
2 = p2 ; σ0 = ±

∫
p(x)dx ; p(x) = +

√
2m(E − V (x)) . (6.6)

Ai due segni possibili della determinazione della radice corrispondono due soluzioni linear-
mente indipendenti. Pern > 0, uguagliando a 0 i vari coefficienti di~n si ha

n∑
k=0

σ′kσ
′
n−k + σ′′n−1 = 0 . (6.7)

La (6.7) fornisce un’espressione ricorsiva perσn, infatti σ′n compare solo in due addendi,
quelli che moltiplicanoσ′0:

σ′1 = − 1
2σ′0

σ′′0 ⇒ σ1 = −1
2

log(p) ; (6.8a)

σ′n = − 1
2σ′0

(
n−1∑
k=1

σ′kσ
′
n−k + σ′′n−1

)
. n ≥ 2 . (6.8b)

Scegliendo, ad esempio, la soluzioneσ′0 = +p(x) e si ha esplicitamente

σ′2 = − 1
2p

[
σ′1

2 + σ′′1

]
=

1
4
p′′

p2
− 3

8
p′

2

p3
= − 1

2 p1/2

d2

dx2
p−1/2 ; (6.9a)

σ′3 = − 1
2p

(2σ′1σ
′
2 + σ′′2 ) = −1

2
d

dx

σ′2
p
. (6.9b)

All’ordine ~2 si ha perciò:

ei
σ
~ ' 1√

p(x)e−~2 σ′2
p

exp
(
i

∫ x

x0

[
1
~
p(x) + ~

1
2 p1/2

d2

dx2
p−1/2

]
dx

)
. (6.10)

Dalla relazione (6.8b) discendono due cose:

1) I terminiσn conn pari sono dispari inp, e, ricordando la (6.3), perp(x) reale contribui-
scono allafasedella funzione d’ondaψ.

1Questo procedimento, la sostituzione della variabileψ a favore di una funzione incognitay nella forma

ψ = exp

(∫ x

y(ξ) dξ

)
è del tutto generale, l’equazione risultante prende il nome di equazione di Riccati.
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2) I terminiσn conn dispari sono pari inp, quindi sono gli stessi per entrambe le soluzioni.
Perp realei(~σn/i)n è reale e quindi contribuisce all’ampiezza della funzioneψ.

L’approssimazione WKB consiste nel considerare i termini dominanti nelle espressioni prece-
denti e quindi assumere

ψ(x) = b1
1
√
p
e

i
~

∫ x
x0
p(x) dx + b2

1
√
p
e
− i

~
∫ x

x0
p(x) dx

, (6.11)

x0 è un punto di riferimento, il valore delle costantib1 e b2 cambia al variare dix0. Se
l’approssimazione (6.11) fosseuniforme, cioè valesse per tutti i valori dix, avremmo trovato
una soluzione approssimata.

Riscriviamo l’approssimazione nella forma

exp
(
i

∫ x

x0

σ′
)

= exp
(
i

∫ x

x0

(σ′0 − i~σ′1 − ~2σ′2 + . . .)
)
.

L’approssimazione è buona se valgono le disuguaglianze

~2 |σ′2|
|σ′0|

� ~
|σ′1|
|σ′0|

� 1 . (6.12)

La seconda disuguaglianza, usando l’ espressione (6.8) si scrive (assumiamop reale)

1
2

~
p′

p2
� 1 ⇒ 1

4π
dλ

dx
� 1 ; λ =

h

p
, (6.13)

λ è la lunghezza d’onda di de Broglie. La (6.13) dice che l’approssimazione è buona quando la
variazione della lunghezza d’onda è piccola, e questo è il punto che lega l’approssimazione al-
l’analogo sviluppo in elettromagnetismo. Se si pone l’accento sulle caratteristiche meccaniche
del problema, possiamo scrivere

p′ =
d

dx

√
2m(E − V (x)) =

1
2
2m

V ′

p
= −mF

p
,

F è la forza. La (6.13) impone allora

m ~
F

p3
� 1 .

La condizione viene senz’altro violata nei punti in cuiF è troppo grande oppurep è troppo
piccolo, in particolare neipunti di inversioneclassici del moto, in cuip = 0.

Considerazioni analoghe si possono fare per la prima disuguaglianza (6.13). Notiamo
che le disuguaglianze (6.13) impongono dei vincoli locali, ma la limitazione suσ2 può non
essere sufficiente. Nelle zone classicamente permesseσ0 e σ2 fomano ambudue la fase della
funzioneψ, che è definita naturalmente modulo2π. Potrebbe allora accadere cheσ′2 � σ′0,
ma ciò nonostante lafasecomplessiva dovuta aσ′2 potrebbe essere rilevante, visto che in ogni
caso la fase dovuta aσ0 è considerata modulo2π. In altre parole affinchè l’approssimazione
WKB funzioni deve essere verificata la richiesta globale∫ x

x0

~3σ′2 dx � 1 ,
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a prescindere da eventuali punti di inversione o singolarità del potenziale.
La presenza di punti di inversione provoca una partizione nell’insieme delle coordinate,

x: in ogni intervallo, sufficientemente lontano dai punti di inversione, la funzione d’onda
è approssimata da un’espressione del tipo (6.3). La particolare soluzione dell’equazione di
Schrödinger che soddisfa date condizioni al contorno richiede di determinare queste costanti,
occorre quindi stabilire delleformule di connessionefra i vari intervalli.

6.2 Formule di connessione

In questo paragrafo presenteremo una trattazione semplificata delle formule di connessione nel
caso di un singolo punto di inversione, una trattazione più approfondita è data nei complementi,
§ 6.F.

E

VHxL

x=a

Figura 6.1:Schema per un singolo punto di inversione.x < a è la zona permessa classicamente,x > a

quella proibita.

Siax = a una radice dell’equazioneE − V (x) = 0. Supponiamo per fissare le idee che
V (x) > E perx > a. La situazione è quella rappresentata schematicamete in figura 6.1. La
zonax < a è dettapermessa classicamente, la zonax > a è la zonavietata classicamente.

Perx < a due soluzioni semiclassiche linearmente indipendenti sono

1
√
p

cos(|w|) ;
1
√
p

sin(|w|) , (6.14)

con

p(x) =
√

2m(E − V ) ; w =
1
~

∫ x

a

√
2m(E − V ) dx ,

mentre perx > a
1√
|p̃|

e−w̃ ;
1√
p̃
ew̃ , (6.15)

con

p̃ =
√

2m(V − E) ; w̃ =
1
~

∫ x

a

√
2m(V − E) dx .

L’idea è quella di risolvereesattamentel’equazione di Schrödinger con il potenziale lineare
in un intorno dix = a e quindi connettere lo sviluppo asintotico di questa soluzione alla
soluzione WKB, (6.3), valida per|x− a| � 0.
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Nell’intorno di a possiamo scrivere2m~−2(E − V (x)) = β2(a− x), e riscrivere la (6.1)
nella forma

ψ′′ + β2(a− x)ψ = 0 .

Posto(x− a) = β−2/3z
d2

dz2
ψ − z ψ = 0 . (6.16)

Le soluzioni indipendenti dell’equazione (6.16) si chiamano funzioni di Airy:Ai(z),Bi(z). Il
lettore può trovare un breve riassunto delle loro proprietà nel capitolo 10. Per grandi valori di
z si ha:

|z|− 1
4

√
π

cos(
2
3
|z|3/2 − π

4
) ←−−−−−

z→−∞
Ai(z) −−−→

z→∞

1√
π

1
2
z−1/4e−

2
3 |z|

3/2
; (6.17a)

− |z|
− 1

4

√
π

sin(
2
3
|z|3/2 − π

4
) ←−−−−−

z→−∞
Bi(z) −−−→

z→∞

1√
π
z−

1
4 e+

2
3 |z|

3/2
. (6.17b)

Scriviamo ora l’impulso e la variabile di fasew in termini diz:

p = ~β(a− x) 1
2 = ~β

1
3
√
−z ; w(a, x) = −2

3
β(a− x) 3

2 = −2
3
|z| 32 ;

p̃ = ~β(x− a) 1
2 = ~β

1
3
√
z ; w̃(a, x) =

2
3
β(x− a) 3

2 =
2
3
|z| 32 .

Dalle (6.17) segue allora, per le due soluzioni indipendenti

1
√
p

cos
(
|w(a, x)| − π

4
)
←−−−−−
x→−∞

ψ −−−−→
x→∞

1
2

1√
p̃
e−|w̃| ; (6.18a)

− 1
√
p

sin
(
|w(a, x)| − π

4
)
←−−−−−
x→−∞

ψ −−−−→
x→∞

1√
p̃
e+|w̃| . (6.18b)

Una combinazione lineare generica delle due soluzioni, a meno di una costante di normalizza-
zione, si ottiene combinando le (6.18):

1
√
p

cos
(
|w(a, x)| − π

4
+ α

)
← ψ(x) → sinα√

p̃
e|w̃| +

1
2

cosα√
p̃
e−|w̃| . (6.19)

Le formule precedenti restano invariate nel caso in cui la zona classicamente accessibile sia
x > a. Le (6.18),(6.19) saranno sufficienti a coprire tutte le applicazioni elementari del meto-
do WKB che vedremo in questo capitolo. Come è evidente dalla (6.19) queste formule vanno
applicate “cum grano salis”: una piccola variazione della faseα nella zona classicamente per-
messa induce una variazione esponenziale nella zona proibita, viceversa occorre conoscere
con precisione esponenziale la funzione d’onda nella zona proibita per determinare la faseα.
In teoria le relazioni (6.19) sono espressioni asintotiche esatte, nel caso di un solo punto di
inversione, ma le instabilità ora esposte rendono delicata la loro applicazione.

In molti problemi si è interessati non alla soluzione generale dell’equazione di Schrödinger
ma solo alla soluzione relativa a determinate condizioni al contorno, questo spesso permette
l’uso non ambiguo delle (6.18). Il caso più notevole è senza dubbio quello in cui tutta la zona
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x > a è classicamente proibita e si estende fino a+∞. In questo caso le funzioniψ accettabili
come stati sono a variazione limitata e questo esclude i termini esponenziali crescenti. Si ha
quindiα = 0 e

1
√
p

cos
(
|w(a, x)| − π

4
)
← ψ(x) → 1

2
1√
p̃
e−|w̃| . (6.20)

Un caso importante descritto dalle (6.18) è quello di due punti di inversionedistanti: in
questo caso se a priori è noto che la soluzione è combinazione lineare delle (6.18) con coeffi-
cienti dello stesso ordine, la parte esponenzialemente depressa può essere trascurata e questo
permette di risolvere il problema con una precisione dell’ordine diO(e−w̃), alcuni esempi
saranno presentati più avanti.

Le principali appicazioni della (6.18) sono: la derivazione della regola di quantizzazione di
Bohr Sommerfeld per gli stati legati, la spiegazione semiclassica dell’effetto tunnel, la teoria
del dedadimentoα. Queste, ed altre, sono le applicazioni che saranno analizzate nel seguito
del capitolo.

6.2.1 Interpolazione parabolica

Le formule di connessione (6.19) sono state ricavate approssimando la zona attorno al punto di inversione
con un potenziale lineare. Spesso, nel seguito, useremo queste formule in successione, per descrivere il
passaggio attraverso più punti di inversione, disaccoppiando in questo modo le diverse zone di transizio-
ne. Ovviamente si guadagnerebbe in accuratezza se si potessero scrivere delle formule di connessione
direttamente per 2, 3. . . punti di connessione successivi. È possibile scrivere delle formule di questo tipo
per due punti di inversione approssimando il potenziale con un polinomio quadratico. In questo caso
l’equazione di Schrödinger ha una forma del tipo

ψ′′ + (b− ax2)ψ = 0 ;

le cui soluzioni si chiamano funzioni del cilindro parabolico e, in questo contesto, giocano un ruolo ana-
logo alle funzioni di Airy per il polinomio lineare. Questa descrizione è utile, ad esempio, in situazioni
come quelle riportate in figura 6.2 in cui una zona classicamente accessibile è abbastanza ben separata
dalle altre.

2 4 6 8 10
r

1

2

3

4

5
V�r�

-4 -2 2 4
x

-1

-0.5

0.5

1

1.5

V�x�

Figura 6.2:Un potenziale con tre punti di inversione ed uno con 4 punti di inversione.
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Diamo la formula di connessione per il caso in cui da una delle due parti, ad esempio a sinistra, ci sia
una zona con decrescita esponenziale, cioè diamo la formula che connette la prima zona classicamente
proibita con la seconda2

1√
|p|

exp(−|w(aL, x)|)←−−−−−
x→−∞

ψ −−−−−→
x→+∞

1√
|p|

{
(6.21)

(
2

π

)1/2(
e

J̃

)J̃
Γ(J̃ + 1

2
) cos(πJ̃) exp(|w(aR, x)|) + sin(πJ̃) exp(−|w(aR, x)|)

}
.

aL, aR sono i due punti di inversione che delimitano la zona classicamente accessibile, in cui è possibile
un moto di oscillazione classica.̃J indica la variabile d’azione in unità di~:

J̃ =
J

~
=

1

~
1

2π

∮
p(x) dx =

1

~
1

π

∫ aR

aL

p(x) dx . (6.22)

Nella (6.21) il termine in coseno è esponenzialmente crescente nella zona proibita, il termine in seno è
quello decrescente. Notiamo, come è facile ricavare, che

lim
J̃→∞

(
2

π

)1/2(
e

J̃

)J̃
Γ(J̃ + 1

2
) = 2 . (6.23)

6.3 Stati legati e condizione di Bohr-Sommerfeld

Consideriamo un potenziale unidimensionale con un solo minimo, del tipo indicato in figura
6.3. Ci aspettiamo che l’equazione di Schrödinger fornisca una serie di autovaloriEn e di
autofunzioniψn corrispondenti a stati legati, cioè conψn ∈ L2.

La trattazione semiclassica del problema parte dalla individuazione dei punti di inversione,
soluzioni dell’equazione

p(x) = 0 , cioè: E = U(x) .

Sianoa, eb, questi punti. In questo paragrafo useremo le notazioni

w(c, x) =
1
~

∫ x

c

√
2m(E − V ) dx σ(c, x) =

1
~

∫ x

c

√
2m(V − E) dx , (6.24)

che permottono di scrivere facilmente ed intuitivamente le condizioni di raccordo ai punti di
inversione.

Nelle regioni classicamente inaccessibilix < a, x > b lo sviluppo asintotico della soluzio-
ne dell’equazione di Schrödinger deve essere

ψ ∼ exp(±1
~

∫
|p(x)|dx) .

Il requisitoψ ∈ L2 impone che solo la soluzione decrescente all’infinito sia presente, quindi
nella zonax > b la soluzione accettabile è della forma

C

2
1√
|p|

exp(−σ(b, x)) . (6.25)

2Per la derivazione della (6.21) rimandiamo all’articolo [BerMou72] ed alle referenze ivi citate.
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Figura 6.3:Potenziale unidimensionale.a, b sono i punti di inversione.

La formula di connessione (6.18) indica che perx < b la funzione d’onda semiclassica è

C

2
1√
|p|

exp(−σ(b, x)) → C√
|p|

cos(w(x, b)− π

4
) . (6.26)

Notiamo che questa formula di connessione fissa la fase della funzione d’onda ma, di per sè,
non seleziona alcun valore dell’energia.

Lo stesso ragionamento, applicato al punto di inversionex = a impone la connessione

D

2
1√
|p|

exp(−σ(x, a)) → D√
|p|

cos(w(a, x)− π

4
) . (6.27)

La condizione di quantizzazione nasce dall’imporre che le due determinazioni della funzione
d’onda coincidano nella zona classicamente permessaa ≤ x ≤ b. Le ampiezze devono essere
uguali, e questo implica|C| = |D|. Possiamo sempre scegliere funzioni d’onda reali, in questo
modoD = ±C. Per confrontare le fasi riscriviamo la (6.27) nella forma:

cos(w(a, x)− π

4
) = cos(w(a, b)− w(x, b)− π

4
) = cos(w(x, b)− w(a, b) +

π

4
) .

Questa determinazione deve differire dalla (6.26) per un fattorenπ, conn pari o dispari a
seconda del segno fraC eD. Quindi

−π
4

= nπ +
(
−w(a, b) +

π

4

)
⇒ w(a, b) =

(
n+

1
2

)
π . (6.28)

In corrispondenza del valore din, pari o dispari, si haD = (−1)nC. Usando la definizione
classica di variabile d’azione,J , definita come l’integrale dip(x) su tutto il periodo del moto,
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in questo caso lungo la traiettoriaa→ b→ a, si può riscrivere la (6.28) nella forma

J ≡ 1
2π

∮
p(x) dx =

(
n+

1
2

)
~ . (6.29)

Questa è la condizione di Bohr-Sommerfeld della vecchia teoria dei quanti a meno di un
(importante) fattore additivo 1/2. La (6.29) è un’equazione perE, risolvendola al variare din
si hanno le stime semiclassiche dei livelli energetici.

Al crescere dix daa a b la fase del coseno nella funzione d’onda semiclassica

C
√
p

cos
(

1
~

∫ x

a

p(x)dx− π

4

)
, (6.30)

varia fra−π/4 enπ− π/4, cioè cambia dinπ, quindi il coseno han zeri. La funzione d’onda
ψn ha quindin nodi e corrisponde all’n-esimo stato eccitato, cioè la sequenzan = 0, 1, 2, 3 . . .
corrisponde aE0 ≤ E1 . . .. E0 è l’energia dello stato fondamentale,E1 quella del primo
eccitato e via di seguito.

Come detto in un paragrafo precedente l’approssimazione semiclassica corrisponde al li-
mite dell’ottica geometrica in elettromagnetismo, cioè al limite di piccole lunghezze d’onda
rispetto alle lunghezze caratteristiche del problema. Nel nostro caso la lunghezza tipica è la
grandezza della zona classicamente accessibile:L = b− a, quindi ci aspettiamo che l’appros-
simazione semiclassica sia tanto migliore quanto piùλ � L, doveλ = h/p è la lunghezza
d’onda di de Broglie. Nello staton-esimo la funzione d’onda compien/2 oscillazioni, avendo
n nodi, quindi come ordine di grandezza si haλ ∼ L/n: ci aspettiamo allora che l’approssi-
mazione semiclassica sia tanto più precisa quanto piùn è grande. Si deve recuperare il limite
classico nel limiten→∞.

Per la determinazione completa della funzione d’onda semiclassica occorre fissare la co-
stanteC. Normalmente la funzione d’onda di uno stato legato viene fissata dalla condizione
che la normaL2 sia 1. La funzione d’onda è esponenzialmente depressa nella zona esterna
all’intervallo [a, b] quindi con buona approssimazione si può scrivere

1 =
∫ ∞

−∞
|ψ|2dx '

∫ b

a

|ψ|2dx = C2

∫ b

a

dx

p
cos2

(
1
~

∫ b

x

p(x)dx− π

4

)
. (6.31)

Quando l’approssimazione semiclassica è buona il coseno compie molte oscillazioni quindi in
prima approssimazione possiamo sostituirecos2(ϕ) col suo valor medio,1/2, ottenendo

C2

2

∫ b

a

dx

p
' 1 . (6.32)

Il periodo di oscillazione classico del sistema è definito da

T = 2
∫ b

a

dx

v
= 2m

∫ b

a

dx

p
,

quindi
C2

2
T

2m
= 1 ⇒ C = 2

√
m

T
=

√
2mω
π

; ω =
2π
T

. (6.33)
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Abbiamo ottenuto la stima (6.32) perC2 supponendon � 1, in realtà spesso questa formula
viene usata anche per piccolin, in particolare per lo stato fondamentale. Nel paragrafo 6.A
il lettore può trovare una dimostrazione della stima (6.33) che non fa uso della condizione
n� 1.

Nota

Notiamo che se si fosse usata l’interpolazione parabolica attraverso i due punti di inversione, eq.(6.21), la
richiesta di avere una funzione decrescente da entrambi i lati del potenziale avrebbe impostocos(πJ̃) = 0
e quindi

1

~
J = n+ 1

2
.

cioè di nuovo la condizione (6.29).

Continuazione analitica

È utile avere un’idea geometrica del significato delle formule di connessione (6.20) e della regola di
quantizzazione (6.29). Consideriamo il caso di un singolo punto di inversione inx = a con una zona
classicamente accessibile inx < a. La forma (6.11) della soluzione è dovuta al fatto che l’azione
classica, integrale dip, è una funzione a più valori perx < a, schematicamente si può scrivere :

p(x) = ±
√
a− x .

Per questa situazione

|w(a, x)| =
∫ a

x

√
a− x =

2

3
(a− x)3/2 ,

e la funzione d’onda WKB ha la forma

ψ =
1

(a− x)1/4
cos

(
2

3
(a− x)3/2 − π

4

)
; x < a . (6.34)

Possiamo considerare i due valori dip come due determinazioni diverse della stessa funzione promuo-
vendox a variabile complessa, questo significa considerare la superficie di Riemann della funzione√
a− z.

Supponiamo ora che perx > a la funzione d’onda sia un esponenziale decrescente, cioè della forma3

ψ(x) =
1√
x− a

exp

(
−
∫ x

a

(x− a)1/2 dx
)

=
1√
x− a

exp

(
−2

3
(x− a)3/2

)
. (6.35)

Se risolviamo l’equazione di Schrödinger nel campo complesso possiamo pensare di ottenere laψ nella
zonax < a prolungando analiticamente la (6.35). L’idea è che nella continuazione nel piano complesso
possiamo percorrere un cammino che eviti il punto di diramazione, restando quindi sempre in una zona
in cui l’approssimazione WKB è lecita. Effettuando una continuazione in senso antiorario nel semipiano
complesso superiore

x− a→ |x− a|e+iπ ,

mentre per una continuazione, in senso orario, attraverso il semipiano inferiore

x− a→ |x− a|e−iπ .

3Trascuriamo tutti i fattori numerici inessenziali al ragionamento.
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In questo modo raggiungiamo, rispettivamente, il bordo superiore ed inferiore del taglio, ottenendo, nei
due casi

x > a :
1

(x− a)1/4
e−

2
3 (x−a)3/2

→


e−i

π
4

|x− a|1/4
ei

2
3 |x−a|

3/2
;

ei
π
4

|x− a|1/4
e−i

2
3 |x−a|

3/2
.

(6.36)

Questo significa che i due prolungamenti analitici selezionano le due componenti, verso destra e
verso sinistra, dell’onda stazionaria (6.34). Il fatto che nei due prolungamenti si raggiunga solo una delle
due componenti si capisce se si opera al contrario. Se dax < a si opera una rotazioneoraria di un angolo
ϕ nel semipiano superiore (siamo cioè sulla parte superiore del taglio) le due possibili fasi si trasformano
come

Φ+ = iρe−iϕ = iρ cosϕ+ ρ sinϕ ; Φ− = −iρe−iϕ = −iρ cosϕ− ρ sinϕ .

Quindi la fase negativa è esponenzialmente depressa rispetto a quella positiva e si perde nell’appros-
simazione WKB in questo prolungamento. Il contrario succede per una continuazione nel semipiano
inferiore. I due risultati (6.36) ottenuti sono quindi in effetti i due addendi di una stessa funzione e,
mettendoli assieme

1

(x− a)1/4
e−

2
3 (x−a)3/2

→ 2
1

|x− a|1/4
cos(

2

3
|x− a|3/2 − π

4
) ,

che riproduce la (6.34) ed è in accordo con le formule di connessione.
Questa descrizione mette in luce che il fattoreπ/4 nella fase è dovuto semplicemente al fattore1/

√
p

nell’espressione della funzione d’onda e che si ha un’unica funzione con due determinazioni diverse
su una superficie di Riemann. In questo linguaggio la condizione di monodromia perψ assume un
significato geometrico: in presenza di un taglio fra due punti di inversionea, b la (6.29) è la condizione
di monodromia dellaψ nel piano complesso:∮

p(z)dz − π

2
= 2nπ .

Il primo termine è la variazione di fase dovuta all’integrale dip, il termine−π/2 è l’effetto delle due fasi
π/4 acquistate dal prefattore1/

√
p aggirando i due punti di inversione.

Il punto geometrico che vogliamo sottolineare è che in quest’ottica la formula (6.29) è un’espressione
della topologia dello spazio in cui è definitaψ, in questo caso un piano complesso con un taglio, mentre
è poco sensibile ai dettagli sulla determinazione diψ o a quanto sia corretta l’approssimazione WKB
nell’intorno dei punti di inversione (il cammino nel piano complesso può essere effettuato lontano da
questi punti).

Purtroppo questa descrizione non può essere presa alla lettera, e questo è il motivo per cui abbiamo
usato l’approssimazione con le funzioni di Airy per ricavare le formule di connessione. In effetti l’e-
spressioneexp(−w(a, x)) è, nello spirito del WKB, uno sviluppo asintotico, molto al di là del punto di
inversione, della soluzione esatta. In generalenon è veroche la continuazione analitica dello sviluppo
asintotico dà lo sviluppo asintotico della continuazione analitica, quindi, in generale, la continuazione
analitica diexp(−w(a, x)) non dà lo sviluppo WKB alla sinistra del punto di inversione. Questo pro-
blema è stato trovato da Stokes proprio analizzando lo sviluppo asintotico delle funzioni di Airy che
compaiono in ottica nello studio dei fenomeni diffrativi. Un breve cenno a questa questione è dato nel
paragrafo 6.F.

Il punto che qui vogliamo sottolineare è però il seguente: se si può considerare la funzione d’onda
semiclassica come definita su uno spazio più ampio in cui le varie espressioni dell’azione appaiono come
determinazioni diverse di una stessa funzione, la condizione di quantizzazione (6.29) deve apparire come
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una condizione di monodromia su questo spazio e non deve dipendere dal dettaglio del comportamento
dellaψ. È proprio quello che succede: lo spazio in questione è lo spazio delle fasi classico del sistema,
questa questione è affrontata nel paragrafo 6.13 e seguenti.

6.3.1 Potenziale definito perx > 0

In diverse applicazioni è utile estendere l’analisi precedente al caso in cui la particella è vinco-
lata in un semispazio, il caso tipico è quello della coordinata radiale per un potenzialeV (r), in
ondas. La situazione è illustrata in figura 6.4. In questo caso la funzione d’onda deve soddisfa-

a

E

U(x)

Figura 6.4:Potenziale unidimensionale limitato ax > 0. 0, a sono i punti di inversione.

re il vincoloψ(0) = 0. È facile ricavare la condizione di quantizzazione dalle considerazioni
svolte nel paragrafo precedente: possiamo immaginare di estendere in modo pari il potenziale
nella zonax < 0. In questo potenziale esteso i punti di inversione sono±a. La condizione al
contorno è soddisfatta per gli statidisparidi questo potenziale esteso, quindi deve valere

w(−a, a) = 2w(0, a) =
[
(2n+ 1) +

1
2

]
π = (2n+

3
2
)π ⇒ w(0, a) =

(
n+

3
4

)
π . (6.37)

Ovvero, in termini di integrale di azioneJ :

J =
1
2π

∮
p(x)dx ≡ 1

2π
2
∫ a

0

p(x)dx =
(
n+

3
4

)
~ . (6.38)

È istruttivo comunque ricavare la stessa condizione direttamente. La condizione di raccordo
ed il requisitoψ ∈ L2 in questo caso si riducono a

C

2
√
|p|

exp(−σ(a, x)) → C√
|p|

cos(w(x, a)− π

4
) .

L’annullarsi della funzione inx = 0 impone

w(0, a)− π

4
= nπ +

π

2
→ w(0, a) = nπ +

3π
4
.
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che è ancora la condizione (6.37).

6.3.2 Sulla definizione del limite~→ 0

È opportuno che il lettore consideri il limite~ → 0 dal punto di vista fisico e non soltanto
come una approssimazione matematica.~ ha le dimensioni di un’azione, quindi per affermare
in quale limite possa o no valere l’approssimazione WKB occorre confrontare questo para-
metro con un parametro caratteristico del problema avente le stesse dimensioni. Nel caso di
procedure di quantizzazione come quella contenuta nella (6.29) l’approssimazione sarà buona
se~/J � 1, cioè per grandi valori din, come affermato precedentemente sulla base del-
l’analogia con l’ottica geometrica. Formalmente il limite semiclassico è quindi definito dalla
procedura~ → 0 aJ costante, ovvero come uno sviluppo in potenze din. Ci aspettiamo che
le correzioni al limite WKB siano quindi scrivibili nella forma adimensionale

J

~
=

1
2π~

∮
p(x) dx = n+

1
2

+
c1
n

+ . . .

La (6.29) va quindi interpretata come un’affermazione sul termine principale e sul primo ter-
mine subdominante nello sviluppo in1/n. Qualunque affermazione che si basi su termini
depressi rispetto a quelli scritti nella (6.29) richiede un’analisi degli ordini successivi dello
sviluppo. Ad esempio vedremo fra poco che l’approssimazione WKB riproduce esattamente
lo spettro dell’oscillatore armonico, e quello dell’atomo di idrogeno. Queste affermazioni, di
per se, non hanno molto significato a meno che non si dimostri che le correzioni al risultato
sono nulle.

Un altro punto da tenere presente è il seguente. Può accadere che~ compaia nella for-
ma dell’Hamiltoniana non solo a moltiplicare termini derivativi, come~2d2/dx2 nell’energia
cinetica, ma anche termini di potenziale. Nello spirito dell’approssimazione semiclassica,
un’approssimazione di piccole lunghezze d’onda, i termini di potenziale vanno trascurati, nel
senso che nella regione di validità dell’approssimazione questi termini non devono dare alcun
contributo. Questo tipo di approccio emergerà in modo naturale nella trattazione dei sistemi a
molti gradi di libertà effettuata nel paragrafo 6.13. L’eccezione a questo schema si presenta nel
caso in cui siano presenti delle singolarità nel potenziale. Ad esempio un fattore del tipo~/x
sarà sempre trascurabile eccettuato un intorno dix = 0. In tale intorno normalmente l’appros-
simazione semiclassica viene a cadere e la struttura particolare della funzione d’onda dipende
dalla forma della singolarità: è l’analogo del fatto che la faseα nella formula generale (6.19)
và determinata esaminando il comportamento della funzione d’onda nell’intorno del punto di
connessione in cui l’approssimazione WKB viene a cadere.

Esempi di queste problematiche si incontrano, ad esempio, nella trattazione delle variabili
angolari che faremo nel prossimo paragrafo.

6.4 Variabili angolari

Consideriamo il caso in cui l’equazione di Schrödinger, o in generale l’equazione agli autova-
lori, si riferisca a variabili angolari. Il caso più semplice è quello diLz. Per il moto azimutale
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l’equazione di Schrödinger ha la forma

−~2 ∂
2f

∂ϕ2
= λf . (6.39)

ϕ indica l’angolo azimutale,f la funzione d’onda,λ l’autovalore. La (6.39) è chiaramente
risolubile esattamente, comunque nello spirito dell’approssimazioneWKB possiamo trattarla
come un’equazione di Schrödinger unidimensionale per una particella libera, con massa 1/2 ed
energiaλ. Il momento (classico) coniugato aϕ èpϕ = ±

√
λ. Le due determinazioni possibili

perpϕ corrispondono alle due possibili soluzioni semiclassiche

f = C exp
[
± i

~

∫ ϕ

0

pϕ dϕ
]

= C exp(± i
~
pϕϕ) . (6.40)

Il punto interessante è che, essendoϕ periodico epϕ costante, e non nullo,non si hanno
punti di inversione, quindi la soluzione semiclassica (6.40) è sempre valida. La condizione di
quantizzazione nasce dall’imporre la periodicità inϕ:

f(ϕ+ 2π) = f(ϕ) ; ⇒ pϕ = ~m ; m ∈ Z , (6.41)

che è la soluzioneesattadel sistema.
Notiamo che in questo moto periodico la condizione di quantizzazione non ha correzioni

semintere, come nel caso oscillatorio. Questi due tipi di moto corrispondono a ciò che nella
vecchia teoria dei quanti erano i moti rotatori ed i moti dilibrazione(oscillazione) e chiarisce
come mai in alcune applicazioni della vecchia teoria dei quanti alcune volte occorresse quan-
tizzare con multipli interi di~, come in questo caso, altre volte con numeri seminteri, come
nel caso dell’oscillatore armonico. L’espressione normalizzata della funzione d’onda WKB è

f(ϕ) =
C√
|pϕ|

exp(imϕ) =
1√
2π

exp(imϕ) . (6.42)

La costante di normalizzazione qui differisce dalla (6.33) perché stiamo considerando funzioni
d’onda complesse, stiamo cioè usando gli esponenziali invece di seni e coseni.

Il caso immediatamente più complicato è quello delle variabili angolari nello spazio, cioè
la risoluzione dell’equazione per la parte angolare del laplaciano

−~2

{
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

}
ψ = Λψ . (6.43)

Sappiamo dalla teoria del momento angolare che la soluzione esatta del sistema ha come au-
tovalori Λ = ~2`(` + 1). Vediamo come la questione viene affrontata in approssimazione
semiclassica. Per semplicità trattiamo il casom = 0, cioè eliminiamo la derivata rispetto aϕ.
Le soluzioni esatte della (6.43) sono

ψ(θ) = P`(cos θ) ; ` ∈ N ; ψ(0) = 1 . (6.44)

Effettuando il cambiamento di variabiliψ(θ) = f(θ)/
√

sin θ possiamo portare la (6.43)
alla forma “canonica”

~2

(
d2f

dθ2
+
(

1
4

+
1

4 sin2 θ

)
f

)
+ Λ f = 0 ; 0 ≤ θ ≤ π . (6.45)
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L’impulso “classico” è

pθ =

√
Λ +

~2

4
+

~2

4 sin2 θ
. (6.46)

La condizione di semiclassicità nella (6.45) viene violata nell’intorno dei due estremi del do-
minio. In effetti la lunghezza d’onda di de Broglie perθ ∼ 0 è dell’ordine diλθ = ~/pθ ∼ θ
e quindidλθ/dθ ∼ 1, lo stesso ragionamento vale perθ ∼ π. Lontano da questi intorni, per
Λ finito e ~→ 0 possiamo trascurare il termine in1/ sin2 θ e postoλ =

√
Λ + ~2/4 scrivere

immediatamente la soluzione semiclassica nella forma

f(θ) = A cos(λθ − α) ; con
~

sin θ
� λ; cioè θ � ~

λ
; e θ � π − ~

λ
. (6.47)

La faseα normalmente viene determinata dalle condizioni di raccordo ma in questo caso non
possiamo usare direttamente le (6.20) perché siamo in presenza di una singolarità nell’equazio-
ne, non semplicemente dello sviluppo WKB: il raccordo va effettuato trovando una soluzione
esatta nella vicinanza della sengolarità e raccordandola alla (6.47). Perθ � 1 la (6.45) diventa

d2f

dθ2
+
(
λ2

~2
+

1
4θ2

)
f = 0 , (6.48)

che ha come soluzioneregolare

f(θ) ∼
√
θJ0(

λ

~
θ) ; θ � 1 . (6.49)

J0 è la funzione di Bessel di ordine 0. La normalizzazione nella (6.49) è stata scelta in modo da
soddisfare la (6.44), in quantoJ0(0) = 1. Perλ� 1 la (6.49) ha una zona di sovrapposizione
con la (6.47) nella zona~/λ� θ � 1. In questa zona possiamo usare lo sviluppo asintotico4

J0(
λ

~
θ) ∼

√
2~
πλ

cos(
λ

~
θ − π

4
) , (6.50)

e questo fissa le due costantiA,α nella (6.47):

f(θ) '
√

2~
πλ

cos(
λ

~
θ − π

4
) . (6.51)

Notiamo che, in accordo con i casi visti in precedenza, la proceduranon fissail valore di λ,
che deve discendere dalla condizione di monodromia perf(θ). La stima fatta per piccoliθ può
essere ripetuta in modo letterale attorno al secondo punto singolare,θ = π, basta cambiare
variabile e porrex = π − θ. In questo modo otteniamo una seconda espressione perf :√

2~
πλ

cos(
λ

~
(π − θ)− π

4
) =

√
2~
πλ

cos(
λ

~
(θ − π) +

π

4
) . (6.52)

4Questo sviluppo si ricava usando il metodo del punto sella nella rappresentazione integrale

J0(0) =
1

π

∫ π

0
cos(z cos θ)) .
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Le due determinazioni devono coincidere a meno di un segno e quindi per le fasi deve valere(
λ

~
θ − π

4

)
−
(
λ

~
(θ − π) +

π

4

)
= π` ⇒ λ = ~(`+

1
2
) ; ` ∈ N ,

da cuiΛ = λ2 − ~2/4 = ~2`(`+ 1) e, per la funzione d’onda:

P`(cos θ) '
√

2
π` θ

cos((`+
1
2
)θ − π

4
) . (6.53)

Notiamo esplicitamente che la condizioneλ/~� 1 si scrive, in termini dì , `� 1.
Il fatto di avere ottenuto l’autovalore esatto per l’operatoreL2 è frutto di un piccolo “im-

broglio”: è dovuto all’avere trattenuto il termine~2/4 nell’espressione (6.46). Nel limite
~→ 0 aΛ fisso, che è il limite semiclassico, questo è arbitrario, ed in effetti abbiamo già detto
che l’approssimazione semiclassica “canonica” consiste nel trascurare i termini in~ che non
moltiplicano derivate. Il seguito del ragionamento non cambia, in particolare il valore diλ, ma
semplicementeΛ diventaΛ = ~2`+ 1/2)2 che coincide con l’espressione precedente a meno
di termini piccoli perλ� 1. Un altro modo di vedre la cosa è notare che√

`(`+ 1) = `+
1
2

+O(
1
`
) .

Nel limite di validità dell’approssimazione semiclassica usare l’uno o l’altro valore diΛ è
irrilevante5, vista la condizionè� 1.

La questione si pone nel caso si vogliano estrapolare le formule semiclassiche a piccoli
valori di `, in particolare in ondas, per` = 0. In questo caso la bontà dell’approssimazione di-
pende dal sistema. Un esempio particolare è quello del campo coulombiano in tre dimensioni,
in cui la sostituzioneΛ→ ~2(`+ 1/2)2 dà la migliore approssimazione.

6.5 Problemi radiali e singolarità

Considerazioni simili a quelle viste nel paragrafo precedente si applicano, in generale, in pre-
senza di singolarità del potenziale. Se i punti di inversione coincidono o sono vicini a punti
singolari, l’approssimazione WKB, e le formule di connessione, devono essere modificate. Un
caso limite è proprio quello di potenziali definiti su una semiretta, in cui abbiamo già visto
come la condizione di quantizzazione cambi dalla forma (6.29) alla forma (6.38). Il problema
diventa rilevante per potenziali singolari inr = 0 come il potenziale coulombiano, e, in ge-
nerale, in presenza di una barriera centrifuga, in cui il potenziale effettivo radiale si comporta
come1/r2.

Consideriamo una particella in un campo centraleU(r). L’equazione di Schrödinger per
la funzione d’onda radiale ridotta,ϕ = R(r)/r si scrive:

~2 d
2ϕ

dr2
+
[
2m(E − U)− L2

r2

]
ϕ = 0 ; L2 = ~2`(`+ 1) . (6.54)

5Il lettore noti come le ultime considerazioni sono una esplicitazione nel caso in esame delle considerazioni fatte
nel paragrafo 6.3.2.
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La condizione di validità dell’approssimazione semiclassica in generale è (per la coordina-
ta radiale):

d

dr

(
~
|p|

)
� 1 ; p =

√
2m
(

(E − U)− ~2

2mr2
`(`+ 1)

)
. (6.55)

Per un potenziale singolare della formaV ∼ Cr−α, perr → 0 si ha|p| ∼
√

2mV ∼ r−α/2,
quindi

d

dr

(
~
|p|

)
∼ α~

2
√

2mC
rα/2−1 � 1 . (6.56)

La condizione semiclassica è sicuramente violata perα < 2, in particolare quindi per il poten-
ziale coulombiano in ondas, mentre il casoα = 2 che corrisponde ad esempio al caso di un
potenziale coulombiano in ondà6= 0, si è al bordo della zona di validità. Questo è il caso
generale per potenziali in cui la parte di potenziale centrifugo è dominante, in cui si ha, per
r → 0:

d

dr

(
~
|p|

)
∼ 1√

`(`+ 1)
. (6.57)

L’approssimazione è buona, come ci si aspetta, solo per`� 1.
Analizziamo la situazione per il caso particolarmente importante di un potenziale coulom-

bianoU = −Ze2/r. Conviene distinguere due tipi di problemi:

a) Si è interessati all’approssimazione semiclassica dello spettro. In questo caso si adope-
rano consistentemente le regole semiclassiche di Bohr Sommefeld. La parte angolare,
secondo questa procedura, ha una quantizzazione del tipoL = ~(` + 1/2). Si usa
quest’espressione per calcolare l’impulso radiale classico6 pr:

pr(r) =

√√√√2m

(
E +

Ze2

r
− ~2

2mr2

(
`+

1
2

)2
)
, (6.58)

e si usa la regola di quantizzazione (6.29). L’equazionepr = 0 ha due radici perE < 0,
dando luogo a due punti di inversioner1, r2:

1
r1,2

=
(`+ 1

2 )2

a0

1±

√
1− 2|E|

ε0
(`+ 1

2 )2

 , (6.59)

con

a0 =
~2

Zme2
; ε0 =

Ze2

a0
.

La condizione (6.29) si scrive

Jr =
1
2π

∮
pr(r) dr =

1
π

∫ r2

r1

pr(r) dr = ~(nr + 1
2 ) , (6.60)

6Notiamo che questa espressione è diversa dalla (6.55).
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ed effettuando l’integrale7

Jr = ~
√

ε0
2|E|

− ~(`+ 1
2 ) = ~(nr + 1

2 ) ;nr = 0, 1, . . .

da cui discendono i livelli:

En = −|E| = − ε0
2n2

; n = nr + `+ 1 = 1, 2 . . .

coincidenti con quelli esatti.

b) Si è interessati a scrivere un’approssimazione per la funzione d’onda WKB e, da questa,
ricavare la regola di quantizzazione perpr ed i livelli energetici. Inquestocaso si pone il
problema di avere una buona approssimazione per la funzione d’onda, e, come evidente
dalle eq.(6.56,6.57), si hanno problemi in ondas e in onda` > 0 con la procedura
standard, ottenendo una stima ragionevole solo per`� 1. A titolo di esempio facciamo
notare che per̀ > 0 la regioner ∼ 0 è classicamente proibita e la prescrizione WKB
predice un comportamento esponenziale nell’azione:

1√
|p|
e−

∫
|p(r)| dr ∼ 1√

|p|
e±
√
`(`+1

∫ r dr
r = r1/2r±

√
`(`+1

mentre il comportamento regolare èϕ ∼ r`+1, come si ricava immediatamente dalla
(6.54). Lasciamo anche al lettore la semplice verifica che perL2 → ~2 `(`+1) la regola
di quantizzazione (6.29) non riproduce lo spettro esatto.

Un metodo per trattare consistentemente il limite~ → 0 nell’equazione (6.54) è stato
proposto da Langer[Langer] e si basa essenzialemente su un cambiamento di variabili
fatto in modo tale da mandare all’infinito il punto singolare e rendere così l’approssima-
zione WKB valida sull’intero asse reale. Il risultato sarà ancora una volta la sostituzione
`(`+ 1)→ (`+ 1

2 )2, che in questo contesto prende il nome dicorrezione di Langer.

6.5.1 Correzione di Langer

Poniamo
r = ex ; ϕ = ex/2 u(x) , (6.61)

sostituendo nella (6.54) si ottiene

~2

2m
d2u

dx2
− ~2

2m

(
`(`+ 1) +

1
4

)
u+ (Ee2x + Ze2ex)u = 0 . (6.62)

L’impulso effettivo, perE < 0 vale

p(x) = ex

√
2m
(
Ze2 e−x − |E| −

~2(`+ 1
2 )2

2m
e−2x

)
.

7Per i dettagli si vedano gli esercizi 6.1,6.3.
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Con questa sostituzione l’approssimazione WKB vale su tutto l’asse reale, al di fuori dei punti
di inversione del moto, in quanto il punto singolare del potenziale è stato spostato all’infinito.
I punti di inversione sono identici a quelli precedenti, cone−x al posto di1/r e la condizione
di Bohr - Sommerfeld si scrive

~(nr + 1
2 ) = Jx =

1
π

∫ x2

x1

p(x)dx = ~(`+ 1
2 )
∫ x2

x1

ex
√

(e−x − 1
r2

)(
1
r1
− e−x) dx ,

che è identica alla (6.60) dopo il cambiamento di variabiler = ex, dà quindi il corretto spettro
idrogenoide.

Perx→ −∞ si ha|p(x)| → ~(`+ 1
2 ) quindi per piccolir;

u ∼ 1√
|p|
e
∫ |p|

~ dx → e(`+
1
2 )x ,

e per la funzione d’onda radiale ridotta:

ϕ = ex/2u→ e(`+1)x = r`+1 ,

che è il corretto comportamento asintotico.
La correzione di Langer può essere adottata per analizzare l’approssimazione WKB in

qualsiasi potenziale centrale. Per ulteriori approfondimenti della questione il lettore può con-
sultare [Langer, BerMou72].

6.6 Esempi

Oscillatore armonico

L’equazione di Schrödinger è

− ~2

2m
d2ψ

dx2
+

1
2
mω2ψ = Eψ ; p2 = 2m(E − 1

2
mω2x2) . (6.63)

I punti di inversione classici sono:

x = ±a = ±
√

2E
mω2

.

La condizione di quantizzazione semiclassica si scrive

1
2π

∫ a

−a
dx

√
2mE

(
1− x2

a2

)
=

1
π

√
2mE

∫ a

0

dx

√
1− x2

a2
= ~

(
n+

1
2

)
, (6.64)

ovvero, ponendox = a z:

~
(
n+

1
2

)
=

1
π

√
2mE a

∫ 1

0

√
1− z2 dz =

2E
ωπ

π

2
=
E

ω
.

Quindi i livelli energetici in approssimazione semiclassica sonoesatti.
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La funzionep(x) corrispondente all’n-esimo livello eccitato è

pn(x) =
√

2mEn

√
1− x2

a2
n

; an =

√
2En
mω2

,

ed il corrispondente periodo di oscillazione classico è dato da

Tn = 2
√

m

2En

∫ an

−an

dx√
1− x2

a2
n

= 2
2
ω

∫ 1

0

dz√
1− z2

=
2π
ω

;

uguale per tutti i livelli, è la ben nota proprietà di isocronismo delle piccole oscillazioni.
Le funzioni d’onda semiclassiche, al contrario dei livelli energetici, non sono riprodotte

esattamente dall’approssimazione WKB.
La figura 6.5 presenta un confronto fra la funzione d’onda esatta e quella in approssima-

zione WKB per lo stato fondamentale e per lo stato conn = 10: è evidente che per lo stato
eccitato l’approssimazione è buona al di fuori di un piccolo intorno dei punti di inversione.
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1

Figura 6.5:Funzione d’onda WKB (linea intera) e funzione d’onda esatta (linea trattegiata) per gli stati
n = 0 en = 10 di un oscillatore armonico.

Per referenza riportiamo le espressioni esplicite delle funzioni d’onda. Con i valori diC, a, p(x) prece-
dentemente calcolati:

C =

√
4m

T
; a =

√
2E

mω2
; E = ~ω

(
n+

1

2

)
; p(x) =

√
2mE

√
1− x2

a2
,

si ha

0 < x < a : ψ(x) =
C√
p(x)

cos
( 1

~

∫ x

−a
p(x) dx− π

4

)
=

C√
p(x)

cos
(2π

4
(n+

1

2
)− π

4
+

∫ x

0

p(x)

~
dx
)

=

=
C√
p(x)

cos
(nπ

2
+

E

~ω

[
arcsin(

x

a
) +

x

a

√
1− x2

a2

])
;

a < x : ψ(x) =
C

2
√
p(x)

exp
(
− E

~ω

[x
a

√
x2

a2
− 1− argcosh(

x

a
)
])
.
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Una misura quantitativa dell’approssimazione si ha, ad esempio, confrontando il valore della fun-
zione d’onda nell’origine con la soluzione esatta, per gli stati pari ovviamente. In approssimazione
semiclassica

|ψ2n(0)| = C
1√
p(0)

cos

(∫ 0

−a
p(x)dx− π

4

)
=

√
2mω

π

1

(2m~ω(2n+ 1
2
))1/4

=
(mω

~π

)1/4
(

2

π

)1/4

(2n+
1

2
)−1/4 .

Per la soluzione esatta

|ψ2n(0)| =
(mω

~π

)1/4 1√
22n(2n)!

|H2n(0)| =
(mω

~π

)1/4 1√
22n(2n)!

(2n)!

n!
. (6.65)

Per grandin usando la formula di Stirling

k! ' kke−k
√

2πk ,

si ha
1√

22n(2n)!

(2n)!

n!
=

√
(2n)!

2nn!
→ (πn)−1/4 .

Sostituendo nella (6.65) si verifica la consistenza con il risultato semiclassico. Per lo stato fondamentale

ψ0(0) =
(mω

~π

)1/4

; ψsc0 (0) =
(mω

~π

)1/4√
2 · π−1/4 = ψ0(0) · 1.0623 ;

quindi l’approssimazione è ragionevolmente buona anche per il fondamentale.

Potenziale quartico.

Come esercizio non banale proviamo il potenzialeU = g
2x

4:

− ~2

2m
d2ψ

dx2
+

1
2
gx4ψ = Eψ . (6.66)

Operando la trasformazionex = λz, conλ = (~2/mg)1/6 la (6.66) si trasforma in

−1
2
d2ψ

dz2
+

1
2
z4ψ =

ε

2
ψ ;

ε

2
= E

(m
~2

)2/3

g−1/3 . (6.67)

Gli autovalori della (6.67) chiaramente non dipendono da nessun parametro, quindi basta
studiare questa equazione, se si vogliono ottenere le energie nelle unità solite basterà porre

En =
(

~2

m

)2/3

g1/3 ε

2
. (6.68)

Per l’equazione (6.67) i punti di inversione sonoz = ±a = ±ε1/4 e la condizione di
quantizzazione si scrive8

n+
1
2

=
1
2π
√
ε 2
∫ a

−a

√
1−

(z
a

)4

dx =
2
π
a
√
ε I

I =
1
4
B( 1

4 ,
3
2 ) =

√
π Γ( 1

4 )
8 Γ( 7

4 )
= 0.8740192 . . . ,

8B(p, q) è la funzione beta di Eulero.
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da cui

εn =
[
π

2I
(n+

1
2
)
]4/3

. (6.69)

Possiamo ricavare gli autovalori con il metodo variazionale illustrato nel capitolo precedente,
i raffronti sono:

n εn εWKB
n δε/ε

0 1.06036 0.86715 0.18222
1 3.79967 3.75192 0.01257
2 7.45570 7.41399 0.00559
3 11.64475 11.61153 0.00285
4 16.26183 16.23361 0.00173
5 21.23837 21.21365 0.00116

Come si vede l’approssimazione migliora al crescere din ma è ragionevole anche per lo stato
fondamentale.

6.7 Effetto tunnel

Uno dei fenomeni più caratteristici della meccanica quantistica è l’effetto tunnel: in linguag-
gio classico corrisponde alla transizione di una particella fra due zone dello spazio delle fasi
separate fra loro da una zona classicamente inaccessibile. Il tipico esempio è quello di un ur-
to contro una barriera, esemplificato in figura 6.6: una particella proveniente da sinistra, urta
contro una “barriera di potenziale”, se l’energia della particella è minore dell’altezzaV0 della
barriera, l’unico processo possibile classicamente è una riflessione, quantisticamente invece la
funzione d’onda può “penetrare” attraverso la barriera e dar luogo ad una certa probabilità di
attraversamento della stessa.

V0

t

r

Figura 6.6: Illustrazione schematica dell’effetto tunnel: un’onda incidente dà luogo ad un’onda
trasmessa ed una riflessa di ampiezzet, r rispettivamente.

Il processo è stato trattato nel volume 1, qui vogliamo darne una descrizione semiclassica.
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La funzione d’onda che descrive a livello stazionario il processo è, asintoticamente:

ψ(x) =


1√
k

[
eikx + r e−ikx

]
x→ −∞

1√
k′
t eik

′x x→ +∞
(6.70)

k ek′ sono i numeri d’onda della particella entrante ed uscente:

p = ~ k ; p′ = ~ k′ ; (6.71)

supporremo che i limiti perx → ±∞ del potenziale siano rispettivamente0 e V0, quindi gli
impulsi sono legati all’energia da

p =
√

2mE ; p′ =
√

2m (E − V0) . (6.72)

Scrivendo la corrente

j =
~

2mi

(
ψ∗

d

dx
ψ − ψ d

dx
ψ∗
)
,

il lettore si convince facilmente che la funzione d’onda (6.70) corrisponde ad un flusso inci-
dente di una particella al secondo, ad un flusso|r|2 riflesso e ad un flusso|t|2 che attraversa la
barriera, in altre parole|t|2 è la probabilità di attraversamento ed|r|2 la probabilità di rifles-
sione. Le probabilità sono definite naturalmente solo dalle normalizzazionirelative dei vari
termini della funzione d’onda, quindi moltiplicando per uno stesso fattore tutte le componenti
della (6.70) le quantità fisiche restano invariate.

Consideriamo il caso in cuiV0 ≤ E ≤ Vmax che corrisponde classicamente ad una ri-
flessione completa, ma nello stesso tempo permette una propagazione dell’onda al di là della
barriera. Il caso più semplice, e frequente, è quello in cuiV0 = 0 e nel seguito ci riferiremo a
questo caso.

Si hanno in questo caso due punti di inversione classici, che indicheremo cona, b (a <
b) soluzioni delle equazionip(x) = 0. La soluzione semiclassica perx < a e x > b ha
rispettivamente la forma

ψ(x) =
1
√
p
eiw(a,x) +R(E)

1
√
p
e−iw(a,x) ; ψ(x) = T (E)

1
√
p
eiw(b,x) . (6.73)

La fase dei coefficientiR, T è riferita ai punti di inversione, questa scelta differisce da quella
indicata nella (6.70) per un fattore di fase ma è più comoda per i nostri scopi. Determinare i
coefficientiR, T è un problema di formule di connessione.

Il risultato generale valido in approssimazione semiclassica è:

T (E) =
e−w̃(a,b)

(1 + e−2w̃(a,b))1/2
e−iδ(E) ; R(E) =

1
(1 + e−2w̃(a,b))1/2

e−iδ(E) . (6.74)

w̃(a, b) =
1
~

∫ b

a

|p(x)| dx .
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|T |2 dà la probabilità di attraversamento della barriera e prende anche il nome difattore di
penetrazione della barriera:

|T |2 =
e−2w̃(a,b)

1 + e−2w̃(a,b)
' e−2w̃(a,b) . (6.75)

La faseδ(E) può essere calcolata:

δ(E) =
w̃

π~
log
∣∣∣∣ w̃π~ e

∣∣∣∣+ argΓ
(

1
2
− i w̃

π~

)
. (6.76)

Γ è la funzione gamma di Eulero. Nel testo non faremo uso del risultato (6.76). Notiamo
comunque che il valore di questa fase è sempre piuttosto piccolo, come si vede dalla figura
6.7.

1 2 3 4

-0.14

-0.12

-0.1

-0.08

-0.06
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-0.02

Figura 6.7:Variazione diδ(E) in funzione diw̃/π.

In questo paragrafo dimostreremo9 la (6.74) nel caso di piccoli valori del fattore di pene-
trazione, cioè per̃w � 1. In questa approssimazione possiamo considerare i puntia, b ben
separati e possiamo risolvere il problema applicando due volte le formule di connessione per
unsingolopunto di inversione. Bisogna ricordare che in questa approssimazione non ha senso
considerare i termini esponenzialmente depressi rispetto a quelli principali, appunto perché
stiamo considerando il limite di grande separazione e quindi grandew̃(a, b). Aggiungendo
una fase globale diπ/4 per facilitare le cose si ha, direttamente dalle equazioni (6.18):

ei(w(b,x)−π
4 ) =

[
cos(w(b, x)− π

4
) + i sin(w(b, x)− π

4
)
]
→
[
1
2
e−w̃(x,b) − iew̃(x,b)

]
' −i ew̃(x,b) = −i ew̃(a,b)e−w̃(a,x) → −i ew̃(a,b) 2 cos(w(x, a)− π

4
) =

= e−i
π
2 ew̃(a,b)

[
ei(w(x,a)−π

4 ) + e−i(w(x,a)−π
4 )
]

= e−i
π
2 ew̃(a,b)

[
ei(−w(a,x)−π

4 ) + ei(w(a,x)+ π
4 )
]
.

Dal rapporto fra l’onda trasmessa e le due onde a sinistra del potenziale si ricava

T =
e−i

π
4

e−i
π
2 ew̃(a,b)ei

π
4

= e−w̃(a,b) ;
R

T
=
e−i

π
2 ew̃(a,b)e−i

π
4

e−i
π
4

= −iew̃(a,b) ⇒ R = −i ,

9Il calcolo completo della (6.74) è delineato nei complementi.
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che coincide con il limite del risultato (6.75). Notiamo che in questo limiteδ(E) = 0.

Se avessimo considerato anche il termine sub-dominante nella formula di connessione avremmo ottenuto,
come si verifica facilmente:

T =
1

ew̃ + 1
4
e−w̃

; R = −i
ew̃ − 1

4
e−w̃

ew̃ + 1
4
e−w̃

. (6.77)

Le correzioni così ottenute sonosbagliate, come si vede dal fatto che il risultato non ha la forma (6.75).
Nei complementi viene effettuato il calcolo esatto per un potenziale parabolico in cui si verificherà
quest’affermazione.

A titolo di esempio riportiamo nella figura 6.8 il raffronto fra risultati numerici e approssima-
zione WKB per un potenziale10 di forma gaussiana.

30 35 40 45 50
E

0.1

0.2

0.3

0.4

0.5

0.6

�T�
30 35 40 45 50

E

-0.175

-0.15

-0.125

-0.1

-0.075

-0.05

-0.025

∆�E�

Figura 6.8: |T | e δ(E) in funzione dell’energia per un potenzialeV0e
−x2/∆2

. La curva continua è
l’approssimazione WKB, i punti sono risultati numerici.

6.8 Conteggio degli stati

La condizione di quantizzazione (6.29)

1
2π

∮
pdq = ~

(
n+

1
2

)
, (6.78)

ha un chiaro significato geometrico: se consideriamo un moto periodico la traiettoria nello
spazio delle fasi percorrerà una linea chiusa, l’integrale a sinistra della (6.78) è l’area racchiusa
da questa curva. La relazione (6.78) asserisce che ad ogni grado di libertà è associata un’area
2π~ nello spazio delle fasi. Equivalentemente se consideriamo una porzione “macroscopica’
dello spazio delle fasi, di area∆p∆q, il numero di stati quantistici associati è

n =
∆p∆q
2π~

. (6.79)

Come è noto l’applicazione forse più importante di relazioni come la (6.79) è in fisica statistica,
per contare appunto gli stati possibili. Per il caso di una particella in una scatola la relazione

10Il calcolo è proposto come esercizio alla fine del capitolo.
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(6.79) si riduce al classico conteggio dei modi di vibrazione di una cavità:p/~ = k = 2π/λ è il
numero d’onda e la condizione di quantizzazione si riduce a dire che la larghezza della scatola
deve essere un multiplo della semilunghezza d’onda, quindi in questo caso non c’è bisogno
di scomodare l’approssimazione semiclassica per stabilire la (6.79). Tuttavia la formulazione
presente ha il vantaggio di non dipendere dai dettagli del potenziale: mettere una scatola non
significa altro che introdurre un campo esterno capace di confinare il sistema. Normalmente nel
limite termodinamico le grandezze fisiche non devono dipendere dal tipo di contenitore usato
quindi è opportuno che il conteggio degli stati sia fatto, nel limite di grandin che è quello
che ci interessa, indipendentemente dal potenziale, questo è appunto quello che assicura la
derivazione semiclassica della (6.79).

La (6.78) fornisce un’altra relazione interessante che aiuta a capire la connessione fra
l’evoluzione temporale quantistica e quella classica.

Se consideriamo un sistema conn � 1 possiamo valutare qual’è la differenza in energia
fra un livello e l’altro. Posto∆E = En+1 − En si ha approssimativamente, usandop =√

2m(E − U):

∆n = 1 =
1

2π~
∆E

∂

∂E

∮
pdx =

1
2π~

∆E
∮
mdx

p
=

1
2π~

∆E T ,

doveT è il periodo classico del sistema. Indicando conω = 2π/T la frequenza propria di
oscillazione

∆E ' ~ω . (6.80)

Questo significa che per grandi valori din i livelli sono equispaziati e la differenza di energia,
corrispondente alla frequenza di transizione fra livelli diversi, è un multiplo della frequenza
fondamentale di oscillazione classica. In approssimazione semiclassica l’evoluzione di uno
stato è perciò del tipo

ψ(x, t) ∼
∑
k

ψk(x)e−ikωt , (6.81)

che è proprio la forma aspettata per una funzione periodica di periodoT , in pratica lo sviluppo
in serie di Fourier.

Ci si aspetta che la descrizione classica di un sistema corrisponda ad una localizzazione
precisa nello spazio delle fasi, in altre parole i numeri quantici caratteristici,n, devono essere
grandi per avere il limite classico, ma la distribuzione dei valori deve essere abbastanza stretta
in modo che il “volume”∆p∆q sia ben definito classicamente ma grande rispetto alla “gra-
nularità quantistica”, cioè il volume elementare2π~. In altre parole uno stato classico deve
corrispondere alla situazione

1� ∆n� n .

Se sviluppiamo uno stato di questo tipo in termini di autofunzioni semiclassiche avremo

Ψ =
∑
n

cnψn ,

con i coefficienticn sono diversi da 0 solo in un piccolo intervallo attorno ad un certon̄� 1.
Consideriamo ora l’evoluzione temporale di una osservabilef , si avrà11

f̄(t) = 〈Ψ(t)|f |Ψ(t)〉 =
∑
m,n

c∗ncmfmne
i
~ (Em−En) .

11Seguiamo in questa esposizione il classico testo di Landau-Lifchitz.
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Per tutti i livelli che compaiono nella somma possiamo applicare la (6.80) e quindiEm−En '
(m− n)~ω. Cambiando variabili e scrivendom = n+ k

f̄(t) =
∑
n

∑
k

c∗n+kcnfn+k,ne
ikω . (6.82)

Le funzioni semiclassiche sono funzioni rapidamente oscillanti per grandi numeri quantici,
quindi gli elementi di matrice frafn1,n2 sono, trascurando la funzione d’onda nella zona
classicamente inaccessibile, quantità del tipo

fmn ∼
∫ b

a

f(x)
1

p(x)
cos(ϕn) cos(ϕm) .

Abbiamo indicato conϕn i fattori di fase semiclassici. Le due fasiϕn, ϕm hanno rispetti-
vamenten,m oscillazioni, quindi l’elemento di matricefnm tende a zero rapidamente col
crescere din − m, è lo stesso motivo per cui nell’usuale trasformata di Fourier di una fun-
zioneF (x) poco variabile le sue componenti di FourierFk vanno a zero rapidamente conk.
In prima approssiamzione possiamo perciò trascurare nella (6.82) i termini conk 6= 0 nei
prodottic∗n+kcn. D’altronde il numeron, sempre negli elementi di matrice, è centrato attorno
a n̄, il numero “tipico” dello stato, quindi gli elementifn+k,n dipendono solo dak. Usando∑
n |cn|2 = 1 si ha allora, approssimativamente

f̄(t) '
∑
n

|cn|2
∑
k

fke
ikωt =

∑
k

fke
ikωt .

L’evoluzione temporale è esattamente quella aspettata: una evoluzione in termini di armoniche
di un sistema con periodicitàT = 2π/ω. In questo modo vediamo che le componenti di
Fourier delle osservabili classiche sono in corrispondenza con gli elementi di matrice delle
osservabili quantistiche.

Notiamo che quanto qui tratteggiato è esattamente l’opposto di quanto è avvenuto stori-
camente: la costruzione della meccanica delle matrici di Heisenberg si basa appunto sulla
considerazione che nel limite classico le componenti di Fourier di una osservabile si devono
riferire a “salti quantici”, cioè ci deve essere una corrispondenza frafclk eF (n+k, n) doveF ,
per Heisenberg, rappresentava l’oggetto da studiare. L’analogia con le regole di ricombinazio-
ne degli spettri ha portato alla formulazione di “regole di moltiplicazione” per questi oggetti
F (n+ k, n) che infine sono state riconosciute come le regole di moltiplicazione per matrici.

6.9 Doppia buca

Uno dei problemi più interessanti ed istruttivi fra quelli “elementari” in meccanica quantistica
è la determinazione dei livelli energetici, in particolare dello stato fondamentale, in un sistema
con un potenziale con due minimi uguali, come quello indicato in figura 6.9.

Dallo studio dell’analogo problema con buche di potenziale unidimensionali abbiamo im-
parato che lo stato fondamentale è uno stato simmetrico e la funzione d’onda associata è “di-
stribuita” fra le due buche di potenziale. Vogliamo studiare lo stesso meccanismo in un poten-
ziale generico in approssimazione semiclassica, in particolare per un potenziale descritto da
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Figura 6.9:Potenziale per una doppia buca di potenziale. I punti di inversione del moto classico sono
x = ±a, ex = ±b.

un polinomio di grado 4. Questo potenziale si ottiene da quello di un oscillatore anarmonico
invertendo il segno del termine quadratico.

Daremo tre metodi di soluzione leggermente diversi fra loro per mettere in evidenza aspetti
diversi del problema. Il lettore incontrerà più avanti nei suoi studi metodi ancora diversi, basati
sul path-integral, questo a testimoniare l’importanza metodologica della questione.

Discussione

L’approccio semiclassico è interessante perché focalizza in maniera emblematica il modo di-
verso in cui le simmetrie agiscono in meccanica quantistica rispetto alla meccanica classica.
In meccanica classica il sistema ammette due stati di minima energia, corrispondenti ai minimi
x± del potenziale. Questi minimi sono equivalenti ma, una volta scelto un minimo, la descri-
zione fisica non è più invariante sotto l’operazione di parità. Se ad esempio consideriamo delle
piccole oscillazioni possiamo distinguere oscillazioni attorno ax+ da oscillazioni attorno a
x−. Ad esempio se la particella che stiamo studiando è carica, la posizione stazionaria cor-
risponde ad un dipolo elettrico±ex± che cambia segno a seconda di scegliere un minimo o
l’altro. In meccanica quantistica la situazione è completamente diversa. L’Hamiltoniana del
sistema

H =
p2

2m
+ U(x) , (6.83)

commuta con l’operazione di paritàP : x → −x, quindi possiamo classificare gli stati con
gli autovalori diP , che in rappresentazione di Schrödinger corrispondono a funzioni pari,
con autovalore+1, e dispari, con autovalore−1. L’equazione agli autovalori corrispondente
alla Hamiltoniana (6.83) è un problema di Sturm-Liouville e sappiamo che l’autovalore più
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basso corrisponde ad una funzione senza nodi, quindi lo stato fondamentale del sistema deve
corrispondere ad una autofunzionepari. In altre parole per lo stato fondamentale del sistema
quantistico le due posizionix± sono completamente equivalenti.

D’altre parte se immaginiamo di effettuare il limite classico~ → 0 vorremmo recuperare
la situazione “asimmetrica”: si tratta perciò di capire qual’è il meccanismo fisico che rende
equivalenti i due minimi classici e in che senso si recupera il limite classico.

La localizzazione della particella in una valle, ad esempio attorno ax+, corrisponde ad una
funzione d’onda concentrata in questa zona. Classicamente se l’energia è minore del massimo
locale del potenziale,U(0), la particella resta confinata in questa zona, quantisticamente sap-
piamo invece che per effetto tunnel la particella può passare nell’altra valle, questo è dunque
il meccanismo in gioco. La probabilità di questa transizione deve essere quindi proporzionale
al fattore di penetrazione della barriera,e−A, doveA è proporzionale all’area del graficoU(x)
compreso fra l’energiaE del sistema ed il massimo del potenziale,U(0). Nel limite in cui il
fattore di penetrazione è trascurabile il sistema quindi deve presentare due stati quasi stazionari
equivalenti, corrispondenti alla due localizzazioni possibili della particella, cioè l’Hamiltonia-
na deve essere approssimativamente degenere. La possibilità di effettuare il tunneling risolve
la degenerazione e, con un meccanismo già visto, provoca una separazione dei livelli: è il
classico meccanismo di un sistema a due stati. Seϕ+, ϕ− sono i due stati quasi stazionari
corrispondenti alle due localizzazioni della particella, lo stato fondamentale ed il primo stato
eccitato saranno della forma approssimativa

ψ1 =
1√
2
(ϕ+ + ϕ−) ; ψ2 =

1√
2
(ϕ+ − ϕ−) . (6.84)

La separazione dei livelli∆E = E2 − E1 sarà proporzionale al fattore di penetrazione della
barriera. L’energia∆E corrisponde alla frequenza caratteristica di transizione fra le due buche,
infatti partendo da uno statoϕ+, ad esempio, si avrà:

ϕ+(t) =
1√
2

(
ψ1(0)e−E1t/~ + ψ2(0)e−E2t/~

)
, (6.85)

da cui

|〈ϕ−|ϕ+(t)〉|2 = sin2 ∆Et
2~

. (6.86)

Dopo un tempoT ∼ π~/∆E la particella si troverà dall’altra parte della barriera.

Questo semplice calcolo chiarisce che il sistema, per tempit� T può considerarsi “loca-
lizzato” mentre per tempi maggiori l’effetto tunnel non è più trascurabile. Uno stato staziona-
rio è necessariamente considerato tale per tempi infinitamente lunghi, quindi gli stati stazionari
sono simmetrici. Sappiamo però che il fattore di penetrazione è proporzionale aexp(−S/~)
doveS ha le dimensioni di un’azione classica, dell’ordine dip∆x dovep =

√
2m|E − V | e

∆x dell’ordine della distanza dei punti di inversionea, b in figura. Quindi se~� S i tempi di
“tunneling” possono essere astronomicamicamente lunghiT ∝ ~eS/~. Veniamo ora alla stima
semiclassica dei livelli energetici.
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Metodo 1

Consideriamo un potenziale simmetrico,U(−x) = U(x), e sianoψ1, ψ2 due autostati12

dell’Hamiltoniana, conψ1 pari eψ2 dispari:

− ~2

2m
d2

dx2
ψ1 + U(x)ψ1 = E1ψ1 ; (6.87a)

− ~2

2m
d2

dx2
ψ2 + U(x)ψ2 = E2ψ2 . (6.87b)

Possiamo trovare un’espressione per la differenza dei livelli∆E = E2 − E1 utilizzando una
tecnica simile a quella che si usa per dimostrare che le autofunzioniψ1, ψ2 sono ortogonali.
Consideriamo la combinazione

A(ψ1, ψ2) = ψ1ψ
′′
2 − ψ2ψ

′′
1 .

Integriamo questa quantità nell’intervallo0,∞. Usandoψ1, ψ2 → 0 perx→∞ si ha∫ ∞

0

(ψ1ψ
′′
2 − ψ2ψ

′′
1 )dx =

∫ ∞

0

dx
d

dx
(ψ1ψ

′
2 − ψ2ψ

′
1) = ψ2(0)ψ′1(0)− ψ1(0)ψ′2(0) .

D’altra parte usando le (6.87) si ha∫ ∞

0

(ψ1ψ
′′
2 − ψ2ψ

′′
1 )dx = −2m

~2
(E2 − E1)

∫ ∞

0

dxψ1(x)ψ2(x) .

Quindi

E2 − E1 =
~2

2m
1
S12

(ψ1(0)ψ′2(0)− ψ2(0)ψ′1(0)) =
~2

2m
1
S12

ψ1(0)ψ′2(0) ; (6.88a)

con: S12 =
∫ ∞

0

dxψ1ψ2 . (6.88b)

Si è usato il fatto cheψ2(0) = 0, essendoψ2 una funzione dispari. Applichiamo la (6.88) al
caso che ci interessa.ψ1 è la funziona d’onda, simmetrica, dello stato fondamentale eψ2 la
funzione d’onda, antisimmetrica, del primo livello eccitato.

Come accenato nella discussione nel limite in cui si trascura l’effetto tunnel l’Hamiltonia-
na deve presentare due configurazioni degeneri,ϕ(x), ϕ(−x) che corrispondono a particelle
localizzate nelle due valli. Se pensiamo alla presenza dell’effetto tunnel come una piccola per-
turbazione rispetto a questa situazione i due statiψ1 eψ2 saranno descritti dalle combinazioni
simmetrica e antisimmetrica

ψ1 =
1√
2

(ϕ(x) + ϕ(−x)) , (6.89a)

ψ2 =
1√
2

(ϕ(x)− ϕ(−x)) . (6.89b)

12Questo metodo è sostanzialmente quello riportato nel testo [Landau3].
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Viceversa, partendo dalle funzioni d’ondaψ1 eψ2 e scegliendo le fasi in modo che, ad esempio,
ψ1 > 0 eψ2 > 0 perx > 0, le funzioni d’onda

ϕ+(x) = ϕ(x) =
1√
2

(ψ1(x) + ψ2(x)) ; (6.90a)

ϕ−(x) = ϕ(−x) =
1√
2

(ψ1(x)− ψ2(x)) , (6.90b)

corrisponderanno a stati localizzati nella buca di destra e di sinistra rispettivamente. Notiamo
che con questa definizione diϕ le (6.89) sono delle identità.

Per funzioni localizzate la sovrapposizione è trascurabile:∫
dxϕ+(x)ϕ−(x) ' 0 , (6.91)

quindi possiamo scrivere

S12 =
∫ ∞

0

dxψ1ψ2 =
1
2

∫ ∞

0

[
ϕ2

+ − 2ϕ+ϕ− + ϕ2
−
]
' 1

2

∫ ∞

0

dxϕ2
+ .

Abbiamo usato il fatto che la funzioneϕ− è localizzata nel semispazio di sinistra, quindi è
trascurabile perx > 0.

Dal fatto cheψ1 è pari eψ2 è dispari discende poi

ϕ+(0) = ϕ−(0) =
1√
2
ψ1(0) ϕ′+(0) = −ϕ′−(0) =

1√
2
ψ′2(0) ,

quindi
ψ1(0)ψ′2(0) = 2ϕ+(0)ϕ′+(0) ,

ed infine, dalla (6.88)

∆E = E2 − E1 '
1∫∞

0
dxϕ2

+

2~2

m
ϕ+(0)ϕ′+(0) . (6.92)

Come si vede l’espressione non dipende dalla normalizzazione assoluta diϕ+ e possiamo
convenientemente normalizzare la funzione in modo che l’integrale che compare nella (6.92)
sia 1:

∆E = E2 − E1 '
2~2

m
ϕ+(0)ϕ′+(0) . (6.93)

La forma della funzioneϕ+, senza nodi e esponenzialmente crescente nella zona(0, a), assi-
cura cheϕ+(0)ϕ′+(0) > 0, quindi lo stato simmetrico è effettivamente il fondamentale.

In approssimazione semiclassica dobbiamo stimare la funzioneϕ+ per ~ → 0. In que-
sta approssimazioneϕ+ deve soddisfare l’equazione di Schrödinger nella parte destra del
potenziale, il problema si riduce quindi al calcolo effettuato precedentemente. Nella zona
classciamente permessa:

ϕ(x) '
√

2ω
πv

cos
(

1
~

∫ x

a

p(x)dx− π
4

)
; (a ≤ x ≤ b) . (6.94)
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che si estende nella zona classicamente proibita in

ϕ(x) =
√

ω

2πv
e−

1
~

∫ a
x
dx |p(x)| ; (0 < x < a) ; (6.95)

Effettuendo la derivata:

ϕ′(0) =
√

ω

2πv

(
p(0)

~
− 1

2v
dv

dx

∣∣∣∣
x=0

)
e−

1
~

∫ a
x
dx |p(x)| .

Per potenziali come quelli in figura 6.9

v′(0) =
1
m
p′(0) =

1
2mp

2mV ′(0) = 0 ,

quindi:

ϕ+(0)ϕ′+(0) =
mω

2π~
e−

2
~

∫ a
0 dx |p(x)| =

mω

2π~
e−

1
~

∫ a
−a

dx |p(x)| ,

e sostituendo nella (6.93) :

∆E =
~ω
π

exp
[
−1

~

∫ a

−a
dx |p(x)|

]
≡ ~ω

π
K . (6.96)

Metodo 2

È naturale interpretare le (6.89) come le equazioni che diagonalizzano una matrice2 × 2,
facciamo vedere che è effettivamente così.

Sappiamo che nel limite in cui il fattore di penetrazioneK è piccolo dobbiamo avere
una hamiltoniana quasi degenere2 × 2. Individuato il sottospazio in esame basta scrivere
gli elementi di matrice diH e diagonalizzare l’Hamiltoniana. Notiamo che il problema agli
autovalori che stiamo ponendo non dipende dalla base scelta nel sottospazio in esame, basta
prendere due qualsiasi vettori linearmente indipendentiϕ+, ϕ− che appartengono a questo
sottospazio e scrivere gli autostati cercati come

ψ = c1ϕ+ + c2ϕ− .

Visto il problema, e vista la soluzione precedente, è naturale prendere come sottospazio bidi-
mensionale quello generato dalle funzioniϕ+, ϕ− soluzioni semiclassiche nei due semispazi
x > 0, x < 0 rispettivamente:

ϕ+(x) = ϕc(x) ; soluz. semiclassicax ≥ 0 , ϕ+(x) = o(
√
K) perx < 0 ;

ϕ−(x) = ϕc(−x) ; soluz. semiclassicax ≤ 0 , ϕ−(x) = o(
√
K) perx > 0 .

In altre parole consideriamo una funzione che perx < 0 è prolungata con continuità
dalla soluzione semiclassica in maniera tale che sia “piccola” nella regionex < 0. Poichè
ϕ(0) ∼

√
K, possiamo pensare ad esempio di prolungareϕ con un esponenziale a partire

da questo valore. Indichiamo la soluzione semiclassica del paragrafo precedente conϕc(x).
Notiamo alcune cose
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1) La funzioneϕ+(x) = ϕc(x) soddisfa, nell’approssimazione semiclassica, l’equazione
di Schrödinger

(H − E0)ϕ+(x) = 0 ,

perx > 0 manon soddisfaquesta equazione perx < 0.

2) Le due funzioniϕ+, ϕ− non sono esattamente ortogonali, c’è una sovrapposizione de-
scritta dalla matrice

Nij =
∫
dxϕi(x)ϕj(x) i, j = +,− ,

il problema agli autovalori nel sottospazio considerato si riduce perciò alla soluzione dell’e-
quazione secolare

det(Hij − ENij) = 0 . (6.97)

Consideriamo ora i vari elementi di matrice. Normalizzando per semplicità le funzioneϕc nel
solito modo ∫ b

a

dxϕ2
c(x) = 1 ,

abbiamo
N11 = N22 = 1 + o(

√
K) ; N12 = N21 = o(

√
K) . (6.98)

Consideriamo ora gli elementi di matrice diH.

H++ =
∫ ∞

−∞
dxϕ+Hϕ+ =

∫ 0

−∞
dxϕ+Hϕ+ +

∫ ∞

0

dxϕ+Hϕ+ =

=
∫ 0

−∞
dxϕ+Hϕ+ + E0

∫ ∞

0

dxϕ+ϕ+ = N11E0 +
∫ 0

−∞
dxϕ+(H − E0)ϕ+

= N11E0 + o(K)

L’ultima uguaglianza specifica in che senso scegliamo una estrapolazione “piccola” dello stato
ϕc(x). Notiamo per inciso che la funzioneϕ+ non ha nessuno vincolo di normalizzazione
assoluta nel sottospaziox < 0, quindi la forma quadraticaH − E0 può assumere, in modulo,
valori piccoli a piacere.

L’elemento di matriceH−− è identico aH++. Passiamo ora aH−+.

H−+ =
∫ ∞

−∞
dxϕ−Hϕ+ =

∫ 0

−∞
dxϕ−Hϕ+ +

∫ ∞

0

dxϕ−Hϕ+ . (6.99)

Come già dettoϕ+ soddisfa, approssimativamente, l’equazione di Schrödinger solo nella zona
x > 0. Per valutare il primo termine della (6.99) integriamo per parti:∫ 0

−∞
dxϕ−

d2

dx2
ϕ+ =

d

dx
ϕ(x)ϕ′+(x)

∣∣∣∣0
−∞
−
∫ 0

−∞
dx

dϕ−
dx

dϕ+

dx

= ϕ−(0)ϕ′+(0)− ϕ′−(x)ϕ+(x)
∣∣0
−∞ +

∫ 0

−∞
dxϕ

′′

−ϕ+ =

ϕ−(0)ϕ′+(0)− ϕ′−(0)ϕ+(0) +
∫ 0

−∞
dxϕ

′′

−ϕ+ = 2ϕc(0)ϕ′c(0) +
∫ 0

−∞
dxϕ

′′

−ϕ+ ;
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quindi

H+− = −~2

m
ϕc(0)ϕ′c(0) +

∫ 0

−∞
dx (Hϕ−)ϕ+ +

∫ ∞

0

dxϕ−Hϕ+ =

= −~2

m
ϕc(0)ϕ′c(0) + E0

∫ 0

−∞
dxϕ−ϕ+ + E0

∫ ∞

0

dxϕ−ϕ+ = −~2

m
ϕc(0)ϕ′c(0) +N21E0 .

Quindi, trascurando i terminio(K) si ha per gli elementi di matrice dell’Hamiltoniana:

H = E0N +

(
0 −~2

mϕc(0)ϕ′c(0)
−~2

mϕc(0)ϕ′c(0) 0

)
; N =

(
1 O(

√
K)

O(
√
K) 1

)
.

Riscrivendo l’equazione agli autovalori come

det(N−1H − E) = 0 ,

si ha, trascurando terminio(K)

N−1H =

(
E0 −~2

mϕc(0)ϕ′c(0)
−~2

mϕc(0)ϕ′c(0) E0

)
. (6.100)

Osserviamo innanzitutto che effettivamente perK → 0 l’Hamiltoniana è degenere, quindi ab-
biamo scelto correttamente il sottospazio in cui diagonalizzareH. Gli autovalori e gli autostati
della (6.100) sono

ψ1 =
1√
2
(ϕc(x) + ϕc(−x) ; E1 = E0 −

~2

m
ϕc(0)ϕ′c(0) ; (6.101a)

ψ2 =
1√
2
(ϕc(x)− ϕc(−x) ; E2 = E0 +

~2

m
ϕc(0)ϕ′c(0) . (6.101b)

Notiamo che, come già osservatoϕc(0)ϕ′c(0) > 0, quindi effettivamente lo stato simmetrico è
lo stato fondamentale. Il risultato (6.101) coincide con quello ottenuto in precedenza.

Metodo 3

Ricaviamo ora di nuovo lo stesso risultato utilizzando solamente le formule di connessione.
Poniamo per brevità

w(x1, x2) =
1
~

∫ x2

x1

|p(x)|dx .

Perx > b la funzione d’onda semiclassica deve essere un esponenziale decrescente, quindi

ψ =
1√
|p|
e−w(b,x) .
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Applichiamo ora in successione le formule di transizione, l’unica accortezza consiste nel
variare di volta in volta il punto di inversione.

1√
|p|
e−w(b,x) → 1√

|p|
2 sin

(
w(x, b) + π

4

)
=

1√
|p|

2 sin
(
w(a, b)− w(a, x) + π

4

)
=

2√
|p|
{
sin (w(a, b)) cos

(
w(a, x)− π

4

)
− cos(w(a, b)) sin(w(a, x)− π

4 )
}

=

2√
|p|
{
sin(w(a, b)) cos(w(a, x)− π

4 ) + cos(w(a, b)) cos(w(a, x) + π
4 )
}
→

1√
|p|

{
sin(w(a, b))e−w(x,a) + 2 cos(w(a, b))ew(x,a)

}
= (6.102)

1√
|p|

{
sin(w(a, b))e−w(0,a)+w(0,x) + 2 cos(w(a, b))ew(0,a)−w(0,x)

}
.

Questa deve essere una funzione pari per lo stato fondamentale e dispari per il primo eccitato,
in pratica devono comparirecosh(w(0, x)) e sinh(w(0, x)) nei due casi.

Quindi per lo stato fondamentale deve essere

cos(w(a, b))
sin(w(a, b))

=
1
2
e−2w(0,a) ≡ 1

2
K . (6.103)

PerK → 0 deve essere quindiw(a, b)→ π/2. Scrivendow(a, b) = π/2− µ otteniamo

sinµ ' µ =
1
2
K . (6.104)

Abbiamo quindi la condizione di quantizzazione

w(a, b) =
1
~

∫ b

a

√
2m(E − U)dx =

π

2
− 1

2
K .

PerK = 0 abbiamo l’equazione per la determinazione dell’energia semiclassicaE0, ponendo
E = E0 + δE si ha, sviluppando in serie:

1
2

2mδE
1
~

∫ b

a

1√
2m(E − U)

dx = δE
T

2~
= −1

2
K ;

doveT è il periodo classico di oscillazione. Quindi

δE = −~ω
2π
K E1 = E0 −

~ω
2π
K . (6.105)

allo stesso modo

E2 = E0 +
~ω
2π
K , (6.106)

riottenendo così il risultato noto per∆E = E2 − E1.
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Nota

In tutti i metodi proposti viene in qualche modo usata l’approssimazione semiclassica anche per fissare il
prefattore del termineK. Come nel caso dell’effetto tunnel il risultato ottenuto è solo unastima,un cal-
colo più preciso richiede il trattamento delle condizioni di raccordo senza assumere la forma “instabile”
(6.19). Nel caso usuale i due minimi sono ben separati quindi ha senso usare in ognuna delle due zone
classicamente accessibili una forma più sofisticata di interpolazione, come la (6.21). Se confrontiamo la
connessione fra le due zone classicamente proibite le due espressioni danno rispettivamente

1√
|p|
e−w(b,x) ↔ 1√

|p|

{
sin(w(a, b))e−w(x,a) + 2 cos(w(a, b))ew(x,a)

}
. (6.107a)

1√
|p|
e−w(b,x) ↔

{( 2

π

)1/2(
e

J̃

)J̃
Γ(J̃ + 1

2
) cos(πJ̃)ew(x,a) + sin(πJ̃)e−w(x,a)

}
. (6.107b)

Per buche profonde si possono avere stati eccitati molto alti e quindiJ → ∞, in questo caso il limite
(6.23) permette di riottenere il fattore 2 davanti acos(πJ̃) e quindi recuperare l’espressione (6.96). Per
lo stato fondamentale, e per piccoli valori diK, invecew(a, b) = πJ̃ = π/2 − µ e, al primo ordine in
µ possiamo usare (

2

π

)1/2(
e

J̃

)J̃
Γ(J̃ + 1

2
) cos(πJ̃)→ 2

√
e

π
sinµ

e questo porta a

∆E =

√
π

e

~ω
π
K (6.108)

Poichè
√
π/e ∼ 1.075 questo porta ad una correzione di circa il7% nei risultati.

Se le buche non sono ben separate, ad esempio per stati quasi in soglia rispetto al potenziale di
separazione fra i due minimi, l’approssimazione parabolica (6.21) non è giustificata, quindi in questo
caso è più ragionevole usare la (6.96).

6.10 Decadimenti

In fisica spesso si incontrano sistemi metastabili: per un certo tempo il sistema si comporta
in modo (quasi) stazionario, quindi si trasforma in un sistema con caratteristiche diverse. Il
prototipo di questa situazione è un processo di decadimento: un atomo, un nucleo, o in generale
una particella, decade, formando delle particelle figlie che prendono il nome diprodotti di
decadimento. Così un atomo in uno stato eccitato può decadere in un atomo in uno stato di
energia minore con emissione di uno o più fotoni, un nucleo si può disintegrare producendo
particelle di vario tipo, ad esempio particelleα (nuclei di elio) o particelleβ−, β+ (elettroni e
positroni), raggiγ etc.

Questo problema è già stato affrontato in teoria perturbativa, vedi cap.4, e sarà approfondito
nel cap.7: qui vogliamo presentare la questione dal punto di vista semiclassico.

Come visto nel cap.4 il parametro rilevante per descrivere questo tipo di situazioni èla vita
media. Se il sistema è in uno stato metastabile|i〉 la probabilità di trovarlo ancora in questo
stato dopo un tempot è

Pi(t) = Pi(0) e−γt . (6.109)
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La quantitàτ = 1/γ si chiamavita media. Spesso si usa la notazioneΓ = ~γ ≡ ~/τ , Γ
prende il nome dilarghezzadel livello ed ha le dimensioni di un’energia.

Per essere concreti consideriamo il caso del decadimentoα. Una particellaα è un nucleo di
elio, cioè è composta da due protoni e due neutroni. Questo composto è estremamente stabile,
cioè ha una forte energia di legame, si ha infatti

m(α) c2 − 2 (mp +mn) c2 ' −26.06 MeV . (6.110)

In unità di massa atomica,u ' 931.494 MeV/c2:

mp = 1.007276470 u ; mn = 1.008664904 u ; m(α) ' 4.00390 u ;

ed in prima approssimazione si può pensare ad un modello di nucleo in cui una particellaα
si muove in un campo medio creato dagli altri nucleoni. Possiamo pensare ad una buca di
potenziale sferica, di profondità−U0 e raggior0, dell’ordine del raggio nucleare. Oltre alle
forze nucleari è presente un campo coulombiano repulsivo fra la particellaα, di carica 2, ed
il resto del nucleo, di caricaZ − 2. La situazione è quella schematizzata in figura 6.10. Se
la particellaα fosse confinata nel nucleo. lo stato stazionario del sistema sarebbe descritto
da autovalori dell’Hamiltoniana corrispondenti agli stati legati di una particella in una buca
sferica di potenziale. Uno sguardo alla figura 6.10 suggerisce immediatamente la possibilità di
un decadimento per effetto tunnel: la particellaα può “attraversare” la barriera coulombiana e
provocare la disintegrazione del nucleo.

V0

E

-U0

2HZ-2L�r

Figura 6.10: Potenziale per una particellaα schematizzato come una buca di potenziale ed una
repulsione coulombiana all’esterno del nucleo.

È estremamente semplice stimare la probabilità di decadimento in approssimazione se-
miclassica. SeP è la probabilità di attraversamento della barriera, data dal coefficiente di
trasmissione, la probabilità di decadimento per unità di tempo sarà:

γ = Numero di urti con la barriera al sec.× P .

Uno stato stazionario è associato classicamente ad un periodo del moto,T , ed evidentemente
la particella raggiunge il raggior0 con frequenza1/T quindi

Γ = ~γ = ξ
~
T
P . (6.111)
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Abbiamo indicato conξ ∼ 1 un possibile fattore correttivo all’approssimazione semiclassica.

Una dimostrazione più formale, ma equivalente, della (6.111) è la seguente. Consideriamo uno sta-
to legato in ondas. La funzione d’onda radiale ridotta ha la formaχ = A sin(kr). Utilizzando la
normalizzazione nell’approssimazione semiclassica possiamo fissareA:

1 =

∫ r0

0

A2 sin2(kr) ∼ A2

2
r0 ⇒ A2 =

2

r0
.

La soluzione completa, tenendo conto dell’armonica sfericaY00 è

ψ =
1√
4π

A

r
sin(kr) =

1√
4π

A

2i r

[
eikr − e−ikr

]
. (6.112)

La soluzione (6.112) descrive un’onda sferica divergente ed una convergente. La densità di flusso
(corrente) è

j =
~

2mi
[ψ∗∇ψ − c.c.] .

Usando la parte di onda divergente della soluzione (6.112) si ha perj una componente puramente radiale
ed un corrispondente flusso attraverso la superficie di raggior0:

jr =
~
m
k

1

4π

A2

4r2
Φ = 4πr2 jr =

~ k
m

A2

4
=

~ k
m

1

2r0
,

~ k/m = p/m è la velocità della particella ev/2r0 è l’inverso del periodo, per cui il flusso di particelle
al secondo che urtano la superficie del nucleo è propriov/2r0 = 1/T , e si riottiene il risultato (6.111).

Il fattore di penetrazioneP nella (6.111) è il coefficiente di trasmissione della barriera
coulombiana. I punti di inversione che delimitano la zona classicamente inaccessibile sonor0
edr1 con

2(Z − 2)e2

r1
= E =

p2

2m
, ⇒ r1 =

2(Z − 2)e2

E
, (6.113)

ed il coefficienteP è dato da

P = exp [−2σ(r0, r1)] = exp

[
−2

~

∫ r1

r0

√
2m (

2(Z − 2)e2

r
− E) dr

]
.

Per generalità scriviamo l’interazione coulombiana nella formaC/r. Cambiando variabili a
r = r1x e notando che

√
2mC r1 = 2C/v, l’integrale diventa

I =
√
r1
√

2mC
∫ 1

r0/r1

√
1
x
− 1 dx =

2C
v

[
arccos(

√
r0/r1)−

√
r0
r1

(1− r0
r1

)
]
.

Nella maggioranza delle applicazionir0/r1 � 1, quindi sviluppando in serie

I ' 2C
v

(
π

2
− 2
√
r0
r1

)
=
πC

v
− 2
√

2Cmr0 .

Si ricava quindi

P = exp
[
−2π C

~v
+ 4
√

2Cmr0
~

]
. (6.114)
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Z(A) T1/2 E(MeV) Z(A) T1/2 E(MeV)

Po(212) 3.0× 10−7s 8.95 Th(219) 0.11 10−6 s 9.34

Po(214) 1.5× 10−4s 7.83 Th(220) 10. 10−6 s 8.79

Po(215) 1.8× 10−3s 7.50 Th(221) 2.8 10−3 s 7.98

Po(216) 0.158s 6.89 Th(224) 1.05 s 7.085

Th(212) 0.03 s 7.92 Th(225) 8.72 m 6.47

Th(213) 0.14 7.69 Th(226) 30.6 m 6.28

Th(214) 0.10 s 7.68 Th(227) 18.72 d 5.92

Th(215) 1.2 s 7.46 Th(228) 1.91 y 5.38

Th(217) 0.25 10−3 s 9.25 Th(229) 7340 y 4.91

Th(218) 0.11 10−6 s 9.67 Th(230) 77 103 y 4.65

Th(232) 14.1 109 y 3.98

Tabella 6.1: Esempi di decadimentoα. È elencato il nucleo padre, il tempo di dimezzamento
(s=secondi, m = minuti, d = giorni, y = anni), e l’energia della particellaα, in MeV. Per alcuni multipletti
nucleari è data l’energia media.

La dipendenza1/v è caratteristica dell’interazione coulombiana. Indicando conq1, q2 le ca-
riche in unità die e introducendo la costante di struttura fineα = e2/~c, la dipendenza è del
tipo:

P ∝ exp
[
−2πα q1q2

v/c

]
. (6.115)

La forte dipendenza (esponenziale) dalla velocità, quindi dall’energia, è una caratteristica di
questo tipo di decadimento, significa che a piccole variazioni di energia possono corrispondere
rilevanti variazioni di vita media. Questa osservazione è ampiamente giusificata dagli esempi
riportati in tabella 6.1.

Nella figura 6.11 riportiamo a titolo di esempio le quantitàlog(Γ) in funzione di2πC/~v
per le due famiglie del Polonio (Po) e del Torio (Th), l’accordo è abbastanza buono.

Elaborando un modello nucleare si hanno dei parametrir0 eU0 che permettono di effet-
tuare un confronto quantitativo con la (6.114). Un’applicazione forse anche più interessante è
di usare i dati sperimentali per ricavare il parametror0. Il lettore interessato al problema può
approfondire l’argomento consultando ad esempio il libro di Fermi[Fermi].

Nel prossimo paragrafo daremo un’esposizione dettagliata della (6.111) usando il metodo
WKB.
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Figura 6.11:log(Γ) in funzione di2πC/~v per il Po ed il Th. La pendenza della curva tratteggiata è
quella dedotta dalla (6.115)

6.11 Teoria di Gamow - Siegert

La (6.109) sarebbe soddisfatta se potessimo trovare degli statiψ autostati dell’Hamiltoniana
con autovalori complessiE − iΓ/2. In questo caso si avrebbe per la probabilità di sopravvi-
venza dello stato:

P (t) = |〈ψ|ψ(t)〉|2 =
∣∣∣〈ψ|e−iEt/~−Γt/2~|ψ〉

∣∣∣2 = e−Γt/~ , (6.116)

che riproduce esattamente la (6.109).
H è un operatore autoaggiunto e quindi non può avere autovalori immaginari, ma d’altron-

de gli stati metastabili che stiamo studiando non sono certo stati stazionari. Matematicamente
H è autoaggiunto sullo spazio delle funzioni che si mantengono limitate perr → ∞ se si
lascia cadere questa richiestaH può avere, formalmente, autovalori complessi. Vedremo nel
capitolo 7 qual’è il significato fisico che detta la scelta di questi stati, per ora seguiamo una via
più intuitiva che è quella proposta inizialmente da Gamow, e poi rielaborata da Siegert.

Intuitivamente uno stato metastabile dovrebbe essere descritto da un’onda sferica uscente
del tipoexp(ikr)/r, si cercano allora le soluzioni dell’equazione di Schrödinger

H ψ = E ψ , (6.117)

con le condizioni al contorno di regolarità nell’origine e con comportamentoeikr/r all’infini-
to. Per semplicità limitiamoci al caso di un potenziale a simmetria sferica in ondas. Per la
funzione d’onda ridottaϕ = rψ bisogna allora considerare l’equazione:

− ~2

2m
d2

dr2
ϕ+ V (r)ϕ = Eϕ ; ϕ(0) = 0 ; ϕ −−−→

r→∞
exp(ikr) ; (6.118)

k =
√

2mE. La (6.118) non ammette in generale soluzioni perE reale. Infatti essendoV (r)
reale la (6.118) ha due soluzioni indipendenti reali, una combinazione di queste soluzioni,
chiamiamolaϕa soddisfa alla prima condizione al contorno (ϕ = 0). In generale la combi-
nazione linearmente indipendente,ϕb, non soddisfa a questa condizione. Possiamo sempre
scegliereϕa reale con una scelta di fase. SupponiamoV (r) a raggio limitato, in questo caso
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la soluzione per grandir della (6.118) è del tipocos(kr + δ) e non può dar luogo ad un’onda
sferica. Questa potrebbe essere ottenuta da una combinazione lineare a coefficienti complessi
di ϕa, ϕb, ma allora non si avrebbeϕ(0) = 0.

Se ammettiamo la possibilità diE complesso, del tipoE = E0 − iΓ/2, non si hanno
limitazioni e la (6.118) può ammettere soluzioni. Per capire il meccanismo che determina
l’autovalore (complesso)E si immagini di risolvere l’equazione (6.118) a partire dal punto 0
con una normalizzazione arbitraria, ad esempioϕ(0) = 0, ϕ′(0) = 1. Per ogniE si ha un
problema di Cauchy ed un’unica soluzioneϕL. Si esegua ora lo stesso procedimento a partire
dar → +∞, di nuovo con una scelta arbitraria della normalizzazione, ad esempio

ϕ−Aeikr → 0 ; ϕ′ − ikAeikr → 0 .

Si ottiene una soluzioneϕR. La compatibilità delle due soluzioni ad unr intermedio è data da

ϕ′L
ϕL

=
ϕ′R
ϕR

.

Questa è l’equazione (complessa), indipendente dalla normalizzazione, che determinaE.
L’equazione (6.118) può essere risolta numericamente secondo la procedura delineata ot-

tenendo l’autovalore cercato. Gli stati così determinati prendono il nome distati risonan-
ti o risonanze. Un esempio di tale procedura si può trovare negli esercizi per il potenziale
V (r) = 7.5 r2 e−r, che presenta una risonanza conE = 3.4264,Γ = 0.0255.

In questo paragrafo troveremo la soluzione dei problemi di Gamow - Siegert nell’appros-
simazione WKB.

Innanzitutto osserviamo che moltiplicando la (6.118) perϕ∗ e sottraendo l’espressione
complessa coniugata su ha

2 i Im(E)|ϕ|2 = − ~2

2m

(
ϕ∗

d2

dr2
ϕ− ϕ d2

dr2
ϕ∗
)

= − ~2

2m
d

dr

(
ϕ∗

d

dr
ϕ− ϕ d

dr
ϕ∗
)
.

Integrando fra 0 edr ed usando la condizione al contornoϕ(0) = 0:

2 Im(E)
∫ r

0

|ϕ|2 dr = − ~2

2mi

(
ϕ∗

d

dr
ϕ− ϕ d

dr
ϕ∗
)
. (6.119)

Se per grandir scriviamoϕ ≡ |ϕ| exp(iθ) otteniamo

2 Im(E)
∫ r

0

|ϕ|2 dr = − ~2

2m
2
d

dr
θ(r) .

Quindi per fasicrescentisi haIm(E) < 0, consistentemente con la prescrizione della condi-
zione al contorno dell’equazione (6.118).

Scrivendoϕ = ϕ1 + iϕ2, E = E1 + iE2, l’equazione differenziale (6.118) ha la forma

− ~2

2m
ϕ′′1 + V (r)ϕ1 = E1 ϕ1 − E2 ϕ2 ; (6.120a)

− ~2

2m
ϕ′′2 + V (r)ϕ2 = E2 ϕ1 + E1 ϕ2 . (6.120b)


