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Capitolo 9

Interazioni Elettromagnetiche.

9.1 Interazione elettromagnetica in meccanica classica e
quantistica.

In questo paragrafo richiameremo brevemente alcune nozioni ben note di meccanica ed
elettromagnetismo classico. Il lettore può trovare un’ampia trattazione di questi argomen-
ti, ad esempio, nei testi citati in bibliografia, [Landau1, Landau2]. Ci limiteremo quasi
esclusivamente alla teoria nel limite non relativistico.

Le equazioni del moto per una particella di massame caricaesono:

m
dv
dt

= eE+
e
c

v∧B (9.1)

L’espressione a secondo membro della (9.1) è chiamataforza di Lorentz.L’equazione (9.1)
può essere ricavata da una lagrangiana della forma

L =
1
2

mv2 +
e
c

v ·A−eΦ (9.2)

A,Φ sono rispettivamente il potenziale vettore ed il potenziale scalare, legati ai campiE,B
dalle relazioni:

E =−∇∇∇Φ− 1
c

∂A
∂ t

B = ∇∇∇∧A (9.3)

Come è noto l’introduzione dei potenziali vettori è utile in quanto rende automaticamente
soddisfatte le equazioni di Maxwell omogenee:

∇∇∇ ·B = 0 ∇∇∇∧E =−1
c

∂B
∂ t

(9.4)

L’informazione contenuta nelle funzioniΦ,A è ridondante rispetto alla determinazione dei
campiE,B, infatti una qualunque trasformazione del tipo

A → A′ = A +∇∇∇Λ Φ→Φ′ = Φ− 1
c

∂Λ
∂ t

(9.5)

lascia invariati i campiE,B, che sono i soli a determinare la dinamica attraverso la (9.1).
Le trasformazioni (9.5) si chiamanotrasformazioni di gaugee l’invarianza della fisica per
trasformazioni di questo tipo prende il nome diinvarianza di gauge.

Notiamo che la lagrangiana (9.2) per trasformazioni di gauge si trasforma con

L →L ′ = L +
e
c

(
v ·∇∇∇Λ+

∂Λ
∂ t

)
= L +

e
c

dΛ
dt

(9.6)
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4 CAPITOLO 9. INTERAZIONI ELETTROMAGNETICHE.

L’aggiunta di una derivata totale alla lagrangiana non cambia il principio di Hamilton e
quindi lascia invarianti le equazioni di Eulero-Lagrange.

Per effettuare il passaggio alla meccanica quantistica è opportuno riformulare le equa-
zioni precedenti nel formalismo Hamiltoniano. L’impulsocanonicoconiugato alla variabi-
le x è

p =
∂L

∂v
= mv+

e
c

A ⇒ mv = p− e
c

A (9.7)

Quindi l’Hamiltoniana del sistema è

H = p ·v−L =
1

2m

(
p− e

c
A

)2
+eΦ (9.8)

Formalmente questo sistema si ottiene da quello in assenza di campo elettromagnetico con
la sostituzione

H → H +eΦ p→ p→ p− e
c

A (9.9)

Questo tipo di “regola” per descrivere l’interazione elettromagnetica viene dettaaccop-
piamento minimale.Sottolineiamo che l’impulsocanonico, p, non è la quantità di moto
cinematicamv, vedi eq.(9.7).

Nel formalismo hamiltoniano il cambiamento di gauge (9.5) porta a

H =
1

2m

(
p− e

c
A− e

c
∇∇∇Λ

)2
+eΦ− e

c
∂Λ
∂ t

Questo cambiamento può essere riassorbito dallatrasformazione canonica, in generale
dipendente dal tempo:

p′ = p− e
c

∇∇∇Λ x′ = x H ′ = H +
e
c

∂Λ
∂ t

(9.10)

Un modo istruttivo per verificare che la (9.10) è effettivamente una trasformazione canonica
è quello di assicurarsi che la forma di Poincaré-Cartan cambia per un differenziale totale:

p′dx′−H ′dt = pdx−Hdt− e
c

∇∇∇Λ ·dx− e
c

∂Λ
∂ t

dt = pdx−Hdt− e
c

dΛ (9.11)

La (9.11) implica che il principio di minima azione

δ

∫
(pdx−Hdt) = 0

resta invariato e quindi si hanno le stesse equazioni di Hamilton e, come è facile verificare,
le stesse parentesi si Poisson.

9.1.1 Formulazione quantistica.

In meccanica quantistica l’interazione elettromagnetica è descritta dallo stesso principio di
accoppiamento minimale (9.9). In particolare in rappresentazione di Schrödinger

h̄
i
∇∇∇→ h̄

i
∇∇∇− e

c
A ih̄

∂

∂ t
→ ih̄

∂

∂ t
−eΦ (9.12)

Quindi l’equazione di Schrödinger per una particella, che descrive l’evoluzione temporale
degli stati, ha la forma

ih̄
∂ψ

∂ t
=

1
2m

(
h̄
i
∇∇∇− e

c
A

)2

ψ +eΦψ ≡ H ψ (9.13)
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Nel seguito continueremo ad usare il simbolop per indicare l’operatore impulso,−ih̄∇∇∇:
questo operatore è quello che sodisfa alle regole di commutazione canoniche:

[xi , p j ] = ih̄δi j [pi , p j ] = 0 (9.14)

Facciamo esplicitamente notare che l’impulso “cinematico”mvi non soddisfaalle regole
di commutazione canoniche, infatti:

[mvi ,mvj ] =
[
pi −

e
c

Ai , p j −
e
c

A j

]
=−e

c
([pi ,A j ]− [p j ,Ai ]) = i

eh̄
c

εi jkBk (9.15)

B è il campo magnetico. Le (9.15) hanno una rilevanza particolare nell’ambito quantistico,
infatti implicano che le diverse componenti del momento cineticonon sono simultaneamen-
te misurabili, al contrario degli impulsi canonici. Nella (9.15) abbiamo usato l’espressione
classica per il vettore velocità, ed in effetti il lettore può facilmente verificare che anche
quantisticamente:

mv = m
dx
dt

= mi[H,x] = p− e
c

A (9.16)

L’Hamiltoniana (9.13) è un operatore hermitiano; notiamo che il campo esternoA compare
automaticamente nella forma simmetrizzata di Weyl:

H =
1

2m

(
p− e

c
A

)2
+eΦ =

1
2m

(
p2− e

c
(p ·A +A ·p)+

e2

c2 A2
)

+eΦ

Passiamo ora alle osservabili direttamente connesse all’interazione elettromagnetica. In
accordo con il fatto che|ψ|2 rappresenta la distribuzione di probabilità di una particella,
ρ = e|ψ|2 rappresenta la densità di carica. Talvolta è utile scrivere unoperatoreρ̂(y) che
descriva la densità di carica nel puntoy si userà allora, per un sistema an particelle, in
rappresentazione di Schrödinger:

ρ̂(y;x1 . . .xn) = ∑
i

eiδ (y−xi) (9.17)

Per il caso di singola particella il valor medio su uno stato|ψ〉 dell’operatore (9.17) ripro-
duce il risultato aspettato:

〈ψ|ρ̂(y)|ψ〉= e|ψ(y)|2 ≡ ρ(y)

Per quanto riguarda la densità di corrente questa è data da

j = i
eh̄
2m

[(∇∇∇ψ)∗ψ−ψ
∗(∇∇∇ψ)]− e2

mc
A |ψ|2 (9.18)

È facile controllare (lasciamo il compito al lettore) chej soddisfa l’equazione di continuità

∂ρ

∂ t
+div j = 0 (9.19)

è però istruttivo ricavare la (9.18) in altro modo. La densità di corrente èdefinitadal fatto
che una piccola variazione diA induce una variazione di energia

δH =−1
c

∫
j δA d3x ⇒ δH

δA(x)
=−1

c
j(x) (9.20)

Consideriamo allora la variazione di energia per uno stato generico, al primo ordine inδA:

δH =−
∫

d3x
e

2mc
ψ
∗ (pδA +δAp)ψ +

e2

mc2

∫
d3xδA(A|ψ|2)

=
∫

d3x
ih̄e
2mc

ψ
∗ (∇∇∇(δAψ)+δA∇∇∇ψ)+

e2

mc2

∫
d3xδA(A|ψ|2)
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Integrando per parti il primo addendo per riportare la variazione di energia alla forma
(9.20), si ottiene:

δH =−
∫

d3x δA
(

ih̄e
2mc

((∇∇∇ψ)∗ψ−ψ
∗(∇∇∇ψ))− e2

mc2 A|ψ|2
)

(9.21)

da cui segue la (9.18).
L’Hamiltoniana (9.13) descrive l’interazione elettromagnetica per una particella punti-

forme, completamente caratterizzata dalla massam e dalla caricae. In meccanica quanti-
stica una particella elementare può avere uno spin non nullo,s, nel qual caso la funzione
d’onda che descrive lo stato ha 2s+1 componenti. Lo spin è un vettore assiale, trasforma
infatti come un momento angolare, e a questo vettore è quindi possibile associare un mo-
mento magnetico elementare,µ, caratteristico della particella. Si avrà di conseguenza un
termine aggiuntivo nella (9.13):

H =
1

2m

(
h̄
i
∇∇∇− e

c
A

)2

ψ +eΦ−µµµ ·B (9.22)

Conosciamo le regole di quantizzazione dello spin: dettos il massimo autovalore di una
delle componenti, convenzionalmentesz, si definisce come momento magnetico, la costante
di proporzionalità nella relazione:

µµµ = µ
s
s

(9.23)

cioè il massimo valore possibile perµz. Poichèsè quantizzato in multipli (semi)interi dīh è
naturale che i momenti magnetici vengano misurati attraverso la quantitàeh̄/mc. Questo è
in analogia con il teorema classico di Larmor per cui ad un momento angolare`̀̀ è associato
un momento magnetico(e/mc)`̀̀. Questa questione sarà ripresa più avanti. In particolare
per l’elettrone ed il nucleone (protone) si introduce il momento magnetico di Bohr ed i
momento magnetico nucleare, definiti rispettivamente da

µB =
|e|h̄
mec

µp =
|e|h̄
mpc

(9.24)

me,mp sono rispettivamente la massa dell’elettrone e del protone. Usando lo stesso pro-
cedimento che ha condotto alla (9.21) si può ricavare dalla (9.22) la densità di corrente

j = i
eh̄
2m

[(∇∇∇ψ)∗ψ−ψ
∗(∇∇∇ψ)]− e2

mc
A |ψ|2 +c∇∇∇∧ (ψ∗

µµµψ) (9.25)

Potenziali ed invarianza di gauge.

Dalla introduzione stessa dell’interazione elettromagnetica attraverso l’accoppiamento mi-
nimale dovrebbe essere chiaro che in meccanica quantistica il ruolo dei potenzialiΦ,A è
cruciale. Il primo punto da affrontare quindi è l’invarianza di gauge. Consideriamo due
sistemi descritti da due potenziali che differiscono per una trasformazione di gauge, vedi
(9.5). Le due Hamiltoniane si scrivono

H =
1

2m

(
h̄
i
∇∇∇− e

c
A

)2

+eΦ ih̄
∂ψ

∂ t
= Hψ (9.26a)

HΛ =
1

2m

(
h̄
i
∇∇∇− e

c
A− e

c
∇∇∇Λ

)2

+eΦ− e
c

∂Λ
∂ t

ih̄
∂ψΛ
∂ t

= HΛψΛ (9.26b)

SianoH1 e H2 gli spazi di Hilbert relativi ai due sistemi. Per problemi ad una particella
possiamo considerare entrambi gli spazi coincidenti con le funzioni a quadrato sommabile
suR3. I due sistemi (9.26) sono equivalenti, cioè descrivono lo stesso sistema fisico, se si
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trova una trasformazione unitaria fraH1 eH2 in modo tale da generare la stessa dinamica,
ovvero la seconda Hamiltoniana deve essere ottenuta come trasformazione della prima.

Consideriamo uno stato diH1 rappresentato da una funzioneψ e consideriamo la
funzione

ϕΛ ≡ exp(i
eΛ
h̄c

)ψ

Si ha immediatamente

1
2m

(
h̄
i
∇∇∇− e

c
A− e

c
∇∇∇Λ

)2

ϕΛ = ei eΛ
h̄c

1
2m

(
h̄
i
∇∇∇− e

c
A

)2

ψ ≡ ei eΛ
h̄c Hψ

ih̄
∂ϕΛ
∂ t

= ei eΛ
h̄c ih̄

∂ψ

∂ t
− e

c
∂Λ
∂ t

ei eΛ
h̄c ψ = ei eΛ

h̄c Hψ− e
c

∂Λ
∂ t

ϕΛ

Quindi ϕΛ soddisfa all’equazione

ih̄
∂ϕΛ
∂ t

= HΛϕΛ

Viceversa data una soluzioneψΛ della (9.26b) la funzioneϕ = exp(−i eΛ
h̄c)ψΛ sodisfa alla

(9.26a). C’è quindi una corrispondenza (biunivoca) fra le soluzioni delle due equazioni. La
trasformazione

ψΛ = exp(i
eΛ
h̄c

)ψ (9.27)

è evidentemente una trasformazione unitaria e quindi usare l’equazione (9.26a) o l’equa-
zione (9.26b) è assolutamente equivalente dal punto di vista fisico.

La cosa si può anche impostare in altro modo. Consideriamo per semplicità le trasfor-
mazioni di gauge indipendenti dal tempo. In questo caso, come si vede dalle (9.26) i due
sistemi differiscono per il cambiamento di “coordinate canoniche”

(x,p)→ (x′,p′) = (x,p− e
c

∇∇∇Λ) (9.28)

Questa trasformazione lascia invariate le regole di commutazione, infatti[
x′i , p′j

]
=

[
xi , p j −

e
c

∂ jΛ
]

= [xi , p j ] (9.29)

Il teorema di von Neumann assicura che la rappresentazione delle regole di commuta-
zione è unica a meno di trasformazioni unitarie, quindi i due modelli sono connessi da
una trasformazione unitaria, che è appunto la (9.27). La dimostrazione dell’equivalenza
tramite il teorema di von Neumann è il corrispettivo quantistico dell’equivalenza tramite
trasformazioni canoniche.

L’invarianza della fisica per trasformazioni del tipo (9.27) è molto soddisfacente da un
punto di vista di principio. Sappiamo che in meccanica quantistica gli stati sono rappresen-
tati da raggi in uno spazio di Hilbert, o, in parole povere, da funzioni a quadrato sommabile
definite a meno di una fase globale. La (9.27) implica che in presenza di un accoppiamento
elettromagnetico la fase può essere scelta in modo arbitrariolocalmente, cioè punto per
punto. Se immaginiamo l’operazione di scegliere la fase come una scelta di un sistema
di riferimento, per gli stati, la (9.27) asserisce che questa scelta può essere fatta in modo
locale1.

Avendo ormai (sperabilmente) convinto il lettore dell’invarianza della fisica per trasfor-
mazioni di gauge passiamo al punto realmente nuovo della meccanica quantistica rispetto
alla meccanica classica. Mettiamo a confronto le equazioni del moto classiche, (9.1) e
l’equazione di Schrödinger, (9.26a).

1 L’analogia non è campata in aria: l’introduzione di una simmetria simile alla (9.27), in un altro ambito, è
stata fatta da Weyl proprio per estendere il concetto di invarianza per cambiamenti di coordinate nell’ambito della
relatività generale.
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1) In meccanica classica l’evoluzione di un sistema dipendesolodai campiE,B, come
è chiaro dalla (9.1). Per comodità è possibile introdurre i potenzialiΦ,A, ma questi
costituiscono delle quantità ausiliarie e non strettamente necessarie.

2) Nell’equazione di Scrödinger compaiono i potenziali, non i campi. Vista l’invarianza
di gauge sembrerebbe che in realtà anche in questo caso l’uso dei potenziali sia
ridondante, ma non è del tutto vero.

Prima di giustificare le affermazioni precedenti facciamo una breve “incursione” sul signi-
ficato geometrico della trasformazione di gauge (9.27) e dei potenziali.

9.1.2 Interpretazione geometrica dell’invarianza di gauge.

Per semplicità ci limiteremo al caso in cui sia presente solo un potenziale vettoreA, indi-
pendente dal tempo, quindi si ha un campo magneticoB = rotA, mentre il campo elettrico
è nullo, oppure statico. Ci limiteremo quindi allo studio delle trasformazioni di gauge
indipendenti dal tempo.

Supponiamo di voler insistere sull’arbitrarietàlocaledella fase della funzione d’onda,
come espresso nella (9.27): questo significa che in ogni punto dello spazio si può scegliere
ad arbitrio la fase diψ, variandoΛ. Queso pone immediatamente un problema: nello
scrivere la dinamica occorre confrontare il valore della funzione d’onda in punti diversi,
perchè occorre definire le derivate e quindi effettuare dei limiti del tipo:

lim
h→0

ψ(x+h,y,z)−ψ(x,y,z)
h

(9.30)

Ma come è possibile che la (9.30) abbia alcun senso visto che la fase della funzioneψ in
punti diversi è arbitrariamente diversa? In effetti la (9.30) non ha, di per sè, molto senso.
Una situazione analoga si presenta in geometria. Supponiamo di considerare una sferaS2

(una superficie sferica inR3). In ogni puntoP della sfera è definito un piano tangente e
corrispondentemente dei vettori, che normalmente si indicano con la notazionev(P), indi-
cando appunto che si riferiscono al piano tangente passante perP. Se si considerano due
punti diversi,P,Q ha senso confrontare i vettori nei due punti? In generale no, visto che
si tratta di vettori in spazi vettoriali distinti. Ma se si vuole fare calcolo differenziale su
questi vettori occorre per forza confrontarli, altrimenti come si fanno a definire le deriva-
te? La risposta è che occorre definire una procedura per “trasportare” un vettorew(Q) nel
puntoP, ottenendo un vettorewT(P), dopo di che si hanno due vettori definiti nello stesso
spazio tangente e quindi possiamo fare tutte le derivate del caso. Ogni modo di trasportare
un vettore definisce un diverso modo di fare le derivate, o come si dice in modo sofistica-
to, definisce unaconnessione.Il lettore che ha qualche conoscenza di relatività generale
saprà che la connessione usata in quel caso è una particolare connessione, la connessione
di Levi Civita, che geometricamente consiste nel “trasporto parallelo” dei vettori. Questa
costruzione puramente geometrica ha un corrispettivo algebrico: un vettore nello spazio
tangente ha un significato indipentemente dalla scelta del sistema di coordinate sulla sfe-
ra, questo si traduce nel fatto che se si cambiano le coordinate le componenti del vettore
trasformano secondo una matrice (lo jacobiano della trasformazione di coordinate) dipen-
dente dal puntoP. Analogamente il processo di trasporto parallelo fa sì che le derivate del
vettore trasformino in maniera corretta per cambiamento di coordinate e quindi abbiano un
senso geometrico indipendente dalla scelta particolare delle coordinate.

Proviamo a “tradurre” questo procedimento nel caso della trasformazione di gauge. Qui
la legge di trasformazione è data dalla (9.27), quindi noi vorremmo definire un “trasporto”
e conseguentemente una derivataDi in modo tale che per trasformazioni di gauge

Diψ → DΛ
i ψΛ = ei eΛ

h̄c Diψ (9.31)
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La derivata usuale sicuramente non va bene perchè

∂iψΛ = ei eΛ
h̄c

(
i

e
h̄c

(∂iΛ)ψ +∂iψ

)
(9.32)

cioè trasforma in modo inomogeneo. Ma ora si capisce finalmente il perchè della combi-
nazionep−e/cA! Consideriamo l’operatore

Di = ∂i − i
e
h̄c

Ai
h̄
i
D≡ p− e

c
A (9.33)

Per trasformazioni di gauge la variazioneAΛ = A +∇∇∇Λ cancella esattamente il termine
non omogeno nella (9.32) e risulta(

∇∇∇− i
e
h̄c

AΛ
)

ψΛ = ei eΛ
h̄c

(
∇∇∇− i

e
h̄c

A
)

ψ ≡ ei eΛ
h̄c Dψ (9.34)

D si chiamaderivata covariantee A è la connessione che serve per costruire la derivata.
Ovviamente cambiandoA cambia la derivata covariante. Costruiamo ora esplicitamente il
trasporto generato dalla connessioneA. Cominciamo col notare che considerando l’inte-
grale lungo un camminoC da un puntoA ad un puntoB si ha, sotto trasformazione di gauge
A → A +∇∇∇Λ:

Φ(A,B;C)≡
∫ B

C,A
Aidxi →

∫ B

A
Aidxi +Λ(B)−Λ(A) (9.35)

L’integrale (9.35) dipende esplicitamente
dal cammino di integrazione. Infatti cam-
biando cammino come nella figura accanto
e usando il teorema di Stokes A BC

C

1

2

Φ(A,B;C1)−Φ(A,B;C2) =
∮

Aidxi =
∫

S
B ·dS≡ flusso di B (9.36)

La formula (9.36) è il punto importante: la differenza degli integrali di cammino della
connessione è uguale al flusso del campo magnetico attraverso la superficie delimita dai
due cammini. Notiamo due cose importanti;

1) Il risultato (9.36) èinvariante di gauge, essendo espresso in termini del campo
elettromagnetico.

2) La (9.36)non dipendeda quale superficieSsi sceglie, purchè il bordo diSsia costi-
tuito dal camminio, chiuso,C1−C2. Infatti scegliendo un’altra superficie,S′, avente
lo stesso bordo, le due,S,S′ delimitano un volumeV, e, applicando il teorema di
Gauss ∫

S1

B ·dS−
∫

S2

B ·dS=
∫

V
dV divB = 0 (9.37)

Torniamo ora al “trasporto” della funzione d’onda. Il problema nel fare le derivate è che
ψ(y) si trasforma in modo diverso daψ(x) sey 6= x. Se però “trasportiamo” la funzione
d’onda per mezzo dell’integrale di cammino, allora

ψ̃ = exp(−i
e
h̄c

∫ y

x
)ψ(y)

si trasforma comeψ(x), come si vede usando la (9.35):

ψ̃ = e
−i

e
h̄c

∫ y
x Adx

ψ(y)→ e
−i

e
h̄c

∫ y
x Adx

e
−i

e
h̄c

(Λ(y)−Λ(x))
e

i
e
h̄c

Λ(y)
ψ(y) = e

i
e
h̄c

Λ(x)
ψ̃
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Se allora dobbiamo fare, ad esempio, la derivata in una direzioneu possiamo effettuare le
differenze della funzione d’onda senza violare l’invarianza di gauge

lim
ε→0

1
ε

[Φ∗(x,x+ εu)ψ(x+ εu)−ψ(x)] (9.38)

Espandiamo in in serie diε l’esponenziale che compare inΦ

Φ(x,x+ εu)∼ 1+ ε · i e
h̄c

A(x)u+O(ε2)

Perε → 0 i possibili cambiamenti di cammino danno contributi proporzionali adε2, in
virtù della (9.36) (l’area è proporzionale adε2), quindi al primo ordine inε lo sviluppo di
Φ è indipendente dal cammino. Sostituendo nella (9.38) si ha infine

lim
ε→0

1
ε

[Φ∗(x,x+ εu)ψ(x+ εu)−ψ(x)] = u ·Dψ (9.39)

Quello che abbiamo imparato è che lo strumento essenziale è fornito dal “trasporto paral-
lelo” Φ(x,y). Il punto è che il trasporto serve a far cambiare le proprietà di trasformazione
della funzione d’ondaψ, ed in ultima analisi a generare il termine inomogeneo nella de-
rivata covariante. Per sua natura quindinon può essseregauge invariante, dovendo la sua
trasformazione combinarsi con quella diψ. Non è possibile allora costruire dei trasporti
paralleli utilizzando quantità comeE e B, che sono gauge invarianti. Questo è il motivo
geometrico fondamentale per cui in teoria quantistica il ruolo dei potenziali è insostituibile:
servono a permettere il confronto della funzione d’onda in punti diversi.

Questo ruolo fondamentale dei potenziali porta con sè una conseguenza notevole che
non ha un corrispettivo in meccanica classica: le proprietà della teoriadipendono dalla
topologia. Per illustrare questo punto consideriamo in modo più dettagliato la relazione
fra campi e potenziali, ed in ultima analisi l’invarianza di gauge. Dato un campoB suppo-
niamo di aver determinato un potenzialeA1 tale cheB = rotA1. Sappiamo già che questa
scelta non è unica, per ogni altra scelta,A2, deve valere rot(A1−A2) = 0. Quindi il proble-
ma è: quali sono i potenziali vettori che danno luogo ad un campo nullo? Per ricordare che
questi potenziali corrispondono ad un campo nullo li chiamiamoΩΩΩ. La soluzione più ovvia
è quella che abbiamo già implicitamente usato: un campo vettorialeΩΩΩ ha rotore nullo se
esiste una funzioneΛ tale cheΩΩΩ = ∇∇∇Λ, cioèΩΩΩ è un gradiente, eΛ è la funzione di trasfor-
mazione di gauge. Questa però non è l’unica possibilità. Innanzitutto l’irrotazionalità diΩΩΩ
implica il risultato2 seguente:

Teorema. Dati due cammini chiusi deformabili con continuità l’uno nell’altro, l’integrale
di ΩΩΩ ha lo stesso valore sui due cammini.
Infatti applicando il teorema di Stokes ai
cammini della figura accanto:∮

C1

ΩΩΩdx−
∮

C2

ΩΩΩdx =
∫

S
B ·dS= 0

Notiamo esplicitamente che in questa di-
mostrazioneΩΩΩ deve essere definita in tut-
ta la regioneS. Una conseguenza ovvia
del teorema precedente è che se un cammi-
no è deformabile con continuità ad un pun-
to l’integrale diΩΩΩ lungo quel cammino è
nullo.

C

C

1

2

S

Uno spazio in cui tutti i cammini chiusi siano deformabili con continuità ad un punto si
dicesemplicemenete connesso.Abbiamo quindi il risultato:

2Le considerazioni svolte nel seguito lasciano ovviamente molto a desiderare in quanto a rigore, il lettore può
approfondire le varie questioni, ad esempio, nei testi[DNF]. Lo scopo della discussione seguente è solo quello di
presentare in modo intuitivo alcuni concetti.
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Teorema. Se lo spazio è semplicemenete connesso erotA = 0, allora esiste di sicuro una
funzioneΛ tale cheA = ∇∇∇Λ, A è un campo di pura gauge, cioè annullabile con una
trasformazione di gauge.

Infatti scegliamo un punto baseO e consideriamo la funzione

Λ(P) =
∫ P

O
Aidxi (9.40)

Se lo spazio è semplicemente connesso l’integrale nella (9.40) non dipende dal cammi-
no di integrazione, perchè la differenza fra due cammini è un cammino chiuso. Siccome
rotA = 0, il teorema di Gausss dice che questo integrale è invariante per deformazione del
cammino, ma se lo spazio è semplicemente connesso il cammino può esssere ridotto ad un
punto, quindi l’integrale è nullo. Questo significa che effettivamenteΛ(P) è una funzione
del punto ed è banale verificare che∇∇∇Λ = A. Se lo spazio non è semplicemente connesso la
situazione è più complicata. Ci accontentiamo di citare i seguenti punti. L’insieme dei vet-
tori A tali che rot A= 0 formano ovviamente uno spazio vettoriale ( di dimensione infinita),
nel senso che la loro somma ed i multipli sono ancora a rotore nullo. In generale possiamo
“eliminare” daA la parte che è ottenibile con una trasformazione di gauge, cioè scrivibi-
le come∇∇∇Λ, quello che otteniamo è l’insieme dei campi vettoriali a rotore nullo modulo
una trasformazione di gauge. Anche questi formano uno spazio vettoriale ed il loro insie-
me forma il cosiddettoprimo gruppo di Coomologia, di de Rham, indicato abitualmente
con H1(X). Il punto è che ladimensionedi H1(X) è finita, e calcolabile naturalmente.
Se ad esempio la dimensione è 1, esiste un particolare campoA1 che ha rotore nullo ma
non è scrivibilecome gradiente di nessuna funzione, la dimensione 1 diH1 significa che i
multipli di A1 hanno la stessa proprietà, e qualunque altro campo a rotore nullo ha la forma

A = ∇∇∇Λ+cA1

Se dimH1(X) = 0 significa che tutti i campi irrotazionali sono gradienti, è il caso degli
spazi semplicemente connessi. Nell’esempio seguente tratteremo il caso più semplice, che
è l’unico di cui avremo bisogno.

CasoR2−{0}. Consideriamo il pianoR2 meno un punto, l’origineO per fissare le idee.
Chiaramente i cammini chiusi che non contengonoO sono contraibili, quelli che conten-
gonoO invece non sono riducibili ad un punto. Scriviamo l’integrando nel campoA in
coordinate polari. Notiamo che questo insieme di coordinate è ben definito nell’insieme
considerato, in quanto l’origine non fa parte del dominio:

Aidxi = Ardr +Aθ rdθ ≡ frdr + fθ dθ fθ ≡ rAθ (9.41)

Usiamo le componentifr(r,θ), fθ (r,θ) perchè più comode. La condizione di rotore nullo
si scrive, in coordinate polari

∂ fθ

∂ r
− ∂ fr

∂θ
= 0

Possiamo sempre effettuare una trasformazione di gauge, regolare, che annullafr , basta
considerare

Λ1(r,θ) =−
∫ r

1
fr(u,θ)du

evidentemente la trasformazioneΛ1 porta afr → fr +∂rΛ1 = 0. Quindi possiamo limitarci
a considerare la sola componentefθ (r,θ) (eventualmente dopo la trasformazioneΛ1). La
condizione di rotore nullo ora diventa∂r fθ = 0, cioè fθ è una funzione solo diθ . fθ deve
essere una funzione definita su tutto l’insieme, quindideveessere periodica (altrimenti, ri-
petiamo, non è una funzione definita suR2−{0}), è allora possibile effettuare uno sviluppo
di Fourier

fθ (θ) = F0 + ∑
n6=0

(Fncos(nθ)+Gnsin(nθ))≡ F0 +R(θ) (9.42)
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F0 è una costante, che è una funzione periodica ovviamente. Notiamo che lo spazio vet-
toriale associato alle funzioni (9.42) è ancora a dimensione infinita, si ha una coppia di
dimensioni per ognin. La parte non costante della (9.42),R(θ), è anch’essa eliminabile
con una trasformazione di gauge, basta considerare

Λ2 =−
∫

θ

0
R(θ)dθ

Λ2 è periodica inθ , quindi ben definita. Rimaniamo allora con l’unica espressione

Aidxi = F0dθ (9.43)

Questo camponon è ottenibile da un gradiente, perchè dovrebbe essereΛ = −F0θ , ma
questa funzionenon è periodicaquindi non è una funzione definibile sul nostro insieme
X = R2−{0}. In questo caso quindi tutti i potenziali a rotore nullo non eliminabili con
una trasformazione di gauge sono del tipoc · dθ , quindi lo spazioH1 ha dimensione 1,
come spazio vettoriale suR. È piuttosto semplice dimostrare che se dal piano si “tolgono”
N punti, si ottiene uno spazio di potenziali non banali di dimensioneN, praticamente gli
integrali angolari attorno ad ognuno dei “buchi”.

Lasciamo al lettore la dimostrazione (semplice) che nel caso tridimensionale in cui si
sia “tolta” una retta, si ha la stessa situazione, cioè l’unico campo non banale a rotore nullo
ha solo la componente azimutale, e lo spazioH1 anche in questo caso ha dimensione 1.

È chiaro che il valore della costanteF0, gauge invariante per definizione, è ottenibile
effettuando l’integrale su un qualunque cammino chiuso che contenga il puntoO:∮

Aidxi = 2πF0 (9.44)

L’integrale chiuso che compare nella (9.44) è quello che normalmente si chiamaflusso
magneticoed è gauge invariante a vista. È possibile quindi definire delle grandezze gauge
invarianti ∮

Aidxi (9.45)

che possono essere non nulli anche in assenza di campo elettrico o magnetico.
Siamo finalmente giunti al punto cruciale: consideriamo una zona di spazio in cui non

sono presenti campi elettrici e magnetici. Secondo la meccanica classica il moto in queste
zone, a meno di altri tipi di forze, è identico al moto di una particella libera. Se inve-
ce i potenziali vettori entrano in modo essenziale nella soluzione dell’equazione di Schr
odinger allora se esistono integrali del tipo (9.45) non banali, si devono avere degli effetti
osservabili.

Consideriamo per fissare le idee l’equazione di Schrödinger per una particella in pre-
senza di un campoA, statico, ma a rotore nullo, cioè conB = 0:

ih̄
∂ψ

∂ t
=

1
2m

(
p− e

c
A

)2
ψ (9.46)

Sia ψ1 una soluzione dell’equazione (9.46) nel casoA = 0. In una zona semplicemente
connessa dello spazio ci si aspetta che la soluzione della (9.46) sia della forma

ψ(x) = exp

(
i

e
h̄c

∫ x

0
A ·dx

)
ψ1(x) (9.47)

La (9.47) non è altro che una riproposizione della formula per le trasformazioni di gauge,
eq.(9.27), in cui abbiamo fatto uso della forma esplicita della trasformazione di gauge,
eq.(9.40). Ovviamente la (9.47) soddisfa all’equazione differenziale (9.46), come si verifica
banalmente per sostituzione, manon èuna soluzione accettabile di quella equazione se il
dominio non è semplicemente connesso. Infatti se consideriamo la variazione diψ lungo
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un cammino non contraibile otteniamo fra il valore iniziale e quello finale della funzione,
una differenza del tipo:

ψ(P) → exp

(
i

e
h̄c

∮
A ·dx

)
ψ(P) (9.48)

Si avrebbe cioè una soluzione non monodroma. Abbiamo già discusso nel corso dello stu-
dio della quantizzazione del momento angolare la necessità di avere una funzione d’onda
monodroma inR3. Siccome qualunque modello fisico è in ogni caso una schematizzazione
più o meno accurata di un modello tridimensionale, la questione della monodromia do-
vrebbe essere considerata acquisita. Dal punto di vista matematico in alcuni modelli, come
ad esempio moti bidimensionali, in cui non interviene il gruppo delle rotazioni tridimen-
sionali, la richiesta di monodromia potrebbe di principio cadere, ma vedremo nei prossimi
paragrafi che anche in questo caso, nell’ambito che stiamo studiando, la monodromia è
essenziale per l’interpretazione fisica dei risultati.

Il lettore a questo punto potrebbe essere, giustamente, confuso: se la (9.47) soddisfa al-
l’equazione (9.46) in che senso non è una soluzione? Dobbiamo ricordare che la soluzione
di un’equazione differenziale è determinata solo una volta che siano fissate le condizioni al
contorno. Si hanno due possibilità:

1) Si ha a che fare con un problema di tipo diffusione: un elettrone entra in una zona in
cui è presente il campoA, viene eventualmente diffuso, etc. In questo caso la solu-
zione richiede siano fissate le condizioni al bordo nella forma, tipicamente, del valore
della funzione d’onda incidente sul bersaglio. Se il campoA ha una circuitazione non
nulla al di fuori di una regione limitata dello spazio, quindi anche all’infinito, questo
fa sì che le condizioni al bordo ammissibili debbano essere compatibili con l’inva-
rianza di gauge, si vedrà esplicitamente che queste sono diverse da quelle libere, e
quindi la soluzione non sarà una trasformazione di gauge della soluzione libera.

2) Si studia uno stato legato. In questo caso il requisito è sempre quello di avere uno fun-
zione d’onda a quadrato sommabile, quello che deve risultare allora è che in presenza
di una circuitazione non banale lo spettro dell’Hamiltoniana cambia. Verificheremo
che in effetti è così.

Nei prossimi due paragrafi presenteremo due situazioni di questo tipo, il primo per motivi
puramente didattici, il secondo, ben più importante, è per certi aspetti uno dei fenomeni
più notevoli della meccanica quantistica:l’effetto Aharonov-Bohm.Naturalmente la natura
obbedisce alle leggi della meccanica quantistica.

NOTA. Il contenuto di questo paragrafo, come già accennato, è stato volutamente presentato in forma
molto semplificata. Anche a livello di notazioni sarebbe più utile che il lettore prendesse confidenza
con il concetto di forme differeziali e con la teoria ad esse associata. Per la parte matematica il lettore
ha moltissime possibilità di scelta, alcune potrebbero essere i testi di Novikov et al.[DNF]. Una
trattazione semplificata di moti aspetti topologici delle teorie di gauge si può trovare nel libro di Nash
e Sen[NS]. Un testo sulle forme differenziali scritto apposta per i fisici è il libro di [Fla]. Per quanto
riguarda la fisica è ovvio che tutta la procedura può essere estesa a campi dipendenti dal tempo, ed in
questo modo il ruolo essenziale è svolto dall’integrale∮

Aµ dxµ =
∮

cΦdt−Adx (9.49)

Due letture consigliate, sia per la fisica che per la matematica, sono l’articolo originale di Aharonov-
Bohm[AB59] e l’articolo di Wu e Yang[WY75].

9.2 Particella carica e solenoide.

Consideriamo il seguente problema: il moto di una particella carica in presenza di un so-
lenoide cilindrico infinitamente lungo, di raggioa e con l’asse coincidente con l’assez.
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Il sistema ha simmetria cilindrica. Supponiamo che il flusso del campo magnetico sia
interamente confinato all’interno del raggioa. Il profilo del flusso può avere una forma
“semplice”, con una crescita parabolica come nel caso elementare di campo costante, o più
addolcita al bordo, la cosa non ha molta importanza, le due possibilità sono illustrate in
figura 9.1. Al di fuori del solenoide il flusso ha un valore limite costante, che indicheremo
con la letteraF .

r r

Figura 9.1: Due profili per il flusso magneticoΦ(r) all’interno di un solenoide.

Usiamo coordinate cilindrichez, r,θ . Il campo magnetico ha solo la componenteBz≡B
che dipende solo dal raggior, distanza dall’assez e si haB = B(r). Il flusso magnetico è
dato da

Φ(r) =
∫ r

0
2πrdrB(r) B(r) =

1
2πr

Φ′(r) B = 0 perr > a

Abbiamo esplicitamente fatto notare che il campo magnetico è nullo nella zonar > a. Un
potenziale vettore che corrisponde a questa situazione è dato da

Ar = 0 Aθ =
1

2πr
Φ(r) Aθ =

1
2πr

F perr > a (9.50)

come si verifica immediatamente dal teorema di Stokes su un cerchio di raggior:∮
Aidxi =

∫ 2π

0
Aθ rdθ = Φ(r)

Il problema è completamente invariante per traslazioni lungo l’assez, possiamo quindi
ridurci allo studio di un problema bidimensionale. Per comodità del lettore scriviamo le
componenti cartesiane del potenziale vettoreA:

Ax =−y
r
Aθ Ay =

x
r
Aθ (9.51)

L’equazione di Schrödinger per un elettrone nel campo del solenoide si scrive

ih̄
∂ψ

∂ t
=

1
2m

(
h̄
i
∇∇∇− e

c
A

)2

ψ +V(r)ψ

V(r) indica un eventuale potenziale aggiuntivo che decrive l’interazione dell’elettrone con
la parete del solenoide (i fili). È più comodo passare a coordinate cilindriche,x = r cosθ ,
y = r sinθ . Cambiando variabili ed usando le (9.51) si ha:

ih̄
∂ψ

∂ t
=− h̄2

2m
1
r

∂

∂ r

(
r

∂

∂ r

)
ψ +

1
2m

(
h̄
i

1
r

∂

∂θ
− e

c
Aθ

)2

ψ +Vψ = (9.52)

=− h̄2

2m
1
r

∂

∂ r

(
r

∂

∂ r

)
ψ +

1
2mr2

(
Lz−

e
2πc

Φ(r)
)2

ψ +Vψ
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In particolare nella zona esterna al solenoide, in cui non c’è campo magnetico, l’equazione
di Schrödinger ha la forma

ih̄
∂ψ

∂ t
=− h̄2

2m
1
r

∂

∂ r

(
r

∂

∂ r

)
ψ +

h̄2

2mr2

(
Lz

h̄
− e

2πh̄c
F

)2

ψ +Vψ (9.53)

Il termine costante, proporzionale adF , non può essere riassorbito da una trasformazio-
ne di gauge regolare. In effetti questo termine sarebbe eliminato, nella zonar > a, dal
cambiamento di variabili

ψ = exp(iθ
e

2πh̄c
F)ψ1 (9.54)

che è proprio la trasformazione di gauge (non regolare) (9.47). Questa trasformazione è
regolare, cioè lascia monodrome le funzioni d’onda, solo per particolari valori, quantizzati,
del flusso magnetico:

e
2πh̄c

F =
e
hc

F = n∈ Z F = n
hc
e

(9.55)

Questo è uno degli aspetti più sorprendenti della meccanica quantistica: l’integrale di flus-
so non compare in una forma generica, ma solo comefasedella funzione d’onda. In quanto
tale il suo significato è solo modulo 2π, quindi per multipli di 2π la sua azione è assolu-
tamente nulla. I veri gradi di libertà associati alla topologia non banale del problema sono
perciò3

exp(i
e
h̄c

∮
Aidxi)

La risoluzione di un’equazione come la (9.53), o la (9.52), passa attraverso la determi-
nazione degli autovalori diLz. Per funzionimonodromesappiamo scrivere autofunzioni ed
autovalori di questo operatore:

Lzψ =
h̄
i

∂ψ

∂θ
= h̄`ψ ψ = exp(i`θ) ` intero (9.56)

Per`∈Z le funzioni (9.56) sono monodrome. A priori, come già accennato, e come visto in
alcuni esempi nel capitolo [?], sarebbe possibile definire un operatoreLz con autofunzioni
non monodrome, il che significherebbe avere autovalori ed autofunzioni del tipo

κ = `+β ` ∈ Z ψ(θ +2π) = ψ(θ)ei2πβ

Lz è la terza componente del momento angolare e, ricordiamo, è definito tramite le variabili
canoniche x, p. In presenza di un campoA, L non èil momento cineticor ∧mv, vedi (9.7).
Ricordiamo che classicamenteLz è un invariante adiabatico

Lz =
1

2π

∮
dθ pθ

Se assumiamo che in assenza di solenoideLz sia quantizzato per interi, allora questo deve
essere quantizzato per interi anche per incremento adiabatico del flusso magnetico, appunto
perchèLz è un invariante adiabatico. Se lasciassimo cadere questa condizione si perderebbe
la corrispondenza fra invarianti adiabatici classici e autovalori quantistici. Notiamo che
questa sarebbe proprio la conseguenza se assumessimo che una funzione d’onda avesse
una non monodromicità legata al fattore di fase del campoA. In questa descrizione la
presenza diA sarebbe riassorbita nella forma

exp(i
e
h̄c

∫ P

O
Aidxi)ψ

3Questo punto è particolarmente messo in evidenza nelle referenze[AB59, WY75] che il lettore può utilmente
consultare.
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e questa funzione, per una rotazione di 2π di P attorno al puntoO, acquisterebbe una fase

exp(i
e
h̄c

∮
Aidxi) = exp(i

eF
h̄c

)

Ripetiamo: l’invarianza adiabatica diLz implica che i suoi autovalori non debbano cam-
biare per incremento adiabatico del flusso magnetico, in questo caso la monodromia delle
funzioni d’onda è obbligatoria.

Per capire le conseguenze osservabili di quanto asserito consideriamo un modello ul-
trasemplificato: supponiamo che la particella si possa muovere solo su un cerchio di raggio
R. In questo caso gli autovalori dell’energia sono determinati da

Eψ =
h̄2

2mR2

(
Lz

h̄
− eF

2πh̄c

)2

ψ E =
h̄2

2mR2

(
`− eF

2πh̄c

)2

(9.57)

La (9.57) rende esplicitamente conto di alcune delle cose discusse precedentemente:

1) L’Hamiltoniana quantistica (9.55)non è unitariamente equivalente ad un’hamilto-
niana senza potenziale vettore: in effetti per trasformazioni unitarie lo spettro è
invariante, mentre lo spettro (9.57) è diverso da quello libero.

2) Si può avere una equivalenza unitaria solo pereF
2πh̄c ∈ Z, nel qual caso lo spettro

(9.55) coincide con quello libero. La trasformazione unitaria è proprio la (9.54), che
in questo caso è ben definita.

Vogliamo concludere l’analisi di questo modello con alcune considerazioni.

a) Supponiamo di non considerare la monodromia delle funzioni d’onda e di effettuare
lo stesso la trasformazione (9.54). L’Hamiltoniana risultante sarebbe

H =
h̄2

2mR2

(
−1

i
∂

∂θ

)2

che è quella libera. Si riotterrebbero logicamente i risultati precedenti assumendo
ora una non monodromia della funzioni d’onda. Possiamo sfruttare questa osser-
vazione in questo modo: supponiamo di avere un modello, bidimensionale, in cui
possano essere presenti discontinuità topologiche, che nel nostro contesto sono tagli
(cioè discontinuità) nel pianoxy, queste possono essere riformulate in termini di un
problema senza discontinuità pur di introdurre un potenziale vettore che fa le veci del
campo di gaugeA. Questo è un tipo di approccio usato in diversi modelli utilizzati
per spiegare proprietà colletive in fisica dello stato solido.

b) In meccanica classica l’Hamiltonia (9.55) si scrive

H =
1

2mR2

(
L− eF

2πc

)2

(9.58)

Lo spazio delle fasi del sistema è il cilindro[0,2π]×R, corrispondente alle variazioni
di θ e diL, che non è quantizzato classicamente.θ ,L sono le variabili coniugate del
sistema edL è la variabile di azione. In questo contesto la trasformazione

L→ L+
eF
2πc

(9.59)

è una trasformazione canonica, quindi il sistema (9.58) è equivalente al sistema libe-
ro, in accordo col fatto che le particelle classiche sono soggette solo ai campi elettrici
e magnetici, non risentono direttamente dei potenziali. In meccanica quantistica in-
vece, in cui lo spettro diL è quantizzato, la trasformazione (9.58) non è permessa:
anche a livello semiclassico è ovvio che non lascia invariate le condizioni di quan-
tizzazione di Bohr-SommerfeldL = nh. Questo è forse l’esempio più semplice del
fatto che in generale non tutte le trasfomazioni canoniche classiche corrispondono a
trasformazioni unitarie quantistiche.
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c) Dalle eq.(9.57) segue che le autofunzioni del sistema sono:

ψ`(θ , t) =

√
1

2π
ei`θ−i 1

h̄E`t =

√
1

2π
exp

[
i`θ − it

h̄
2mR2

(
`− eF

2πh̄c

)2
]

(9.60)

È quindi abbastanza semplice calcolare il propagatore:

K(θ , t;θ
′,0) = ∑̀ψ`(θ , t)ψ∗

` (θ ′,0) (9.61)

Ricordiamo che il propagatore definisce l’ampiezza di probabilità di passare da una
posizioneθ ′ all’istante 0 alla posizioneθ all’istantet, e vale la relazione

ψ(θ , t) =
∫

dθ
′K(θ , t;θ

′,0)ψ(θ ′,0)

La somma (9.60) si valuta facilmente utilizzando la formula di Poisson per le somme,
vedi appendice 9.A

K(θ , t;θ
′,0) =

[
mR2

2π ih̄t

]1/2 ∞

∑
k=−∞

exp

[
imR2

2h̄t
(θ −θ

′−2πn)2 +
ieF

2πh̄c
(θ −θ

′−2πn)
]

= ∑
n

K0
n(θ , t;θ

′,0)exp

[
ieF

2πh̄c
(θ −θ

′−2πn)
]

(9.62)

La relazione (9.62) è molto istruttiva. I singoli terminiK0
n(θ , t;θ ′,0) sono i propaga-

tori per una particella libera (come seθ non descrivesse un moto angolare), e possono
essere interpretati come l’ampiezza per il passaggioθ ′ → θ dopo aver compiuton
giri. I fattori di fase aggiuntivi:

exp

[
ieF

2πh̄c
(θ −θ

′−2πn)
]

(9.63)

sono esattamente gli integrali di fase lungo questi cammini

exp

(
i
eh̄
c

∫ f

i
Aidxi

)
che si dovrebbero effettuare per riassorbire il potenziale vettore se lo spazio fosse
semplicemente connesso! Notiamo il ruolo fondamentale giocato dal principio di
sovrapposizione: i singoli termini nella (9.62) non sono periodici ed in particolare
il fattore di fase (9.63) non lo è, ma la somma delle ampiezze è periodica. Il lettore
non mancherà di osservare la stretta analogia con la costruzione di de Broglie: nel-
l’espressione “ondulatoria” (9.60) della funzione d’onda la monodromia è proprio
all’origine della quantizzazione diL, nell’interpretazione “corpuscolare” (9.62) que-
sta periodicità è evidente solo se si somma su tutte le possibili traiettorieθ ′ → θ ,
ognuna topologicamente non riconducibile all’altra. Questo tipo di considerazioni
compaiono spesso quando, con tecniche mutuate dalla regola di Poisson, si riesce a
dare una descrizione “duale” dei modelli.

Una piccola generalizzazione di questo modello sarà fornita nell’appendice 9.B.

9.3 Effetto Aharonov-Bohm.

In questo paragrafo presenteremo brevemente l’effetto Aharonov-Bohm: si tratta di alcuni
effetti sperimentalmente osservabili dei fattori di fase elettromagnetici. Questo tipo di ana-
lisi è stata per la prima volta presentata nel fondamentale lavoro[AB59], di cui consigliamo
vivamente la lettura.
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Consideriamo la classica esperienza di tipo Young, l’inteferenza di un fascio elettronico
nel caso di una doppia fenditura. lo schema è riportato in figura 9.2. Ricordiamo che nel
caso usuale, senza campo magnetico, la funzione d’ondaψ è approssimabile nella forma

ψ = ψ1 +ψ2 (9.64)

doveψ1 e ψ2 sono le “onde” corrispondenti al passaggio nella parte superiore e inferiore
della figura4. La differenza di cammino ottico fra i due termini provoca, vedi cap.?? uno
sfasamento relativo

∆φ =
2π

λ
∆` ∆` =

2xd
L

(9.65)

dando luogo alle note frange di interferenza nella misura di|ψ|2 = |ψ1 +ψ2|2.

Figura 9.2: Interferenza senza flusso magnetico e con flusso magnetico.

Consideriamo ora l’idntica situazione ma con l’aggiunta diun solenoide, infinitamente
lungo per semplicità, dietrao allo schermo in figura 9.2. Ilsolenoide può essere considerato
impenetrabile al fascio elettronico. Classicamente il suo effetto dovrebbe essere totalmente
nullo: il campo magnetico al di fuori del solenoide è nullo. Quantisticamente la situazione
è completamente diversa. Al di fuori del solenoide è presente un campoA 6= 0. Il termine
ψ1 nella (9.64) si riferisce alla propagazione (semiclassica) nella regione superiore della
figura 9.2, in questa regione, cheè semplicemente connessa, l’effetto del campoA è sem-
plicemente quello di aggiungere una fase alla funzione d’ondaψ1, cioè in presenza diA:

ψ1 → exp

(
i

e
h̄c

∫
1
A ·dx

)
ψ1 (9.66)

Ricordiamo che l’integrale nella (9.66)non dipendedal cammino, finchè restiamo nella
zona che non circonda il solenoide.

Analogamente la funzioneψ2 viene modificata da

ψ2 → exp

(
i

e
h̄c

∫
2
A ·dx

)
ψ2 (9.67)

Vediamo allora che ladifferenza di fasefra i due termini nella (9.64) viene modificata per
un fattore

e
h̄c

∫
1
A ·dx− e

h̄c

∫
2
A ·dx =

e
h̄c

∮
A ·dx =

e
h̄c

Φ (9.68)

Corrispondentemente le differenze di fase (9.65) diventano:

∆φ = ∆φ |Φ=0 +
e
h̄c

Φ spostamento: δ x =
eλ LΦ
4π ch̄d

(9.69)

Si ha quindi unospostamento delle frange di interferenza, modulato dal flussoΦ del campo
magnetico nel solenoide. Notiamo che per

e
h̄c

Φ = 2nπ (9.70)

4Preciseremo in seguito questa affermazione, vedi anche l’appendice 9.C
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l’effetto scompare.
Sottolineiamo che l’effetto di spostamento delle frange non solo mette in luce l’impor-

tanza del campo vettorialeA, ma specifica che esso interviene solo nella formagauge in-
variante(9.66) esolonella forma di fase, infatti l’effetto scompare per valori della quantità
eΦ/h̄cmultipli di 2π. Della differenza rispetto alla meccanica classica abbiamo già parlato,
bisogna anche aggiungere che all’epoca dell’analisi di Aharonov e Bohm, che hanno pro-
posto un esperimento simile a quello di figura 9.2, molti non erano convinti della necessità
di introdurre i potenziali vettori nella descrizione della meccanica quantistica. I primi risul-
tati sperimentali erano a favore dell’ipotesi di Aharonov e Bohm confermando la presenza
di frange di interferenza che sispostavano al variare del flusso di campo magnetico, ma
alcuni aspetti teorici e sperimentali lasciavano aperta qualche spegazione alternativa. Tale
diatriba è stata risolta in modo definitivo in una recente serie di esperimenti sorprendenti
fatti al Laboratorio centrale di Hitachi, da Tonomura e dai suoi collaboratori.

La diatriba nasceva dai seguenti aspetti piùttosto delicati, sia sperimentali che teorici,
dell’effetto A-B. Prima di tutto, in meccanica quantistica, l’elettrone è descritto da una fun-
zione d’onda, ed è difficile escludere completamente che esso penetri anche nella regione
dove è situato il solenoide,B 6= 0. Un altro problema sperimentale è che un solenoide
non è mai ideale, non è mai infinitamente lungo, il campo magnetico non è mai comple-
tamente contenuto all’interno del solenoide. Inoltre, dal punto di vista teorico, ci sarebbe
la possibilità di scegliere la gauge di modo che nelle equazioni appaiono soltanto il campo
magneticoB (o le sue derivate), e non più il potenziale vettorialeA (gauge di Schwinger).
Se tale scelta di gauge fosse legittima, non ci si dovrebbe aspettare nessun effetto A-B,
se l’elettrone non passa mai nella regione con il campo magnetico (o se l’apparato speri-
mentale è costruito di modo che tale probabilità sia comunque trascurabile). Ogni effetto
osservato sarebbe da attribuire alla non perfezione dell’apparato.

A quest’ultima obiezione teorica può essere risposta osservando che una gauge in cui
il potenziale vettoriale viene eliminata in favore diB è necessariamente singolare, e perciò
non è una scelta accettabile.

Le prime obiezioni sono però più insidiose. L’idea brillante che ha permesso al gruppo
di Tonomura di ovviare a questi problemi, sotto il suggerimento di C.N. Yang, è stato quello
di ricoprire completamente un anello magnetico microscopico con uno strato supercondut-
tore di Niobio, (Fig.9.3). Si veda la nota seguente su aspetti salienti della superconduttività
e del fenomeno della quantizzazione del flusso magnetico.

Facendo attraversare il fascio di elettroni parzialmente dentro e parzialmente fuori il fo-
ro e osservando la frange dell’interferenza, si osservano gli effetti à la Aharonov-Bohm. Ma
l’osservazione determinante è il fatto che lo spostamento di fase diventa o zero oπ, quando
il ricoprimento superconduttore dell’anello diventa superconduttore (al di sotto della tem-
peratura critica per Nb,Tc = 9.2K), mentre al di sopra della temperatura critica,∆φ prende
un valore generico casuale, dipendente da come il campione è stato preparato.

Si osservi in particolare che

(i) Il campo magnetico è contenuto all’interno dell’anello superconduttore e non può fuo-
riuscire (effetto Meissner). Forma un selenoide di forma anulare ideale,i.e.,senza le
estremità.

(ii) L’elettrone è schermato dal ricoprimento esterno dell’anello e non può penetrare
all’interno.

(iii) Il flusso magnetico all’interno del anello è quantizzato:

Φn =
2π ch̄

q
n,=

π ch̄
e

n q= 2e n∈ Z. (9.71)

Sostituendo questo nella formula (9.69) si ha che lo spostamento di fase è dato da
un multiplo di π, come è effettivamente osservato sperimentalmente. Si noti un
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Ricoprimento
Superconduttore

H

Interferenze

e e

H

Figura 9.3: Lo schema dell’esperimento di Tonomura et.al.

fattore 2 determinante tra la carica della coppia di Cooper (q = 2e), responsabile del
meccanismo della supeconduttività e che compare nella (9.71) e quella dell’elettrone.

È da notare che questo esperimento rappresenta una doppia verifica, da un lato del-
l’effetto A-B (nei campioni con lo sfasamentoπ), dall’altro della quantizzazione di flusso
magnetico.

9.3.1 Superconduttore

Riportiamo qui gli aspetti principali della superconduttività nei metalli a temperature estre-
mamente basse, in un campo magnetico esterno. Gli elettroni in un metallo risentono di
una interazione reciproca dovuta agli scambi di fononi (eccitazioni del reticolo cristallino)
e possono formare stati legati, chiamate coppie di Cooper. A temperature estremamente
basse (al di sotto di una temperatura critica, che dipende dalla sostanza) le coppie di Coo-
per - bosoni - condensano e sono descritte5da una sorta di funzione d’onda macroscopica
Ψ.

Le equazioni di Maxwell e la corrente microscopica sono date dalle solite equazioni:

∇×B =
4π

c
j , B = ∇×A; (9.72)

j = q
1

4m

[
Ψ∗(p− q

c
A)Ψ−{(p− q

c
A)Ψ}∗Ψ

]
, (9.73)

Abbiamo chiamatoq = −2|e| la carica della coppia.m è la massa dell’elettrone, quindi
2m è la massa della coppia di Cooper. In generale possiamo scrivere la funzione d’ondaΨ
nella forma

Ψ =
√

ρ ei θ , ρ(r) = Ψ∗Ψ 6= 0, (9.74)

5I bosoni identici debolmente accoppiati tendono a occupare lo stesso stato quantistico. A temperatura al di
sotto della temperatura critica, un numero macroscopico dei bosoni occupa lo stato fondamentale (condensazione
di Bose-Einstein). Il sistema in tale stato è descritto dalla distribuzione dei numeri di occupazioned(p) o dalla
sua trasformata di Fourier,Ψ(r). |Ψ(r)|2 rappresenta allora realmente la densità, non la densità di probabilità,
delle particelle.
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Lo stato superconduttore può essere caraterizzato da una densità costante di coppie, quindi
ρ = cost.6= 0.

Nello stato superconduttore, le coppie di Cooper condensano:

Ψ =
√

ρ ei θ , ρ(r) = Ψ∗Ψ 6= 0, (9.75)

La corrente (9.73) si scrive quindi

j =
qρ

2m
(h̄∇θ − q

c
A) (9.76)

L’equazione di continuità allora implica∇ · j = 0, i.e.,

∇2
θ = 0, (9.77)

dove è stata assunta la gauge∇∇∇ ·A = 0. All’interno del superconduttore la (9.77) implica

θ = const. (9.78)

Segue la relazione

j =− q2 ρ

2mc
A, (9.79)

nota come equazione di London. Le equazioni di Maxwell per il campoB = ∇∇∇∧A danno:

∇2A =−4π

c
j =

2π ρ q2

mc2 A ≡ λ
−2A (9.80)

Se consideriamo ora la superficie di un superconduttore, schematizzata come il pianoz= 0
(il metallo occupa la zonaz> 0) la soluzione della (9.80) ha la forma

A = A0e−z/λ , λ =
(

2π ρ q2

mc2

)−1/2

. (9.81)

La (9.81) significa che il campo magnetico è fortemente depresso6 in un mezzo supercon-
duttore:B può penetrare nel corpo di superconduttore soltanto per uno spessore dell’ordine
di λ , chiamato lunghezza di penetrazione di London. Con dei parametri appropriati per
il piombo, per es., (assumendo che ognuno degli atomi dia un elettrone di conduzione),
ρ ∼ 3. ·1022/ cm3, si ha

λ ∼
√

1
8π

mc2

e2

1
1022 ∼

√
1
25

1
3·10−13

1
1022 ∼O(10−5)cm. (9.82)

Questo fenomeno, per cui il campo magnetico viene espulso da una sostanza supercondut-
trice è noto comeeffetto Meissner.

Quantizzazione del flusso magnetico Accade una cosa molto interessante nel caso che
la materia superconduttrice ha una forma di un toro (la superficie è topologicamente una
superficie toroidale).

Riflettendo il fatto cheθ è una variabile angolare, la (9.77) ammette ora una soluzione
non banale7,

θ(x,y,z) = cz, c =
2π n

T
, n∈ Z, (9.83)

6 Nel gergo della fisica delle particelle, il fotone che media l’interazione elettromagnetica ha acquistato una
massa effettiva tramite il meccanismo di Higgs.

7Dal punto di vista matematico, le soluzioni non banali (9.83) rappresentano elementi del gruppo fondamentale
di S1, Π1(S1) = Z.



22 CAPITOLO 9. INTERAZIONI ELETTROMAGNETICHE.

dovez è la coordinata lungo il cerchio del toro,T è il periodo, cioè la lunghezza della
curva. La situazione è schematicamente illustrata in figura 9.4. In questo caso,j 6= A, ma
vale ancora

∇2j =− ρ q
2mc

∇2A =
1

λ 2 j . (9.84)

La (9.83) e la (9.84) implicano che la correntej nella direzionez circola soltanto sulla
superficie del toro,i.e., in uno strato di spessore dell’ordine diλ ; viceversa, all’interno del
toro abbiamoj = 0.

z = T= 0
x

z

y z = 0

Figura 9.4: Coordinate del toro. Si pensi la superficie az = T identificata con quella a
z= 0.

C

j = 0

j

Figura 9.5: Schema di un anello toroidale superconduttore. Il flusso quantizzato è quello
concatenato alla circonferenzaC.

Quest’ultimo fatto significa che lungo il cerchio al centro del toro (la curvaC della
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Fig.9.5)) vale

h̄∇θ =
q
c

A, (9.85)

per cui integrando questa equazione lungoC si ha (Eq.(9.83))

q
c

∮
dxi Ai = h̄

∫
dθ = 2π nh̄. (9.86)

L’ultima uguaglianza discende dalla richiesta di monodromia della funzioneΨ. D’altra
parte, ∮

dxi Ai =
∫

dS·∇×A =
∫

dS·B = Φ : (9.87)∮
dxi Ai è uguale al flusso magnetico intrappolato dal toro. Segue perciò che il flusso

magnetico che attraversa un toro di superconduttore è quantizzato:

Φ =
2π nch̄

q
, n∈ Z. (9.88)

Questa è la relazione (9.71) usata nel paragrafo precedente.

Indicazioni bibliografiche.

Una trattazione relativamente semplice della superconduttività, e compatibile con una co-
noscenza elementare della meccanica quantistica, si trova nel terzo volume delle lezioni di
Feynman[Fey3].

La letteratura sull’effetto Aharonov Bohm è molto vasta e ci contenteremo qui di indica-
re alcune fonti che abbiamo trovato particolarmente utili. L’articolo originale di Aharanov
e Bohm è del 1959[AB59], negli articoli[AB61] si può trovare una discussione degli autori
su vari aspetti del problema. Gli articoli del gruppo guidato da Tonomura[To1], possono
essere utilmente integrati dall’articolo di rivista[To2]. Una istruttiva rassegna, anche per
gli aspetti sperimentali, è il libro di Peshkin e Tonomura[PT], è altresì utile la rassegna di
Olariu e Iovitzu Popescu[OIP]. In queste due ultime opere si trovano molte referenze e di-
scussioni, anche per quanto riguarda i risultati sperimentali precedenti i lavori di Tonomura
e non citati nella nostra brevissima presentazione.

Due articoli molto interessanti, soprattuto per gli aspetti che saranno trattati più in detta-
glio nell’appendice 9.C sono quelli di Berry[Ber1] e di Jackiw e Redlich[JR83]. L’articolo
di Wu e Yang[WY75] è la referenza standard per l’introduzione del concetto di integrale di
cammino del campoAµ come variabile essenziale in meccanica quantistica.

9.4 Interazione di dipolo e quadrupolo elettrico.

Consideriamo l’energia di interazione elettrostatica di un insieme di particelle cariche in
un campo esternoΦ:

U = ∑
i

eiΦ(xi)≡
∫

d3xρ(x)Φ(x) ρ(x) = ∑
i

eiδ
3(x−xi) (9.89)

La variabilex nella (9.89) è una coordinata rispeto ad un’origine arbitraria. Abbiamo scritto
per comodità la (9.89) intermini di una densità di caricaρ. Spesso si devoino studiare
sistemi con una estensione limitata8 rispetto alle scale tipiche di variazione del potenziale
esterno, sed è la dimensione del sistema:

d|∇∇∇Φ| � 1

8Nel caso quantistico significa che i supporti delle funzioni d’onda sono concentrati nella zona in esame, ed al
di fuori, tipicamente, descrescono esponenzialmente.
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in questo caso il potenzialeΦ è quasi costante sul sistema e quindi è utile effettuare uno
sviluppo in serie. Consideriamo un’origineO all’interno del sistema, siaξξξ la coordinata
relativa a questa origine, possiamo allora scrivere

Φ(x)'Φ(O)+∂iΦ(0)+
1
2

ξiξ j∂i∂ jΦ(0)+ . . . (9.90)

Tutte le varie funzioni saranno d’ora in poi intese come calcolate inO e tralasceremo questa
indicazione. Sostituendo nella (9.89) ed usando la definizione di campo elettrico (statico)
Ei =−∂iΦ:

U =
∫

d3
ξ ρ(ξ )

[
Φ−ξE

1
2

ξiξ j∂i∂ jΦ+ . . .

]
(9.91)

Discitiamo separatamente i vari termini di questa espressione.

Carica. Il primo termine è ∫
d3

ξ ρ(ξ )Φ = ∑
i

eiΦ = QΦ (9.92)

Q è la carica totale del sistema. È l’energia potenziale elettrostatica del sistema, trattata
come un tutt’uno. Notiamo che questo termine per traslazioni dell’origine delle coordinate,
O→ O−a, cambia, per piccolia, di −a∇∇∇Φ, quindi è invariante al primo ordine solo se
Q = 0, in ogni caso è invariante all’ordine 0, quindi ha un senso ben definito.

Dipolo. Il secondo termine nella (9.91) si scrive

−E ·
∫

d3
ξ ρ(ξ ) =−E ·∑

a
eaξξξ a (9.93)

L’operatore
d = ∑

a
eaξξξ a (9.94)

si chiama, come è noto,momento di dipolo del sistema, o brevemente dipolo. Notiamo
che la definizione (9.94) è invariante per traslazioni del sistema di riferimento solo nel caso
di carica totale nulla.

Facciamo comunque una osservazione che ci servirà anche in seguito. L’utilità di usare
i momenti di dipolo, quadrupolo etc. consiste nel fatto di considerare via via delle strutture
più complicate per unsistema di particelle. Quindi all’ordine zero il sistema sarà rappre-
sentato dalla sua massa e dalla carica elettricaQ, poi si introdurrà il dipolo, il quadrupolo
etc. Una particella elementare, l’ordine zero in questa descrizione, è rappresentata da un
ket della forma

|P,S,Sz〉 (9.95)

Dove P èl’impulso totale del sisema,S lo spin. La variavile conigata aP è la coordinata
del centro di massa e lo spin, per un sistema composto, èdefinitodal momento angolare
nel sistema del centro di massa. Quindi se vogliamo continuare ad usare questi numeri
quantici dopo aver introdotto il dipolo, il quadrupolo etc, converrà continuare ad usare un
sistema di riferimento con origine nel C.M. Notiamo che il centro di massa del sistema non
necessariamente coincide col centro di carica.

Il dipolo ha alcune regole di selezione particolarmente importanti. Consideriamo il
problema nel sistema del centro di massa, tralasceremo l’indicazione del numero quantico
P = 0 nella notazione degli stati.

1) Supponiamo che l’Hamiltoniana del sistema sia invariante per parità, esiste allora
un operatore unitarioP e gli autostati della Hamiltoniana possono essere classificati
come autostati contemporanei diH e P. PoichèP2 = 1 eP† = P−1 gli autovalore di
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P sono delle fasi,ηP. d è un vettore polare cioè il suo trasformato per parità cambia
segno:PdP−1 =−d quindi, per ogni autostato diH eP:

〈ψ|d|ψ〉= 〈ψ|P†PdP−1P|ψ〉=−|ηP|2〈ψ|d|ψ〉=−〈ψ|d|ψ〉= 0 (9.96)

Quindi in ogni autostato di questo tipo il valor medio did è nullo. Se il sistema è
non degenere, (a parte la degenerazione suJz) tutti gli autostati diH sono di questo
tipo, quindi non si hamai dipolo permanente su stati stazionari. L’avverbio “mai”
è stato usato perchè, come vedremo, in natura esistono sistemi che sono approssi-
mativamente degeneri, ad esempio l’atono di idrogeno non relativistico, ma questa
degenerazione è sempre rimossa. Questo problema sarà ampiamente discusso nel
prossimo capitolo.

2) Per Hamiltoniane invarianti sotto parità il dipolo ha elementi di matrice solo fra stati
a parità opposta, questa èuna conseguenza diretta del punto precedente.

3) Il dipolo è un vettore, quindi il teorema di Wigner-Eckart impone che può avere
elementi di matrice solo fra stati che differiscono al più di 1 in momento angolare.
La transizione 0→ 0 è vietata.

4) Per le componenti del vettored valgono le regole di selezione dettate dal teorema di
Wigner-Eckart. Gli unici elementi di matrice non nulli sono della forma:

Per tutti gli elementi di matrice:J′ = J,J±1 09 0

dz 〈J′,J′z|dz|J,Jz〉 J′z = Jz

d+ = dx + idy 〈J′,J′z|d+|J,Jz〉 J′z = Jz+1

d− = dx− idy 〈J′,J′z|d+|J,Jz〉 J′z = Jz−1

Quadrupolo. Le sorgenti del campo esterno sono al di fuori della zona occupata dalle
cariche, quindi∇∇∇2Φ = 0 e si può riscrivere il terzo termine della (9.91) nella forma

1
6 ∑

a
ea

(
3ξξξ

(a)
i ξξξ

(a)
j − (ξξξ (a))2

δi j

)
∂i∂ jΦ (9.97)

Il tensore
Qi j = ∑

a
ea

(
3ξξξ

(a)
i ξξξ

(a)
j − (ξξξ (a))2

δi j

)
(9.98)

si chiamamomento di quadrupolo del sistema.Qi j è un tensore simmetrico a traccia
nulla, quindi trasforma come un momento angolareJ = 2. È inoltre una quantità pari
sotto inversione spaziale. Anche per il quadrupolo si può fare l’analisi sulle trasformazioni
sotto traslazioni, per quanto detto definiamoQi j nel sistema del centro di massa. Si hanno
immediatamente le seguenti regole di selezione:

1) Qi j ha elementi di matrice solo fra stati con la stessa parità.

2) Deve essere
min(|J−2|)≤ J′ ≤ J+2

cioè il momento angolare può cambiare al massimo di 2.

3) Si possono scrivere le componenti sferiche diQi j e queste hanno le stesse regole di
selezione delle armoiche sfericheY2m. In particolare perQzz si deve avereJ′z = Jz.



26 CAPITOLO 9. INTERAZIONI ELETTROMAGNETICHE.

Il teorema di Wigner-Eckart assicura che all’interno dello stesso multipletto di momento
angolare gli elementi di matrice diQi j possono essere scritti come gli elementi di matrice
di

Qi j →
3QJ

2J(2J−1)

(
JiJj +JjJi −

2
3

J2
δi j

)
(9.99)

Il coefficienteQJ, che coincide con il valor medio diQzzsullo statoJz = J (come si verifica
immediatamente dalla (9.99)) è ciò che si intende normalmente per momento di quadrupo-
lo. Questo è un punto in cui è particolarmente ovvia la scelta del sistema di riferimento:
perchè la (9.99) abbia un senso, per un nucleo ad esempio,J deve essere lo spin, e questo
è il momento angolare del sistemanel centro di massa.

Il lettore può trovare maggiori dettagli sull’interazione di quadrupolo nel prossimo
capitolo.

9.5 Interazione magnetica.

Classicamente l’interazione elettromagnetica è descritta dalla Hamiltoniana discussa nel
paragrafo precedente:

H =
1

2m

(
p− e

c
A

)2
+eΦ (9.100)

in questo paragrafo cercheremo le correzioni da apportare alla (9.100) per tener conto dello
spin. Queste correzioni sono intrinsecamente legate all’invarianza relativistica quindi trat-
teremo assieme anche questo problema, limitandonci agli ordini più bassi nel parametro
v/c, dovev indica la velocità della particella.

Cominciamo a considerare il caso di una particella in un campo magnetico costanteB,
ed eventualmente un potenzialeΦ, è il caso ad esempio di un elettrone atomico immerso in
un campo magnetico (effetto Zeeman). Scrivendo

A =
1
2

B∧ r (9.101)

e sostituendo nella (9.100) abbiamo9:

H =
1

2m
p2− e

mc
(B∧ r) ·p++

e2

8mc2 (B∧ r)2 +eΦ

utilizzando la ciclicità del prodotto triplo fra vettori ed introducendo il momento angolare
`̀̀ = r ∧p possiamo infine scrivere

H =
1

2m
p2− e

2mc
`̀̀ ·B+

e2

8mc2 (B∧ r)2 +eΦ (9.102)

In generale il termine lineare nel campo magnetico nell’Hamiltoniana di interazione descri-
ve il momento manetico del sistema, quindi che la (9.102) assegna un momento magnetico
“orbitale” all’elettrone e

2mc` in perfetto accordo con la teoria classica. Come sappiamo`̀̀ è
quantizzato in unità dīh quindi l’unità di momento magnetico è il cosiddettomagnetone di
Bohr

µB =
|e|h̄
2mc

(9.103)

Consideriamo ora il momento angolare intrinsecos dell’elettrone. Ci aspettiamo che a
questo momento angolare sia associato un momento magnetico, che sarà il momento ma-
gnetico intrinseco della particella ed in generale possiamo scrivere

µµµ = g
e

2mc
s (9.104)

9Si usa il fatto che∇iAi = 0 per il campo (9.101).
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ed una corrispondente interazione col campo magnetico

−µµµ ·B =−g
e

2mc
s·B (9.105)

In ultima analisi il fattore di proporzionalità è fissato misurando l’interazione della parti-
cella col campo magnetico, che in totale, per piccoli valori diB è quindi:

HI =− e
2mc

(`̀̀ +gs)B (9.106)

Dal punto di vista sperimentale si trova, studiando appunto l’effetto di un campo magnetico
sui livelli atomici, come vedremo nel prossimo capitolo, che in ottima approssimazione, per
l’elettrone:

g = 2 (9.107)

Uno dei grandi successi della fomulazione relativistica della teoria dell’elettrone, dovuta a
Dirac, è stato quello di mostrare come scrivendo l’equazione di Schrödinger relativistica
più semplice possibile per una particella con spin 1/2 il valoreg = 2 venga predetto.

Nota. Invitiamo il lettore a prendere questo tipo di affermazioni “cum grano salis”, per i seguenti motivi:

• Non tutte le particelle cariche di spin 1/2 hanno fattore giromagnetico 2, ad esempio per il protoneg∼ 5.6. Ci sono
anche particelle scariche di spin 1/2, come il neutrone, che hanno un momento magnetico.

• Il valore sperimentale dig per lo stesso elettrone è leggermente diverso da 2, quando si afferma che la teoria di Dirac
predice 2 si vuole in realtà dire che nell’ambito del modello standard delle interazioni fondamentali le correzioni dal
valore 2 sono calcolabili, e anzi costituiscono una delle conferme più precise del modello stesso.

• Dal punto di vista teorico il modello che descrive l’accoppiamento dell’elettrone col campo elettromagnetico che for-
nisceg = 2 (a meno di correzioni calcolabili come detto) si basa sul fatto che l’interazione è scrivibile nella forma di
combinazione linearep−e/cA, come nella (9.100). Nello stesso modello standard delle interazioni fondamentali ci sono
altra particelle, come i bosoniW delle interazioni deboli, che non hanno solo un accoppiamento di questo tipo.

Riassumendo: l’affermazione che la teoria di Dirac prevedeg = 2 è corretta ma in un senso più complicato di quello che
normalmente si trova sui libri di testo elementari.

9.5.1 Interpretazione semiclassica.

Classicamente il momento angolareS di un corpo dotato di momento magneticoµµµ ha un
moto di precessione attorno al campo, descritto dalle equazioni

dS
dt

= µµµ ∧B (9.108)

vale a dire il campoB esercita un momento della forza pari aµµµ ∧B. Poichèµµµ è proporzio-
nae aSdalla (9.108) segue cheS· dS

dt = 0, cioè si ha in effetti una pura rotazione del vettore
S, che lascia inalterato il modulo.

Indicando con il versoreζζζ la direzione diS e diµµµ la (9.108) si riscrive

dζζζ

dt
=

µ

S
ζζζ ∧B (9.109)

La velocità angolare di precessione è perciòω = µ/S.

Esercizio 1. Considerare il campoB diretto lungo l’assez, scrivere in componenti carte-
siane il versoreζζζ e verificare esplicitamente questa affermazione.

Il teorema di Larmor, che è quanto spiegato all’inizio del paragrafo, afferma che per
un momento angolare orbitaleL il momento magnetico è dato daµµµ = e

2mcL , in generale
poniamoµµµ = g e

2mcS. A priori, classicamente, il valore dig non è fissato, ad esempio se si
immagina l’elettrone come una sfera carica che gira su se stessa tale valore dipende dalla
distribuzione di carica della sfera. Il valore del momento magnetico è:

µµµ ≡ µζζζ = g
e

2mc
S= gS

e
2mc

ζζζ µ = gS
e

2mc
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e per particelle di spin 1/2

µ =
g
2

eh̄
2mc

=
g
2

µB (9.110)

Alle stesse conclusioni si arriva considerando la media su uno stato classico delle
equazioni del moto quantistiche. Le equazioni del moto per lo spins= h̄/2σ sono

ds
dt

=
i
h̄
[H,s] =

i
2h̄

[H,σσσ ]

Ponendoµµµ = g e
2mcs= gµB/2σσσ , H =−µµµ ·B si ricava, dalle regole di commutazione delle

matrici di Pauli:
ds
dt

=−µ

h̄
B∧σσσ ≡ gµB

h̄
s∧B

Il valor medio su uno stato classico definisce la direzione dello spin〈S〉 = Sζζζ , prendendo
la media sullo stato si ottiene la (9.109), usando la definizione (9.110).

9.6 Correzioni relativistiche: interazioneLS.

Vediamo ora quali altre modifiche sono da effettuare nella (9.100) per tener conto del-
lo spin. In un atomo semiclassicamente l’elettrone percorre delle orbite con velocitàv
sotto l’influenza del campo elettrico coulombianoE generato del nucleo. Nel sistema
di riferimento di quiete dell’elettrone viene perciò percepito un campo magnetico indot-
to B′ = E∧ v

c , assumendov/c � 1. Ci si aspetta perciò un’interazione del momento
magnetico elettronico del tipo

HI =−g
e

2mc
s· (E∧ v

c
) (9.111)

In realtà questo ragionamento non tiene conto del fatto che il sistema di riferimento di
quiete dell’elettrone non è un sistema inerziale: è vero che si può sempre fare una tra-
sformazione che ci conduca, istante per istante, in questo sistema, ma l’accoppiamento fra
momento magnetico e campo magnetico descrive lavariazionedi µ, bisogna cioè scrivere
delle derivate rispetto al tempo e quindi considerare sistemi di riferimento a tempi diver-
si, in poche parole bisogna utilizzare le equazioni del moto della particella per seguire il
cambiamento di sistema di riferimento. Il modo corretto di affrontare il problema è quello
di scrivere l’equazione del moto per la precessione del momento magnetico in modo che
valga per qualunque sistema di riferimento. Il risultato finale è molto semplice: il fattoreg
viene modificato ing−1, questo effetto si chiamaprecessione di Thomas.

Nel caso particolare in cuig = 2 la precessione di Thomas dimezza l’accoppiamen-
to. Una trattazione semplificata dell’effetto è data nei complementi. Scriviamo allora
l’interazione nella forma:

HI =−(g−1)
e

2mc
s· (E∧ v

c
) =−(g−1)

e
2m2c2 s· (E∧p) (9.112)

Per un campo elettrico generato da un potenziale centraleΦ, come negli atomi,

E =−∇Φ =−1
r

dΦ
dr

r (9.113)

e l’interazione assume la forma:

HI = (g−1)
e

2m2c2

1
r

dΦ
dr

s· (r ∧p) (9.114)

Per un campo coulombiano,Φ = Z|e|/r. Ricordando che la carica dell’elettrone è−|e|

HI = (g−1)
e2

2m2c2

Z
r3 s· `̀̀ (9.115)
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L’interazione espressa dalle (9.114), (9.115) prende il nome diinterazione di struttura fi-
ne. La (9.114) indica una correzione alla Hamiltoniana proporzionale a 1/c2, quindi è un
secondo ordine nelle correzioni relativistiche: un fattore 1/c deriva dall’interazione ma-
gnetica in quanto tale, l’altro è dovuto al fatto che lo stesso campo magnetico effettivo
visto dall’elettrone è dell’ordine div/c, essendo stato ottenuto da una trasformazione di
Lorentz del campo elettricoE. L’interazione (9.114) è particolarmente interessante perchè
in assenza di campi esterni è il primo segnale di come la presenza dello spin possa modi-
ficare la dinamica, ed in particolare i livelli energetici. Per un livello con numeri quantici
L,S assegnati, se l’Hamiltoniana non dipende dallo spin si deve avere una degenerazione
(2L+1) dovuta all’invarianza per rotazioni orbitali, ed una(2S+1) perchè l’Hamiltoniana
non dipende daS. Il termine (9.114) è uno scalare, quindi commuta conJ = L + S, ma
non commuta con L e S separatamente: ci aspettiamo perciò che un livello energetico
E(n,L,S) venga “disintegrato” in sottolivelli conJ fissato. Dalle regole di addizione del
momento angolare sappiamo che ci sono 2S+ 1 modi di costruireJ a partire da una data
coppiaL,S seL ≥ S, o 2L + 1 seS> L. Ci si aspetta quindi, ad esempio, che un livello
np dell’atomo di idrogeno, quindi con spin 1/2, venga separato in 2 livelli differenti con
J = 1/2,J = 3/2 I due livelli sono indicati, con ovvia notazionenp1/2,np3/2.

Esprimendo tutte le lunghezze presenti nella (9.115) tramite il raggio di BohraB =
h̄2/me2 e scrivendò̀̀ = h̄L ,s= h̄S si ha

HI =
(

e2

h̄c

)2
e2

aB

Z
2

(g−1)
a3

B

r3 L ·S (9.116)

La costanteadimensionale

α =
e2

h̄c
' 1

137
(9.117)

prende il nome dicostante di struttura finee determina l’ordine di grandezza dell’effetto:
la separazione percentuale dei livelli è dell’ordine diα2∼ 10−4. In corrispondenza le righe
spettrali di transizione mostreranno una sottile struttura, una struttura fine appunto, da cui
il nome.

Per un sistema a molti elettroni l’interazione ha la forma

HI = ∑ fi `̀̀i ·si (9.118)

avendo indicato confi i termini radiali dei singoli elettroni. La situazione in questo caso è
in realtà complicata dal fatto che ogni elettrone sente non solo il campo elettrico centrale
del nucleo ma anche quello degli altri elettroni, corrispondentemente l’ipotesi di campo
radiale va intesa come unamediasulle funzuioni d’onda degli altri elettroni. In questo
caso il momento angolare totaleL è un operatore che commuta con l’Hamiltoniana (per
l’invarianza sotto rotazioni spaziali).J è sicuramente conservato, quindi ancheS commu-
ta conH. In queste ipotesiL,S sono approssimativamente buoni numeri quantici e per
ragioni di simmetria, o più in astratto per il teorema di Wigner-Eckart, su un sottospazio
dell’Hamiltoniana conL,Sassegnati, l’operatore (9.118) ha la forma

HI = AL ·S (9.119)

doveA è una costante che dipende dal livello. A differenza del caso idrogenoideA può
avere a priori anche un segno negativo. Discuteremo questo argomento nello studio degli
spettri atomici.

Accanto alle correzioniv2/c2 indotte dallo spin, esistono altre correzioni relativistiche
che chiaramente influenzano il valore dei livelli energetici ma, essendo indipendenti das,
non alterano la struttura generale dello spettro. Nei complementi vengono esposte in modo
semiclassico queste ulteriori correzioni nel caso di un sistema idrogenoide.
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9.7 Interazione Iperfina.

Se un nucleo possiede uno spin in generale possiederà anche un momento magneticoµµµN.
Come ordine di grandezza il momento magnetico nucleare è legato al magnetone nucleare10

µN =
|e|h̄
mpc

(9.120)

dovemp è la massa del protone, quindiµN è circa 2000 volte più piccolo del magnetone di
Bohr. In questo paragrafo esponiamo brevemente come si possa tener conto del momento
magnetico nucleare nello scrivere l’Hamiltoniana di un elettrone atomico, in particolare
tratteremo l’atomo di idrogeno.

Abbiamo visto nei paragrafi precedenti che in presenza di campo magnetico esterno
l’interazione di un elettrone si scrive, al primo ordine nel campo, nella forma

HI =− e
mc

A ·p−g
e

2mc
s·B =− e

mc
(A ·p+s·B) (9.121)

Nell’ultima uguaglianza abbiamo assuntog= 2. Il dipolo nucleareµµµN genera, appunto, un
campo di dipolo:

A =
µµµN∧ r

r3 ≡−µµµN∧∇∇∇
1
r

B = ∇∇∇∧A (9.122)

Il calcolo del campo magnetico richiede un pò di cura per trattare la singolarità inr = 0. Si
ha

B =−∇∇∇∧
(

µµµN∧∇∇∇
1
r

)
=−µµµN∇2 1

r
+(µµµN ·∇∇∇)∇∇∇

1
r

(9.123)

Consideriamo ora l’espressione∂i∂ j(1/r), in generale questa presenta delle singolarità per
r = 0, in forma genericamente di funzioniδ . Negli elementi di matrice le uniche funzioni
non nulle nell’origine sono quelle in ondaS, quindi a simmetria sferica, possiamo percò
assumere la singolarità a simmetria sferica nella forma

∂i∂ j
1
r

=
(

∂i∂ j
1
r

)
reg

+cδi j δ
(3)(r) =− 1

r3

(
δi j −3

xix j

r2

)
+cδi j δ

(3)(r)

effettuando la traccia e ricordando che∇2(1/r) =−4πδ (3)(r) ricaviamoc=−4π/3 quindi

∂i∂ j
1
r

=− 1
r3

(
δi j −3

xix j

r2

)
− 4π

3
δ

(3)(r)

Esplicitando anche il primo termine singolare nella (9.123) si ha

B =−(µµµN−3(µµµN · r̂)r̂)
1
r3 +

8π

3
µµµNδ

(3)(r) (9.124)

Utilizzando la (9.122) si ha infine

HI =− e
mc

(
1
r3µµµN · `̀̀

)
− e

mc

[
−(µµµN ·s−3(µµµN · r̂)r̂ ·s)

1
r3 +

8π

3
µµµNsδ

(3)(r)
]

(9.125)

Per evitare confusioni sui segni esprimiamo tutti i momenti angolari in unità dih̄, scrivendo
s= h̄S etc., introduciamo il fattore giromagnetico per il nucleo:

µµµN = gN
|e|h̄

2mpc
SN

10Attenzione ai segni in questo paragrafo! Ricordiamo che la carica elettronicaeè negativa,e=−|e|.
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ottenendo, tenendo conto del segno della carica elettronica:

HI = 2gN|µBµN|
1
r3 L ·SN+ (9.126)

+2gN|µBµN|
[

1
r3 (3(r̂SN)((r̂S)−S·SN)+

8π

3
S·SNSδ

(3)(r)
]

Il primo termine ha contributo nullo in ondaSmentre l’ultimo è non nullo solo in ondaS,
per funzioni cioè che non si annulano nell’origine.

Il secondo termine ha un’apparente singolarità 1/r3 ma in realtà non è singolare. La
parte orbitale è proporzionale aXi j = r2δi j −3xix j cioè un tensore simetrico a traccia nulla,
un quadrupolo. Consideriamo un elemento di matrice〈a|Xi j |b〉. Se entrambi gli stati sono
in ondaS questo elemento di matrice è identicamente nullo per le regole di selezione sul
momento angolare, quindi almeno uno dei due stati deve essere in ondap o più alta. In que-
sto caso il prodottoψ∗

aψb si annulla almeno comer1+k k≥ 0. La parte radiale dell’elemento
di matrice allora è della forma ∫

r2dr
1
r3 r1+k

e non presenta singolarità. Se aggiungiamo la regola di selezione sulla parità vediamo
anche che gli elementi di matrices− p sono nulli e l’esponentek delle formule precedenti
è addirittuta maggiore di 1.
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Appendici e Complementi

9.A Formula di Poisson

La formula di Poisson è:

∞

∑
n=−∞

f (θ +Tn) =
1
T ∑

k

f̃ (
2π

T
k)ei 2π

T kθ (9.127)

dove f̃ indica la trasformata di Fourier. In particolare perT = 2π

∞

∑
n=−∞

f (θ +2πn) =
1

2π
∑
k

f̃ (k)eikθ (9.128)

Dimostrazione.Consideriamo la funzione

F(θ) = ∑
n

f (θ +Tn)

questa è chiaramente una funzione periodica di periodoT espandibile in serie di Fourier

F(θ) = ∑
k

ckei 2π

T kθ

ck =
1
T

∫ T

0
dθF(θ)e−i 2π

T kθ =
1
T

∫ T

0
dθe−i 2π

T kθ ∑
n

f (θ +Tn)

=
1
T

∫ ∞

−∞
dθ f (θ)e−i 2π

T kθ =
1
T

f̃ (
2π

T
k)

che è la (9.127).

Integrali gaussiani.

Ci saranno utili i seguenti integrali∫ +∞

−∞
dxe−

1
2ax2+bx =

√
2π

a
eb2/2a

∫ +∞

−∞
dxei 1

2ax2−ibx =

√
2π i
a

e−ib2/2a (9.129)

Il secondo è ottenuto dal primo con la sostituzionea→−ia, b→−ib e va inteso come
continuazione analitica.

Propagatore.

Dalle (9.60) e dalla definizione (9.61) segue:

K(θ , t;θ
′,0) = ∑̀ψ`(θ , t)ψ∗

` (θ ′,0) =
1

2π
∑
k

eik(θ−θ ′)e−it h̄
2mR2 (k− eF

2πh̄c)2
(9.130)

33
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Il secondo esponenziale nella formula precedente si riscrive usando il secondo integrale
delle (9.129) con

b = k− eF
2πh̄c

a =
mR2

h̄t

nella forma

e−it h̄
2mR2 (k− eF

2πh̄c)2
=

√
mR2

i2πh̄t

∫ +∞

−∞
dxei mR2

2h̄t x2
e−i(k− eF

2πh̄c)x

cioè è la trasformata di Fourier della funzione

f (x) =

√
mR2

i2πh̄t
ei mR2

2h̄t x2
ei eF

2πh̄cx (9.131)

Quindi dalla (9.130) e dalla formula di Poisson (letta da destra a sinistra) si ha, conx =
θ −θ ′ nella (9.131):

K(θ , t;θ
′,0) =

√
mR2

i2πh̄t
ei mR2

2h̄t (θ−θ ′+2πn)2
ei eF

2πh̄c(θ−θ ′+2πn) (9.132)

che coincide con la formula (9.62) usata nel testo.

9.B Oscillatore e stringa magnetica.

Come semplice generalizzazione della particella vincolata ad un cerchio, consideriamo
ancora il modello (9.53) in cui il campo magnetico è confinato nell’origine, mentre si ha
un potenziale esternoV di tipo armonico che confina il moto. L’Hamiltoniana è perciò

H =− h̄2

2m
1
r

∂

∂ r

(
r

∂

∂ r

)
+

1
2mr2

(
Lz−

2πe
c

F

)2

+
1
2

mω
2r2 (9.133)

Poniamo per brevità

κ =
Lz

h̄
− 2πe

h̄c
F x =

√
mω

h̄
r

∂

∂ r
=

√
mω

h̄
∂

∂x
ε =

2E
h̄ω

L’equazione agli autovalori prende la forma

εψ =−1
x

∂

∂x

(
x

∂

∂x

)
ψ +

κ2

x2 ψ +x2
ψ =−ψ

′′− 1
x

ψ
′+

κ2

x2 ψ +x2
ψ (9.134)

Posto
ψ = xκe−x2/2 f

Si ha
x f ′′+(1+2κ−2x2) f ′+(ε−2(1+κ))x f = 0 (9.135)

La soluzione generale della (9.135) è

f (x) = Ca 1F1(
1
2
− ε

4
+

κ

2
,1+κ,x2)+Cb(−1)κx−2κ

1F1(
1
2
− ε

4
− κ

2
,1−κ,x2)

dove1F1(a,c;x) è la funzione ipergeometrica confluente:

1F1(a,c;z) = Γ(c)
∞

∑
n=0

a(a+1) . . .(a+n−1)
Γ(c+n)

zn

n!
(9.136)
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Quindi

ψ = e−x2/2
[
Caxκ

1F1(
1
2
− ε

4
+

κ

2
,1+κ,x2)+ (9.137)

+Cb(−1)κx−κ
1F1(

1
2
− ε

4
− κ

2
,1−κ,x2)

]
La regolarità nell’origine imponeCb = 0 perκ > 0 eCa = 0 perκ < 0. Asintoticamente

1F1(a,c;z)∼ ezza−c

quindi se si vogliono soluzioni a quadrato sommabile la serie deve troncarsi, questo può
accadere sea = −n, nel qual caso la funzione ipergeometrica coincide con i polinomi di
Laguerre. Si deve perciò avere

κ > 0 : (1+κ)− ε

2
=−2n

E
h̄ω

= 2n+κ +1

κ < 0 : (1−κ)− ε

2
=−2n

E
h̄ω

= 2n−κ +1

Gli autovalori dell’energia sono perciò

E = h̄ω

{
2n+1+

∣∣∣∣`− 2πe
h̄c

F

∣∣∣∣} (9.138)

Anche in questo caso l’effetto della stringa magnetica è stato quello di uno shift sugli
autovalori dell’energia. Poichè̀∈ Z le autofunzioni sono monodrome.

9.C Complementi sull’effetto Aharonov-Bohm.

In questo paragrafo presentiamo per comodità del lettore i risultati principali ottenuti da
Aharonov e Bohm, e perfezionati in lavori successivi, nel caso di un modello esattamente
solubile. Lo scopo è quello di mettere in luce i punti delicati ed alcune questioni di principio
su cui non abbiamo ritenuto opportuno soffermarci nel testo principale.

Il modello è quello di stringa magnetica, già incontrato nel testo: un solenoide infi-
nitamente sottile che trasporta un flusso di campo magneticoΦ. Si tratta di un problema
bidimensionale. Il potenziale vettore ha solo una componente azimutale:

Aθ =
Φ

2πr
Φ = cost. Ax =−y

r
Aθ Ay =

x
r
Aθ (9.139)

L’equazione di Schrödinger ha la forma:

ih̄
∂ψ

∂ t
=− h̄2

2m
1
r

∂

∂ r

(
r

∂

∂ r

)
ψ +

1
2mr2

(
Lz−

e
2πc

Φ
)2

ψ (9.140)

Per situazioni stazionarie, posto come consueto

E =
h̄2k2

2m
(9.141)

l’equazione diventa[
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

(
∂

∂θ
+ iα

)2

+k2

]
ψ = 0 α ≡− eΦ

2πh̄c
(9.142)

La situazione che vogliamo descrivere è quella stazionaria: un fascio elettronico incidente
dax = +∞, incontra la stringa magnetica. L’elettrone non può penetrare nel solenoide, e
questo è schematizzato dalla condizione

ψ(0) = 0 (9.143)
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Se i potenziali hanno un effetto fisico si deve osservare una diffrazione dalla stringa, dipen-
dente dal flussoΦ. La diffusione del fascio elettronico viene decritta in questo modo: la
funzione d’onda asintotica, per grandir, è scrivibile nella forma11

ψ = ψinc. +ψdi f f ∼ ψinc. + f (θ)(kr)−1/2eikr (9.144)

La dipendenza far in ψdi f f è quella di un’onda sferica in due dimensioni. Il numero di par-
ticelle al secondo che vengono diffuse ad un’angolo compreso traθ eθ +dθ è | f (θ)|2dθ ,
come si verifica immediatamente calcolando il flusso dell’onda diffusa. Matematicamente
quindi bisogna procedere in questo modo:

1) Scrivere la funzione d’ondaψin che corrisponde alla situazione fisica che abbiamo
scelto.

2) Risolvere l’equazione di Schródinger (9.140).ψin è la condizione al bordo.

La determinazione diψin è il primo punto delicato. In assenza di stringa un elettrone libero
che viaggia lungo l’assex in direzione negativa sarebbe descritto da una funzione d’onda
ψ = exp(−ikx). Questa funzione però non è consistente come condizione al bordo, non
soddisfa asintoticamente l’equazione (9.140) e non è consistente con l’invarianza di gauge.
Infatti se si vuole descrivere un flusso costante di particelle occorre fissareψ in modo che
la correntegage invariante, vedi eq.(9.18):

j = i
h̄

2m
[(∇∇∇ψ)∗ψ−ψ

∗(∇∇∇ψ)]− e
mc

A |ψ|2 (9.145)

sia costante. la soluzione è considerare

ψin = exp(−ikx−αθ) = exp(−ikr cosθ −αθ) (9.146)

L’intervallo di variazione diθ è−π ≤ θ ≤+π. La (9.146) non è periodica inθ , e su questo
commenteremo in seguito, ma comunque descrive nella zonaθ ∼ 0 un’onda incidente
che dà luogo ad una corrente gauge invariante costante, come si può verificare usando le
componenti cartesiane (9.139) perA, e le relazioni∂xθ = −y/r2, ∂yθ = x/r2. Si ottiene
jx =−h̄k/m, jy = 0, che corrisponde ad un flusso di una particella al secondo che viaggia
in direzione dell’asse x negativo.

Cerchiamo una soluzioneregolare, quindi monodroma, dell’equazione (9.142). La
periodicità e la regolarità inθ significa cheLz ha autovalorīh`, con` intero quindi si può
scrivere

ψ =
+∞

∑
`=−∞

a`R̀ (r)ei`θ (9.147)

e le funzioni d’onda radiali soddisfano a[
∂ 2

∂ r2 +
1
r

∂

∂ r
− 1

r2 (`+α)2 +k2
]

R̀ (r) = 0 (9.148)

Passando a variabili adimensionaliz = kr, vediamo che la (9.148) è la equazione che
definisce le funzioni di Bessel, la soluzione generale è

AJ̀ +α +BJ−(`+α)

PoichèJν(z)∼ zν perz→ 0 le soluzioni regolari, vedi eq.(9.143), sonoJ|`+α| e quindi:

ψ =
+∞

∑
`=−∞

a`J|`+α|(z)e
i`θ (9.149)

I coefficientia` devono essere determinati in modo da soddisfare la condizione al contorno.
Riportiamo ora i risultati principali di Aharonov Bohm, rimandando al lavoro originale

per le dimostrazioni:

11Commenteremo in seguito su questa decomposizione.
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1) I coefficientia` valgono
a` = (−i)|`+α| (9.150)

2) Separiamo la soluzione (9.149) a seconda del segno di`:

ψ = ψ1 +ψ2 +ψ3 ψ3 = (−i)|α|J|α|(z)

ψ1 =
+∞

∑̀
=1

(−i)|`+α|J|`+α|(z)e
i`θ

ψ2 =
−1

∑
`=−∞

(−i)|`+α|J|`+α|(z)e
i`θ (9.151)

Si ha subito:
ψ2(r,θ ,α) = ψ1(r,−θ ,−α) (9.152)

Utilizzando lo sviluppo asintotico delle funzioni di bessel è possibile valutare le
somme (9.151):

ψ1 →

{
0 θ < 0

e−iαθ e−ikx θ > 0
ψ2 →

{
e−iαθ e−ikx θ < 0

0 θ > 0
ψ3 ∼O(r−1/2)

Questo èesattamenteil risultato aspettato dall’analisi dell’esperimento di interfe-
renza, la soluzione nei due semipiani è asintoticamente una trasformata di gauge
della soluzione libera. notiamo che semiclassicamente i momenti angolari` > 0
corrispondono a traiettorie di elettroni con momento angolare positivo e quindi pas-
santi nel semipiano superiore (almeno per grandi`), viceversà < 0 corrisponde a
traiettorie nel semipiano inferiore.

3) Perr → ∞ e θ > 1/r è possibile valutare lo sviluppo asintotico, compreso il termine
di onda divergente, ottenendo:

ψ → e−iαθ−ikr cosθ +
eikr

(2π ikr)1/2
sinπα

e−iθ/2

cos( θ

2 )
(9.153)

Corrispondente ad una sezione d’urto

dσ

dθ
=

sin2
α

2πk
1

cos2 θ/2
(9.154)

Notiamo che l’apparente non monodromia della (9.153) è dovuta solamente al fatto
che lo sviluppo asintotico delle funzioni di Bessel non è uniforme, usando sviluppi
più sofisticati, vedi ad esempio le referenze [Alv] si mostra esplicitamente che la
funzione d’ondaψ è monodroma, come d’altronde è stato imposto sin dall’inizio.
Notiamo che la sezione d’urto èperiodica nel parametro di flussoα, confermando
le aspettative dell’esperienza con le frange di interferenza.

Un’analisi alterativa dell’equazione (9.142) è fornita nella referenza [Ber1]: una tecnica
simile a quella vista nel paragrafo 9.A permette di ottenere la soluzione di Aharonov-Bohm
sommando su un intero che rappresenta il numro di “giri” attorno alla singolarità.

Nel caso particolareα = 1/2 la somma sù nell’equazione (9.149) può essere effettuata
analiticamente il risultato è:

ψ =
i1/2
√

2
e−i( θ

2 +krcosθ)
∫ [kr(1+cosθ)]1/2

0
exp(iz2)dz (9.155)

In questo caso la monodromia è evidente: la funzione d’ondaψ è nulla sulla lineaθ = π.
Vogliamo infine citare il fatto che la soluzione può anche essere scritta nel caso in cui

la stringa magnetica sia circondata da un cilindro impenetrabile di raggioR> 0, nel limite
R→ 0 si riottiene la soluzione di Aharonov-Bohm.
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9.C.1 Teorema di Eherenfest.

Abbiamo visto che si ha diffusione in presenza di una stringa magnetica. Visto che il cam-
po magnetico è nullo, come è compatibile questa conclusione con il teorema di Eherenfest?
Consideriamo uno stato qualunqueψ e calcoliamo la variazione nel tempo del valor me-
dio dell’impulso, questo è quanto di più simile alla forza si possa definire in un contesto
quantistico:

f = m
d
dt

∫
[ψ∗vψ] =

i
h̄

∫
{(Hψ)∗mvψ−ψ

∗mvHψ}=

=
i
h̄

∫
{(Hψ)∗mvψ−ψ

∗Hmvψ}+
i
h̄

∫
ψ
∗ [H,mv]ψ (9.156)

Usando le regole di commutazione (9.18) per il vettorev, il secondo termine della (9.156)
si riduce a

e
2c

∫
ψ
∗ [v∧B−B∧v]ψ

che è l’usuale forza di Lorentz. Questo termine è nullo nel caso di una stringa magnetica. Il
primo termine nella (9.156) è usualmente trascurato perchè se l’opertoreH è autoaggiunto
si annulla. Nel nostro caso il problema ha una singolarità nell’origine quindi valutiamo
questo contributo isolando l’origine con un piccolo cerchio di raggior, alla fine del calcolo
faremo il limite r → 0. Il dominio di integrazione è limitato da un cerchio di raggior e
da un cerchio di raggioR che manderemo all’infinito. Gli integrali verranno trasformati in
integrali di superficie tramite il teorema di Gauss. Il contributo dal cerchioR è trascurato,
è il caso che si verifica, ad esempio, con pacchetti d’onda localizzati12.

Consideriamo una singola componente della velocità, ad esempiovx, dobbiamo valuta-
re

i
h̄

∫
{(Hψ)∗mvxψ−ψ

∗Hmv−xψ} (9.157)

L’Hamiltoniana, usando∇∇∇A = 0, ha la forma

H =− h̄2

2m
∇∇∇2− eh̄

imc
A∇∇∇+

e2

2mc2 A2

Il termine quadratico inA non dà alcun contributo alla (9.157). Il termine lineare si scrive:

e
mc

∫
d2x [(∇∇∇ψ

∗)Amvxψ +ψ
∗A∇∇∇mvxψ] =

e
mc

∫
d2x∇∇∇(ψ∗Amvxψ) =

=− e
mc

∫
rdθ

∂

∂ r
(ψ∗Armvxψ) = 0

L’inegrale si annulla perchèAr = 0. Passiamo ora al termine in∇∇∇2.

− ih̄
2m

∫
d2x

{
∇∇∇2

ψ
∗mvxψ−ψ

∗∇∇∇2mvxψ
}

=

=− ih̄
2m

∫
d2x∇∇∇{(∇∇∇ψ

∗)mvxψ−ψ
∗∇∇∇(mvxψ)}

=− ih̄
2m

∫
rdθ

{
ψ
∗ ∂

∂ r
(mvxψ)− (

∂

∂ r
ψ
∗)mvxψ

}
(9.158)

Dovremo efettuare il limiter → 0 dell’espressione precedente. Nel caso della soluzione di
Aharonov-Bohm, avendosiψ(0) = 0, i contributi finiti devono sorgere da singolarità nelle

12 Per il segno nelle espressioni seguenti ricordiamo che la normale esterna alla superficie di raggior è diretta
insenso contrario ar .
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derivate. Scriviamo l’espressione per gli operatorimv nel caso della stringa magnetica

mvx = px−
e
c

Ax =
h̄
i

[
∂

∂x
+ i

eh̄
c

Φ
2π

y
r2

]
=

h̄
i

[
∂

∂x
− iα

y
r2

]
≡ h̄

i
Dx (9.159a)

mvy = py−
e
c

Ay =
h̄
i

[
∂

∂y
− i

eh̄
c

Φ
2π

x
r2

]
=

h̄
i

[
∂

∂y
+ iα

x
r2

]
≡ h̄

i
Dy (9.159b)

Consideriamo per semplicità il caso 0≤ α ≤ 1/2. Dallo sviluppo in serie delle funzioni di
Bessel

Jν(z) =
( z

2

)ν 1
Γ(ν +1)

(1+O(z)) (9.160)

segue che i termini principali (con derivata divergente) perψ nello sviluppo (9.151) pro-
vengono dai contributiψ2 e ψ3:

ψ2 ∼ e−i π
2 (1−α)J1−αe−iθ → e−i π

2 (1−α)
(

1
2

kr

)1−α e−iθ

Γ(2−α)
≡C2r−α(x− iy) (9.161a)

ψ3 ∼ e−i π
2 αJα → e−i π

2 α

(
1
2

kr

)α 1
Γ(1+α)

≡C3rα (9.161b)

Le derivate si calcolano facilmente:

Dxψ = C2 (1−α)r−α +C3 αrα−2e−iθ

Dyψ = i
[
−C2 (1−α)r−α +C3 αrα−2e−iθ

]
Quindi, per piccolir:

ψ
∗ ∂

∂ r
Dxψ =

[
C∗

2r1−αeiθ +C∗
3rα

]
∂

∂ r

[
C2 (1−α)r−α +C3 αrα−2e−iθ

]
(9.162a)

→ α(a−α)
r

[−C2C
∗
3−C∗

2C3] =−2
α(a−α)

r
Re(C2C

∗
3) (9.162b)

ψ
∗ ∂

∂ r
Dyψ =

[
C∗

2r1−αeiθ +C∗
3rα

]
∂

∂ r
i
[
−C2 (1−α)r−α +C3 αrα−2e−iθ

]
(9.162c)

→ i
α(a−α)

r
[C2C

∗
3−C∗

2C3] =−2
α(a−α)

r
Im(C2C

∗
3) (9.162d)

si verifica facilmente che il termine−∂rψ
∗Diψ dà lo stesso contributo. Sostituendo nella

(9.158), effettuando il limiter → 0 e l’integrale inθ :

fx =− h̄2

2m
2π [−4α(a−α)Re(C2C

∗
3)] fy =− h̄2

2m
2π [−4α(a−α)Im(C2C

∗
3)]

Dalle (9.161) segue

C2C
∗
3 = e−iπ/2eiπα k

2
1

Γ(2−α)Γ(1+α)
= (sin(πα)− i cos(α))

k
2

1
α(1−α)

sin(πα)
π

Da cui

fx =
2h̄2k

m
sin2(πα) fy =−2h̄2k

m
sin(πα)cos(πα) (9.163)

Vediamo quindi che nel calcolo quantistico la forza viene fornita da un termine di superfi-
cie, che si aggiunge all’espressione classica del teorema di Eherenfest.

La forza lungo l’assex ha un’interpretazione semplice. Una particella che diffonde ad
angoloθ ha un impulsopx = h̄kcosθ . L’impulso iniziale, nella configurazione usata, è
px =−h̄k, quindi la variazione di impulso è

∆px = h̄k(1+cosθ) = h̄k2cos2( θ

2 )
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SeΦ è il flusso iniziale, il numero di diffusioni al secondo ad angoloθ è Φdσ/dθ quindi

d〈px〉
dt

= Φ
∫

dθ
dσ

dθ
∆px

Il flusso corispondente ad un’onda piana èh̄k/mquindi

d〈px〉
dt

=
h̄2k2

m

∫
dθ 2cos2( θ

2 )
sin2(πα)

2πk
1

cos2 θ/2
=

2h̄2k
m

sin2(πα)

che coincide col risultato precedente. Perpy non si puòfar elo stesso ragionamento perchè
si ha una grossa variazione di fase della funzione d’onda lungo l’assey nella regioneθ ∼ π

in cui l’espressione asintotica (9.154) non vale.

9.D Precessione di Thomas.

Una esposizione generale e dettagliata della precessione di Thomas si può trovare, ad esem-
pio in [Landau4] (par. 41), qui ci limiteremo ad una trattazione semplificata valida per
v→ 0.

Il problema è scrivere un’equazione come la (9.109) per un caso generico, in cui la
particella si muove ed eventualmente sono presenti campi sia campi elettrici che magnetici.

Il primo punto da chiarire è che lo spin, quindi la direzioneζζζ , è definitonel sistema
di riferimento a riposodella particella. In un sistema in cui la particella si muove il vet-
tore spazialeζζζ sarà ottenuto tramite una trasformazione di Lorentz. Chiamiamoaµ un
quadrivettore che nel sistema di riferimento a riposo si riduce ad un vettore puramente
spaziale(a0 = 0,a = ζζζ ). Ricordando la forma delle trasformazioni di Lorentz è facile scri-
vereaµ “nel laboratorio” cioè in un sistema in cui la particella ha impulsop, con l’usuale
terminologia per i parametri delle trasformazioni di Lorentz:

a0 = βγζ‖ =
|p|
mc

ζ‖ a⊥ = ζζζ⊥ a‖ = γζ‖ =
E

mc2 ζ‖ (9.164)

dovea‖ e a⊥ sono le componenti parallele e perpendicolari alla direzione del moto. Nel
seguito porremōh = c = 1 per non appesantire la notazione. Le (9.164) possono essere
riscritte nella forma

a = ζζζ +
p(ζζζ ·p)

m(E +mc2)
a0 = c

ap
E

=
pζζζ

mc
(9.165)

Nell’ultima uguaglianza si è sfruttata l’espressione esplicita dia e la relazione fraE ep.
Il quadrivettoreaµ soddisferà un’equazione covariante del tipo

daµ

dτ
= Xµ

ed il quadrivettoreXµ sarà lineare nei campi elettromagnetici e lineare inaµ , come la
(9.109).τ indica il tempo proprio.

A noi qui interessa la teoria a meno di fattoriv2/c2, ci limiteremo cioè ai termini li-
neari nelle velocitàv. In questa approssimazione al posto del tempo proprio possiamo
considerare il tempot e le relazioni (9.164) si semplificano:

a0 =
pζζζ

mc
a' ζζζ +

p(ζζζ ·p)
2m2c2 (9.166)

Nella (9.166) abbiamo tenuto l’ordinev2 pera e questo è il punto delicato di tutto il calcolo:
noi vogliamo scrivere le equazioni del moto al primo ordine inv, ma le equazioni del moto
in campo elettromagnetico:

dp
dt

= eE+
e
c

v∧B (9.167)
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contengono un termine, quello nel campo elettrico, dell’ordine 0 inv. Quindi derivando
una quantità di ordinev2 si possono ottenere dei termini del tipov·E che sono lineari inv.

Torniamo all’equazione peraµ . Il vettorea è un vettore assiale, la forma più generale
per la sua derivata è

da
dt

= C0a∧B+C1E(a·v)+C2v(a·E)+C3a(E ·v) (9.168)

Nella formulazione completa i fattoriCi sono delle funzioni div2 ma per l’ordine a cui
siamo interessati possiamo considerarli costanti. In particolare perv→ 0 si deve riottenere
la (9.109), quindiC0 = ge/2mc. Sempre restando al primo ordine inv in tutti i termini a
destra nella (9.168) possiamo sostituirea conζζζ .

Aggiungendo e sottraendo un termine del tipov(a·E) la (9.168) si può riscrivere nella
forma più conveniente

da
dt

= g
e

2mc
ζζζ ∧B+A1ζζζ ∧ (E∧v)+A2v(ζζζ ·E)+A3a(E ·v) (9.169)

Effettuiamo ora una trasformazione di Lorentz con una piccola velocitàV0. Poichèda/dt
è la componente spaziale di un quadrivettore la sua variazione deve essere

δ (
da
dt

) =
V0

c
· da0

dt
=

1
mc2 V0

[
dp
dt
·ζζζ

]
+O(

V0 · p
c2 ) =

e
mc2 V0(E ·ζζζ )+O(

v2

c2 ) (9.170)

Per trasformazioni di Lorentz a piccola velocità:

B→ B−E∧ V0

c
E→ E+B∧ V0

c
v→ v+V0

Sostituendo nel secondo membro della (9.169) il termine di variazione lineare nelle velocità
è:

−g
e

2mc
ζζζ ∧ (E∧ V0

c
)+A1ζζζ ∧ (E∧V0)+A2V0(ζζζ ·E)+A3ζζζ (E ·V0) (9.171)

Confrontando la (9.170) con la (9.171) si ottiene:

A1 = g
e

2mc2 A2 =
e

mc2 A3 = 0 (9.172)

cioè l’invarianza di Lorentz fissa completamente i coefficienti.
Sostituendo l’espressione esplicita dia, eq.(9.166), nella (9.169) si ha allora, sempre

trascurando gli ordiniv2 ed usando le equazioni del moto:

dζζζ

dt
+

e
2mc2 [E(ζζζ ·v)+v(ζζζ ·E)] = g

e
2mc

ζζζ ∧B+g
e

2mc2ζζζ ∧ (E∧v)+
e

mc2 v(ζζζ ·E)

Usando l’identità:v(ζζζ ·E)−E(ζζζ · v) = ζζζ ∧ (v∧E) = −ζζζ ∧ (E∧ v) si può riscrivere la
derivata nella forma:

dζζζ

dt
= g

e
2mc

ζζζ ∧B+
e

2mc
(g−1)ζζζ ∧ (E∧ v

c
) (9.173)

Quindi gli accoppiamenti col campo magnetico e col campo elettrico sono rispettivamente

g
e

2mc
B

e
2mc

(g−1)(E∧ v
c
) (9.174)

L’aspettativa ingenua era che un momento magneticog e
2mc si accoppiasse con il tra-

sformato di Lorentz del campoE nel sistema a riposo dell’elettrone, cioèE∧ v
c invece

l’accoppiamento è

HI =−g
e

2mc
s·B− e

2mc
(g−1)s· (E∧ v

c
) (9.175)
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Per g = 2, siccome 2− 1 = 1 = 2/2 si usa impropriamente dire che la precessione di
Thomas introduce un fattore 1/2, in realtà provoca una sottrazioneg→ g−1.

Come controllo scriviamo le equazioni di Heisenberg per lo spin. SeHI =−s·F dalle
regole di commutazione del momento angolare segue

[si ,HI ] =−[si ,sjFj ] =−ih̄εi jkskFj = ih̄(s∧F)i (9.176)

Sia ora l’Hamiltoniana del sistema nella forma

H = H0 +HI

doveH0 è la parte che non dipende dallo spin,HI l’Hamiltoniana (9.175), dove oras è un
operatore. utilizzando la (9.176) si ha

ds
dt

=
i
h̄
[H,s] =

i
h̄
[HI ,s] = s∧

[
g

e
2mc

B+
e

2mc
(g−1)(E∧ v

c
)
]

(9.177)

La media su uno stato semiclassico fornisce〈s〉= Sζζζ e si riottiene la (9.175).

Nota. Il lettore particolarmente attento avrà osservato che nello scrivere l’equazione (9.168) abbiamo affermato chea è un vettore
assiale. Normalmente in relaività i vettori assiali vengono introdotti attraverso un tensore a due indici, come nel caso del campo
magnetico: il tensore di partenza èFµν che è decomposto in una parte elettricaF0i = Ei ed una magneticaFjk conBi = 1

2 εi jk F jk .
Il fatto è che per trasformazioni di Lorentz il vettoreB non si trasforma affatto comeaµ nelle (9.164). La variabile di spin in effetti
è una parte del momento angolare, la parte angolare del momento orbitale si scrive in relatività nella forma

xµ pν −xν pµ

e anche lo spin deve perciò essere trattato come un tensore a due indici antisimmetrico, cioè deve avere le stesse proprietà di
trasformazione del momento angolare orbitale, o diFµν . ChiamiamoSµν questo tensore e rappresentiamolo come per il campo
elettromagnetico con due vettori, uno polare, tipo il campo elettrico e uno assiale, tipo il campo magnetico:

Sµν = (P,A)

lo spin Sè definito come il vettoreA nel sistema di riferimento a riposo, in questo sistemaεi jk Sjk = (S)i è il generatore delle
rotazioni spaziali, esattamente come(x∧p)i è il generatore delle rotazioni orbitali. Il vettoreaµ usato nel testo è

aµ =
1

2mc2|S|
εµαβγ Sαβ pγ (9.178)

|S| è il valore del modulo dello spin nel sistema di quiete, es.h̄/2 per un elettrone. Nel sistema di riferimento a riposopµ = (mc2,0)
ed il vettoreaµ è proprio il versoreζζζ usato nel testo. Il vantaggio dell’uso diaµ rispetto aSµν risiede appunto nelle sue proprietà di
trasformazione più semplici. Lasciamo al lettore la facile verifica cheaµ è un quadrivettore unitario di genere spazio,aµ aµ =−1,
e cheaµ pµ = 0.

9.E Correzioni relativistiche in campo esterno.

Nel testo abbiamo visto che al primo ordine inv/c l’Hamiltoniana per un elettrone in campo
esterno ha la forma

H =
1

2m

(
p− e

c
A

)2
+eΦ−g

e
2mc

s·B (9.179)

Abbiamo anche scritto la prima correzione ordine 1/c2 nella forma

HLS =−(g−1)
e

2m2c2 s· (E∧p) (9.180)

Occorre in realtà fare una precisazione, gli operatoriE(x) e p in generale non com-
mutano fra loro quindi in che ordine scriverli? La prescrizione che useremo è la cosiddetta
prescrizione di Weyl: per passare da una espressione classica ad una quantistica, scritta cioè
con operatori, effettuiamo la sostituzione

Acl →
1
2

(
A+A†) (9.181)
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Per il prodotto di due operatori autoaggiunti questo equivale a simmetrizzare l’espressio-
ne. Oltre alla sua semplicità una parziale giustificazione della prescrizione proviene dal
fatto che nell’interazione fondamentale elettromagnetica in effetti l’interazione compare in
forma simmetrizzata

p ·A +A ·p

Naturalmente la correttezza della prescrizione, nei casi che useremo, è assicurata dal fatto
che espandendo in serie div/c l’espressione corretta relativistica si ottengono in effetti i
risultati che presenteremo nel seguito. Con la prescrizione di Weyl:

(εi jkE j pk)class→
1
2

[
εi jkE j pk + εi jk pkE j

)
=

εi jkE j pk +
h̄
2i

εi jk∂kE j = (E∧p)i + i
h̄
2
(∇∇∇∧E)i

come si verifica immediatamente usando la rappresentazione di Schródinger per gli impul-
si. Per campi statici, come in un atomo,∇∇∇∧E = 0, e quindi, ad esempio, non ci sono
problemi di ordinamento per l’interazioneLS. In generale, ponendo per semplicitàg = 2

HLS =− e
2mc2 s· (E∧p)− i

eh̄
4mc2 s· (∇∇∇∧E) (9.182)

Energia cinetica.

In meccanica relativistica l’energia cinetica di una particella è

√
p2c2 +m2c4−mc2 ∼ p2

2m
− 1

8
p4

m3c2 (9.183)

il secondo termine nella (9.183) va aggiunto quindi alla Hamiltoniana come correzione
di ordinev2/c2. In questo calcolo i terminieA/c possono essere trascurati perchè hanno
potenze aggiuntive di 1/c a denominatore.

Nel calcolo esplicito delle correzioniv2/c2 a partire dall’equazione di Dirac compare
un altro termine, dettotermine di Darwindella forma

HD =− eh̄2

8m2c2∇∇∇ ·E

Questo termine è completamente localizzato nella sorgente del campo ed in particolare per
un campo coulombiano ha la forma

− eh̄2

8m2c2 4πZ|e|δ (3)(r) = +
Ze2h̄2

π

2m2c2 δ
(3)(r)

Il termine HD non ha una semplice interpretazione semiclassica. Intuitivamente si può
dire che per effetti relativistici la funzione d’onda elettronica ha delle fluttuazioniξ per
lunghezze pari al raggio Compton dell’elettronere = h̄/mc:

〈ξi〉= 0 〈ξiξ j〉=
1
3

δi j r
2
e

in questo modo l’energia elettrostatica in un potenzialeΦ ha un contributo aggiuntivo
dovuto alle fluttuazioni:

〈eV(x+ξ )〉 ' eV(x)+
1
2
〈ξiξ j∂i∂ jV〉= e

1
6

r2
e〈∆V〉=

1
6

Ze2r2
eδ

(3)(r)

A meno di un fattore numerico si ha il termine di Darwin. Comunque il ragionamento è
essenzialmente un ordine di grandezza, se esiste un termine locale il fattore davanti deve
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essere per forzae2r2
e per ragioni dimensionali. Nella derivazione dall’equazione di Di-

rac questo termine è intimamente collegato con lo spin, a riprova di ciò questo termine è
assente, a quest’ordine, nell’espansione inv/c per un campo a spin zero.

Noi prenderemo questo termine per buono e quindi l’Hamiltoniana completa in campo
esterno è della forma:

H =
1

2m

(
p− e

c
A

)2
+eΦ−g

e
2mc

s·B− p4

8m3c2 (9.184)

− e
2mc2 s· (E∧p)− i

eh̄
4mc2 s· (∇∇∇∧E)− eh̄2

8m2c2∇∇∇ ·E

ed in particolare per un campo coulombiano

H =
1

2m

(
p− e

c
A

)2
+eΦ−g

e
2mc

s·B (9.185)

− p4

8m3c2 +
e2

2m2c2

Z
r3 `̀̀ ·s+

Ze2h̄2
π

2m2c2 δ
(3)(r)

9.F Interazioni fra due particelle.

In un atomo reale il nucleo non ha massa infinita quindi ci aspettiamo che l’Hamiltonia-
na precedente abbia delle correzionime/M, doveme è la massa elettronica,M la massa
nucleare. Uno degli aspetti di questa questione è l’interazione iperfina, discussa nel testo.
Qui vogliamo accennare ai termini aggiuntivi alla (9.185) che non dipendono dallo spin.
Ci limiteremo al caso del problema dei due corpi, un esempio di problema a più corpi sarà
visto nello studio dello spettro dell’elio.

Il parametrome/M è un parametro piccolo, dell’ordine di 10−3, quindi ci limiteremo a
studiarne solo gli effetti al primo ordine.

Nel limite non relativistico il problema dei due corpi ha una Hamiltoniana della forma

H =
p2

e

2me
+

p2
N

2M
− Ze2

|r1− r2|
(9.186)

Già sappiamo che passando a coordinate relative il problema si riduce al problema di un
singolo corpo con massa risottaµ = (meM)/(me+M):

H =
p2

2µ
− Ze2

r

Quindi nel problema a due corpi la correzione di massa non relativistica è “banale” nel
senso che basta sostituire la massa ridottaµ alla massa dell’elettrone in tutte le espressioni.
In particolare per un sistema idrogenoide con nucleo infinitamente pesante i livelli sono
espressi nella forma

En =− 1
2n2 R∞ R∞ =

mee4

h̄2 (9.187)

Per ottenere i livelli relativi ad un nucleo di massaM basta considerare la costante di
Rydberg modificata

RA =
M

me+M
R∞

Come si vede lo spettro fra due isotopi, esempio idrogeno e deuterio, è praticamente lo
stesso a meno di un cambiamento di scala. Nondimeno questa differenza è molto utile, ad
esempio se si vuole fare una separazione isotopica tramite tecniche laser, o semplicemente
si voglia stabilire la concentrazione di un determinato isotopo in un corpo: le righe di
assorbimento per i vari isotopi hanno una separazione in frequenza ben al di sopra delle
risoluzioni tipiche delle misure spettroscopiche.
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Consideriamo ora i termini di struttura fine. Il termine di Darwin per il nucleo è di
ordine 1/M2 e lo possiamo trascurare. L’accoppiamnentoLSper l’elettrone va scritto come

e2

2m2
ec2

Z
r3 `̀̀ ·s (9.188)

questo termine descrive l’accoppiamento dello spin elettronico col proprio momento ango-
lare orbitale. L’analogo termine per il nucleo è di ordine 1/M2, quindi trascurabile. C’è
poi l’accoppiamento dello spin e del momento angolare elettronico con lo spin nucleare, è
il termine di struttura iperfine già considerato:

HI =− e
mc

(
1
r3µµµN · `̀̀

)
(9.189)

− e
mc

[
−(µµµN ·s−3(µµµN · r̂)r̂ ·s)

1
r3 +

8π

3
µµµNsδ

(3)(r)
]

Il primo termine della (9.189) descrive l’interazione fra il momento magnetico del nucleo
ed il momento orbitale dell’elettrone, il secondo l’interazione fra i due momenti magnetici.
Se il nucleo ha massa finita abbiamo anche un termine di interazione fra il campo magnetico
creato dall’elettrone ed il moto orbitale del nucleo. Nel centro di massa il momento orbitale
è semprè̀̀ quindi questo termine aggiuntivo è, indicando coneN = Z|e| la carica del nucleo:

− eN

Mc

(
1
r3µµµe · `̀̀

)
Oraµe = ge/2mec = e/mec quindi questo termine si scrive

− eNe
meMc2

(
1
r3 se · `̀̀

)
(9.190)

Questo termine si aggiunge al termine di struttura fine e notando che

1
2m2

e
+

1
meM

' 1
m2 +O(m2

e/M2)

è completamente riassorbito nella massa ridotta. In conclusione anche nei termini di strut-
tura fine scrivendomal posto dime si riassorbono tutte le correzioni di ordineme/M.

C’è ancora un punto sottile da considerare: le correzioni al potenziale coulombiano.
Se il nucleo si muove la forza fra nucleo ed elettrone ha un ritardo, classicamente que-
sto ritardo va trattato scrivendo i potenziali di Lienard-Wiechert ritardati. Fino all’ordine
v2/c2 è possibile trascurare i fenomeni di irraggiamento, quindi scrivere una lagrangiana
e derivare una Hamiltoniana tenendo conto delle sole variabili dinamiche delle particelle.
Questo è un problema classico di elettromagnetismo che non riportiamo qui, il lettore inte-
ressato può trovare una dimostrazione in [Landau2] (par. 65 ed esercizi). Il risultato è che
l’Hamiltoniana nel centro di massa del sistema è scrivibile nella forma

H =
p2

2

(
1

me
+

1
M

)
− Ze2

r
− p4

8c2

(
1

m3
e

+
1

M3

)
− Ze2

2mMc2r

(
p2 +(r̂ · p)2) (9.191)

Il secondo termine è semplicemente lo sviluppo dell’energia relativistica per una particella
libera, che già conosciamo. Usando la massa ridotta e trascurando i terminim2

e/M2 può
essere riscritto nella forma

− p4

8m3c2 +
3p4

8m2Mc2 (9.192)

L’ultimo termine è quello che esprime il ritardo.
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Per scriverlo in forma quantistica usiamo ancora la procedura di Weyl. Possiamo
considerare l’operatore

X =
1
r

(
p2 + r̂ i r̂ j pi p j

)
≡ 1

r

[
p2 + r̂(r̂ ·p)p

]
Scriviamo cioè tutti gli operatori impulso a destra. Si può verificare con un breve calcolo
cheX = X† e quindi questo ordinamento dà un operatore hermitiano.

In conclusione l’Hamiltoniana effettiva del problema a due corpi, coulombiano, è

H = H0 +HFS+HM +HHFS (9.193)

H0 =
1

2m
p2 +eΦ

HFS =− p4

8m3c2 +
e2

2m2c2

Z
r3 `̀̀ ·s+

Ze2h̄2
π

2m2c2 δ
(3)(r)

HM =
1

Mc2

[
3p4

8m2 −
Ze2

2mr

(
p2 + r̂(r̂ ·p)p

)
− Ze2h̄2

π

m
δ

(3)(r)
]

HHFS =− e
mc

(
1
r3µµµN · `̀̀

)
− e

mc

[
−(µµµN ·s−3(µµµN · r̂)r̂ ·s)

1
r3 +

8π

3
µµµNsδ

(3)(r)
]

Questa Hamiltoniana prende il nome diHamiltoniana di Breit. Nello scrivere la (9.193)
abbiamo riscritto il termine di Darwin in termini della massa ridotta.

Un punto rilevante è che l’HamiltonianaHM non dipende dallo spin quindi non influen-
za la struttura fine dei livelli.

Esercizio 2. Dimostrare chep2 + r̂(r̂ · p)p è un operatore hermitiano. Perr 6= 0 basta
effettuare le derivate opportune. Per dimostrare che non ci sono termini del tipoδ (r) si
può notare che questi possono comparire solo quando due derivate agiscono sui fattori 1/r.
Si applichi il teorema di Gauss per dimostrare che le funzioniδ (r) che provengono dai due
termini si cancellano fra loro.
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