Capitolo 6

Approssimazione semiclassica

Il problema che affronteremo in questo capitolo & lo studio del lirhite> 0 in meccani-
ca quantistica, passo necessario per comprendere come si possa passare da una descrizione
quantistica ad una trattazione classica dei fenomeni.

L'approssimazione semiclassica ha un “antenato” che precede la stessa formulazione della
meccanica quantistica: la cosiddetta vecchia teoria dei quanti. Molti dei problemi di connes-
sione con la meccanica classica si erano presentati negli anni compresi fra il 1900 ed il 1927,
e non sempre avevano trovato una soluzione soddisfacente, e spesso nemmeno una parvenza
di soluzione. Fino alla meta del secolo scorso I'approssimazione semiclassica era progredita
come studio di una trattazione approssimata dell’equazione di Schrédinger ma non aveva fatto
passi avanti significativi dal punto di vista di principio. | fatti nuovi che hanno cambiato le
prospettive sono diversi: da una parte riscoprendo alcuni vecchi risultati di Einstein si € giunti
ad una comprensione piu profonda della quantizzazione di sistemi classicamente integrabili,
dall’altra, sul versante classico, la formulazione del teorema KAM (Kolmogorov, Arnold, Mo-
ser) ha permesso di capire in modo piu profondo i fenomeni nuovi che si presentano in sistemi
classicamente non integrabili. Come conseguenza di queste indagini, dello sviluppo di metodi
come il path integral, dello studio piu approfondito delle proprieta degli sviluppi asintotici e
di alcuni risultati nuovi nello studio del calcolo delle variazioni, si € cominciato ad esplorare il
campo della interpretazione della quantizzazione in sistemi classicamente non integrabili, ed
eventualmente in sistemi caotici.

In questo testo, per ovvi motivi di opportunita e di spazio, tratteremo solo gli aspetti ele-
mentari del problema, accennando quando possibile alle generalizzazioni ed agli sviluppi. Nel
testo principale, come al solito, concentreremo i risultati essenziali, alcuni risultati particolari e
alcune osservazioni di carattere piu tecnico, saranno esposti nei complementi o proposti come
problemi.

6.1 Approssimazione WKB
WKB sta per Wentzel, Kramers, Brillouin, che, contemporaneamente ad altri autori, hanno
fra i primi proposto uno schema di approssimazione per il lirhite> 0. L'approssimazione

e sostanzialmente identica all’'approssimazione di ottica geometrica per le equazioni di Max-
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252 CAPITOLO 6. APPROSSIMAZIONE SEMICLASSICA

well, nel seguente senso: per piccole variazioni di lunghezza d’'onda rispetto ai cammini ottici
caratteristici ha senso descrivere la propagazione delle onde elettromagnetiche in termini di
raggi e fronti d’'onda, le cui leggi di evoluzione ('equazione dell'iconale) costituiscono la
base matematica della teoria dell’'ottica geometrica. Una procedura simile pud essere segui-
ta approssimando la funzione d’onda di Schrédingeiin termini dell’'analogo dell'iconale.
Originariamente lo scopo era sicuramente quello di dare un’interpretazione “corpuscolare”
alle onde descritte da&, ma occorre ricordare che tarappresenta in realta un'onda di pro-
babilita e, soprattutto, mentre esiste una certa analogia fra la descrizione matematica di una
funzione d’'onda di singola particella,(x, t) e quella di un campo elettromagnetico, questa
analogia viene a mancare nel caso di molti gradi di libertaNpearticelle la funzione d’'onda
€ un'ampiezza di probabilita in uno spazio delle configurazi@ivadimensioni, cosa che non
ha nessun corrispettivo in elettromagnetismo. Quindi prima di capire se, ed in che senso, vale
I'analogia soffermiamoci sul perché & complicato, e singolare, il lifaite 0.

Consideriamo I'equazione di Schrédinger nel suo contesto pit semplice: la determinazione
degli stati stazionari per una particella in una sola dimensione in un poteivziaje

h? " o
*%UJ +V@)y=Evy. (6.1)

Dalla (6.1) & ovvio che il limités — 0 & singolare: in questo limite cambia I'ordine dell’equa-
zione differenziale e quindi cambia la classe stessa di soluzioni possibili, addirittura nel caso
della (6.1) si passa da un’equazione differenziale ad una equazione algebrica.

Lidea per capire la procedura di limite corretta & fornita dall’esempio pit semplice, una
particella libera. Sappiamo che in questo caso una funzione di Schrédinger corrispondente ad
un autostato dell’energia, e dell’impulso, ha la forma

blz) = ehre.

Perh — 0, a fissop, la funzione ha delle oscillazioni sempre piu rapide in un tratto finito
dell'asse reale, la lunghezza d’'onda va a zero ken h/p, ma & proprio questa rapida oscil-
lazione che permette I'eliminazione del fattdré davanti alla derivata seconda nella (6.1):
ogni derivata produce un fattofe™ e quindi la derivata seconda fornisce un fattbré che
cancella il terming:2. Si potra quindi parlare del limité — 0 solo come una correzione a
questo tipo di comportamento obbligato dalla struttura della (6.1). E naturale quindi cercare
un’approssimazione scrivendo

e
P(x) = eXp(z%) , (6.2)
e assumere che, nony, sia una funzione sviluppabile il
= R\ h n\2
0(%):Z<Z) Uk:JO+i01+<i> o9+ ... (63)

k=0

| fattori 1/i nella (6.3) sono introdotti convenzionalmente per semplificare le formule seguenti.
Sostituendo la (6.2) nella (6.1) si ottiene

(0?2 —iho' = p*(x). (6.4)
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Abbiamo introdotto la notazione
p’(z) =2m (E - V(x)), (6.5)

che rappresenta, pér > V' (), I'impulso classico. L'equazione (6.3) & equivalente all’equa-
zione originaria (6.1), ed & un’equazidreel primo ording non lineare, nella variabilg = o.

Una delle due costanti arbitrarie della soluzione generale della (6.1) € semplicemente la co-
stante d'integrazione per passareydao. Sostituendo lo sviluppo (6.3) nella (6.4) si ottiene,
all'ordine 0

(00)> =p"; oo=1= /p(x)daf i pl@)=+v2m(E-V(z)).  (6.6)
Ai due segni possibili della determinazione della radice corrispondono due soluzioni linear-

mente indipendenti. Per > 0, uguagliando a 0 i vari coefficienti d si ha

n

Z 0Lon_+on_1=0. (6.7)
k=0

La (6.7) fornisce un’espressione ricorsiva pey, infatti o/, compare solo in due addendi,
quelli che moltiplicanar(:

1 1

o} = "7 of = o1=—5log(p); (6.8a)
1 n—1

O-’I/’L = 597 <Z U;U;ik + 0';/1) . n>2. (6.8b)
90 \k=1

Scegliendo, ad esempio, la soluziarje= +p(z) e si ha esplicitamente

L1 2 1p”  3p” 1 d* )
;o ’ n|l _ .
=gy o =i s s (692
1 1 d o
oh = “2p (20105 +03) = 3 %;2 : (6.9b)

All'ordine 2 si ha percio:

i 1 1 1 42 L

? - . - o Lam /2
myE exp (z /IO [hp(x)+h2p1/2 ety } dx) . (6.10)
plx)e 3

Dalla relazione (6.8b) discendono due cose:

]
BN
1

1) Iterminio, conn pari sono dispari ip, e, ricordando la (6.3), pex(«) reale contribui-
scono all&asedella funzione d’onda.

1Questo procedimento, la sostituzione della variabite favore di una funzione incognitanella forma

¥ = exp (/ y(©) df)

e del tutto generale, I'equazione risultante prende il nome di equazione di Riccati.
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2) lterminic,, conn dispari sono pari ip, quindi sono gli stessi per entrambe le soluzioni.
Perp realei(ho,, /i)™ & reale e quindi contribuisce alllampiezza della funzigne

L'approssimazione WKB consiste nel considerare i termini dominanti nelle espressioni prece-
denti e quindi assumere
1 e 1 _ig=
P(a) =by — et S PO oy~ o o @) de (6.11)
VP VP
o € un punto di riferimento, il valore delle costamti e b, cambia al variare dicg. Se
I'approssimazione (6.11) fossmiforme cioé valesse per tutti i valori di, avremmo trovato
una soluzione approssimata.
Riscriviamo I'approssimazione nella forma

exp (2/ O'/> = exp (z/ (Ué—ihai—EQUé—&—...)).

L'approssimazione & buona se valgono le disuguaglianze

ol o}
| ?l < hl }' < 1. (6.12)
g |og]

h2

La seconda disuguaglianza, usando I' espressione (6.8) si scrive (assupmieabe)

1. 9 1 dA h

—h= 1 = —— 1; A=— 6.13

2 p? < 4 dx <L p’ ( )
A € lalunghezza d’onda di de Broglie. La (6.13) dice che I'approssimazione € buona quando la
variazione della lunghezza d’onda é piccola, e questo € il punto che lega I'approssimazione al-
I'analogo sviluppo in elettromagnetismo. Se si pone I'accento sulle caratteristiche meccaniche
del problema, possiamo scrivere

!
p = % 2m(E —V(z)) = 12771% = me,
F e laforza. La (6.13) impone allora
th3 < 1.
p

La condizione viene senz'altro violata nei punti in duié troppo grande oppupeé troppo
piccolo, in particolare ngdunti di inversioneclassici del moto, in cup = 0.

Considerazioni analoghe si possono fare per la prima disuguaglianza (6.13). Notiamo
che le disuguaglianze (6.13) impongono dei vincoli locali, ma la limitazione,soud non
essere sufficiente. Nelle zone classicamente permagsse, fomano ambudue la fase della
funzione, che & definita naturalmente mod@e. Potrebbe allora accadere che < oy,
ma cio nonostante asecomplessiva dovuta &, potrebbe essere rilevante, visto che in ogni
caso la fase dovuta®, € considerata modul®r. In altre parole affinché I'approssimazione
WKB funzioni deve essere verificata la richiesta globale

/ Bohydr < 1,

0
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a prescindere da eventuali punti di inversione o singolarita del potenziale.

La presenza di punti di inversione provoca una partizione nell'insieme delle coordinate,
x: in ogni intervallo, sufficientemente lontano dai punti di inversione, la funzione d’onda
€ approssimata da un’espressione del tipo (6.3). La particolare soluzione dell’equazione di
Schradinger che soddisfa date condizioni al contorno richiede di determinare queste costanti,
occorre quindi stabilire dellflormule di connessionfea i vari intervalli.

6.2 Formule di connessione

In questo paragrafo presenteremo una trattazione semplificata delle formule di connessione nel
caso di un singolo punto di inversione, una trattazione piu approfondita € data nei complementi,
§6.F.

Figura 6.1:Schema per un singolo punto di inversiome< a € la zona permessa classicamente; a
quella proibita.

Siaz = a una radice dell’equazionE — V() = 0. Supponiamo per fissare le idee che
V(x) > F perz > a. La situazione & quella rappresentata schematicamete in figura 6.1. La
zonazx < a € dettgpermessa classicamenta zonax > « € la zonavietata classicamente

Perxz < a due soluzioni semiclassiche linearmente indipendenti sono

1 I
% cos(|wl) ; % sin(|w|) , (6.14)

p(x) = v2m(E —-V); w:%/.x\/Qm(EfV)dx,

mentre per > a

con

- e (6.15)

con
p=2m(V - E); @:%/\QmW—EM%

L'idea é quella di risolvereesattament&equazione di Schrédinger con il potenziale lineare
in un intorno diz = a e quindi connettere lo sviluppo asintotico di questa soluzione alla
soluzione WKB, (6.3), valida pgr: — a| > 0.
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Nell'intorno di a possiamo scriveremh=2(E — V (x)) = 3?(a — z), e riscrivere la (6.1)
nella forma
W'+ P a—x)=0.
Posto(z — a) = f~2/32
2
= - =0. 1
Y- =0 (6.16)

Le soluzioni indipendenti dell’equazione (6.16) si chiamano funzioni di Aki(z), Bi(z). Il
lettore puo trovare un breve riassunto delle loro proprieta nel capitolo 10. Per grandi valori di
z si ha:

1
-1 2 1 1 .
z\|/7?4 cos(§|z|3/2 — %) R Ai(z) = 7 §z_1/46_§‘2‘3/2 ; (6.17a)
1
3 1
- @%4 sin(3 a2 = ) o Bile) o e et (6.17)
Scriviamo ora I'impulso e la variabile di fasein termini di z:
1 1 2 3 2, 3
p="hB(a—xz)2 =hf3V/—2; w(a,x) = —gﬁ(a —x)2 = —§|z|2 ;
2 : 2
p=hBx—a)? =hB3z; w(a,x):§ﬁ(x—a)% :§\z|g
Dalle (6.17) segue allora, per le due soluzioni indipendenti
1 ™ 11 .
— COS Z - =] .
cos(|w(a,z)| — P ¢ ; (6.18a)
VP (lw(a, o) 4> z——00 z—oo 2 /P
1 1 .
— — sin(Jw(a, z)| — E) P — el (6.18b)

\/ﬁ 4 r——00 r—00 \/]3

Una combinazione lineare generica delle due soluzioni, a meno di una costante di normalizza-
zione, si ottiene combinando le (6.18):

sina |5 lcosa
—e  + o=

VD 2 Vb

Le formule precedenti restano invariate nel caso in cui la zona classicamente accessibile sia
x > a. Le (6.18),(6.19) saranno sufficienti a coprire tutte le applicazioni elementari del meto-
do WKB che vedremo in questo capitolo. Come é evidente dalla (6.19) queste formule vanno
applicate “cum grano salis”: una piccola variazione della fasella zona classicamente per-
messa induce una variazione esponenziale nella zona proibita, viceversa occorre conoscere
con precisione esponenziale la funzione d’'onda nella zona proibita per determinareda fase
In teoria le relazioni (6.19) sono espressioni asintotiche esatte, nel caso di un solo punto di
inversione, ma le instabilita ora esposte rendono delicata la loro applicazione.

In molti problemi si & interessati non alla soluzione generale dell'equazione di Schrédinger
ma solo alla soluzione relativa a determinate condizioni al contorno, questo spesso permette
I'uso non ambiguo delle (6.18). Il caso piu notevole € senza dubbio quello in cui tutta la zona

Lp cos(lw(a,z)| — = + @) — p(z) — e~ lol (6.19)

N
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x > a € classicamente proibita e si estende fiReca. In questo caso le funzioni accettabili
come stati sono a variazione limitata e questo esclude i termini esponenziali crescenti. Si ha
quindia =0e

L cos(|w(a, z)| — I) — Y(z) — %\}567‘@ . (6.20)

NG 4

Un caso importante descritto dalle (6.18) & quello di due punti di inversitenti in
guesto caso se a priori € noto che la soluzione & combinazione lineare delle (6.18) con coeffi-
cienti dello stesso ordine, la parte esponenzialemente depressa puo essere trascurata e questo
permette di risolvere il problema con una precisione dell'ordin@¢i—?), alcuni esempi
saranno presentati piu avanti.

Le principali appicazioni della (6.18) sono: la derivazione della regola di quantizzazione di
Bohr Sommerfeld per gli stati legati, la spiegazione semiclassica dell’effetto tunnel, la teoria
del dedadimenta.. Queste, ed altre, sono le applicazioni che saranno analizzate nel seguito
del capitolo.

6.2.1 Interpolazione parabolica

Le formule di connessione (6.19) sono state ricavate approssimando la zona attorno al punto di inversione
con un potenziale lineare. Spesso, nel seguito, useremo queste formule in successione, per descrivere il
passaggio attraverso piu punti di inversione, disaccoppiando in questo modo le diverse zone di transizio-
ne. Ovviamente si guadagnerebbe in accuratezza se si potessero scrivere delle formule di connessione
direttamente per 2, 3... punti di connessione successivi. E possibile scrivere delle formule di questo tipo
per due punti di inversione approssimando il potenziale con un polinomio quadratico. In questo caso
I'equazione di Schrédinger ha una forma del tipo

"+ (b—az’)Yp=0;

le cui soluzioni si chiamano funzioni del cilindro parabolico e, in questo contesto, giocano un ruolo ana-
logo alle funzioni di Airy per il polinomio lineare. Questa descrizione € utile, ad esempio, in situazioni
come quelle riportate in figura 6.2 in cui una zona classicamente accessibile &€ abbastanza ben separata
dalle altre.

Vi(r) V(x]
5

4

3

N

-

2 4 6 8 10

Figura 6.2:Un potenziale con tre punti di inversione ed uno con 4 punti di inversione.
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Diamo la formula di connessione per il caso in cui da una delle due parti, ad esempio a sinistra, ci sia
una zona con decrescita esponenziale, cioé diamo la formula che connette la prima zona classicamente
proibita con la seconda

1 1

—— exp(—|w(ar,x 6.21
= exp(—fulen, @) o ¥ T Tm{ (6.21)
9 1/2 e J . _ - ~

(;) (;) I['(J + 5) cos(wJ) exp(|w(ar, x)|) + sin(nJ) exp(—|w(aR,Jc)|)} .

ar,,ar Sono i due punti di inversione che delimitano la zona classicamente accessibile, in cui € possibile
un moto di oscillazione classicd.indica la variabile d’azione in unita di:

= J 11 11 [or
J_ﬁ_ﬁgfp(x)dx—ff./% p(z) dz . (6.22)

Nella (6.21) il termine in coseno € esponenzialmente crescente nella zona proibita, il termine in seno &
quello decrescente. Notiamo, come ¢ facile ricavare, che

lim <2>1/2 (‘i)j r(J+i)=2. (6.23)

J—oo \TT J

6.3 Stati legati e condizione di Bohr-Sommerfeld

Consideriamo un potenziale unidimensionale con un solo minimo, del tipo indicato in figura
6.3. Ci aspettiamo che I'equazione di Schroédinger fornisca una serie di autokgleridi
autofunzioniy,, corrispondenti a stati legati, cioé cap < LL2.
La trattazione semiclassica del problema parte dalla individuazione dei punti di inversione,
soluzioni dell’equazione
p(x) =0, cioé: E=U(x).

Sianoa, eb, questi punti. In questo paragrafo useremo le notazioni

w(c,x) = % /T V2m(E =V)dz o(e,x) = % /T V2m(V — E)dx, (6.24)

che permottono di scrivere facilmente ed intuitivamente le condizioni di raccordo ai punti di
inversione.

Nelle regioni classicamente inaccessibik a, z > blo sviluppo asintotico della soluzio-
ne dell'equazione di Schrédinger deve essere

v~ explt [ lp(o)ldo).

Il requisitoty € L2 impone che solo la soluzione decrescente all'infinito sia presente, quindi
nella zonar > b la soluzione accettabile & della forma

c 1

———= exp(—o(b,x)). (6.25)
2 /Ipl

2per la derivazione della (6.21) rimandiamo all'articolo [BerMou72] ed alle referenze ivi citate.




6.3. STATI LEGATI E CONDIZIONE DI BOHR-SOMMERFELD 259

14

U(x)

06— —— - ————— - - - - - —— - —— - — - ---—-1

Figura 6.3:Potenziale unidimensionale, b sono i punti di inversione.

La formula di connessione (6.18) indica che pet b la funzione d’onda semiclassica &

c 1 C ™
3 B exp(—o(b,z)) — \/mcos(w(x,b)—f . (6.26)

4)
Notiamo che questa formula di connessione fissa la fase della funzione d'onda ma, di per sé,
non seleziona alcun valore dell’energia.
Lo stesso ragionamento, applicato al punto di inversioeea impone la connessione

§1|p exp(—o(x,a)) — \/,% cos(w(a,z) — Z) . (6.27)

La condizione di quantizzazione nasce dall'imporre che le due determinazioni della funzione
d’onda coincidano nella zona classicamente permessa < b. Le ampiezze devono essere
uguali, e questo implicgC’| = |D|. Possiamo sempre scegliere funzioni d’onda reali, in questo
modoD = +C. Per confrontare le fasi riscriviamo la (6.27) nella forma:

™

cos(w(a,x) — g) = cos(w(a, b) — w(z,b) 4) = cos(w(zx,b) — w(a,b) + %) .

Questa determinazione deve differire dalla (6.26) per un fatiateconn pari o dispari a

seconda del segno fad e D. Quindi

™

—Z =nmT+ (—w(a,b) + Z) = w(a,b) = (n + %)ﬂ' (6.28)

In corrispondenza del valore di pari o dispari, si hddD = (—1)"C. Usando la definizione
classica di variabile d’aziond,, definita come l'integrale di(z) su tutto il periodo del moto,
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in questo caso lungo la traiettoia— b — a, Si puo riscrivere la (6.28) nella forma

J= %%p(x) dx = (n-i— %)h (6.29)

Questa € la condizione di Bohr-Sommerfeld della vecchia teoria dei quanti a meno di un
(importante) fattore additivo 1/2. La (6.29) & un’equazionelpgrisolvendola al variare di
si hanno le stime semiclassiche dei livelli energetici.

Al crescere dir daa ab la fase del coseno nella funzione d’onda semiclassica

55 cos (711 /; p(x)dx — Z) , (6.30)

varia fra—m /4 enm — 7/4, cioé cambia di, quindi il coseno ha zeri. La funzione d’'onda
1, ha quindin nodi e corrisponde alli-esimo stato eccitato, cioeé la sequenza 0,1,2,3. ..
corrisponde aFy < FE;.... Ey € I'energia dello stato fondamentalg; quella del primo
eccitato e via di seguito.

Come detto in un paragrafo precedente I'approssimazione semiclassica corrisponde al li-
mite dell'ottica geometrica in elettromagnetismo, cioe al limite di piccole lunghezze d’onda
rispetto alle lunghezze caratteristiche del problema. Nel nostro caso la lunghezza tipica € la
grandezza della zona classicamente accessibite:b — a, quindi ci aspettiamo che I'appros-
simazione semiclassica sia tanto migliore quanto)pi L, doveA = h/p € la lunghezza
d’onda di de Broglie. Nello state-esimo la funzione d’onda compie’2 oscillazioni, avendo
n nodi, quindi come ordine di grandezza sika- L/n: ci aspettiamo allora che 'approssi-
mazione semiclassica sia tanto piu precisa quanta gigrande. Si deve recuperare il limite
classico nel limitex — oc.

Per la determinazione completa della funzione d’onda semiclassica occorre fissare la co-
stanteC. Normalmente la funzione d’onda di uno stato legato viene fissata dalla condizione
che la normd.? sia 1. La funzione d'onda e esponenzialmente depressa nella zona esterna
all'intervallo [a, b] quindi con buona approssimazione si puo scrivere

o0 b b b
1= / |2 da ~ / [Y|?dx = C? dx cos? (711/ p(z)dz — Z) . (6.31)
— 00 a a p x

Quando I'approssimazione semiclassica € buona il coseno compie molte oscillazioni quindi in
prima approssimazione possiamo sostituir€ (¢) col suo valor mediol /2, ottenendo

c? [Ydx

— | —~1. 6.32
5 ) (6.32)

Il periodo di oscillazione classico del sistema € definito da

b b
T=2 d—x:Qm dx
v

3

a P

c?T fm [ 2mw 2m

a

quindi
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Abbiamo ottenuto la stima (6.32) péf> supponenda >> 1, in realta spesso questa formula
viene usata anche per piccalj in particolare per lo stato fondamentale. Nel paragrafo 6.A

il lettore puo trovare una dimostrazione della stima (6.33) che non fa uso della condizione
n > 1.

Nota

Notiamo che se si fosse usata l'interpolazione parabolica attraverso i due punti di inversione, eq.(6.21), la
richiesta di avere una funzione decrescente da entrambi i lati del potenziale avrebbe imgasio = 0
e quindi

1

cioé di nuovo la condizione (6.29).

Continuazione analitica

E utile avere un’idea geometrica del significato delle formule di connessione (6.20) e della regola di
quantizzazione (6.29). Consideriamo il caso di un singolo punto di inversione=ina con una zona
classicamente accessibile in < a. La forma (6.11) della soluzione € dovuta al fatto che I'azione
classica, integrale dli, € una funzione a piu valori per < a, schematicamente si puo scrivere :

p(z) =+vVa—=x.
Per questa situazione
weo) = [ Vamz=3@-2"?,
e la funzione d’'onda WKB ha la forma
1 2 T
¢:mcos(§(a—x)3/2—z); r<a. (6.34)

Possiamo considerare i due valorigdcome due determinazioni diverse della stessa funzione promuo-
vendozx a variabile complessa, questo significa considerare la superficie di Riemann della funzione
va—z.

Supponiamo ora che per> « la funzione d’onda sia un esponenziale decrescente, cioé della*forma

W(z) = xl_ _ exp (— /:(:c a2 dm) _ xl_ _ exp (—;(:c - a)3/2) . (6.35)

Se risolviamo I'equazione di Schrdédinger nel campo complesso possiamo pensare di ott¢neeéda

zonax < a prolungando analiticamente la (6.35). L'idea & che nella continuazione nel piano complesso
possiamo percorrere un cammino che eviti il punto di diramazione, restando quindi sempre in una zona
in cui 'approssimazione WKB ¢ lecita. Effettuando una continuazione in senso antiorario nel semipiano
complesso superiore

z—a— |r—ale™™,

mentre per una continuazione, in senso orario, attraverso il semipiano inferiore

r—a—|r—ale .

STrascuriamo tutti i fattori numerici inessenziali al ragionamento.
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In questo modo raggiungiamo, rispettivamente, il bordo superiore ed inferiore del taglio, ottenendo, nei
due casi

%

e 1 i%\x—a\ap .
1 —2(z—a)3/? |{E N a|1/4
T>a: We 3 — (6.36)
r—a .
|z — alt/4

Questo significa che i due prolungamenti analitici selezionano le due componenti, verso destra e
verso sinistra, dell’onda stazionaria (6.34). |l fatto che nei due prolungamenti si raggiunga solo una delle
due componenti si capisce se si opera al contrario. Se<da si opera una rotazioreraria di un angolo
 nel semipiano superiore (siamo cioe sulla parte superiore del taglio) le due possibili fasi si trasformano
come
ip

P, = ipe_w =1ipcosp + psing ; d_ = —ipe ¥ = —ipcosp — psiny.

Quindi la fase negativa & esponenzialmente depressa rispetto a quella positiva e si perde nell’'appros-
simazione WKB in questo prolungamento. Il contrario succede per una continuazione nel semipiano
inferiore. | due risultati (6.36) ottenuti sono quindi in effetti i due addendi di una stessa funzione e,

mettendoli assieme

1 —2(5—q)3/ 1 2
Fa—a®? Lo o cos(g\m—a| ,

- . 3/2 _ T
(x —a)l/4 |z — all/4 4

che riproduce la (6.34) ed & in accordo con le formule di connessione.

Questa descrizione mette in luce che il fattoye nella fase e dovuto semplicemente al fattbfg/p
nell’espressione della funzione d’onda e che si ha un’unica funzione con due determinazioni diverse
su una superficie di Riemann. In questo linguaggio la condizione di monodromia pssume un
significato geometrico: in presenza di un taglio fra due punti di inversighda (6.29) € la condizione
di monodromia dellay nel piano complesso:

%p(z)dz — g =2nm.

Il primo termine € la variazione di fase dovuta all'integraledi termine —7 /2 € I'effetto delle due fasi
/4 acquistate dal prefattong/ | /p aggirando i due punti di inversione.

Il punto geometrico che vogliamo sottolineare € che in quest’ottica la formula (6.29) & un’espressione
della topologia dello spazio in cui & definifa in questo caso un piano complesso con un taglio, mentre
€ poco sensibile ai dettagli sulla determinazione/d a quanto sia corretta I'approssimazione WKB
nell'intorno dei punti di inversione (il cammino nel piano complesso puo essere effettuato lontano da
questi punti).

Purtroppo questa descrizione non puo essere presa alla lettera, e questo € il motivo per cui abbiamo
usato I'approssimazione con le funzioni di Airy per ricavare le formule di connessione. In effetti I'e-
spressionexp(—w(a, z)) &, nello spirito del WKB, uno sviluppo asintotico, molto al di la del punto di
inversione, della soluzione esatta. In generala € veroche la continuazione analitica dello sviluppo
asintotico da lo sviluppo asintotico della continuazione analitica, quindi, in generale, la continuazione
analitica diexp(—w(a, z)) non da lo sviluppo WKB alla sinistra del punto di inversione. Questo pro-
blema & stato trovato da Stokes proprio analizzando lo sviluppo asintotico delle funzioni di Airy che
compaiono in ottica nello studio dei fenomeni diffrativi. Un breve cenno a questa questione & dato nel
paragrafo 6.F.

Il punto che qui vogliamo sottolineare € pero il seguente: se si pud considerare la funzione d’onda
semiclassica come definita su uno spazio piu ampio in cui le varie espressioni dell’azione appaiono come
determinazioni diverse di una stessa funzione, la condizione di quantizzazione (6.29) deve apparire come
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una condizione di monodromia su questo spazio e non deve dipendere dal dettaglio del comportamento
dellay. E proprio quello che succede: lo spazio in questione & lo spazio delle fasi classico del sistema,
questa questione & affrontata nel paragrafo 6.13 e seguenti.

6.3.1 Potenziale definito perr > 0

In diverse applicazioni e utile estendere I'analisi precedente al caso in cui la particella & vinco-
lata in un semispazio, il caso tipico & quello della coordinata radiale per un potek¥iziglen
ondas. La situazione ¢ illustrata in figura 6.4. In questo caso la funzione d’onda deve soddisfa-

U

Figura 6.4:Potenziale unidimensionale limitatara> 0. 0, a sono i punti di inversione.

re il vincolo+(0) = 0. E facile ricavare la condizione di quantizzazione dalle considerazioni
svolte nel paragrafo precedente: possiamo immaginare di estendere in modo pari il potenziale
nella zonar < 0. In questo potenziale esteso i punti di inversione s&tnoLa condizione al
contorno e soddisfatta per gli stdispari di questo potenziale esteso, quindi deve valere

w(—a,a) = 2w(0,a) = [(Qn +1)+ %}ﬂ' =(2n+ g)ﬂ' = w(0,a) = (n + %)7? . (6.37)

Ovvero, in termini di integrale di azion&

1

J = o ?{ p(z)dz = 21772/0(1 p(z)dx = (n + %) h. (6.38)

E istruttivo comunque ricavare la stessa condizione direttamente. La condizione di raccordo
ed il requisitoyy € L? in questo caso si riducono a

—— cos(w(z,a) — T

C
Wexp( J(an)) - \/m 4)

L'annullarsi della funzione in: = 0 impone

w(O,a)—%:mr—l—g — w(O,a):mT—FZ?T.
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che e ancora la condizione (6.37).

6.3.2 Sulla definizione del limites — 0

E opportuno che il lettore consideri il limite — 0 dal punto di vista fisico e non soltanto
come una approssimazione matematicha le dimensioni di un’azione, quindi per affermare
in quale limite possa o no valere I'approssimazione WKB occorre confrontare questo para-
metro con un parametro caratteristico del problema avente le stesse dimensioni. Nel caso di
procedure di quantizzazione come quella contenuta nella (6.29) I'approssimazione sara buona
seh/J < 1, cioé per grandi valori diz, come affermato precedentemente sulla base del-
I'analogia con I'ottica geometrica. Formalmente il limite semiclassico & quindi definito dalla
procedurah — 0 aJ costante, ovvero come uno sviluppo in potenze.dCi aspettiamo che
le correzioni al limite WKB siano quindi scrivibili nella forma adimensionale

J 1 1

Fiaiwe p(:zc)dx:n+2

c1

+—+...

n
La (6.29) va quindi interpretata come un’affermazione sul termine principale e sul primo ter-
mine subdominante nello sviluppo in. Qualunque affermazione che si basi su termini
depressi rispetto a quelli scritti nella (6.29) richiede un’analisi degli ordini successivi dello
sviluppo. Ad esempio vedremo fra poco che I'approssimazione WKB riproduce esattamente
lo spettro dell'oscillatore armonico, e quello dell’atomo di idrogeno. Queste affermazioni, di
per se, non hanno molto significato a meno che non si dimostri che le correzioni al risultato
sono nulle.

Un altro punto da tenere presente € il seguente. Pud accadefeccimepaia nella for-
ma dell’Hamiltoniana non solo a moltiplicare termini derivativi, cohtd? /dx? nell'energia
cinetica, ma anche termini di potenziale. Nello spirito dell'approssimazione semiclassica,
un’approssimazione di piccole lunghezze d’onda, i termini di potenziale vanno trascurati, nel
senso che nella regione di validita dell’approssimazione questi termini non devono dare alcun
contributo. Questo tipo di approccio emergera in modo naturale nella trattazione dei sistemi a
molti gradi di liberta effettuata nel paragrafo 6.13. L'eccezione a questo schema si presenta nel
caso in cui siano presenti delle singolarita nel potenziale. Ad esempio un fattore deltipo
sara sempre trascurabile eccettuato un intorno=€io0. In tale intorno normalmente I'appros-
simazione semiclassica viene a cadere e la struttura particolare della funzione d’onda dipende
dalla forma della singolarita: & I'analogo del fatto che la fageella formula generale (6.19)
va determinata esaminando il comportamento della funzione d’onda nell'intorno del punto di
connessione in cui 'approssimazione WKB viene a cadere.

Esempi di queste problematiche si incontrano, ad esempio, nella trattazione delle variabili
angolari che faremo nel prossimo paragrafo.

6.4 Variabili angolari

Consideriamo il caso in cui 'equazione di Schrddinger, o in generale I'equazione agli autova-
lori, si riferisca a variabili angolari. Il caso piu semplice & quelld.di Per il moto azimutale
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I'equazione di Schrédinger ha la forma
—h = = \f. (6.39)

v indica I'angolo azimutalef la funzione d’'onda) I'autovalore. La (6.39) € chiaramente
risolubile esattamente, comunque nello spirito dell’approssima2iohel3 possiamo trattarla
come un’equazione di Schrddinger unidimensionale per una particella libera, con massa 1/2 ed
energiaX. Il momento (classico) coniugato@é p, = ++v/\. Le due determinazioni possibili
perp,, corrispondono alle due possibili soluzioni semiclassiche

(3

7 ¥
f=Cexp [iﬁ / 2 d(p} = C’exp(:l:hpg,go) . (6.40)
0

Il punto interessante e che, essendperiodico ep, costante, e non nullajon si hanno
punti di inversionequindi la soluzione semiclassica (6.40) & sempre valida. La condizione di
guantizzazione nasce dall'imporre la periodicitain

flo+2m)=f(p); = p,=hm; melk, (6.41)

che ¢ la soluzionesattadel sistema.

Notiamo che in questo moto periodico la condizione di quantizzazione non ha correzioni
semintere, come nel caso oscillatorio. Questi due tipi di moto corrispondono a cid che nella
vecchia teoria dei quanti erano i moti rotatori ed i motiibiazione(oscillazione) e chiarisce
come mai in alcune applicazioni della vecchia teoria dei quanti alcune volte occorresse quan-
tizzare con multipli interi diz, come in questo caso, altre volte con numeri seminteri, come
nel caso dell'oscillatore armonico. L'espressione normalizzata della funzione d’onda WKB &

¢ ] —L xp(tm
f(w)—meXp(zmw)—me p(ime) . (6.42)

La costante di normalizzazione qui differisce dalla (6.33) perché stiamo considerando funzioni
d’onda complesse, stiamo cioe usando gli esponenziali invece di seni e coseni.

Il caso immediatamente piu complicato & quello delle variabili angolari nello spazio, cioé
la risoluzione dell’equazione per la parte angolare del laplaciano

R O
n {sina ae(bmeaa)JFSmaga@z v=Ay. (6.43)

Sappiamo dalla teoria del momento angolare che la soluzione esatta del sistema ha come au-
tovalori A = h2/(¢ + 1). Vediamo come la questione viene affrontata in approssimazione
semiclassica. Per semplicita trattiamo il casae= 0, cioé eliminiamo la derivata rispettoa

Le soluzioni esatte della (6.43) sono

Y(0) = Py(cos ) ; {eN; P(0)=1. (6.44)

Effettuando il cambiamento di variabili(d) = f(6)/+/sin 6 possiamo portare la (6.43)
alla forma “canonica”

hQ(M+(1+ 1 )f)+Af:O; 0<o<mr. (6.45)

d6? 4 4sin%0
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L'impulso “classico” é

h? h?
pg—\/A+ 4 +4sin29 . (646)
La condizione di semiclassicita nella (6.45) viene violata nell'intorno dei due estremi del do-
minio. In effetti la lunghezza d’onda di de Broglie per 0 € dell’'ordine dig = h/pg ~ 0
e quindid\y/df ~ 1, lo stesso ragionamento vale ger 7. Lontano da questi intorni, per
A finito e i — 0 possiamo trascurare il termine irf sin? e posto\ = /A + /2 /4 scrivere
immediatamente la soluzione semiclassica nella forma

h . h h
) =A A —a); con — <K\ cioé > —; e 6 ——. (647
f(6) cos( a); pr < A > 3 «m 3 ( )
La fasea normalmente viene determinata dalle condizioni di raccordo ma in questo caso non
possiamo usare direttamente le (6.20) perché siamo in presenza di una singolarita nell’equazio-
ne, non semplicemente dello sviluppo WKB: il raccordo va effettuato trovando una soluzione
esatta nella vicinanza della sengolarita e raccordandola alla (6.4 %) .<®drla (6.45) diventa

Ef /21
e ram) =0 (649

che ha come soluziomregolare
A
FO)~VOI(30); o<1, (6.49)

Jo € lafunzione di Bessel di ordine 0. La normalizzazione nella (6.49) é stata scelta in modo da
soddisfare la (6.44), in quant(0) = 1. PerA > 1 la (6.49) ha una zona di sovrapposizione
con la (6.47) nella zona/\ < # < 1. In questa zona possiamo usare lo sviluppo asintbtico

A 2h A T
e questo fissa le due costadtia nella (6.47):
[ 2R A s

Notiamo che, in accordo con i casi visti in precedenza, la procathurdissail valore di \,
che deve discendere dalla condizione di monodromig (8. La stima fatta per piccol pud
essere ripetuta in modo letterale attorno al secondo punto singélatey, basta cambiare
variabile e porrec = m — 6. In questo modo otteniamo una seconda espressiong per

V3 =0 ==y 5 GGo-m+ ). (652

4Questo sviluppo si ricava usando il metodo del punto sella nella rappresentazione integrale

Jo(0) = %/Oﬂ cos(zcosf)).
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Le due determinazioni devono coincidere a meno di un segno e quindi per le fasi deve valere

A s A s 1

da cuiA = A\ — h?/4 = R2((¢ + 1) e, per la funzione d’onda:

Py(cosb) ~ 1/% cos((¢ + %)9 — %) . (6.53)

Notiamo esplicitamente che la condiziok#: >> 1 si scrive, in termini di, ¢ > 1.

Il fatto di avere ottenuto I'autovalore esatto per I'operatbfed frutto di un piccolo “im-
broglio”: & dovuto all’avere trattenuto il termin& /4 nell'espressione (6.46). Nel limite
h — 0 aA fisso, che ¢ il limite semiclassico, questo & arbitrario, ed in effetti abbiamo gia detto
che I'approssimazione semiclassica “canonica” consiste nel trascurare i terrhioh@non
moltiplicano derivate. |l seguito del ragionamento non cambia, in particolare il valorenti
semplicementd diventaA = A2/ + 1/2)? che coincide con I'espressione precedente a meno
di termini piccoli per\ > 1. Un altro modo di vedre la cosa € notare che

1
7

Nel limite di validita dell'approssimazione semiclassica usare I'uno o l'altro valork di
irrilevante, vista la condizioné > 1.

La questione si pone nel caso si vogliano estrapolare le formule semiclassiche a piccoli
valori di ¢, in particolare in onda, per? = 0. In questo caso la bonta dell’approssimazione di-
pende dal sistema. Un esempio particolare € quello del campo coulombiano in tre dimensioni,
in cui la sostituzione\ — #%(¢ + 1/2)? da la migliore approssimazione.

1
Ae+1) = t+5+0(

6.5 Problemi radiali e singolarita

Considerazioni simili a quelle viste nel paragrafo precedente si applicano, in generale, in pre-
senza di singolarita del potenziale. Se i punti di inversione coincidono o sono vicini a punti
singolari, 'approssimazione WKB, e le formule di connessione, devono essere modificate. Un
caso limite e proprio quello di potenziali definiti su una semiretta, in cui abbiamo gia visto
come la condizione di quantizzazione cambi dalla forma (6.29) alla forma (6.38). Il problema
diventa rilevante per potenziali singolariin= 0 come il potenziale coulombiano, e, in ge-
nerale, in presenza di una barriera centrifuga, in cui il potenziale effettivo radiale si comporta
comel/r2.

Consideriamo una particella in un campo centfd(e). L'equazione di Schrédinger per
la funzione d’onda radiale ridotte, = R(r)/r si scrive:
d2§0 L2

Lt m(E-U) - —}(p —0; L2=RY(0(+1). (6.54)

h2
r2

5|I lettore noti come le ultime considerazioni sono una esplicitazione nel caso in esame delle considerazioni fatte
nel paragrafo 6.3.2.



268 CAPITOLO 6. APPROSSIMAZIONE SEMICLASSICA

La condizione di validita dell’approssimazione semiclassica in generale € (per la coordina-

ta radiale):
d (h h?
— | — 1; =4/2 E - — 1) ). 6.55
F(5) <1 WL(( 0) - ozt +1) (6.55)
Per un potenziale singolare della foriia~ Cr—2, perr — 0 si ha|p| ~ vV2mV ~ r=/2,
quindi
4 <h> NP (6.56)
dr \ |p| 2v/2mC

La condizione semiclassica & sicuramente violataper2, in particolare quindi per il poten-
ziale coulombiano in onda, mentre il casax = 2 che corrisponde ad esempio al caso di un
potenziale coulombiano in onda# 0, si € al bordo della zona di validita. Questo € il caso
generale per potenziali in cui la parte di potenziale centrifugo € dominante, in cui si ha, per

r —0: p . .
dr (pl) NG (657)

L'approssimazione & buona, come ci si aspetta, sold perl.
Analizziamo la situazione per il caso particolarmente importante di un potenziale coulom-
bianoU = —Ze?/r. Conviene distinguere due tipi di problemi:

a) Si e interessati all'approssimazione semiclassica dello spettro. In questo caso si adope-
rano consistentemente le regole semiclassiche di Bohr Sommefeld. La parte angolare,
secondo questa procedura, ha una quantizzazione deLtipo (¢ + 1/2). Si usa
quest’espressione per calcolare I'impulso radiale cla8gico

Ze2 R 1\?

e si usa la regola di quantizzazione (6.29). L'equazjgne: 0 ha due radici peE < 0,
dando luogo a due punti di inversiong r5:

1 (+3)° 2|E
7:@ 11\/1||(g+é)2 ’ (6.59)
T1,2 ap €0
con
h? Ze?
Qo —

= —_— EO =
Zme?’ ao

La condizione (6.29) si scrive

1 1

5= g ptnar =~ [ Cpntryar = o+ 4), (6.60)

SNotiamo che questa espressione & diversa dalla (6.55).
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b)

ed effettuando I'integrale

A [ €0 (¢ 1 A 1
}“ = —_— - = . —|— - M ]I/ N p— () 1 ..
T 2| E| ( 2) (n’r 2) y Hor Ly

da cui discendono i livelli:

&
EnZ—IE\=—#; n=n.+0+1=1,2...

coincidenti con quelli esatti.

Si € interessati a scrivere un’approssimazione per la funzione d’'onda WKB e, da questa,
ricavare la regola di quantizzazione pered i livelli energetici. Inquestocaso si pone |l
problema di avere una buona approssimazione per la funzione d’onda, e, come evidente
dalle eq.(6.56,6.57), si hanno problemi in onda in onda? > 0 con la procedura
standard, ottenendo una stima ragionevole sold perl. A titolo di esempio facciamo
notare che pef > 0 la regioner ~ 0 & classicamente proibita e la prescrizione WKB
predice un comportamento esponenziale nell'azione:

L —Jemlar L i@y d _ a2t /e

Vil Vrl

mentre il comportamento regolares~ r*!, come si ricava immediatamente dalla
(6.54). Lasciamo anche al lettore la semplice verifica chd per h? £(¢+1) la regola
di quantizzazione (6.29) non riproduce lo spettro esatto.

Un metodo per trattare consistentemente il linfite~ 0 nell’'equazione (6.54) é stato
proposto da Langer[Langer] e si basa essenzialemente su un cambiamento di variabili
fatto in modo tale da mandare all'infinito il punto singolare e rendere cosi I'approssima-
zione WKB valida sull'intero asse reale. |l risultato sara ancora una volta la sostituzione
{(€+1) — (£ + %)?, che in questo contesto prende il nomediirezione di Langer.

6.5.1 Correzione di Langer

Poniamo

r=e"; o =e"?u(z), (6.61)

sostituendo nella (6.54) si ottiene

h? d*u  h? 1
- - - 1 - 2z 2,z -0. )
5 T2 T 3 (ﬁ(f—i— )+4) u+ (Be** + Ze“e®)u =0 (6.62)

Limpulso effettivo, perE < 0 vale

Rh2(0 + 1)2
p(z) = ex\/2m <Z62 e~ — |E| - (2;2) 62x> .
m

"Per i dettagli si vedano gli esercizi 6.1,6.3.
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Con questa sostituzione I'approssimazione WKB vale su tutto I'asse reale, al di fuori dei punti
di inversione del moto, in quanto il punto singolare del potenziale é stato spostato all'infinito.
| punti di inversione sono identici a quelli precedenti, eorf al posto dil/r e la condizione

di Bohr - Sommerfeld si scrive

o+ 3) =g = 2 [ Cptedr=ne+ ) [ e\ - Dt —emar,

™ 1 To T

che e identica alla (6.60) dopo il cambiamento di variabite e”, da quindi il corretto spettro
idrogenoide.
Perz — —oo si halp(z)| — R(¢ + 1) quindi per piccolir;
1

un~ —F——=e

. 1
J —‘gl dx e(€+§)x 7
|p|

e per la funzione d’'onda radiale ridotta:

(+1)z — /41

_x/2
<p—e/u—>e T s

che ¢ il corretto comportamento asintotico.

La correzione di Langer puo essere adottata per analizzare I'approssimazione WKB in
gualsiasi potenziale centrale. Per ulteriori approfondimenti della questione il lettore pud con-
sultare [Langer, BerMou72].

6.6 Esempi
Oscillatore armonico
L'equazione di Schrédinger
— —— 4+ —mw*Y = E; p? =2m(E — %mw2 3. (6.63)

| punti di inversione classici sono:

| 2F
r==2a==+ —s .
mw

La condizione di quantizzazione semiclassica si scrive

1 [ 22 1 @ x2 1
— dexy[2mE (1 — — ) = —=V2mE der/[1——==h({n+=|, (6.64)
2 J_, a? ™ o a? 2

ovvero, ponenda; =axz.:

1 1 ! 2F E
h<n+2)=v2mEa/ \/1—z2dz=—z:—.
0 0

wm 2 w

Quindi i livelli energetici in approssimazione semiclassica sesutti.
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La funzionep(z) corrispondente alti-esimo livello eccitato &

ed il corrispondente periodo di oscillazione classico & dato da

A 1
Tn:2,/ﬂ/ L:QE/L:E;
2E, J_,, /1_;%2 w Jo V1—22 w

uguale per tutti i livelli, € la ben nota proprieta di isocronismo delle piccole oscillazioni.

Le funzioni d’onda semiclassiche, al contrario dei livelli energetici, non sono riprodotte
esattamente dall'approssimazione WKB.

La figura 6.5 presenta un confronto fra la funzione d’onda esatta e quella in approssima-
zione WKB per lo stato fondamentale e per lo stato goa 10: € evidente che per lo stato
eccitato I'approssimazione € buona al di fuori di un piccolo intorno dei punti di inversione.

/l
sl

Figura 6.5:Funzione d’onda WKB (linea intera) e funzione d’onda esatta (linea trattegiata) per gli stati
n = 0 en = 10 di un oscillatore armonico.

Per referenza riportiamo le espressioni esplicite delle funzioni d’'onda. Con i valGtidip(z) prece-
dentemente calcolati:

4m 2F 1 T2
C = ?; a= mwQ; E:hw(n+§); p(z) = V2mE 1_0,727
si ha
c 1 /x ™ C 2m 1 ™ /” p(x)
O<z<a: = — de — =) = (== (n+ =) — = + dr) =
z<a: YP(z) ) cos(h 9 p(z) dx 4) ) cos( 1 (n 2) 1 Cn x)
C n E 2
= 7 {amm V-l
a<z: Px)= ¢ eXp [ \/ —-1- argcosl@E D
2¢/p(x) a
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Una misura quantitativa dell'approssimazione si ha, ad esempio, confrontando il valore della fun-
zione d’'onda nell'origine con la soluzione esatta, per gli stati pari ovwviamente. In approssimazione
semiclassica

1 0 ™\ [2mw 1
[Y2n (O = O ([ up@)dw—z)— T (2mhw(2n+ 3)1/

mawy 1/4 2\ /4 1._1/4
= (%) (;) @nt3)

Per la soluzione esatta

a0 = (22

Per grandin usando la formula di Stirling

K~ ke *V2rk,

mw>1/4 1 (2n)! . (6.65)

227 (2n)! [ Hen(0)] = ( hr 22n(2n)! 7!

si ha
1 (2n)! _ /(2n)!
22n(2p)l n!  27nl — ()

Sostituendo nella (6.65) si verifica la consistenza con il risultato semiclassico. Per lo stato fondamentale

—1/4

mw>1/4 mw
7

10(0) = (ﬁ $(0) = (ﬁ)w V2 = 0 (0) - 1.0623;

quindi I'approssimazione é ragionevolmente buona anche per il fondamentale.

Potenziale quartico.

Come esercizio non banale proviamo il potenzlél& %x4:

B2 %4
— 4 = E 6.66
o A + 'y = Eip. (6.66)
Operando la trasformazione= Az, con\ = (Fﬂ/mg)l/6 la (6.66) si trasforma in
1d*> 1, € € my2/3 _1/3
gzt =5v 3=E(m) o (6.67)

Gli autovalori della (6.67) chiaramente non dipendono da nessun parametro, quindi basta
studiare questa equazione, se si vogliono ottenere le energie nelle unita solite bastera porre

h2 2/3 w €
E<m) 9. (6.68)

Per I'equazione (6.67) i punti di inversione sono= +a = +c'/* e la condizione di
quantizzazione si scrifle

1 2
n—i-f — / \/1 E = —avel
27 —a a s
I*EB(l H= vl(s) = 0.8740192.
47472 8T()

8B(p, q) & la funzione beta di Eulero.
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da cui

- REE
En = {ﬂ(n + 2)] . (6.69)

Possiamo ricavare gli autovalori con il metodo variazionale illustrato nel capitolo precedente,
i raffronti sono:

En eWKB de/e

1.06036  0.86715  0.18222
3.79967  3.75192  0.01257
7.45570 7.41399  0.00559
11.64475 11.61153 0.00285
16.26183 16.23361 0.00173
21.23837 21.21365 0.00116

U W RO S

Come si vede I'approssimazione migliora al crescene ulia € ragionevole anche per lo stato
fondamentale.

6.7 Effetto tunnel

Uno dei fenomeni piu caratteristici della meccanica quantistica € I'effetto tunnel: in linguag-
gio classico corrisponde alla transizione di una particella fra due zone dello spazio delle fasi
separate fra loro da una zona classicamente inaccessibile. |l tipico esempio € quello di un ur-
to contro una barriera, esemplificato in figura 6.6: una particella proveniente da sinistra, urta
contro una “barriera di potenziale”, se I'energia della particella € minore dell’aligzdalla
barriera, I'unico processo possibile classicamente € una riflessione, quantisticamente invece la
funzione d’onda puo “penetrare” attraverso la barriera e dar luogo ad una certa probabilita di
attraversamento della stessa.

Vo

Figura 6.6: lllustrazione schematica dell'effetto tunnel: un'onda incidente da luogo ad un’onda
trasmessa ed una riflessa di ampiezzerispettivamente.

Il processo € stato trattato nel volume 1, qui vogliamo darne una descrizione semiclassica.
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La funzione d’onda che descrive a livello stazionario il processo &, asintoticamente:

1 , )
ﬁ [ezkr 4 ,re—ikrjl T — —00
() = (6.70)
1 ik'x
N te

k ek’ sono i numeri d’'onda della particella entrante ed uscente:

xr — 400

p=hk; p =hk; (6.71)

supporremo che i limiti per — +o0o del potenziale siano rispettivamertte V4, quindi gli
impulsi sono legati all’energia da

p=V2mE:; P =+2m(E—-Vp). (6.72)

Scrivendo la corrente
h

. ) d

T omi (1/1 da:ql} wdxd} ) ’
il lettore si convince facilmente che la funzione d’onda (6.70) corrisponde ad un flusso inci-
dente di una particella al secondo, ad un flusbriflesso e ad un flussp|? che attraversa la
barriera, in altre parol&|? & la probabilita di attraversamento pdf la probabilita di rifles-
sione. Le probabilita sono definite naturalmente solo dalle normalizzaa&ilative dei vari
termini della funzione d’onda, quindi moltiplicando per uno stesso fattore tutte le componenti
della (6.70) le quantita fisiche restano invariate.

Consideriamo il caso in cliy < F < V.« che corrisponde classicamente ad una ri-
flessione completa, ma nello stesso tempo permette una propagazione dell’onda al di la della
barriera. 1l caso piu semplice, e frequente, e quello inlgu= 0 e nel seguito ci riferiremo a
questo caso.

Si hanno in questo caso due punti di inversione classici, che indicherema ed¢a <
b) soluzioni delle equazioni(z) = 0. La soluzione semiclassica per< a ez > b ha
rispettivamente la forma

_ L w(a,z) R(E L —iw(a,z) . —T(E L iw(b,z) 6.73
¥(z) N + R( )\/ﬁe ;o Y(@) =T( )\/]56 . (6.73)

La fase dei coefficientR, T' & riferita ai punti di inversione, questa scelta differisce da quella
indicata nella (6.70) per un fattore di fase ma & piu comoda per i nostri scopi. Determinare i
coefficientiR, T' € un problema di formule di connessione.

Il risultato generale valido in approssimazione semiclassica é:

e—u?(a,b)

. 1 ,
_ —i6(E) . _ 15
T(E) = (1 + e—20(ad)1/2 e ; R(E) = (1+ e—20(@d)1/2 ¢ - (6.74)

b
iah) = [ lo@)ds.
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|T|* da la probabilita di attraversamento della barriera e prende anche il nofatodé di
penetrazione della barriera:

2 672@((1 ) —2w(a,b)
71 = T o = : (6.75)
La fased(F) pud essere calcolata:
w
— (=—i—]). :
I(E) = ﬂh g' ‘ + arg ( i wh) (6.76)

I' & la funzione gamma di Eulero. Nel testo non faremo uso del risultato (6.76). Notiamo
comungue che il valore di questa fase & sempre piuttosto piccolo, come si vede dalla figura
6.7.

-0.02
-0.04
-0.06
-0.08

-0.1
-0.12
-0.14

Figura 6.7:Variazione di§(E) in funzione diw /7.

In questo paragrafo dimostrerefria (6.74) nel caso di piccoli valori del fattore di pene-
trazione, cioé petv > 1. In questa approssimazione possiamo considerare i puntien
separati e possiamo risolvere il problema applicando due volte le formule di connessione per
unsingolopunto di inversione. Bisogna ricordare che in questa approssimazione non ha senso
considerare i termini esponenzialmente depressi rispetto a quelli principali, appunto perché
stiamo considerando il limite di grande separazione e quindi grarideb). Aggiungendo
una fase globale di/4 per facilitare le cose si ha, direttamente dalle equazioni (6.18):

4

~ i eB@b) — i gi(ab) —i(az) _, i ji(ab) o T
ie ie e — —ie cos(w(z, a) 4)
— i B(ab) [ei(w(m,a)—%) +e—i(w(m,a)—%):| — o—iF oB(ad) {ei(—w(a,z)—f) 4 eilwlan)+ )] _

; = 1 . _
twbz)—3) — [cos(w(b7 x) — %) + isin(w(b, x) — E)} N |:26—w(x,b) o ,L-ew(gc,b):|

Dal rapporto fra 'onda trasmessa e le due onde a sinistra del potenziale si ricava

e T o R e~ 1% eW(ah) o—ig L '
T=———F—==c¢ w(a,b); *:—.W:—Zew(a’b)iR:—Z7
e i2 ew(ab)ely T e 'x

91l calcolo completo della (6.74) & delineato nei complementi.
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che coincide con il limite del risultato (6.75). Notiamo che in questo lig\g) = 0.

Se avessimo considerato anche il termine sub-dominante nella formula di connessione avremmo ottenuto,
come si verifica facilmente:

D 1
1 e’ — ze
— . — 4
T = R P R=—1 =1 5
(& +Z€ (& +Z€

—w

(6.77)

Le correzioni cosi ottenute sosbagliate come si vede dal fatto che il risultato non ha la forma (6.75).
Nei complementi viene effettuato il calcolo esatto per un potenziale parabolico in cui si verifichera
quest’affermazione.

A titolo di esempio riportiamo nella figura 6.8 il raffronto fra risultati numerici e approssima-
zione WKB per un potenziat€ di forma gaussiana.

IT 5(E)

e
o

-0.025
-0.05
-0.075
-0.1

N W O

-0.125

e © o o ©

i

-0.15

30 35 40 45 50 E -0.175

—22/A2

Figura 6.8:|T| e §(E) in funzione dell'energia per un potenzial§e . La curva continua é

I'approssimazione WKB, i punti sono risultati numerici.

6.8 Conteggio degli stati

La condizione di quantizzazione (6.29)

1 1
o %pdq =h (n + 2) , (6.78)

ha un chiaro significato geometrico: se consideriamo un moto periodico la traiettoria nello
spazio delle fasi percorrera una linea chiusa, I'integrale a sinistra della (6.78) & I'area racchiusa
da questa curva. La relazione (6.78) asserisce che ad ogni grado di liberta € associata un’area
2mh nello spazio delle fasi. Equivalentemente se consideriamo una porzione “macroscopica’
dello spazio delle fasi, di areapAgq, il numero di stati quantistici associati &
ApAq
n= . 6.79
27h ( )

Come € noto I'applicazione forse piu importante di relazioni come la (6.79) € in fisica statistica,
per contare appunto gli stati possibili. Per il caso di una particella in una scatola la relazione

10| calcolo & proposto come esercizio alla fine del capitolo.
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(6.79) siriduce al classico conteggio dei modi di vibrazione di una cavita= k = 2z /A &l
numero d’onda e la condizione di quantizzazione si riduce a dire che la larghezza della scatola
deve essere un multiplo della semilunghezza d'onda, quindi in questo caso non c'é bisogno
di scomodare I'approssimazione semiclassica per stabilire la (6.79). Tuttavia la formulazione
presente ha il vantaggio di non dipendere dai dettagli del potenziale: mettere una scatola non
significa altro che introdurre un campo esterno capace di confinare il sistema. Normalmente nel
limite termodinamico le grandezze fisiche non devono dipendere dal tipo di contenitore usato
quindi & opportuno che il conteggio degli stati sia fatto, nel limite di grandhe e quello
che ci interessa, indipendentemente dal potenziale, questo € appunto quello che assicura la
derivazione semiclassica della (6.79).

La (6.78) fornisce un’altra relazione interessante che aiuta a capire la connessione fra
I'evoluzione temporale quantistica e quella classica.

Se consideriamo un sistema cens> 1 possiamo valutare qual’é la differenza in energia
fra un livello e l'altro. PostoAE = FE,,., — E, si ha approssimativamente, usangde=

2m(E - U):

1 0 1 mdzx 1
An=1=_—AF— de = —AFE =_—AET
" 2rh~ OF ‘%p YT o j{ ) orh ’
doveT é il periodo classico del sistema. Indicando cor= 27/T la frequenza propria di
oscillazione
AFE ~ hw . (6.80)

Questo significa che per grandi valorisdi livelli sono equispaziati e la differenza di energia,
corrispondente alla frequenza di transizione fra livelli diversi, € un multiplo della frequenza
fondamentale di oscillazione classica. In approssimazione semiclassica I'evoluzione di uno
stato e percio del tipo

Pz, t) ~ Zwk(ac)e_ik“t , (6.81)
k

che & proprio la forma aspettata per una funzione periodica di p€efipihgpratica lo sviluppo
in serie di Fourier.

Ci si aspetta che la descrizione classica di un sistema corrisponda ad una localizzazione
precisa nello spazio delle fasi, in altre parole i numeri quantici caratteristidigvono essere
grandi per avere il limite classico, ma la distribuzione dei valori deve essere abbastanza stretta
in modo che il “volume”ApAq sia ben definito classicamente ma grande rispetto alla “gra-
nularita quantistica”, cioe il volume elementa&®h. In altre parole uno stato classico deve
corrispondere alla situazione

1<K An < n.

Se sviluppiamo uno stato di questo tipo in termini di autofunzioni semiclassiche avremo
U= Z cnPn
n

con i coefficientic,, sono diversi da 0 solo in un piccolo intervallo attorno ad un certe 1.
Consideriamo ora I'evoluzione temporale di una osservabit avrad*

Ft) = (UWOIFIRE) = chemfmned EnmEn)

m,n

11seguiamo in questa esposizione il classico testo di Landau-Lifchitz.
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Per tutti i livelli che compaiono nella somma possiamo applicare la (6.80) e quindi F,, ~
(m — n)hw. Cambiando variabili e scrivenda = n + k

F& =33 ch i penfarrme’™ . (6.82)
n k

Le funzioni semiclassiche sono funzioni rapidamente oscillanti per grandi numeri quantici,
quindi gli elementi di matrice fraf,,, ,, sono, trascurando la funzione d’onda nella zona
classicamente inaccessibile, quantita del tipo

b i 1
Fon ~ / (@) 25 cos(pn) cos(en).

Abbiamo indicato conp,, i fattori di fase semiclassici. Le due fagi,, ¢, hanno rispetti-
vamenten, m oscillazioni, quindi I'elemento di matricé,,,, tende a zero rapidamente col
crescere dh — m, € lo stesso motivo per cui nellusuale trasformata di Fourier di una fun-
zione F'(x) poco variabile le sue componenti di Fourigf vanno a zero rapidamente cén

In prima approssiamzione possiamo percio trascurare nella (6.82) i termirk gér0) nei
prodottic; , ,.c,. D'altronde il numera:, sempre negli elementi di matrice, e centrato attorno
an, il numero “tipico” dello stato, quindi gli elemenff,, ,, dipendono solo d&. Usando
>, len|?* = 1 si ha allora, approssimativamente

f(t) ~ Z |C"|2 Z fkeikwt — Z fkeikwt )
n k k

L'evoluzione temporale € esattamente quella aspettata: una evoluzione in termini di armoniche
di un sistema con periodicit? = 27 /w. In questo modo vediamo che le componenti di
Fourier delle osservabili classiche sono in corrispondenza con gli elementi di matrice delle
osservabili quantistiche.

Notiamo che quanto qui tratteggiato & esattamente I'opposto di quanto & avvenuto stori-
camente: la costruzione della meccanica delle matrici di Heisenberg si basa appunto sulla
considerazione che nel limite classico le componenti di Fourier di una osservabile si devono
riferire a “salti quantici”, cioé ci deve essere una corrispondenzgifra F (n + k, n) doveF',
per Heisenberg, rappresentava I'oggetto da studiare. L'analogia con le regole di ricombinazio-
ne degli spettri ha portato alla formulazione di “regole di moltiplicazione” per questi oggetti
F(n + k,n) che infine sono state riconosciute come le regole di moltiplicazione per matrici.

6.9 Doppia buca

Uno dei problemi piu interessanti ed istruttivi fra quelli “elementari” in meccanica quantistica
e la determinazione dei livelli energetici, in particolare dello stato fondamentale, in un sistema
con un potenziale con due minimi uguali, come quello indicato in figura 6.9.

Dallo studio dell’analogo problema con buche di potenziale unidimensionali abbiamo im-
parato che lo stato fondamentale & uno stato simmetrico e la funzione d’onda associata & “di-
stribuita” fra le due buche di potenziale. Vogliamo studiare lo stesso meccanismo in un poten-
ziale generico in approssimazione semiclassica, in particolare per un potenziale descritto da
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0.4

0.3

0.21-

-0.1

03

s 1 05 0 05 1 15

Figura 6.9:Potenziale per una doppia buca di potenziale. | punti di inversione del moto classico sono
r = +a,€x = £b.

un polinomio di grado 4. Questo potenziale si ottiene da quello di un oscillatore anarmonico
invertendo il segno del termine quadratico.

Daremo tre metodi di soluzione leggermente diversi fra loro per mettere in evidenza aspetti
diversi del problema. Il lettore incontrera piu avanti nei suoi studi metodi ancora diversi, basati
sul path-integral, questo a testimoniare I'importanza metodologica della questione.

Discussione

L'approccio semiclassico € interessante perché focalizza in maniera emblematica il modo di-
verso in cui le simmetrie agiscono in meccanica quantistica rispetto alla meccanica classica.
In meccanica classica il sistema ammette due stati di minima energia, corrispondenti ai minimi
x4 del potenziale. Questi minimi sono equivalenti ma, una volta scelto un minimo, la descri-
zione fisica non & piu invariante sotto I'operazione di parita. Se ad esempio consideriamo delle
piccole oscillazioni possiamo distinguere oscillazioni attorne,ada oscillazioni attorno a
z_. Ad esempio se la particella che stiamo studiando €& carica, la posizione stazionaria cor-
risponde ad un dipolo elettricétex che cambia segno a seconda di scegliere un minimo o
l'altro. In meccanica quantistica la situazione & completamente diversa. L'Hamiltoniana del
sistema

p2

=—+U(z), (6.83)

2m
commuta con l'operazione di parifa : + — —zx, quindi possiamo classificare gli stati con
gli autovalori di P, che in rappresentazione di Schrédinger corrispondono a funzioni pari,
con autovaloret-1, e dispari, con autovalorel. L'equazione agli autovalori corrispondente
alla Hamiltoniana (6.83) € un problema di Sturm-Liouville e sappiamo che I'autovalore piu
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basso corrisponde ad una funzione senza nodi, quindi lo stato fondamentale del sistema deve
corrispondere ad una autofunziopari. In altre parole per lo stato fondamentale del sistema
guantistico le due posizioni, sono completamente equivalenti.

D’altre parte se immaginiamo di effettuare il limite classice~ 0 vorremmo recuperare
la situazione “asimmetrica”: si tratta percio di capire qual’é il meccanismo fisico che rende
equivalenti i due minimi classici e in che senso si recupera il limite classico.

La localizzazione della particella in una valle, ad esempio attorno, @orrisponde ad una
funzione d’'onda concentrata in questa zona. Classicamente se I'energia &€ minore del massimo
locale del potenziald/(0), la particella resta confinata in questa zona, quantisticamente sap-
piamo invece che per effetto tunnel la particella pud passare nell’altra valle, questo & dunque
il meccanismo in gioco. La probabilita di questa transizione deve essere quindi proporzionale
al fattore di penetrazione della barrieea;!, dove A & proporzionale all’area del grafiéd(x)
compreso fra I'energi& del sistema ed il massimo del potenzidl&0). Nel limite in cui il
fattore di penetrazione € trascurabile il sistema quindi deve presentare due stati quasi stazionari
equivalenti, corrispondenti alla due localizzazioni possibili della particella, cioé I'Hamiltonia-
na deve essere approssimativamente degenere. La possibilita di effettuare il tunneling risolve
la degenerazione e, con un meccanismo gia visto, provoca una separazione dei livelli: ¢ il
classico meccanismo di un sistema a due statixSeo— sono i due stati quasi stazionari
corrispondenti alle due localizzazioni della particella, lo stato fondamentale ed il primo stato
eccitato saranno della forma approssimativa

(U \%(w +¢-); Yy = %(m —p-). (6.84)

La separazione dei livelAE = E5 — E4 sara proporzionale al fattore di penetrazione della
barriera. L'energia\ F corrisponde alla frequenza caratteristica di transizione fra le due buche,
infatti partendo da uno statp, , ad esempio, si avra:

e(t) = 5 (110 P 4 i 0)e ) (6.85)
da cui
o-los ) =sin? S (6.86

Dopo un tempd’ ~ wfi/ AF la particella si trovera dall’altra parte della barriera.

Questo semplice calcolo chiarisce che il sistema, per tergpil’ pud considerarsi “loca-
lizzato” mentre per tempi maggiori I'effetto tunnel non & piu trascurabile. Uno stato staziona-
rio € necessariamente considerato tale per tempi infinitamente lunghi, quindi gli stati stazionari
sono simmetrici. Sappiamo pero che il fattore di penetrazione & proporzionajd -a.S/h)
doveS ha le dimensioni di un’azione classica, dell’'ordinepdiz: dovep = /2m|E — V] e
Az dell'ordine della distanza dei punti di inversioag in figura. Quindi sei < S i tempi di
“tunneling” possono essere astronomicamicamente IUfighizeS/”. Veniamo ora alla stima
semiclassica dei livelli energetici.
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Metodo 1

Consideriamo un potenziale simmetridd(—z) = U(z), e sianoyy, v, due autostat?
dell’Hamiltoniana, con), pari ey, dispari:

h? d?

~ 33 Y1+ U(x)y, = By ; (6.87a)
h? d?

~ 3 Yo + U(x)hs = Exthy . (6.87b)

Possiamo trovare un’espressione per la differenza dei ldlli= F, — F; utilizzando una
tecnica simile a quella che si usa per dimostrare che le autofungziogi, sono ortogonali.
Consideriamo la combinazione

A1, 1h2) = 19y — oty
Integriamo questa quantita nell'intervallgoo. Usandayy, 12 — 0 perz — oo si ha

| v = vt = [ o1 = vah) = 52(00610) ~ 1 00350

0

D’altra parte usando le (6.87) si ha

2m

/ (1) — Vo) = — 22 (Ey — By) / 0y (2)a(2)
0 h 0

Quindi
B2 o1 , , B2 o1 ,
Ey —E) = 2m Sy (¥1(0)1p5(0) — ¥2(0)1(0)) = %57121/)1(0)%(0) ; (6.88a)
con: Sip = /oodﬂf 1,[}111)2 . (688b)
0

Si & usato il fatto che)»(0) = 0, essenda), una funzione dispari. Applichiamo la (6.88) al
caso che ci interessal; € la funziona d’'onda, simmetrica, dello stato fondamentalg &
funzione d’onda, antisimmetrica, del primo livello eccitato.

Come accenato nella discussione nel limite in cui si trascura I'effetto tunnel I'Hamiltonia-
na deve presentare due configurazioni degen€ti), o(—x) che corrispondono a particelle
localizzate nelle due valli. Se pensiamo alla presenza dell’effetto tunnel come una piccola per-
turbazione rispetto a questa situazione i due stag 1), saranno descritti dalle combinazioni
simmetrica e antisimmetrica

= % (p(x) + ¢(~2) | (6.892)
Yo — % (p(x) — p(~2)) . (6.89b)

12Questo metodo & sostanzialmente quello riportato nel testo [Landau3].
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Viceversa, partendo dalle funzioni d'ondae» e scegliendo le fasiin modo che, ad esempio,
1 > 0 ey > 0 perz > 0, le funzioni d'onda

1

oi(z) = p(x) NG (1 (x) + ha(x)) 5 (6.90a)
o () = p(—z) = % (1 (z) — ¢a(2)) | (6.90b)

corrisponderanno a stati localizzati nella buca di destra e di sinistra rispettivamente. Notiamo
che con questa definizione dile (6.89) sono delle identita.
Per funzioni localizzate la sovrapposizione é trascurabile:

/d:cgp+(ar)<p_(x) ~0, (6.91)

quindi possiamo scrivere

Sio =/ dz s = f/ [0} — 2010 + 2] ~ */ dg? .
0 2 0 2 0

Abbiamo usato il fatto che la funzione_ & localizzata nel semispazio di sinistra, quindi &
trascurabile per > 0.
Dal fatto chey; € pari ey € dispari discende poi

20 = 0-(0)= Z=01(0)  £40) = —¢/(0) = Z5U4(0)
quindi
¥1(0)¥5(0) = 204 (0)¢', (0)
ed infine, dalla (6.88)
1 2R )
AFE = Fy — Fy =~ mﬁ<p+(0)gp+(0) . (6.92)

Come si vede I'espressione non dipende dalla normalizzazione assolyta @lipossiamo
convenientemente normalizzare la funzione in modo che l'integrale che compare nella (6.92)
sia 1:

2h?

La forma della funzione, senza nodi e esponenzialmente crescente nella(@ong assi-
cura chep (0)¢’, (0) > 0, quindi lo stato simmetrico e effettivamente il fondamentale.

In approssimazione semiclassica dobbiamo stimare la funzignper iz — 0. In que-
sta approssimaziong, deve soddisfare I'equazione di Schrédinger nella parte destra del
potenziale, il problema si riduce quindi al calcolo effettuato precedentemente. Nella zona
classciamente permessa:

o) ~ ﬁ cos (;,L / " plw)dz - z) . (a<z<b). (6.94)
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che si estende nella zona classicamente proibita in

o) = \/ge_é [2 dx |p()] : 0<z<a); (6.95)

Effettuendo la derivata:
oy~ | @ (PO) 1 dv
v (0)= 2mv ( h 2v dx

Per potenziali come quelli in figura 6.9

) ok 2 delp@)]

=0

1 1
/ = — / —
V(0) = p(0) = 5 2mV'(0) =0,
quindi:
1(0) = T =3 [ dalp(@)| — MY = 2, du[p(a)]
P+ (0 (0) = e 1o e :

e sostituendo nella (6.93) :

1 a
AE = hw exp [— dx p(m)@ =
s I

—a

he

™

K. (6.96)

Metodo 2

E naturale interpretare le (6.89) come le equazioni che diagonalizzano una rlairice
facciamo vedere che é effettivamente cosi.

Sappiamo che nel limite in cui il fattore di penetrazioReé piccolo dobbiamo avere
una hamiltoniana quasi degenérex 2. Individuato il sottospazio in esame basta scrivere
gli elementi di matrice dif e diagonalizzare I'Hamiltoniana. Notiamo che il problema agli
autovalori che stiamo ponendo non dipende dalla base scelta nel sottospazio in esame, basta
prendere due qualsiasi vettori linearmente indipendentip_ che appartengono a questo
sottospazio e scrivere gli autostati cercati come

Y = c1p4 + 2o

Visto il problema, e vista la soluzione precedente, &€ naturale prendere come sottospazio bidi-
mensionale quello generato dalle funzigni, ¢ _ soluzioni semiclassiche nei due semispazi

x > 0,z < 0 rispettivamente:
vi(x) = @c(x);  soluz. semiclassica> 0, o4 (z)

of
o

) perz < 0;

VK
VEK) perz > 0.

p_(x) = pc.(—x); soluz. semiclassica< 0, o_(z)

In altre parole consideriamo una funzione che pex 0 € prolungata con continuita
dalla soluzione semiclassica in maniera tale che sia “piccola” nella regione0. Poiché
©(0) ~ VK, possiamo pensare ad esempio di prolungaeon un esponenziale a partire
da questo valore. Indichiamo la soluzione semiclassica del paragrafo precedeptgcpn
Notiamo alcune cose
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1) La funzionep (x) = ¢.(x) soddisfa, nell’'approssimazione semiclassica, I'equazione
di Schrodinger
(H — Ep)p+(x) =0,
perxz > 0 manon soddisfajuesta equazione per< 0.

2) Le due funzionip, , »_ non sono esattamente ortogonali, ¢'é una sovrapposizione de-
scritta dalla matrice

Ny = / degi(@)ey(@)  ij =+,

il problema agli autovalori nel sottospazio considerato si riduce percio alla soluzione dell’e-
guazione secolare

det(Hij - EN”) =0. (697)
Consideriamo ora i vari elementi di matrice. Normalizzando per semplicita le fungionel
solito modo ,
/ da p2(x) =1,
a
abbiamo

N11 = N22 =1+ O(\/E) ; N12 = NQl = 0(\/}?) . (698)
Consideriamo ora gli elementi di matrice Hi.

00 0 e}
H++:/ dr oy Hopy Z/ d$<P+H<P++/ droyHopy =
0

—00 —00

0 e’} 0

= / deoyHoy + EO/ dz oo = NuEy +/ dz oy (H — Eo)pt
— 00 0 —00

= N11E0 —|— O(K)

L'ultima uguaglianza specifica in che senso scegliamo una estrapolazione “piccola” dello stato
vc(x). Notiamo per inciso che la funziong, non ha nessuno vincolo di normalizzazione
assoluta nel sottospazio< 0, quindi la forma quadraticdl — E, pud assumere, in modulo,
valori piccoli a piacere.

L'elemento di matricef__ & identico aH . Passiamo ora &_ .

o) 0 oo
H_, :/ dro_Hey :/ dasgongzu—&—/ dro_Hey . (6.99)
0

— 00 —00

Come gia dette . soddisfa, approssimativamente, I'equazione di Schrddinger solo nella zona
x > 0. Per valutare il primo termine della (6.99) integriamo per parti:

0 2 0 0
d _d , do_ doy
/_Oodxgo_ A2 Pt T dxw(m)<p+(x) e /_Oodm dr dz

0 "
deyp_pi =

= o A0~ @@+ [

0 . 0 .
o (002, (0) — ()4 (0) + / dr 0" o = 200 (0)L(0) + / dr g’ oy ;

— 00 — 00
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quindi

h? 0 =
Heo = =2 ge0)0)+ [ dotp)ps+ [ dop-tip, =

— 00

h2 0 o) h2
= —E%(O)S@Q(O) + Eo/ dz p_p4 + Eo/ drp_pi = —E%(O)S@Q(O) + No1 Ep .
0

— 00

Quindi, trascurando i termini( K') si ha per gli elementi di matrice dell’Hamiltoniana:

1 0 (0)¢! 1 K
HZ%N*(i@&wm> M@?%®>; V= (owm w{>>
Riscrivendo I'equazione agli autovalori come
det(NT'H-E)=0,
si ha, trascurando termin{ K)
N4H2< LB —i%@ﬁmv_ (6.100)
—-0c(0)pr.(0) Ey

Osserviamo innanzitutto che effettivamente fier— 0 I'Hamiltoniana & degenere, quindi ab-
biamo scelto correttamente il sottospazio in cui diagonalizzar&li autovalori e gli autostati
della (6.100) sono

2

wfﬁg%w+%ew; By = By~ g (0)41(0) (6.1012)
2

%=;%WA@—¢&%% By = B+ - 0,(0)p1(0). (6.101b)

Notiamo che, come gia osservate(0)..(0) > 0, quindi effettivamente lo stato simmetrico &
lo stato fondamentale. Il risultato (6.101) coincide con quello ottenuto in precedenza.

Metodo 3

Ricaviamo ora di nuovo lo stesso risultato utilizzando solamente le formule di connessione.
Poniamo per brevita

1 [*2
w(onan) =5 [ Ip(olde.

1

Perxz > b la funzione d’onda semiclassica deve essere un esponenziale decrescente, quindi

’l/) — 1 efw(b,a:) )

Vel
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Applichiamo ora in successione le formule di transizione, I'unica accortezza consiste nel
variare di volta in volta il punto di inversione.

e L ain (w(a.b) + §) = ——=2sin (w(a,b) - w(a,a) + 7) =

7 e Vi
\/» {sin (w(a,b)) cos (w(a,z) — T) — cos(w(a, b)) sin(w(a,z) — F)} =

{sin(w(a, b)) cos(w(a,z) — ) + cos(w(a,b)) cos(w(a,z) + F)} —

\/ Ip
V Ipl
1
Vpl
Questa deve essere una funzione pari per lo stato fondamentale e dispari per il primo eccitato,

in pratica devono comparik@sh(w(0, x)) esinh(w(0, z)) nei due casi.
Quindi per lo stato fondamentale deve essere

COS(UJ(CL, b)) 1 —2w(0,a) 1
— = =ce ) =
sin(w(a, b))

{bm( (a,b))e~ (@) +2cos(w(a,b))ew(m’a)} - (6.102)

{sin( (a b)) —w(0,a)+w(0,x) + QCOS( (a7b))ew(0,a)—w(0,m)} )

K. (6.103)

N |

PerK — 0 deve essere quindi(a,b) — /2. Scrivendow(a, b) = 7/2 — u otteniamo

1
sinp ~ pu= §K. (6.104)

Abbiamo quindi la condizione di quantizzazione

1 /b |
= | V2m(E -U)dz = - — -K.
h/ m(E = U)dr =35 =3

Per K = 0 abbiamo I'equazione per la determinazione dell’energia semiclagsigaonendo
E = Ey + 0F si ha, sviluppando in serie:

dxzéEz——lK'

1 1 1
p2miE s [ e — K
2 hJo \/2m(E—-TU) 2 2

doveT e il periodo classico di oscillazione. Quindi

hw hw
SE=——K FE,=F,— —K. (6.105)
2 2T
allo stesso modo .
Ey = Eg + 2—K, (6.106)
Y8

riottenendo cosi il risultato noto p&xE = F, — E;.
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Nota

In tutti i metodi proposti viene in qualche modo usata I'approssimazione semiclassica anche per fissare il
prefattore del terminé’. Come nel caso dell'effetto tunnel il risultato ottenuto & solo siiraa,un cal-

colo piu preciso richiede il trattamento delle condizioni di raccordo senza assumere la forma “instabile”
(6.19). Nel caso usuale i due minimi sono ben separati quindi ha senso usare in ognuna delle due zone
classicamente accessibili una forma piu sofisticata di interpolazione, come la (6.21). Se confrontiamo la
connessione fra le due zone classicamente proibite le due espressioni danno rispettivamente

L e v L {sin(w(a7 b))e =) 4 ZCOS(w(aub))ew(m’a)} . (6.107a)

Vbl Vol _

1/2 i y y
Lefw(b’z) - {(2) <E~) I(J+3) cos(mJ)e” ™) 4 sin(w])efw(z’a)} . (6.107b)

Vel i J

Per buche profonde si possono avere stati eccitati molto alti e quirei oo, in questo caso il limite
(6.23) permette di riottenere il fattore 2 davantiaa (/) e quindi recuperare I'espressione (6.96). Per
lo stato fondamentale, e per piccoli valoriHi, invecew(a,b) = nJ = 7/2 — u e, al primo ordine in

44 possiamo usare
2\? (e 7 = =~ [e

AE = \ﬁ he g (6.108)
e T

Poiché /7 /e ~ 1.075 questo porta ad una correzione di circa% nei risultati.

Se le buche non sono ben separate, ad esempio per stati quasi in soglia rispetto al potenziale di
separazione fra i due minimi, I'approssimazione parabolica (6.21) non € giustificata, quindi in questo
caso € piu ragionevole usare la (6.96).

e questo porta a

6.10 Decadimenti

In fisica spesso si incontrano sistemi metastabili: per un certo tempo il sistema si comporta
in modo (quasi) stazionario, quindi si trasforma in un sistema con caratteristiche diverse. |l
prototipo di questa situazione € un processo di decadimento: un atomo, un nucleo, o in generale
una particella, decade, formando delle particelle figlie che prendono il nompeditti di
decadimento Cosi un atomo in uno stato eccitato pud decadere in un atomo in uno stato di
energia minore con emissione di uno o piu fotoni, un nucleo si puo disintegrare producendo
particelle di vario tipo, ad esempio particetlgnuclei di elio) o particelle3—, 3T (elettroni e
positroni), raggiy etc.

Questo problema € gia stato affrontato in teoria perturbativa, vedi cap.4, e sara approfondito
nel cap.7: qui vogliamo presentare la questione dal punto di vista semiclassico.

Come visto nel cap.4 il parametro rilevante per descrivere questo tipo di situaaonta
media. Se il sistema € in uno stato metastabilela probabilita di trovarlo ancora in questo
stato dopo un tempbé

Pi(t) = P;(0)e " . (6.109)
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La quantitar = 1/~ si chiamavita media Spesso si usa la notaziofie= hy = h/7, T
prende il nome diarghezzadel livello ed ha le dimensioni di un’energia.

Per essere concreti consideriamo il caso del decadimentma particellax € un nucleo di
elio, cioé & composta da due protoni e due neutroni. Questo composto e estremamente stabile,
cioé ha una forte energia di legame, si ha infatti

m(a)c® — 2 (my, +m,)c® ~ —26.06 MeV . (6.110)
In unita di massa atomica,~ 931.494 MeV/c?:
myp = 1.007276470u; m,, = 1.008664904u; m(«) >~ 4.00390u;

ed in prima approssimazione si puo pensare ad un modello di nucleo in cui una patticella

si muove in un campo medio creato dagli altri nucleoni. Possiamo pensare ad una buca di
potenziale sferica, di profondital/y e raggiory, dell'ordine del raggio nucleare. Oltre alle
forze nucleari & presente un campo coulombiano repulsivo fra la partigedlacarica 2, ed

il resto del nucleo, di caric@ — 2. La situazione € quella schematizzata in figura 6.10. Se

la particellac fosse confinata nel nucleo. lo stato stazionario del sistema sarebbe descritto
da autovalori dell’lHamiltoniana corrispondenti agli stati legati di una particella in una buca
sferica di potenziale. Uno sguardo alla figura 6.10 suggerisce immediatamente la possibilita di
un decadimento per effetto tunnel: la particellaud “attraversare” la barriera coulombiana e
provocare la disintegrazione del nucleo.

(Z-2)/r

Figura 6.10: Potenziale per una particellachematizzato come una buca di potenziale ed una
repulsione coulombiana all'esterno del nucleo.

E estremamente semplice stimare la probabilita di decadimento in approssimazione se-
miclassica. SeP e la probabilita di attraversamento della barriera, data dal coefficiente di
trasmissione, la probabilita di decadimento per unita di tempo sara:

~ = Numero di urti con la barriera al sex.P .
Uno stato stazionario & associato classicamente ad un periodo dellmetbgvidentemente
la particella raggiunge il raggi@, con frequenza /T quindi

r:m:g%P. (6.111)
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Abbiamo indicato col ~ 1 un possibile fattore correttivo all'approssimazione semiclassica.

Una dimostrazione piu formale, ma equivalente, della (6.111) e la seguente. Consideriamo uno sta-
to legato in ondas. La funzione d’onda radiale ridotta ha la formya= A sin(kr). Utilizzando la
normalizzazione nell'approssimazione semiclassica possiamo fidsare

0 2
1:/ AQSinz(k:r)NA—ro = AQZE,
0 2 To

La soluzione completa, tenendo conto dell’armonica sférigae

1 A . 1 A T —ik
= — Zsin(kr) = — — [ezrfe Zr] . 6.112
V=T st = = (6-412)
La soluzione (6.112) descrive un’onda sferica divergente ed una convergente. La densita di flusso
(corrente) &
h

j = Vi —c.cl.

i=g, = WVY ]
Usando la parte di onda divergente della soluzione (6.112) si hpymer componente puramente radiale
ed un corrispondente flusso attraverso la superficie di raggio

P A

hot b A _ Rk L
m 4 4r2

i = ® =dnr?j, ="~ = ,
Jr ™ m 4 m 2rg

hk/m = p/m & la velocita della particella®/2r, € I'inverso del periodo, per cui il flusso di particelle
al secondo che urtano la superficie del nucleo é prapfie, = 1/T, e si riottiene il risultato (6.111).

Il fattore di penetrazioné® nella (6.111) & il coefficiente di trasmissione della barriera
coulombiana. | punti di inversione che delimitano la zona classicamente inaccessibilg sono
edr; con

2(Z —2)e? p? 2(Z —2)e?

s = r = E 5 (6113)

1 2m
ed il coefficienteP & dato da

P =exp[—20(ro,rm1)] = exp [—72_1 /T1 \/Qm (w — E)dr

r

Per generalita scriviamo l'interazione coulombiana nella fofifia. Cambiando variabili a
r = ri12 e notando che/2mC r; = 2C'/v, l'integrale diventa

Yoot 2
I=.\/rVvV2mC E—lda:: £ [arccos(\/ro/rl)— T—O(l—r—o)
ro/T1 v T1

T1

Nella maggioranza delle applicazionj/r; < 1, quindi sviluppando in serie

2
I:C<W—2 m>=”0—2 2Cmry .
v 2 1 v

Si ricava quindi

2 V2Cmro
P —exp [— ;;}C 4 ilmro} . (6.114)
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Z(A) Ti/o E(MeV) Z(A) T2 E(MeV)
Po(212) 3.0x 1077s 8.95 Th(219) 0.1110°%s 9.34
Po(214) 1.5x107%s 7.83 Th(220) 10.10~°s  8.79
Po(215) 1.8 x 1073s 7.50 Th(221) 2.8107%s  7.98
Po(216) 0.158s 6.89 Th(224) 1.05s 7.085
Th(212) 0.03s 7.92 Th(225) 8.72m 6.47
Th(213) 0.14 7.69 Th(226) 30.6m 6.28
Th(214) 0.10s 7.68 Th(227) 18.72d 5.92
Th(215) 1.2s 7.46 Th(228) 1.91y 5.38
Th(217) 0.25107%s  9.25 Th(229) 7340y 4.91
Th(218) 0.11107%s 9.67 Th(230) 7710y 4.65

Th(232) 14.110°y 3.98

Tabella 6.1: Esempi di decadimenta.. E elencato il nucleo padre, il tempo di dimezzamento
(s=secondi, m = minuti, d = giorni, y = anni), e I'energia della particellan MeV. Per alcuni multipletti
nucleari e data I'energia media.

La dipendenzd /v € caratteristica dell'interazione coulombiana. Indicando ¢og- le ca-
riche in unita die e introducendo la costante di struttura fine= ¢2/hc, la dipendenza ¢ del
tipo:

P o exp {m/‘“q“l . (6.115)
v/C

La forte dipendenza (esponenziale) dalla velocita, quindi dall'energia, & una caratteristica di
guesto tipo di decadimento, significa che a piccole variazioni di energia possono corrispondere
rilevanti variazioni di vita media. Questa osservazione € ampiamente giusificata dagli esempi
riportati in tabella 6.1.

Nella figura 6.11 riportiamo a titolo di esempio le quantitg(T") in funzione di27C'/fiv
per le due famiglie del Polonio (Po) e del Torio (Th), I'accordo & abbastanza buono.

Elaborando un modello nucleare si hanno dei paramgteil, che permettono di effet-
tuare un confronto quantitativo con la (6.114). Un’applicazione forse anche piu interessante
di usare i dati sperimentali per ricavare il parameyoll lettore interessato al problema puo
approfondire I'argomento consultando ad esempio il libro di Fermi[Fermi].

Nel prossimo paragrafo daremo un’esposizione dettagliata della (6.111) usando il metodo
WKB.
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Log (T) Po Log (T) Th
55 -
150 e L 21 C/hy
10 10| 130e 150 170
5 . -20 e
e 27 C/hv -30 te
gl 110 120 130 40 e

Figura 6.11:log(T) in funzione di2xC/hv per il Po ed il Th. La pendenza della curva tratteggiata e
quella dedotta dalla (6.115)

6.11 Teoria di Gamow - Siegert

La (6.109) sarebbe soddisfatta se potessimo trovare degli/stattostati del’Hamiltoniana
con autovalori complesdt — iI"/2. In questo caso si avrebbe per la probabilita di sopravvi-
venza dello stato:

P() = [{lo(®) = |le BTt [* = mrum, (6.116)

che riproduce esattamente la (6.109).

H é un operatore autoaggiunto e quindi non puo avere autovalori immaginari, ma d'altron-
de gli stati metastabili che stiamo studiando non sono certo stati stazionari. Matematicamente
H ¢ autoaggiunto sullo spazio delle funzioni che si mantengono limitate per co se si
lascia cadere questa richiedtapuo avere, formalmente, autovalori complessi. Vedremo nel
capitolo 7 qual’e il significato fisico che detta la scelta di questi stati, per ora seguiamo una via
piu intuitiva che & quella proposta inizialmente da Gamow, e poi rielaborata da Siegert.

Intuitivamente uno stato metastabile dovrebbe essere descritto da un’onda sferica uscente
del tipoexp(ikr)/r, si cercano allora le soluzioni dell'equazione di Schrédinger

Hy=FE, (6.117)

con le condizioni al contorno di regolarita nell’'origine e con comportamefitg all'infini-
to. Per semplicita limitiamoci al caso di un potenziale a simmetria sferica in anéar la
funzione d’'onda ridotte = 7 bisogna allora considerare I'equazione:

2 2
—2% %s@ tVre=Ep;  ¢0)=0 ; @——exp(ikr); (6.118)
k =+2m E. La (6.118) non ammette in generale soluzioni Pereale. Infatti essendd (r)
reale la (6.118) ha due soluzioni indipendenti reali, una combinazione di queste soluzioni,
chiamiamolap, soddisfa alla prima condizione al contorne £ 0). In generale la combi-
nazione linearmente indipendentg,, non soddisfa a questa condizione. Possiamo sempre
sceglierep, reale con una scelta di fase. Supponiaiie) a raggio limitato, in questo caso
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la soluzione per grandidella (6.118) & del tipeos(kr + ¢) € non puo dar luogo ad un’onda
sferica. Questa potrebbe essere ottenuta da una combinazione lineare a coefficienti complessi
di ¢,, ¢», ma allora non si avrebhg(0) = 0.

Se ammettiamo la possibilita d&f complesso, del tipd&d = E, — I'/2, non si hanno
limitazioni e la (6.118) pud ammettere soluzioni. Per capire il meccanismo che determina
I'autovalore (complessal’ si immagini di risolvere I'equazione (6.118) a partire dal punto 0
con una normalizzazione arbitraria, ad esemp(d) = 0,¢'(0) = 1. Per ogniE si ha un
problema di Cauchy ed un’unica soluziopg. Si esegua ora lo stesso procedimento a partire
dar — +o0, di nuovo con una scelta arbitraria della normalizzazione, ad esempio

@ — Aet*r -0 ;

3

@ —ikAet*tT — 0.

Si ottiene una soluziongg. La compatibilita delle due soluzioni ad unntermedio €& data da

/

YL _ ¥R
YL PR

Questa € I'equazione (complessa), indipendente dalla normalizzazione, che deférmina

L'equazione (6.118) puo essere risolta numericamente secondo la procedura delineata ot-
tenendo l'autovalore cercato. Gli stati cosi determinati prendono il nonséatlirisonan-
ti o risonanze. Un esempio di tale procedura si pud trovare negli esercizi per il potenziale
V(r) =7.5r%e~", che presenta una risonanza dor= 3.4264, ' = 0.0255.

In questo paragrafo troveremo la soluzione dei problemi di Gamow - Siegert nell’appros-
simazione WKB.

Innanzitutto osserviamo che moltiplicando la (6.118) pére sottraendo I'espressione
complessa coniugata su ha

, ., R (& 2 mod (. d d .
2iIn(B)lpl” = —g - | ¢" o590 =9 | = g - (W e e )

Integrando fra O ed ed usando la condizione al contorp¢0) = 0:

2Im(E)/r| 1> dr = — h2 S (6.119)
0 SD - SD drso Spdrgp . .

2m1i

Se per grandi scriviamoy = |¢| exp(i) otteniamo

2In(E) /OT lp|?dr = —%m 2—0(r).

Quindi per fasicrescentisi haIm(E) < 0, consistentemente con la prescrizione della condi-
zione al contorno dell’equazione (6.118).
Scrivendop = @1 + ips, E = Fy + iEs, 'equazione differenziale (6.118) ha la forma

hz 1
“om ¥1

h2
“om 5 +V(r) s = Ey o1+ E1 3. (6.120Db)

+V(r)e1=FE1p1 — E2 02 (6.120a)



