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Capitolo 9

Interazioni Elettromagnetiche.

9.1 Interazione elettromagnetica in meccanica classica e
guantistica.

In questo paragrafo richiameremo brevemente alcune nozioni ben note di meccanica ed
elettromagnetismo classico. Il lettore pud trovare un’ampia trattazione di questi argomen-
ti, ad esempio, nei testi citati in bibliografia, [Landaul, Landau?]. Ci limiteremo quasi
esclusivamente alla teoria nel limite non relativistico.

Le equazioni del moto per una particella di massa caricae sono:

dv e

m— =eE+-vAB 9.1
dt + c ©-1)
L'espressione a secondo membro d¢lla](9.1) e chiafoata di LorentzL'equazione[(9.]1)
puo essere ricavata da una lagrangiana della forma

(9:%MF+EVA—GD 9.2)

A, ® sono rispettivamente il potenziale vettore ed il potenziale scalare, legati ai EaBipi

dalle relazioni:

19A
E=-O0-_>= B=0OAA (9.3)

Come € noto l'introduzione dei potenziali vettori € utile in quanto rende automaticamente
soddisfatte le equazioni di Maxwell omogenee:

10B
O0-B=0 ONE=—=— 9.4
c ot (0.4)
L'informazione contenuta nelle funziodi, A & ridondante rispetto alla determinazione dei

campiE, B, infatti una qualunque trasformazione del tipo

A—A =A+0OA q>—>q>’:q>—}a—/\ (9.5)
c ot
lascia invariati i campE, B, che sono i soli a determinare la dinamica attraversp 1a (9.1).
Le trasformazioni[(9]5) si chiamarnimsformazioni di gauge l'invarianza della fisica per
trasformazioni di questo tipo prende il nomdmiiarianza di gauge
Notiamo che la lagrangiang (9.2) per trasformazioni di gauge si trasforma con

IN

Z—»f’—3+e<v~ﬂl\+) =<+
C ot

edA

ot (9.6)
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4 CAPITOLO 9. INTERAZIONI ELETTROMAGNETICHE.

L'aggiunta di una derivata totale alla lagrangiana non cambia il principio di Hamilton e
quindi lascia invarianti le equazioni di Eulero-Lagrange.
Per effettuare il passaggio alla meccanica quantistica € opportuno riformulare le equa-
zioni precedenti nel formalismo Hamiltoniano. L'impulsanonicoconiugato alla variabi-
lexé
90X
P=v
Quindi I'Hamiltoniana del sistema &

:mv+§A = mv:p—gA (9.7)

1 e \2
H:p~v—$:§n(p—EA) fed (9.8)

Formalmente questo sistema si ottiene da quello in assenza di campo elettromagnetico con
la sostituzione o
HoH+ted pop—p--A (9:9)

Questo tipo di “regola” per descrivere l'interazione elettromagnetica viene dettzp-
piamento minimale Sottolineiamo che I'impulse@anonicg p, non €la quantita di moto
cinematicamv, vedi eq[(9.).

Nel formalismo hamiltoniano il cambiamento di gauge|(9.5) porta a

1 e e 2 edN
Hzf( —7A—7EI/\) ep— -2
2m P c c + c ot
Questo cambiamento pud essere riassorbito dedlformazione canonigan generale
dipendente dal tempo:

ean

<o (9.10)

p’:p—ED/\ X=x H=H+

Un modo istruttivo per verificare che [@(9]10) e effettivamente una trasformazione canonica
e quello di assicurarsi che la forma di Poincaré-Cartan cambia per un differenziale totale:

p'dx’ — H'dt = pdx — Hdt — glill\dx— g%’t\ dt = pdx — Hdt — gd/\ (9.11)

La (9.13) implica che il principio di minima azione
5 /(pdx—Hdt) —0

resta invariato e quindi si hanno le stesse equazioni di Hamilton e, come ¢ facile verificare,
le stesse parentesi si Poisson.

9.1.1 Formulazione quantistica.

In meccanica quantistica I'interazione elettromagnetica & descritta dallo stesso principio di
accoppiamento minimalg {(9.9). In particolare in rappresentazione di Schrodinger

h h_ e ~dJd .0
Quindi 'equazione di Schrédinger per una particella, che descrive I'evoluzione temporale

degli stati, ha la forma

9 1 /R 2
|ﬁaléf—2m<iD—EA) vi+edy=Hy (9.13)
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Nel seguito continueremo ad usare il simbplger indicare I'operatore impulse;ihO:
guesto operatore €& quello che sodisfa alle regole di commutazione canoniche:

[Xi,pj]:iﬁ&j [pi,pj}:o (9.14)

Facciamo esplicitamente notare che I'impulso “cinematitn’ non soddisfaalle regole
di commutazione canoniche, infatti:

.eh

B & il campo magnetico. L€ (9.]15) hanno una rilevanza particolare nell’lambito quantistico,
infattiimplicano che le diverse componenti del momento cinetmosono simultaneamen-

te misurabilj al contrario degli impulsi canonici. Nellg {9]15) abbiamo usato I'espressione
classica per il vettore velocita, ed in effetti il lettore puo facilmente verificare che anche
guantisticamente:

dx e
nmv = ma_ml[H X] = p—EA (9.16)

L'Hamiltoniana [9.IB8) & un operatore hermitiano; notiamo che il campo estecompare
automaticamente nella forma simmetrizzata di Weyl:

1 e \2 1 e e
:%(prA) +ed>2m<p2C(p'A+A~p)+CZA2>+e¢

Passiamo ora alle osservabili direttamente connesse all'interazione elettromagnetica. In
accordo con il fatto chéy|? rappresenta la distribuzione di probabilita di una particella,

p = €|y|? rappresenta la densita di carica. Talvolta & utile scrivereperatorep(y) che
descriva la densita di carica nel puntai usera allora, per un sistemangarticelle, in
rappresentazione di Schrodinger:

f)(y;xl...xn):ZeiS(y—xi) (9.17)

Per il caso di singola particella il valor medio su uno siatd dell’'operatore[(9.3]7) ripro-
duce il risultato aspettato:

(WIp(y)lw) =ew(y)P=p(y)

Per quanto riguarda la densita di corrente questa € data da

eh €
=i [@y) y -y Oy)] -~ Alyl® (9.18)
E facile controllare (lasciamo il compito al lettore) ghsoddisfa I'equazione di continuita

ap
W-l-lej =0 (9.19)

& perd istruttivo ricavare 1@ (9.1L8) in altro modo. La densita di corremkefiditadal fatto
che una piccola variazione diinduce una variazione di energia

1 oH 1
H=-=[]j8Ad3 ——=—]j 2
0/15 d°x = A CJ(X) (9.20)
Consideriamo allora la variazione di energia per uno stato generico, al primo ordiAe in

/d3 v p5A+5Ap)w+—/d3x5A Alv?)

- /d3 (O(8AY) + SAOY) + /d3x6A Aly[?)
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Integrando per parti il primo addendo per riportare la variazione di energia alla forma

(9:20), si ottiene:
: if &
- [ xon (@ v @) - mpAVE) @2

da cui segue 14 (9.18).

L'Hamiltoniana [9.IB) descrive I'interazione elettromagnetica per una particella punti-
forme, completamente caratterizzata dalla massedalla carica. In meccanica quanti-
stica una particella elementare pud avere uno spin non rajli@l qual caso la funzione
d’onda che descrive lo stato ha-21 componenti. Lo spin & un vettore assiale, trasforma
infatti come un momento angolare, e a questo vettore € quindi possibile associare un mo-
mento magnetico elementaye, caratteristico della particella. Si avra di conseguenza un
termine aggiuntivo nelld (9.13):

1 /h e \?
H=_(-0--A +ed—u-B 9.22
(70 2A) vreoo (9.22)
Conosciamo le regole di quantizzazione dello spin: deitanassimo autovalore di una
delle componenti, convenzionalmestgsi definisce come momento magnetico, la costante
di proporzionalita nella relazione:

s
B=pg (9.23)

cioe il massimo valore possibile pgy. Poichesé quantizzato in multipli (semi)interi die
naturale che i momenti magnetici vengano misurati attraverso la quemfitdc. Questo é

in analogia con il teorema classico di Larmor per cui ad un momento andaassociato

un momento magnetic@®/mc)¢. Questa questione sara ripresa piu avanti. In particolare
per I'elettrone ed il nucleone (protone) si introduce il momento magnetico di Bohr ed i
momento magnetico nucleare, definiti rispettivamente da

eh eh
= Gl p= leh (9.24)

meC myC
me, My SONO rispettivamente la massa dell’elettrone e del protone. Usando lo stesso pro-

cedimento che ha condotto al[a (9.21) si puo ricavare dalla](9.22) la densita di corrente
. _eh * * e2 2 *
j=io 2 (@) y =y (Oy)] - —Aly["+cOA (y"py) (9.25)

Potenziali ed invarianza di gauge.

Dalla introduzione stessa dell’interazione elettromagnetica attraverso I'accoppiamento mi-
nimale dovrebbe essere chiaro che in meccanica quantistica il ruolo dei poténziadi
cruciale. Il primo punto da affrontare quindi & I'invarianza di gauge. Consideriamo due
sistemi descritti da due potenziali che differiscono per una trasformazione di gauge, vedi
(9.3). Le due Hamiltoniane si scrivono

1/h 2 y
H= Zm( IZI—A> +ed Ih_at =Hy (9.26a)
1 (A 2 edN Ay

Sianos# e s gli spazi di Hilbert relativi ai due sistemi. Per problemi ad una particella
possiamo considerare entrambi gli spazi coincidenti con le funzioni a quadrato sommabile
SuR3. | due sistemi[{9.26) sono equivalenti, cioé descrivono lo stesso sistema fisico, se si
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trova una trasformazione unitaria f¥é e 7% in modo tale da generare la stessa dinamica,
ovvero la seconda Hamiltoniana deve essere ottenuta come trasformazione della prima.

Consideriamo uno stato dif rappresentato da una funziogee consideriamo la
funzione

en
on=expli S v

Si ha immediatamente

2 2
1 (HD—iA—ED/\) <pA—ei?c1<_ﬁ|:|—§A> w=dRHy

2m \ i 2m \i
00N jen dY  €ON jen  en edN

Quindi ¢p soddisfa all'equazione

0P
ih— =H
ot APA
Viceversa data una soluziong, della [9:26b) la funziong = exp(—i & )y, sodisfa alla
(9:26&). C’e quindi una corrispondenza (biunivoca) fra le soluzioni delle due equazioni. La
trasformazione

yn = expli o0y (0.27)

e evidentemente una trasformazione unitaria e quindi usare I'equagiong (9.26a) o I'equa-
zione [9.26D) & assolutamente equivalente dal punto di vista fisico.

La cosa si pud anche impostare in altro modo. Consideriamo per semplicita le trasfor-
mazioni di gauge indipendenti dal tempo. In questo caso, come si vede[dalle (9.26) i due
sistemi differiscono per il cambiamento di “coordinate canoniche”

e
(%,p) = (x',p') = (x,p— cON) (9.28)
Questa trasformazione lascia invariate le regole di commutazione, infatti
, e
. 5] = [%:pi = Z9iA] = s, py] (9:29)

Il teorema di von Neumann assicura che la rappresentazione delle regole di commuta-
zione € unica a meno di trasformazioni unitarie, quindi i due modelli sono connessi da
una trasformazione unitaria, che & appuntd Ta {9.27). La dimostrazione dell’equivalenza
tramite il teorema di von Neumann ¢ il corrispettivo quantistico dell’equivalenza tramite
trasformazioni canoniche.

Linvarianza della fisica per trasformazioni del tifjo (9.27) € molto soddisfacente da un
punto di vista di principio. Sappiamo che in meccanica quantistica gli stati sono rappresen-
tati da raggi in uno spazio di Hilbert, o, in parole povere, da funzioni a quadrato sommabile
definite a meno di una fase globale. [a(9.27) implica che in presenza di un accoppiamento
elettromagnetico la fase pud essere scelta in modo arbif@r@mente cioé punto per
punto. Se immaginiamo l'operazione di scegliere la fase come una scelta di un sistema
di riferimento, per gli stati, 1a[{9.27) asserisce che questa scelta pud essere fatta in modo
locald]

Avendo ormai (sperabilmente) convinto il lettore dell’invarianza della fisica per trasfor-
mazioni di gauge passiamo al punto realmente nuovo della meccanica quantistica rispetto
alla meccanica classica. Mettiamo a confronto le equazioni del moto clas$iche, (9.1) e
I'equazione di Schrodingef, (9.26a).

1 analogia non & campata in aria: l'introduzione di una simmetria simile @la)(9.27), in un altro ambito, &
stata fatta da Weyl proprio per estendere il concetto di invarianza per cambiamenti di coordinate nell’ambito della
relativita generale.



8 CAPITOLO 9. INTERAZIONI ELETTROMAGNETICHE.

1) In meccanica classica I'evoluzione di un sistema dipesadi@edai campiE, B, come
e chiaro dalla[(9]1). Per comodita & possibile introdurre i poten®igh, ma questi
costituiscono delle quantita ausiliarie e non strettamente necessarie.

2) Nell'equazione di Scrodinger compaiono i potenziali, non i campi. Vista l'invarianza
di gauge sembrerebbe che in realta anche in questo caso I'uso dei potenziali sia
ridondante, ma non e del tutto vero.

Prima di giustificare le affermazioni precedenti facciamo una breve “incursione” sul signi-
ficato geometrico della trasformazione di galge (9.27) e dei potenziali.

9.1.2 Interpretazione geometrica dell’invarianza di gauge.

Per semplicita ci limiteremo al caso in cui sia presente solo un potenziale vAttordi-
pendente dal tempo, quindi si ha un campo magn@&ieorotA, mentre il campo elettrico

e nullo, oppure statico. Ci limiteremo quindi allo studio delle trasformazioni di gauge
indipendenti dal tempo.

Supponiamo di voler insistere sull'arbitraridticale della fase della funzione d’onda,
come espresso nelfa(9]27): questo significa che in ogni punto dello spazio si pud scegliere
ad arbitrio la fase di, variandoA. Queso pone immediatamente un problema: nello
scrivere la dinamica occorre confrontare il valore della funzione d’onda in punti diversi,
perché occorre definire le derivate e quindi effettuare dei limiti del tipo:

im y(x+h,y, Zr)1 —y(xY.2) (9.30)

Ma come é possibile che I (9]30) abbia alcun senso visto che la fase della fupzione
punti diversi € arbitrariamente diversa? In effettila {9.30) non ha, di per s&, molto senso.
Una situazione analoga si presenta in geometria. Supponiamo di considerare ua sfera
(una superficie sferica iR3). In ogni puntoP della sfera & definito un piano tangente e
corrispondentemente dei vettori, che normalmente si indicano con la notaz®néndi-
cando appunto che si riferiscono al piano tangente passani [@& si considerano due
punti diversi,P,Q ha senso confrontare i vettori nei due punti? In generale no, visto che
si tratta di vettori in spazi vettoriali distinti. Ma se si vuole fare calcolo differenziale su
questi vettori occorre per forza confrontarli, altrimenti come si fanno a definire le deriva-
te? La risposta e che occorre definire una procedura per “trasportare” un vgif@reel
puntoP, ottenendo un vettone (P), dopo di che si hanno due vettori definiti nello stesso
spazio tangente e quindi possiamo fare tutte le derivate del caso. Ogni modo di trasportare
un vettore definisce un diverso modo di fare le derivate, o come si dice in modo sofistica-
to, definisce un@onnessionell lettore che ha qualche conoscenza di relativitd generale
sapra che la connessione usata in quel caso € una particolare connessione, la connessione
di Levi Civita, che geometricamente consiste nel “trasporto parallelo” dei vettori. Questa
costruzione puramente geometrica ha un corrispettivo algebrico: un vettore nello spazio
tangente ha un significato indipentemente dalla scelta del sistema di coordinate sulla sfe-
ra, questo si traduce nel fatto che se si cambiano le coordinate le componenti del vettore
trasformano secondo una matrice (lo jacobiano della trasformazione di coordinate) dipen-
dente dal punt®. Analogamente il processo di trasporto parallelo fa si che le derivate del
vettore trasformino in maniera corretta per cambiamento di coordinate e quindi abbiano un
senso geometrico indipendente dalla scelta particolare delle coordinate.

Proviamo a “tradurre” questo procedimento nel caso della trasformazione di gauge. Qui
la legge di trasformazione e data dalla (9.27), quindi noi vorremmo definire un “trasporto”
e conseguentemente una deriMatan modo tale che per trasformazioni di gauge

Diy — DMyp =Dy (9.31)
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La derivata usuale sicuramente non va bene perché
en /. €
dun=eR (i=(@Ny+av) (9.:32)

cioe trasforma in modo inomogeneo. Ma ora si capisce finalmente il perché della combi-
nazionep — e/cA! Consideriamo I'operatore

e h e
Di=d —i=A -D=p--A 9.33
i | IﬁCAl I p c ( )
Per trasformazioni di gauge la variazioAé = A + OA cancella esattamente il termine
non omogeno nella (9.82) e risulta

(D_iHECAA)WA:é%( _|ﬁ )1// dRDy (9.34)

D si chiamaderivata covariantee A € la connessione che serve per costruire la derivata.
Ovviamente cambiand@ cambia la derivata covariante. Costruiamo ora esplicitamente il
trasporto generato dalla connessigneCominciamo col notare che considerando l'inte-
grale lungo un cammin@ da un puntd ad un puntd si ha, sotto trasformazione di gauge
A — A+0OA:

B . B .
®(A,B;C) E/ Adx _>/ AdX +A(B) — A(A) (9.35)
CA A
. | g C,
Lintegrale [9.3%) dipende esplicitamente
dal cammino di integrazione. Infatti cam- \\
biando cammino come nella figura accanto
e usando il teorema di Stokes A Cl B
®(A,B;C1) — D(A,B;C) — fA.—dx' - /B-dSszusso diB (9.36)
s

La formula [9.3B) € il punto importante: la differenza degli integrali di cammino della
connessione € uguale al flusso del campo magnetico attraverso la superficie delimita dai
due cammini. Notiamo due cose importanti;

1) Il risultato [9.36) éinvariante di gauge essendo espresso in termini del campo
elettromagnetico.

2) La {9:36)non dipendela quale superfici8si sceglie, purche il bordo @sia costi-
tuito dal camminio, chiusaZ; — C,. Infatti scegliendo un’altra superfici8, avente
lo stesso bordo, le du&§ S delimitano un volumé/, e, applicando il teorema di
Gauss

/ B-dS—/ B~dS:/dVdivB:O 9.37)
Js S v

Torniamo ora al “trasporto” della funzione d’onda. Il problema nel fare le derivate & che
y(y) si trasforma in modo diverso da(x) sey # X. Se perod “trasportiamo” la funzione
d’onda per mezzo dell'integrale di cammino, allora

¥ =exp—ic [ vy

si trasforma come;/(x), come si vede usando [a(9]35):

e e

e
iy y = _ i—
i f Adx ﬁ f Adx i—(A\(y) Ax))elh_cl\(y

g=e hc™ y(y)— hc
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Se allora dobbiamo fare, ad esempio, la derivata in una direzigrussiamo effettuare le
differenze della funzione d’'onda senza violare I'invarianza di gauge

Liinog [P (X, X+ eu)y(X+eu) — y(X)] (9.38)

Espandiamo in in serie dil'esponenziale che comparedn

e
DO X+eu) ~ 1t ei= AU+ 0(€?)
Pere — 0 i possibili cambiamenti di cammino danno contributi proporzionale#din
virtt della [9.36) (larea & proporzionale &), quindi al primo ordine ire lo sviluppo di
® é indipendente dal cammino. Sostituendo nélla {9.38) si ha infine

liLnO% [P*(X,X+eu)y(X+eu)—y(X)]=u-Dy (9.39)

Quello che abbiamo imparato € che lo strumento essenziale & fornito dal “trasporto paral-
lelo” d(x,y). Il punto & che il trasporto serve a far cambiare le proprieta di trasformazione
della funzione d’onday, ed in ultima analisi a generare il termine inomogeneo nella de-
rivata covariante. Per sua natura quindn pud esssemgauge invariante, dovendo la sua
trasformazione combinarsi con quellayi Non é possibile allora costruire dei trasporti
paralleli utilizzando quantita come e B, che sono gauge invarianti. Questo € il motivo
geometrico fondamentale per cui in teoria quantistica il ruolo dei potenziali € insostituibile:
servono a permettere il confronto della funzione d’onda in punti diversi.

Questo ruolo fondamentale dei potenziali porta con sé una conseguenza notevole che
non ha un corrispettivo in meccanica classica: le proprieta della tdgréandono dalla
topologia. Per illustrare questo punto consideriamo in modo piu dettagliato la relazione
fra campi e potenziali, ed in ultima analisi I'invarianza di gauge. Dato un caBrguppo-
niamo di aver determinato un potenzidle tale cheB = rotA;. Sappiamo gia che questa
scelta non & unica, per ogni altra scefta, deve valere r@giA; — A2) = 0. Quindi il proble-
ma é&: quali sono i potenziali vettori che danno luogo ad un campo nullo? Per ricordare che
guesti potenziali corrispondono ad un campo nullo li chiami@néa soluzione pit ovvia
e quella che abbiamo gia implicitamente usato: un campo vett@idla rotore nullo se
esiste una funzionA tale cheQ = OA, cioeéQ ¢ un gradiente, A & la funzione di trasfor-
mazione di gauge. Questa perd non & l'unica possibilita. Innanzitutto I'irrotazionafa di
implica il risultatd] seguente:

Teorema. Dati due cammini chiusi deformabili con continuita I'uno nell'altro, I'integrale
di Q ha lo stesso valore sui due cammini.

Infatti applicando il teorema di Stokes ai

cammini della figura accanto:

Qux — de:/B~dS:0
C G s
Notiamo esplicitamente che in questa di-

mostrazioneQ deve essere definita in tut-

ta la regioneS. Una conseguenza ovvia

del teorema precedente € che se un cammi-

no & deformabile con continuita ad un pun-

to l'integrale diQ lungo quel cammino &

nullo.

Uno spazio in cui tutti i cammini chiusi siano deformabili con continuita ad un punto si
dicesemplicemenete connes#dbiamo quindi il risultato:

2Le considerazioni svolte nel seguito lasciano ovviamente molto a desiderare in quanto a rigore, il lettore pud
approfondire le varie questioni, ad esempio, nei festifDNF]. Lo scopo della discussione seguente € solo quello di
presentare in modo intuitivo alcuni concetti.
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Teorema. Se lo spazio € semplicemenete connesstle= 0, allora esiste di sicuro una
funzioneA tale cheA = OA, A € un campo di pura gauge, cioé annullabile con una
trasformazione di gauge.

Infatti scegliamo un punto bas&e consideriamo la funzione

P )
AP) = [ AdX (9.40)

Se lo spazio € semplicemente connesso l'integrale rjellal (9.40) non dipende dal cammi-
no di integrazione, perché la differenza fra due cammini & un cammino chiuso. Siccome
rotA = 0, il teorema di Gausss dice che questo integrale € invariante per deformazione del
cammino, ma se lo spazio & semplicemente connesso il cammino puo esssere ridotto ad un
punto, quindi I'integrale & nullo. Questo significa che effettivaméx(fe) & una funzione

del punto ed & banale verificare diA = A. Se lo spazio non &€ semplicemente connesso la
situazione & pit complicata. Ci accontentiamo di citare i seguenti punti. L'insieme dei vet-
tori A tali che rot A= 0 formano ovviamente uno spazio vettoriale ( di dimensione infinita),
nel senso che la loro somma ed i multipli sono ancora a rotore nullo. In generale possiamo
“eliminare” daA la parte che é ottenibile con una trasformazione di gauge, cioé scrivibi-
le comeldA, quello che otteniamo é I'insieme dei campi vettoriali a rotore nullo modulo
una trasformazione di gauge. Anche questi formano uno spazio vettoriale ed il loro insie-
me forma il cosiddettg@rimo gruppo di Coomologia, di de Rhanmdicato abitualmente
conHY(X). Il punto & che ladimensionedi H(X) & finita, e calcolabile naturalmente.

Se ad esempio la dimensione € 1, esiste un particolare cAmploe ha rotore nullo ma

non & scrivibile come gradiente di nessuna funzione, la dimensioneH diignifica che i
multipli di A; hanno la stessa proprieta, e qualunque altro campo a rotore nullo ha la forma

A =0OA+cA;

Se dimH!(X) = 0 significa che tutti i campi irrotazionali sono gradienti, & il caso degli
spazi semplicemente connessi. Nell'esempio seguente tratteremo il caso piu semplice, che
e l'unico di cui avremo bisogno.

CasoR?—{0}. Consideriamo il pian®? meno un punto, I'originé® per fissare le idee.
Chiaramente i cammini chiusi che non conteng@nhsono contraibili, quelli che conten-
gono O invece non sono riducibili ad un punto. Scriviamo l'integrando nel capo
coordinate polari. Notiamo che questo insieme di coordinate € ben definito nell'insieme
considerato, in quanto I'origine non fa parte del dominio:

AdX = Adr+Agrd6 = fdr+ fode o =rAg (9.41)

Usiamo le componenti; (r, 6), fo(r,0) perche piu comode. La condizione di rotore nullo
si scrive, in coordinate polari

Possiamo sempre effettuare una trasformazione di gauge, regolare, che &nrhdlsta
considerare

Aa(r,0) = —_/1r f.(u,0)du

evidentemente la trasformaziofe porta af, — f, +d;A1 = 0. Quindi possiamo limitarci
a considerare la sola componetiiggr, 0) (eventualmente dopo la trasformaziokg. La
condizione di rotore nullo ora diventafg = 0, cioéfg € una funzione solo d. fo deve
essere una funzione definita su tutto I'insieme, quidelieessere periodica (altrimenti, ri-
petiamo, non & una funzione definitalRti— {0}), & allora possibile effettuare uno sviluppo
di Fourier

fo(0) =Fo+ ; (Facognb) + Gy sin(nd)) = R+ R(6) (9.42)
n#0
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Fo € una costante, che e una funzione periodica ovviamente. Notiamo che lo spazio vet-
toriale associato alle funziori (9J42) & ancora a dimensione infinita, si ha una coppia di
dimensioni per ognn. La parte non costante della (94R0), € anch’essa eliminabile

con una trasformazione di gauge, basta considerare

)
No=— / R(6)d6
JO
N\, & periodica in9, quindi ben definita. Rimaniamo allora con 'unica espressione
AdX = Fod6 (9.43)

Questo campmon é ottenibile da un gradiente, perche dovrebbe esgere —0, ma
questa funzion@on e periodicaquindi non & una funzione definibile sul nostro insieme
X =R?—{0}. In questo caso quindi tutti i potenziali a rotore nullo non eliminabili con
una trasformazione di gauge sono del tipal®, quindi lo spazioH! ha dimensione 1,
come spazio vettoriale SR. E piuttosto semplice dimostrare che se dal piano si “tolgono”
N punti, si ottiene uno spazio di potenziali non banali di dimensidneraticamente gli
integrali angolari attorno ad ognuno dei “buchi”.

Lasciamo al lettore la dimostrazione (semplice) che nel caso tridimensionale in cui si
sia “tolta” una retta, si ha la stessa situazione, cioé I'unico campo non banale a rotore nullo
ha solo la componente azimutale, e lo spaticanche in questo caso ha dimensione 1.

E chiaro che il valore della costanfg, gauge invariante per definizione, & ottenibile
effettuando I'integrale su un qualunque cammino chiuso che contenga il Punto

f AdX = 27 (9.44)

Lintegrale chiuso che compare nelfa{9.44) & quello che normalmente si clfiiassa
magneticced € gauge invariante a vista. E possibile quindi definire delle grandezze gauge
invarianti

j{Ad% (9.45)

che possono essere non nulli anche in assenza di campo elettrico o magnetico.

Siamo finalmente giunti al punto cruciale: consideriamo una zona di spazio in cui hon
sono presenti campi elettrici e magnetici. Secondo la meccanica classica il moto in queste
zone, a meno di altri tipi di forze, é identico al moto di una particella libera. Se inve-
ce i potenziali vettori entrano in modo essenziale nella soluzione dell’equazione di Schr
odinger allora se esistono integrali del tipo (9.45) non banali, si devono avere degli effetti
osservabili.

Consideriamo per fissare le idee I'equazione di Schrodinger per una patrticella in pre-
senza di un campA, statico, ma a rotore nullo, cioé c@= 0:

dy 1 e \2
NSt = o= (p— EA) v (9.46)

Sia y1 una soluzione dell’equaziong (9]46) nel ca#se= 0. In una zona semplicemente
connessa dello spazio ci si aspetta che la soluzione (9.46) sia della forma

v(X) = exp (ih_eC/OXA . dx) v1(X) (9.47)

La (9.47) non é altro che una riproposizione della formula per le trasformazioni di gauge,
eq.[9.27), in cui abbiamo fatto uso della forma esplicita della trasformazione di gauge,
eq.[9.40). Ovviamente |5 (9}47) soddisfa all'equazione differenziale](9.46), come si verifica
banalmente per sostituzione, man € una soluzione accettabile di quella equazione se il
dominio non & semplicemente connesso. Infatti se consideriamo la variazignieiajo
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un cammino non contraibile otteniamo fra il valore iniziale e quello finale della funzione,
una differenza del tipo:

y(P) — exp(iﬁecfkdx) y(P) (9.48)

Si avrebbe cioé una soluzione non monodroma. Abbiamo gia discusso nel corso dello stu-
dio della quantizzazione del momento angolare la necessita di avere una funzione d’onda
monodroma irR3. Siccome qualunque modello fisico & in ogni caso una schematizzazione
pitt 0 meno accurata di un modello tridimensionale, la questione della monodromia do-
vrebbe essere considerata acquisita. Dal punto di vista matematico in alcuni modelli, come
ad esempio moti bidimensionali, in cui non interviene il gruppo delle rotazioni tridimen-
sionali, la richiesta di monodromia potrebbe di principio cadere, ma vedremo nei prossimi
paragrafi che anche in questo caso, nell'ambito che stiamo studiando, la monodromia &
essenziale per l'interpretazione fisica dei risultati.

Il lettore a questo punto potrebbe essere, giustamente, confusof sejla (9.47) soddisfa al-
I'equazione[(9.46) in che senso non & una soluzione? Dobbiamo ricordare che la soluzione
di un’equazione differenziale & determinata solo una volta che siano fissate le condizioni al
contorno. Si hanno due possibilita:

1) Sihaa che fare con un problema di tipo diffusione: un elettrone entra in una zona in
cui € presente il campA, viene eventualmente diffuso, etc. In questo caso la solu-
zione richiede siano fissate le condizioni al bordo nella forma, tipicamente, del valore
della funzione d’onda incidente sul bersaglio. Se il cayp@ una circuitazione non
nulla al di fuori di una regione limitata dello spazio, quindi anche all'infinito, questo
fa si che le condizioni al bordo ammissibili debbano essere compatibili con l'inva-
rianza di gauge, si vedra esplicitamente che queste sono diverse da quelle libere, e
quindi la soluzione non sara una trasformazione di gauge della soluzione libera.

2) Sistudia uno stato legato. In questo caso il requisito € sempre quello di avere uno fun-
zione d’onda a quadrato sommabile, quello che deve risultare allora & che in presenza
di una circuitazione non banale lo spettro dell’Hamiltoniana cambia. Verificheremo
che in effetti & cosi.

Nei prossimi due paragrafi presenteremo due situazioni di questo tipo, il primo per motivi
puramente didattici, il secondo, ben pit importante, € per certi aspetti uno dei fenomeni
pit notevoli della meccanica quantistid&ffetto Aharonov-BohniNaturalmente la natura
obbedisce alle leggi della meccanica quantistica.

NQOTA. Il contenuto di questo paragrafo, come gia accennato, € stato volutamente presentato in forma
molto semplificata. Anche a livello di notazioni sarebbe piu utile che il lettore prendesse confidenza
con il concetto di forme differeziali e con la teoria ad esse associata. Per la parte matematica il lettore
ha moltissime possibilita di scelta, alcune potrebbero essere i testi di Novikov et al.[DNF]. Una
trattazione semplificata di moti aspetti topologici delle teorie di gauge si puo trovare nel libro di Nash

e Ser[N§]. Un testo sulle forme differenziali scritto apposta per i fisici € il libro_d| [Fla]. Per quanto
riguarda la fisica € ovvio che tutta la procedura puo essere estesa a campi dipendenti dal tempo, ed in
guesto modo il ruolo essenziale & svolto dall'integrale

Audxt = 4 codt — Adx (9.49)
fanox =

Due letture consigliate, sia per la fisica che per la matematica, sono I'articolo originale di Aharonov-
Bohm[AB5S] e I'articolo di Wu e Yang[WY75].

9.2 Particella carica e solenoide.

Consideriamo il seguente problema: il moto di una particella carica in presenza di un so-
lenoide cilindrico infinitamente lungo, di raggae con l'asse coincidente con l'asze
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Il sistema ha simmetria cilindrica. Supponiamo che il flusso del campo magnetico sia
interamente confinato all'interno del raggio Il profilo del flusso puo avere una forma
“semplice”, con una crescita parabolica come nel caso elementare di campo costante, 0 piu
addoilcita al bordo, la cosa non ha molta importanza, le due possibilita sono illustrate in
figura[9.1. Al di fuori del solenoide il flusso ha un valore limite costante, che indicheremo
con la letterdr.

Figura 9.1: Due profili per il flusso magnetig@(r) all'interno di un solenoide.

Usiamo coordinate cilindricher, 6. Il campo magnetico ha solo la componeBie= B
che dipende solo dal raggio distanza dall’assee si haB = B(r). Il flusso magnetico
dato da

r
D(r) :/ 2nrdrB(r)  B(r) = iCD’(r) B=0 perr>a
0 2mr

Abbiamo esplicitamente fatto notare che il campo magnetico € nullo nellarzeraa Un
potenziale vettore che corrisponde a questa situazione é dato da

1 1
=—@(r Ag=-—F perr>a 9.50
2r P o= F perr> (9.50)
come si verifica immediatamente dal teorema di Stokes su un cerchio di raggio

%Aid% - /02”A9 rd6 = o(r)

Il problema & completamente invariante per traslazioni lungo I'asgp@ssiamo quindi
ridurci allo studio di un problema bidimensionale. Per comodita del lettore scriviamo le
componenti cartesiane del potenziale vettdre

A = %’Ae A = ’?(Ag (9.51)

A=0 A

L'equazione di Schrodinger per un elettrone nel campo del solenoide si scrive
oy 1 (h_ e \?
'h_ﬁffn (iEI—CA> yv+V(r)y

V(r) indica un eventuale potenziale aggiuntivo che decrive I'interazione dell’elettrone con
la parete del solenoide (i fili). E pill comodo passare a coordinate cilindsiche,cosf,
y =rsinf. Cambiando variabili ed usando [e (9.51) si ha:

Ly R19 (9 1 (R1d e, \° B
| at__Zmrar(rar>W+2m<ir80_cA9> vivy= (952

19 [/ 0 1 e 2
= “omror <r8r> Vg (L 3,c®0) v +Vy
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In particolare nella zona esterna al solenoide, in cui non c’é campo magnetico, I'equazione
di Schrodinger ha la forma

Jdy  R210 [/ 9 R /L, e _\?
| at__Zrnr&r<r&|r>W+2mr2<ﬁ_2nm:F> vivy 959

Il termine costante, proporzionale &J non puo essere riassorbito da una trasformazio-
ne di gauge regolare. In effetti questo termine sarebbe eliminato, nellarzere dal
cambiamento di variabili

. e

che & proprio la trasformazione di gauge (non regol@re)|(9.47). Questa trasformazione e
regolare, cioe lascia monodrome le funzioni d’onda, solo per particolari valori, quantizzati,
del flusso magnetico:

e e hc
o F = F=nezZ F=n_ (9.55)

Questo e uno degli aspetti piu sorprendenti della meccanica quantistica: I'integrale di flus-
so non compare in una forma generica, ma solo clamedella funzione d’onda. In quanto
tale il suo significato € solo modular2 quindi per multipli di 2r la sua azione & assolu-
tamente nulla. | veri gradi di liberta associati alla topologia non banale del problema sono

perci]
e .
i— ¢ AdX
La risoluzione di un'equazione come [a(9.53), d1a (P.52), passa attraverso la determi-

nazione degli autovalori di,. Per funzionimonodromesappiamo scrivere autofunzioni ed
autovalori di questo operatore:

hoy
Ly=-— =
V=796
Per/ € Z le funzioni [9.56) sono monodrome. A priori, come gia accennato, e come visto in

alcuni esempi nel capitol@], sarebbe possibile definire un operatbgecon autofunzioni
non monodrome, il che significherebbe avere autovalori ed autofunzioni del tipo

hey v =exp(iff) {intero (9.56)

Kk=(+B (c€Z  y(6+2m) =y(0)d*P

L, & la terza componente del momento angolare e, ricordiamo, & definito tramite le variabili
canoniche xp. In presenza di un camp®, L non &il momento cinetica A mv, vedi {9.7).
Ricordiamo che classicameritgé un invariante adiabatico

1
L= E]{depe

Se assumiamo che in assenza di solenbjdga quantizzato per interi, allora questo deve
essere quantizzato per interi anche per incremento adiabatico del flusso magnetico, appunto
perché_; & un invariante adiabatico. Se lasciassimo cadere questa condizione si perderebbe
la corrispondenza fra invarianti adiabatici classici e autovalori quantistici. Notiamo che
guesta sarebbe proprio la conseguenza se assumessimo che una funzione d’onda avesse
una non monodromicita legata al fattore di fase del camipdn questa descrizione la
presenza di sarebbe riassorbita nella forma

e P
eXp(Iﬁc/o AdX)y

3Questo punto & particolarmente messo in evidenza nelle reférenzé[AB59] WY75] che il lettore pud utilmente
consultare.




16 CAPITOLO 9. INTERAZIONI ELETTROMAGNETICHE.

e questa funzione, per una rotazione dlidt P attorno al puntd, acquisterebbe una fase

exp(i%.%A;d%) = exp(i%i)

Ripetiamo: I'invarianza adiabatica dj, implica che i suoi autovalori non debbano cam-
biare per incremento adiabatico del flusso magnetico, in questo caso la monodromia delle
funzioni d’onda € obbligatoria.

Per capire le conseguenze osservabili di quanto asserito consideriamo un modello ul-
trasemplificato: supponiamo che la particella si possa muovere solo su un cerchio di raggio
R. In questo caso gli autovalori dell’energia sono determinati da

R /L, eF\? R? eF \2
BV=ome (ﬁ a 27rﬁc> v E=om (E_ 27rﬁc) (©-57)

La (9.57) rende esplicitamente conto di alcune delle cose discusse precedentemente:

1) L'Hamiltoniana quantisticg (9.55)on & unitariamente equivalente ad un’hamilto-
niana senza potenziale vettore: in effetti per trasformazioni unitarie lo spettro e
invariante, mentre lo spettrp (9]57) € diverso da quello libero.

2) Si pud avere una equivalenza unitaria solo g‘;ﬁé € Z, nel qual caso lo spettro
(9:58) coincide con quello libero. La trasformazione unitaria e propr{o 1aj(9.54), che
in questo caso & ben definita.

Vogliamo concludere I'analisi di questo modello con alcune considerazioni.

a) Supponiamo di non considerare la monodromia delle funzioni d’'onda e di effettuare
lo stesso la trasformaziore (9}54). L'Hamiltoniana risultante sarebbe

ho P (19
T2mR\ 06

che é quella libera. Si riotterrebbero logicamente i risultati precedenti assumendo
ora una non monodromia della funzioni d'onda. Possiamo sfruttare questa osser-
vazione in questo modo: supponiamo di avere un modello, bidimensionale, in cui
possano essere presenti discontinuita topologiche, che nel nostro contesto sono tagli
(cioé discontinuita) nel pianwy, queste possono essere riformulate in termini di un
problema senza discontinuita pur di introdurre un potenziale vettore che fa le veci del
campo di gaugé\. Questo € un tipo di approccio usato in diversi modelli utilizzati

per spiegare proprieta colletive in fisica dello stato solido.

b) In meccanica classica I'Hamiltonfa (9]55) si scrive

1 eF \?

Lo spazio delle fasi del sistema ¢ il cilindj@ 2z] x R, corrispondente alle variazioni
di 0 e diL, che non € quantizzato classicamemd. sono le variabili coniugate del
sistema edL € la variabile di azione. In questo contesto la trasformazione

LoL4— (9.59)

e una trasformazione canonica, quindi il sistefna (9.58) e equivalente al sistema libe-
ro, in accordo col fatto che le particelle classiche sono soggette solo ai campi elettrici
e magnetici, non risentono direttamente dei potenziali. In meccanica quantistica in-
vece, in cui lo spettro di & quantizzato, la trasformaziorje (9.58) non & permessa:
anche a livello semiclassico € ovvio che non lascia invariate le condizioni di quan-
tizzazione di Bohr-Sommerfeld = nh. Questo ¢ forse I'esempio piu semplice del
fatto che in generale non tutte le trasfomazioni canoniche classiche corrispondono a
trasformazioni unitarie quantistiche.
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c) Dalle eq[(9.5]7) segue che le autofunzioni del sistema sono:

i00—i LEt h eF \\?
2(0,t) \/ e' [ \/ expllze R (6_27:50) (9.60)

E quindi abbastanza semplice calcolare il propagatore:

K(0,t;6',0) = ;y/g(e,t)wZ(G’,O) (9.61)

Ricordiamo che il propagatore definisce I'ampiezza di probabilita di passare da una
posizioned’ all'istante 0 alla posizion@ all'istantet, e vale la relazione

w(6,1) /dGK (6,t:6',0)y(6',0)

La somma[(9.60) si valuta facilmente utilizzando la formula di Poisson per le somme,
vedi appendicg 9JA

12 o . )
K(e,t;e’,O)_L’;ﬁ )3 exp{';f(e o' — 27n)? + —E(e o' — 27n)
k=—00

_ zKO (6,t:0',0 exp{zleg (6—6 — 27rn)] (9.62)

La relazione[(9.62) & molto istruttiva. | singoli termi®(6,t; 8’,0) sono i propaga-
tori per una particella libera (come 8eon descrivesse un moto angolare), e possono
essere interpretati come I'ampiezza per il passa@gie- 6 dopo aver compiuto

giri. | fattori di fase aggiuntivi:

exp{zieg (6—-6"— Znn)] (9.63)

sono esattamente gli integrali di fase lungo questi cammini

exp( eﬁ/ A.d)d)

che si dovrebbero effettuare per riassorbire il potenziale vettore se lo spazio fosse
semplicemente connesso! Notiamo il ruolo fondamentale giocato dal principio di
sovrapposizione: i singoli termini nella (9]62) non sono periodici ed in particolare

il fattore di fase[(9.63) non lo &, ma la somma delle ampiezze € periodica. |l lettore
non manchera di osservare la stretta analogia con la costruzione di de Broglie: nel-
I'espressione “ondulatoria] (9.p0) della funzione d’onda la monodromia & proprio
all'origine della quantizzazione dli, nell’'interpretazione “corpuscolard™ (9]62) que-

sta periodicita & evidente solo se si somma su tutte le possibili traie@orie 6,
ognuna topologicamente non riconducibile all’altra. Questo tipo di considerazioni
compaiono spesso quando, con tecniche mutuate dalla regola di Poisson, si riesce a
dare una descrizione “duale” dei modelli.

Una piccola generalizzazione di questo modello sara fornita nell’appgndice 9.B.

9.3 Effetto Aharonov-Bohm.

In questo paragrafo presenteremo brevemente I'effetto Aharonov-Bohm: si tratta di alcuni
effetti sperimentalmente osservabili dei fattori di fase elettromagnetici. Questo tipo di ana-
lisi & stata per la prima volta presentata nel fondamentale lavoro[AB59], di cui consigliamo
vivamente la lettura.
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Consideriamo la classica esperienza di tipo Young, I'inteferenza di un fascio elettronico
nel caso di una doppia fenditura. lo schema é riportato in figuia 9.2. Ricordiamo che nel
caso usuale, senza campo magnetico, la funzione d'prelapprossimabile nella forma

dove y1 e v, sono le “onde” corrispondenti al passaggio nella parte superiore e inferiore
della figur&, La differenza di cammino ottico fra i due termini provoca, vedi &$uno

sfasamento relativo ) oxd
T X

ANy = —N AN =—"—
¢ A L

dando luogo alle note frange di interferenza nella misutarth = |y + y2|2.

e

Figura 9.2: Interferenza senza flusso magnetico e con flusso magnetico.

(9.65)

©=0 D=0

Consideriamo ora l'idntica situazione ma con I'aggiunta diun solenoide, infinitamente
lungo per semplicita, dietrao allo schermo in figurg 9.2. llsolenoide puo essere considerato
impenetrabile al fascio elettronico. Classicamente il suo effetto dovrebbe essere totalmente
nullo: il campo magnetico al di fuori del solenoide € nullo. Quantisticamente la situazione
e completamente diversa. Al di fuori del solenoide € presente un cAmgp0. Il termine
y1 nella [9.64) si riferisce alla propagazione (semiclassica) nella regione superiore della
figura[9.2, in questa regione, chesemplicemente connesskeffetto del campoA & sem-
plicemente quello di aggiungere una fase alla funzione d’apda&ioé in presenza dh:

. €
w1 — exp(lﬁck/lAdx) v (9.66)

Ricordiamo che l'integrale nella (9.66pn dipendedal cammino, finche restiamo nella
zona che non circonda il solenoide.
Analogamente la funziong, viene modificata da

e f
1;/2—>exp<|ﬁc./2A~dx) |z} (9.67)

Vediamo allora che ldifferenza di fasdra i due termini nella[(9.64) viene modificata per

un fattore o o o o
ﬁ:/lA-dx—ﬁ:/zA-dx:ﬁ:j{A-dx:ﬁ;D (9.68)
Corrispondentemente le differenze di fgse (P.65) diventano:

e eALd
D) = DAP|p_o+ ﬁ:q) spostamento: Jx= anchd (9.69)

Si ha quindi unspostamento delle frange di interferene@odulato dal fluss@® del campo
magnetico nel solenoide. Notiamo che per

€
hc

“4Preciseremo in seguito questa affermazione, vedi anche I’appce 9.C

®=2nr (9.70)
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I'effetto scompare.

Sottolineiamo che l'effetto di spostamento delle frange non solo mette in luce I'impor-
tanza del campo vettoriake, ma specifica che esso interviene solo nella fogaage in-
variante(9.68) esolonella forma di fase, infatti I'effetto scompare per valori della quantita
ed/hcmultipli di 2z. Della differenza rispetto alla meccanica classica abbiamo gia parlato,
bisogna anche aggiungere che all’epoca dell’analisi di Aharonov e Bohm, che hanno pro-
posto un esperimento simile a quello di figlirg 9.2, molti non erano convinti della necessita
diintrodurre i potenziali vettori nella descrizione della meccanica quantistica. | primi risul-
tati sperimentali erano a favore dell'ipotesi di Aharonov e Bohm confermando la presenza
di frange di interferenza che sispostavano al variare del flusso di campo magnetico, ma
alcuni aspetti teorici e sperimentali lasciavano aperta qualche spegazione alternativa. Tale
diatriba & stata risolta in modo definitivo in una recente serie di esperimenti sorprendenti
fatti al Laboratorio centrale di Hitachi, da Tonomura e dai suoi collaboratori.

La diatriba nasceva dai seguenti aspetti piuttosto delicati, sia sperimentali che teorici,

dell'effetto A-B. Prima di tutto, in meccanica quantistica, I'elettrone é descritto da una fun-
zione d'onda, ed e difficile escludere completamente che esso penetri anche nella regione
dove é situato il solenoiddd # 0. Un altro problema sperimentale &€ che un solenoide
non & mai ideale, non & mai infinitamente lungo, il campo magnetico non &€ mai comple-
tamente contenuto all'interno del solenoide. Inoltre, dal punto di vista teorico, ci sarebbe
la possibilita di scegliere la gauge di modo che nelle equazioni appaiono soltanto il campo
magneticaB (o le sue derivate), e non piu il potenziale vettorialégauge di Schwinger).
Se tale scelta di gauge fosse legittima, non ci si dovrebbe aspettare nessun effetto A-B,
se I'elettrone non passa mai nella regione con il campo magnetico (o se I'apparato speri-
mentale & costruito di modo che tale probabilita sia comunque trascurabile). Ogni effetto
osservato sarebbe da attribuire alla non perfezione dell’apparato.

A quest'ultima obiezione teorica pud essere risposta osservando che una gauge in cui
il potenziale vettoriale viene eliminata in favoreRI& necessariamente singolare, e percio
non € una scelta accettabile.

Le prime obiezioni sono pero piu insidiose. L'idea brillante che ha permesso al gruppo
di Tonomura di ovviare a questi problemi, sotto il suggerimento di C.N. Yang, € stato quello
di ricoprire completamente un anello magnetico microscopico con uno strato supercondut-
tore di Niobio, (Fid.9.B). Si veda la nota seguente su aspetti salienti della superconduttivita
e del fenomeno della quantizzazione del flusso magnetico.

Facendo attraversare il fascio di elettroni parzialmente dentro e parzialmente fuori il fo-
ro e osservando la frange dell'interferenza, si osservano gli effetti & la Aharonov-Bohm. Ma
I'osservazione determinante € il fatto che lo spostamento di fase diventa ozegoando
il ricoprimento superconduttore dell'anello diventa superconduttore (al di sotto della tem-
peratura critica per Nz = 9.2K), mentre al di sopra della temperatura critia, prende
un valore generico casuale, dipendente da come il campione & stato preparato.

Si osservi in particolare che

(i) I campo magnetico & contenuto all'interno dell’anello superconduttore e non pud fuo-
riuscire (effetto Meissner). Forma un selenoide di forma anulare idealsenza le
estremita.

(ii) L'elettrone & schermato dal ricoprimento esterno dell’anello e non pud penetrare
allinterno.

(iii) I flusso magnetico all'interno del anello & quantizzato:

by = anCﬁn,: %ﬁn g=2e neZ. (9.71)

Sostituendo questo nella formu[a (9.69) si ha che lo spostamento di fase & dato da
un multiplo di #, come é effettivamente osservato sperimentalmente. Si noti un
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Figura 9.3: Lo schema dell’esperimento di Tonomura et.al.

fattore 2 determinante tra la carica della coppia di Cooper 2€), responsabile del
meccanismo della supeconduttivitd e che compare fiellg (9.71) e quella dell’elettrone.

E da notare che questo esperimento rappresenta una doppia verifica, da un lato del-
I'effetto A-B (nei campioni con lo sfasamenin), dall’altro della quantizzazione di flusso

magnetico.

9.3.1 Superconduttore
Riportiamo qui gli aspetti principali della superconduttivitd nei metalli a temperature estre-
mamente basse, in un campo magnetico esterno. Gli elettroni in un metallo risentono di
una interazione reciproca dovuta agli scambi di fononi (eccitazioni del reticolo cristallino)

e possono formare stati legati, chiamate coppie di Cooper. A temperature estremamente
basse (al di sotto di una temperatura critica, che dipende dalla sostanza) le coppie di Coo-
per - bosoni - condensano e sono desdPltizz una sorta di funzione d’'onda macroscopica

Y.
Le equazioni di Maxwell e la corrente microscopica sono date dalle solite equazioni:

4n.
DxB:%rJ, B=xA:; (9.72)

o1 . q q %
J—QR v (p—EA)LP—{(p—EA)LP} Wi, (9.73)

Abbiamo chiamata) = —2|e| la carica della coppiam € la massa dell’elettrone, quindi
2mé la massa della coppia di Cooper. In generale possiamo scrivere la funzione Wonda

nella forma '
w=pd?  p(r)=ww£0, (9.74)

5| bosoni identici debolmente accoppiati tendono a occupare lo stesso stato quantistico. A temperatura al di
sotto della temperatura critica, un numero macroscopico dei bosoni occupa lo stato fondamentale (condensazione
di Bose-Einstein). Il sistema in tale stato € descritto dalla distribuzione dei numeri di occupdgreedalla
sua trasformata di Fouriew(r). |W(r)|? rappresenta allora realmente la densita, non la densita di probabilita,

delle particelle.
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Lo stato superconduttore pud essere caraterizzato da una densita costante di coppie, quindi
p = cost.# 0.
Nello stato superconduttore, le coppie di Cooper condensano:

W=ype?,  p(n=wwo, (9.75)
La corrente[(9.73) si scrive quindi

.ZQi

] q
2m

(h_D(-)—EA) (9.76)
L'equazione di continuita allora implica-j =0, i.e.,
26 =0, (9.77)

dove e stata assunta la galgeA = 0. All'interno del superconduttore IR (9]77) implica

6 = const. (9.78)
Segue la relazione
= TP, 9.79
= “ome (9.79)

nota come equazione di London. Le equazioni di Maxwell per il caBipdd A A danno:

4n. 2mpQP _
2 = ——| = = 2
A =7 A=A (9.80)

Se consideriamo ora la superficie di un superconduttore, schematizzata come #-pi@no
(il metallo occupa la zona> 0) la soluzione dellg (9.80) ha la forma

2\ —1/2
A=Ace?*, A= <2”pq ) . (9.81)

mc

La ) significa che il campo magnetico e fortemente depﬁ']éesm mezzo supercon-
duttore:B pu0 penetrare nel corpo di superconduttore soltanto per uno spessore dell'ordine
di A, chiamato lunghezza di penetrazione di London. Con dei parametri appropriati per
il piombo, per es., (assumendo che ognuno degli atomi dia un elettrone di conduzione),
p ~3.-10?%/ cm?, si ha

1me 1 \/1 1 1 g

Questo fenomeno, per cui il campo magnetico viene espulso da una sostanza supercondut-
trice & noto comeffetto Meissner

Quantizzazione del flusso magnetico Accade una cosa molto interessante nel caso che
la materia superconduttrice ha una forma di un toro (la superficie & topologicamente una
superficie toroidale).

Riflettendo il fatto ched & una variabile angolare, fa (9]77) ammette ora una soluzione
non banal€|
_27n

0(x,y,2) =cz C T nez, (9.83)

6 Nel gergo della fisica delle particelle, il fotone che media I'interazione elettromagnetica ha acquistato una
massa effettiva tramite il meccanismo di Higgs.

“Dal punto di vista matematico, le soluzioni non ba.83) rappresentano elementi del gruppo fondamentale
di st my(sh) =z.
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dovez é la coordinata lungo il cerchio del tor®, & il periodo, cioé la lunghezza della
curva. La situazione & schematicamente illustrata in figufa 9.4. In questq ¢agq,ma
vale ancora

. pa —» 1.

0% = -~ [PA= =] 9.84

1=—51¢ 12 (9.84)
La (9.83) e 1a[(9.84) implicano che la correnjteella direzionez circola soltanto sulla
superficie del toroi,.e.,in uno strato di spessore dell’'ordine; viceversa, all'interno del
toro abbiamqg = 0.

y z=0
\

\
\

N
[

—
[

o

Figura 9.4: Coordinate del toro. Si pensi la superfice=aT identificata con quella a
z=0.

Figura 9.5: Schema di un anello toroidale superconduttore. Il flusso quantizzato € quello

concatenato alla circonferena

Quest'ultimo fatto significa che lungo il cerchio al centro del toro (la c@wdella



9.4. INTERAZIONE DI DIPOLO E QUADRUPOLO ELETTRICO. 23

Fig[9.5)) vale

RO = gA, (9.85)

per cui integrando questa equazione lu@gsi ha (Eq[(9.8B))
gfdm:ﬁ/dezznnﬁ. (9.86)

L'ultima uguaglianza discende dalla richiesta di monodromia della funZigné’altra
parte,

?{dnAi:/dSDxA:/dS‘B:(D: (9.87)

$dx A € uguale al flusso magnetico intrappolato dal toro. Segue percio che il flusso
magnetico che attraversa un toro di superconduttore & quantizzato:

oo 2Fneh g (9.88)

q

Questa ¢ la relaziong (9]71) usata nel paragrafo precedente.

Indicazioni bibliografiche.

Una trattazione relativamente semplice della supercondulttivita, e compatibile con una co-
noscenza elementare della meccanica quantistica, si trova nel terzo volume delle lezioni di
Feynmari[Fey3].

La letteratura sull’effetto Aharonov Bohm & molto vasta e ci contenteremo qui di indica-
re alcune fonti che abbiamo trovato particolarmente utili. L'articolo originale di Aharanov
e Bohm é del 19508[AB59], negli articalil/AB61] si pud trovare una discussione degli autori
su vari aspetti del problema. Gli articoli del gruppo guidato da Tonomura[Tol], possono
essere utilmente integrati dall’articolo di rivistalTo2]. Una istruttiva rassegna, anche per
gli aspetti sperimentali, € il libro di Peshkin e TonomUra[PT], & altresi utile la rassegna di
Olariu e lovitzu Popescul[OIP]. In queste due ultime opere si trovano molte referenze e di-
scussioni, anche per quanto riguarda i risultati sperimentali precedenti i lavori di Tonomura
e non citati nella nostra brevissima presentazione.

Due articoli molto interessanti, soprattuto per gli aspetti che saranno trattati piu in detta-
glio nell'appendic¢ 9. sono quelli di Berry[Bér1] e di Jackiw e Redlich[JR83]. Larticolo
di Wu e Yandg[WY75] e la referenza standard per I'introduzione del concetto di integrale di
cammino del campd,, come variabile essenziale in meccanica quantistica.

9.4 Interazione di dipolo e quadrupolo elettrico.

Consideriamo I'energia di interazione elettrostatica di un insieme di particelle cariche in
un campo estern®:

U=Yeaox)= [dxp)®0)  p(0=Yasix-x) (989
| |
La variabilex nella [9.89) & una coordinata rispeto ad un’origine arbitraria. Abbiamo scritto
per comodita la[(9.89) intermini di una densita di carfca Spesso si devoino studiare
sistemi con una estensione Iimi@t&spetto alle scale tipiche di variazione del potenziale
esterno, s é la dimensione del sistema:

d0o| < 1

8Nel caso quantistico significa che i supporti delle funzioni d’onda sono concentrati nella zona in esame, ed al
di fuori, tipicamente, descrescono esponenzialmente.
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in questo caso il potenzial® & quasi costante sul sistema e quindi € utile effettuare uno
sviluppo in serie. Consideriamo un’origit@ all'interno del sistema, si§ la coordinata
relativa a questa origine, possiamo allora scrivere

P(x) = B(0) + AP(0) + SE&AP(0) + .. (9.90)

Tutte le varie funzioni saranno d’ora in poi intese come calcolaf®eriralasceremo questa
indicazione. Sostituendo nella{9]89) ed usando la definizione di campo elettrico (statico)
E = -0 :

U= /d3§p(<§) [m—gEigigjaia,-qu... (9.91)

Discitiamo separatamente i vari termini di questa espressione.
Carica. |l primo termine &

[depEo=ya0—qo (9.92)

Q ¢ la carica totale del sistema. E I'energia potenziale elettrostatica del sistema, trattata
come un tutt’'uno. Notiamo che questo termine per traslazioni dell’origine delle coordinate,
O — O — a, cambia, per piccola, di —alld, quindi € invariante al primo ordine solo se

Q =0, in ogni caso € invariante all'ordine 0, quindi ha un senso ben definito.

Dipolo. Il secondo termine nell@ (9.p1) si scrive
~E- [¢%p(§) = —E- Y et (9.93)
a

L'operatore
d= Z e€a (9.94)
a

si chiama, come & notonomento di dipolo del sistema, o brevemente dipolo. Notiamo
che la definiziong (9.94) & invariante per traslazioni del sistema di riferimento solo nel caso
di carica totale nulla.

Facciamo comunque una osservazione che ci servira anche in seguito. L'utilita di usare
i momenti di dipolo, quadrupolo etc. consiste nel fatto di considerare via via delle strutture
pil complicate per unsistema di particelle. Quindi all'ordine zero il sistema sara rappre-
sentato dalla sua massa e dalla carica elet@icaoi si introdurra il dipolo, il quadrupolo
etc. Una particella elementare, I'ordine zero in questa descrizione, € rappresentata da un
ket della forma

IP,SS;) (9.95)

Dove P él'impulso totale del sisem& lo spin. La variavile conigata B € la coordinata
del centro di massa e lo spin, per un sistema compodiefigitodal momento angolare
nel sistema del centro di massa. Quindi se vogliamo continuare ad usare questi numeri
quantici dopo aver introdotto il dipolo, il quadrupolo etc, converra continuare ad usare un
sistema di riferimento con origine nel C.M. Notiamo che il centro di massa del sistema non
necessariamente coincide col centro di carica.

Il dipolo ha alcune regole di selezione particolarmente importanti. Consideriamo il
problema nel sistema del centro di massa, tralasceremo l'indicazione del numero quantico
P = 0 nella notazione degli stati.

1) Supponiamo che I'Hamiltoniana del sistema sia invariante per parita, esiste allora
un operatore unitari® e gli autostati della Hamiltoniana possono essere classificati
come autostati contemporaneitdiie P. PoichéP? = 1 eP" = P~1 gli autovalore di
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P sono delle fasinp. d & un vettore polare cioé il suo trasformato per parita cambia
segno:PdP~! = —d quindi, per ogni autostato ¢l e P:

(wldy) = (y|P"TPdP~*P|y) = —[np|*(y|d|y) = —(y|d|ly) =0  (9.96)

Quindi in ogni autostato di questo tipo il valor medioddg nullo. Se il sistema &

non degenere, (a parte la degeneraziong)swutti gli autostati diH sono di questo

tipo, quindi non si hanai dipolo permanente su stati stazionari. L'avverbio “mai”

e stato usato perché, come vedremo, in natura esistono sistemi che sono approssi-
mativamente degeneri, ad esempio I'atono di idrogeno non relativistico, ma questa
degenerazione & sempre rimossa. Questo problema sara ampiamente discusso nel
prossimo capitolo.

2) Per Hamiltoniane invarianti sotto parita il dipolo ha elementi di matrice solo fra stati
a parita opposta, questa éuna conseguenza diretta del punto precedente.

3) Il dipolo € un vettore, quindi il teorema di Wigner-Eckart impone che puo avere
elementi di matrice solo fra stati che differiscono al piu di 1 in momento angolare.
La transizione 0- 0 & vietata.

4) Per le componenti del vettodevalgono le regole di selezione dettate dal teorema di
Wigner-Eckart. Gli unici elementi di matrice non nulli sono della forma:

Per tutti gli elementi di matricel’ =J,J+1 0-»0

dZ <‘],a‘]£|dz“]a‘]2> ‘]é = ‘]Z
d+ :dx+|dy <J/,J£‘d+‘\],‘]z> Jész‘Fl
d_ :dx—|dy <J/,J£‘d+‘\],\]z> Jész_l

Quadrupolo. Le sorgenti del campo esterno sono al di fuori della zona occupata dalle
cariche, quindd?® = 0 e si puo riscrivere il terzo termine del[a (9.91) nella forma

oY e (%MEN - 69%) g0 0.97)

Il tensore

Q=Y (3&17e — &™) (9.98)

si chiamamomento di quadrupolo del sistema. Q;; € un tensore simmetrico a traccia
nulla, quindi trasforma come un momento angolare 2. E inoltre una quantita pari
sotto inversione spaziale. Anche per il quadrupolo si pud fare I'analisi sulle trasformazioni
sotto traslazioni, per quanto detto definia@g nel sistema del centro di massa. Si hanno
immediatamente le seguenti regole di selezione:

1) Q;j ha elementi di matrice solo fra stati con la stessa parita.

2) Deve essere
min(|J—2)) <J <J+2

cioe il momento angolare pud cambiare al massimo di 2.

3) Sipossono scrivere le componenti sferich€gie queste hanno le stesse regole di
selezione delle armoiche sfericltg,. In particolare pef),; si deve averd, = J,.
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Il teorema di Wigner-Eckart assicura che all'interno dello stesso multipletto di momento
angolare gli elementi di matrice @); possono essere scritti come gli elementi di matrice

di 0
Qi 2J(21—-1)

Il coefficienteQj, che coincide con il valor medio €),, sullo statal, = J (come si verifica
immediatamente dall@ {9.99)) é cio che si intende normalmente per momento di quadrupo-
lo. Questo € un punto in cui € particolarmente ovvia la scelta del sistema di riferimento:
perché 1a[(9.99) abbia un senso, per un nucleo ad esethgaye essere lo spin, e questo
e il momento angolare del sistemal centro di massa.

Il lettore pud trovare maggiori dettagli sull'interazione di quadrupolo nel prossimo
capitolo.

(JiJj +3;% — ng&,—> (9.99)

9.5 Interazione magnetica.

Classicamente l'interazione elettromagnetica € descritta dalla Hamiltoniana discussa nel

paragrafo precedente:

H= o (0 SA) teo (9.100)

in questo paragrafo cercheremo le correzioni da apportar¢ allaf9.100) per tener conto dello
spin. Queste correzioni sono intrinsecamente legate all'invarianza relativistica quindi trat-
teremo assieme anche questo problema, limitandonci agli ordini piu bassi nel parametro
v/c, dovev indica la velocita della particella.

Cominciamo a considerare il caso di una particella in un campo magnetico cd3dtante
ed eventualmente un potenzigbeé il caso ad esempio di un elettrone atomico immerso in
un campo magnetico (effetto Zeeman). Scrivendo

A:%B/\r (9.101)

e sostituendo nell& (9.100) abbigfho

1

-t & : & 2
H_Zmp mC(BAr) p++ (BAT)“+ed

8mc

utilizzando la ciclicita del prodotto triplo fra vettori ed introducendo il momento angolare
£ =r Ap possiamo infine scrivere
15

e & )
= 5P —mé-B+W(B/\r) +ed (9.102)

In generale il termine lineare nel campo magnetico nell’Hamiltoniana di interazione descri-
ve il momento manetico del sistema, quindi chg Ta (9.102) assegna un momento magnetico
“orbitale” all’elettrone == in perfetto accordo con la teoria classica. Come sapp#aéno
quantizzato in unita di quindi I'unita di momento magnetico é il cosiddetttagnetone di
Bohr
_ lelp

B~ 2mc
Consideriamo ora il momento angolare intrinsecdell’elettrone. Ci aspettiamo che a
guesto momento angolare sia associato un momento magnetico, che sara il momento ma-
gnetico intrinseco della particella ed in generale possiamo scrivere

(9.103)

e
u= gz—mcs (9.104)

9Si usa il fatto chéJ; A; = 0 per il campo[(9.1q1).
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ed una corrispondente interazione col campo magnetico
e
—u-B=-g—s-B 9.105
H mecS ( )

In ultima analisi il fattore di proporzionalita & fissato misurando l'interazione della parti-
cella col campo magnetico, che in totale, per piccoli valoB @& quindi:

e

H =
! 2mc

(£+gs)B (9.106)

Dal punto di vista sperimentale si trova, studiando appunto I'effetto di un campo magnetico
sui livelli atomici, come vedremo nel prossimo capitolo, che in ottima approssimazione, per

I'elettrone:
(9.107)

Uno dei grandi successi della fomulazione relativistica della teoria dell’elettrone, dovuta a
Dirac, e stato quello di mostrare come scrivendo I'equazione di Schrodinger relativistica
pit semplice possibile per una particella con spin 1/2 il vafpre2 venga predetto.

Nota. Invitiamo il lettore a prendere questo tipo di affermazioni “cum grano salis”, per i seguenti motivi:

e Non tutte le particelle cariche di spin 1/2 hanno fattore giromagnetico 2, ad esempio per il pyotohé. Ci sono
anche particelle scariche di spin 1/2, come il neutrone, che hanno un momento magnetico.

e |l valore sperimentale dj per lo stesso elettrone & leggermente diverso da 2, quando si afferma che la teoria di Dirac
predice 2 si vuole in realta dire che nel’ambito del modello standard delle interazioni fondamentali le correzioni dal
valore 2 sono calcolabili, e anzi costituiscono una delle conferme piu precise del modello stesso.

e Dal punto di vista teorico il modello che descrive I'accoppiamento dell’elettrone col campo elettromagnetico che for-
nisceg = 2 (a meno di correzioni calcolabili come detto) si basa sul fatto che I'interazione e scrivibile nella forma di
combinazione linearg—e/cA, come nella[(3.170). Nello stesso modello standard delle interazioni fondamentali ci sono
altra particelle, come i bosoWV delle interazioni deboli, che non hanno solo un accoppiamento di questo tipo.

Riassumendo: I'affermazione che la teoria di Dirac prevgde 2 € corretta ma in un senso piu complicato di quello che
normalmente si trova sui libri di testo elementari.

9.5.1 Interpretazione semiclassica.

Classicamente il momento angol&eli un corpo dotato di momento magnetigcha un
moto di precessione attorno al campo, descritto dalle equazioni

= _unB (9.108)

vale a dire il camp® esercita un momento della forza papa B. Poicheu é proporzio-
nae anaIIg @B) segue ct® 93 =0, cioé si ha in effetti una pura rotazione del vettore
S, che lascia inalterato il modulo.

Indicando con il versoré la direzione diSe dip la (9.108) si riscrive

dc _n
dt S
La velocita angolare di precessione & pewié- /S

inB (9.109)

Esercizio 1. Considerare il camp8 diretto lungo I'asse, scrivere in componenti carte-
siane il versord e verificare esplicitamente questa affermazione.

Il teorema di Larmor, che & quanto spiegato all'inizio del paragrafo, afferma che per
un momento angolare orbitaleil momento magnetico & dato gda= =L, in generale
poniamop = g55:S. A priori, classicamente, il valore dinon & fissato, ad esempio se si
immagina 'elettrone come una sfera carica che gira su se stessa tale valore dipende dalla
distribuzione di carica della sfera. Il valore del momento magnetico é:

e e e
p=ug= IomeS = Q%ZmCC n=gS;
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e per particelle di spin 1/2
_g9e g
= %ome™ 2Me
Alle stesse conclusioni si arriva considerando la media su uno stato classico delle
equazioni del moto quantistiche. Le equazioni del moto per lospif/2c sono

ds i i

Ponendq = g55.5=gus/20, H = —p - B siricava, dalle regole di commutazione delle
matrici di Pauli:

(9.110)

ds u _ Ous
at ——ﬁB/\O‘: S SAB

Il valor medio su uno stato classico definisce la direzione dello &in= S§, prendendo
la media sullo stato si ottiene [a(9.109), usando la definizione (9.110).

9.6 Correzioni relativistiche: interazione LS.

Vediamo ora quali altre modifiche sono da effettuare nélla (9.100) per tener conto del-
lo spin. In un atomo semiclassicamente I'elettrone percorre delle orbite con velocita
sotto l'influenza del campo elettrico coulombiaBogenerato del nucleo. Nel sistema

di riferimento di quiete dell’elettrone viene percid percepito un campo magnetico indot-

to B’ = EAZ, assumendw/c <« 1. Ci si aspetta percid un’interazione del momento
magnetico elettronico del tipo
e v
H =—-9g—s-(EA- 9.111
=05 ( c) ( )

In realta questo ragionamento non tiene conto del fatto che il sistema di riferimento di
quiete dell’elettrone non € un sistema inerziale: € vero che si pud sempre fare una tra-
sformazione che ci conduca, istante per istante, in questo sistema, ma I'accoppiamento fra
momento magnetico e campo magnetico descrivat@zionedi u, bisogna cioe scrivere
delle derivate rispetto al tempo e quindi considerare sistemi di riferimento a tempi diver-
si, in poche parole bisogna utilizzare le equazioni del moto della particella per seguire il
cambiamento di sistema di riferimento. Il modo corretto di affrontare il problema é quello
di scrivere I'equazione del moto per la precessione del momento magnetico in modo che
valga per qualunque sistema di riferimento. Il risultato finale &€ molto semplice: il fgttore
viene modificato irg — 1, questo effetto si chian@ecessione di Thomas.

Nel caso particolare in cig = 2 la precessione di Thomas dimezza I'accoppiamen-
to. Una trattazione semplificata dell’effetto € data nei complementi. Scriviamo allora
l'interazione nella forma:

H :_(g_l)%:s.(EA%):_(9_1)Weczs.(mp) (9.112)

Per un campo elettrico generato da un potenziale certrateme negli atomi,

1do
Ef—DCDf—FWr (9.113)
e l'interazione assume la forma:
e 1do

Per un campo coulombian®,= Z|e|/r. Ricordando che la carica dell’elettrone-¢e|

€ Z

M =0V s

s-¢ (9.115)
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Linterazione espressa dalfe (9.114), (9]115) prende il nonieteliazione di struttura fi-
ne. La (9:11%) indica una correzione alla Hamiltoniana proporzionalgc3, fuindi & un
secondo ordine nelle correzioni relativistiche: un fattofe deriva dall'interazione ma-
gnetica in quanto tale, l'altro & dovuto al fatto che lo stesso campo magnetico effettivo
visto dall’elettrone é dell'ordine di/c, essendo stato ottenuto da una trasformazione di
Lorentz del campo elettricB. L'interazione [[9.1T}4) & particolarmente interessante perche
in assenza di campi esterni € il primo segnale di come la presenza dello spin possa modi-
ficare la dinamica, ed in particolare i livelli energetici. Per un livello con numeri quantici
L, S assegnati, se I'Hamiltoniana non dipende dallo spin si deve avere una degenerazione
(2L+1) dovuta all'invarianza per rotazioni orbitali, ed uf26+ 1) perche 'Hamiltoniana
non dipende d&. Il termine [9.1T4) € uno scalare, quindi commuta doa L + S, ma
non commutaconL e S separatamente: ci aspettiamo percid che un livello energetico
E(n,L,S) venga “disintegrato” in sottolivelli cod fissato. Dalle regole di addizione del
momento angolare sappiamo che ci soa-2L modi di costruirel a partire da una data
coppiaL,SseL > S o0 2 +1 seS> L. Ci si aspetta quindi, ad esempio, che un livello
np dellatomo di idrogeno, quindi con spin 1/2, venga separato in 2 livelli differenti con
J=1/2,3=3/2 I due livelli sono indicati, con ovvia notaziomg, /,,npz .

Esprimendo tutte le lunghezze presenti ndlla (9.115) tramite il raggio di &okr
h?/mé e scrivendd = AL ,s= RS si ha

e\’ ez a3
La costantexdimensionale
o= f ~ i (9.117)
" hc ™ 137 '

prende il nome dcostante di struttura fine determina I'ordine di grandezza dell’effetto:
la separazione percentuale dei livelli & dell'ordin@di~ 10-4. In corrispondenza le righe
spettrali di transizione mostreranno una sottile struttura, una struttura fine appunto, da cui
il nome.

Per un sistema a molti elettroni I'interazione ha la forma

H =35 fii-s (9.118)

avendo indicato coffi i termini radiali dei singoli elettroni. La situazione in questo caso e

in realta complicata dal fatto che ogni elettrone sente non solo il campo elettrico centrale
del nucleo ma anche quello degli altri elettroni, corrispondentemente l'ipotesi di campo
radiale va intesa come umaediasulle funzuioni d’onda degli altri elettroni. In questo
caso il momento angolare totaleé un operatore che commuta con I'Hamiltoniana (per
l'invarianza sotto rotazioni spazialijl € sicuramente conservato, quindi an€heommu-

ta conH. In queste ipotesi,S sono approssimativamente buoni humeri quantici e per
ragioni di simmetria, o piu in astratto per il teorema di Wigner-Eckart, su un sottospazio
dell’Hamiltoniana corl, Sassegnati, I'operatorg (9.1]118) ha la forma

H =AL-S (9.119)

dove A & una costante che dipende dal livello. A differenza del caso idrogeAom®
avere a priori anche un segno negativo. Discuteremo questo argomento nello studio degli
spettri atomici.

Accanto alle correzioni?/c? indotte dallo spin, esistono altre correzioni relativistiche
che chiaramente influenzano il valore dei livelli energetici ma, essendo indipendenti da
non alterano la struttura generale dello spettro. Nei complementi vengono esposte in modo
semiclassico queste ulteriori correzioni nel caso di un sistema idrogenoide.
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9.7 Interazione Iperfina.

Se un nucleo possiede uno spin in generale possiedera anche un momento magnetico
Come ordine di grandezza il momento magnetico nucleare € legato al magnetone cleare

_ leh

9.120
mpC ( )

dovem, & la massa del protone, quing & circa 2000 volte pit piccolo del magnetone di
Bohr. In questo paragrafo esponiamo brevemente come si possa tener conto del momento
magnetico nucleare nello scrivere I'Hamiltoniana di un elettrone atomico, in particolare
tratteremo I'atomo di idrogeno.
Abbiamo visto nei paragrafi precedenti che in presenza di campo magnetico esterno
l'interazione di un elettrone si scrive, al primo ordine nel campo, nella forma
e

H|: A.p_gis.B:

e

Nell'ultima uguaglianza abbiamo assumgte- 2. Il dipolo nuclearguy genera, appunto, un
campo di dipolo:

A

=”“;3N E—uN/\EI% B—OAA (9.122)

Il calcolo del campo magnetico richiede un po di cura per trattare la singolarita th Si
ha

B=-0OA (uN /\|:|:.> Z—HNDZ%-F(#N'D)D% (9.123)

Consideriamo ora I'espressiog@j(1/r), in generale questa presenta delle singolarita per
r = 0, in forma genericamente di funziodi Negli elementi di matrice le uniche funzioni
non nulle nell’'origine sono quelle in onda quindi a simmetria sferica, possiamo perco
assumere la singolarita a simmetria sferica nella forma

3i3j1=(3|3j1> +c6ij6(3)(r):—13(5i,-—3Xi—)2(j)+c6ij6(3>(r)
r I/ reg r r

effettuando la traccia e ricordando di&(1/r) = —4x8®)(r) ricaviamoc = —4x /3 quindi

1 1 XiXj 4
90y =3 (3 -337) -5 800)

Esplicitando anche il primo termine singolare nella (9]123) si ha

.1 8r
B =— (un —3(unF)F) 5+ und(r) (9.124)

Utilizzando 1a[(9.12R) si ha infine
e /1 e 1 8rn
——— | Zpun-) - = |— .S5— P -s) = 4 — ©)
H mc<r3“N é) mc[ (un-s—3(un-F)F-9) r3+ 3uNs6 (r)| (9.125)

Per evitare confusioni sui segni esprimiamo tutti i momenti angolari in unfiasdirivendo
s=hSetc., introduciamo il fattore giromagnetico per il nucleo:

__|eh
UN=0ON 72mpCSN

0attenzione ai segni in questo paragrafo! Ricordiamo che la carica elettredioagativag = —|€].
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ottenendo, tenendo conto del segno della carica elettronica:
1
Hi = 29N|HBNN|73L SN+ (9.126)
1. . 8r 3)
+29n[pein] | 5 (3(FSN)((FS) —S-Sn) + 55 SuS8™(r)

Il primo termine ha contributo nullo in ondamentre l'ultimo & non nullo solo in ond3,
per funzioni cioé che non si annulano nell’origine.

Il secondo termine ha un’apparente singolarita®ima in realta non & singolare. La
parte orbitale & proporzionaleg = r2g;; — 3xx; cioé un tensore simetrico a traccia nulla,
un quadrupolo. Consideriamo un elemento di matfa;;|b). Se entrambi gli stati sono
in ondaS questo elemento di matrice e identicamente nullo per le regole di selezione sul
momento angolare, quindi almeno uno dei due stati deve essere ipora alta. In que-
sto caso il prodottay;; yy, si annulla almeno comé*kk > 0. La parte radiale dell’elemento
di matrice allora é della forma

.rzdr%r”k
r

e non presenta singolarita. Se aggiungiamo la regola di selezione sulla parita vediamo
anche che gli elementi di matrise- p sono nulli e I'esponentk delle formule precedenti
é addirittuta maggiore di 1.
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Appendici e Complementi

9.A Formula di Poisson

La formula di Poisson é:

z f(O+Tn) = TZ g ko (9.127)

n=—oo

dove f indica la trasformata di Fourier. In particolare flee= 21

iko
Z F(6+2m) = ; k)& (9.128)

n=—oo

Dimostrazione. Consideriamo la funzione

F(0)=5 f(6+Tn)

n

questa e chiaramente una funzione periodica di perfodspandibile in serie di Fourier

F(0) = ché Fho

1 T P2 l T P2
— = E 7|*k9:7/ —i<ko f T
o T/ode ()40 = £ [doe ¥y (0T
B 1 © 7izlk67 1.27n
= [ get@e T~ Zi(TH

che & 1a[(9.127).

Integrali gaussiani.

Ci saranno utili i seguenti integrali

/Haxef%aszrbx _ ZjebZ/za /Jro:jxé%axzfibx _ /%ﬂiefibz/Za (9.129)

a

Il secondo € ottenuto dal primo con la sostituzi@ne> —ia, b — —ib e va inteso come
continuazione analitica.

Propagatore.
Dalle (9.60) e dalla definiziong (9J61) segue:

1 ; Nt N (k— eF
K(6,t;6’,0) ZW (6,t)y;(6',0) = Egék“’*% 1t o (< 2ms)° (9.130)

33
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Il secondo esponenziale nella formula precedente si riscrive usando il secondo integrale

delle [9.129) con

eF mR
b=k=Zmc 2 W

e—itﬁ(kfﬁ%)zz [ m / dxéTX k— 25 )x
i2zht

cioe e la trasformata di Fourier della funzione

nella forma

_ mR2 mR2X2
f(x) = i27tﬁtelT o ZameX (9.131)

Quindi dalla [[9.13p) e dalla formula di Poisson (letta da destra a sinistra) si ha,=con

6 — 0’ nella [9:13]):

R mR oy o i
K(G,t,e/ 0) Irznn.ﬁt(_.l‘l2t (6—6'+27n)? equrc (6—6"+27n) (9'132)

che coincide con la formul@ (9.62) usata nel testo.

9.B Oscillatore e stringa magnetica.
Come semplice generalizzazione della particella vincolata ad un cerchio, consideriamo

ancora il modello[(9.33) in cui il campo magnetico & confinato nell’origine, mentre si ha
un potenziale esternd di tipo armonico che confina il moto. L'Hamiltoniana é percio

10 [ 0 1 2re \?> 1_ ,,
He — =2 (h 2 )y (L-"5F) 42 1
2mr or <r8r>+2mr2( ¢ ) Mo (9.133)

Poniamo per brevita

~h \/ "R ox " ho

L'equazione agli autovalori prende la forma

10 0 Kz 2 ' 1 KZ 2
ey=—12 (xax> vt SRy =y Sy Sy (a3
Posto
l[/:XKeixz/zf
Siha
X"+ (14 2k — 23) ' + (e — 2(14k))xf =0 (9.135)

La soluzione generale del[a(9.135) &

1 ¢

52 2,1+K‘X)+Cb(fl)KX_2K1F1( 77777 1—x,%%)

f(x) =Ca1F1(5

dove;Fi(a,c;x) € la funzione ipergeometrica confluente:

a@a+l)...(a+n-1) 2"
F(c+n) nt

1F1(a,c;2) =T (c) i (9.136)
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Quindi
1
y=e X/ Cax"iFl(E—%+g,l+ K, + (9.137)
1 & «
_N\Ky KR (—-_ ¢ 2 2
+Cp(—1)*x 1F1(2 2 2,1 K,X%)

La regolarita nell'origine impon€, = 0 perx > 0 eC, = 0 perx < 0. Asintoticamente
1Fi(a,cz) ~e2°°

quindi se si vogliono soluzioni a quadrato sommabile la serie deve troncarsi, questo puo
accadere sa = —n, nel qual caso la funzione ipergeometrica coincide con i polinomi di
Laguerre. Si deve percio avere

€ E
Kk>0: (1+1<)—§_—2n %_2n+1<+1
€ E
Kk<O0: (1,,(),5_,2,1 %—ZH*KJFJ.
Gli autovalori dell’energia sono percio
E_ﬁw{2n+1+’£—zﬁ”:F’} (9.138)

Anche in questo caso l'effetto della stringa magnetica & stato quello di uno shift sugli
autovalori dell’energia. Poichée Z le autofunzioni sono monodrome.

9.C Complementi sull’effetto Aharonov-Bohm.

In questo paragrafo presentiamo per comodita del lettore i risultati principali ottenuti da
Aharonov e Bohm, e perfezionati in lavori successivi, nel caso di un modello esattamente
solubile. Lo scopo & quello di mettere in luce i punti delicati ed alcune questioni di principio
Su cui hon abbiamo ritenuto opportuno soffermarci nel testo principale.

Il modello € quello di stringa magnetica, gia incontrato nel testo: un solenoide infi-
nitamente sottile che trasporta un flusso di campo magnetic8i tratta di un problema
bidimensionale. Il potenziale vettore ha solo una componente azimutale:

O] y X
L'equazione di Schrédinger ha la forma:
dy 19 [/ 0 1 e \2
NSt = "Zmrar <r8r> ¥+ g (L 256®) ¥ (9.140)
Per situazioni stazionarie, posto come consueto
h2k2
E= > (9.141)
'equazione diventa
2 19 1[0 2 ed
[3r2+rar+r2 (&9+|a) Klw=0 "« 2nhc (9.142)

La situazione che vogliamo descrivere € quella stazionaria: un fascio elettronico incidente
dax = +oo, incontra la stringa magnetica. L'elettrone non pud penetrare nel solenoide, e
guesto é schematizzato dalla condizione

w(0)=0 (9.143)
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Se i potenziali hanno un effetto fisico si deve osservare una diffrazione dalla stringa, dipen-
dente dal flussab. La diffusione del fascio elettronico viene decritta in questo modo: la
funzione d’onda asintotica, per grangi scrivibile nella forrmi&]

W = Vine. + Wdit ~ Winc. + (8) (kr)~Y/2eX (9.144)

La dipendenza fain yyis ¢ € quella di un’'onda sferica in due dimensioni. Il numero di par-
ticelle al secondo che vengono diffuse ad un’angolo compresbar@+de & |f(6)|°de,

come si verifica immediatamente calcolando il flusso dell’'onda diffusa. Matematicamente
quindi bisogna procedere in questo modo:

1) Scrivere la funzione d’ondgs, che corrisponde alla situazione fisica che abbiamo
scelto.

2) Risolvere I'equazione di Schrédinggr (9.149), € la condizione al bordo.

La determinazione djj, € il primo punto delicato. In assenza di stringa un elettrone libero
che viaggia lungo I'assein direzione negativa sarebbe descritto da una funzione d’'onda
v = exp(—ikx). Questa funzione perd non & consistente come condizione al bordo, non
soddisfa asintoticamente I'equaziope {9]140) e non € consistente con 'invarianza di gauge.
Infatti se si vuole descrivere un flusso costante di particelle occorre figsarenodo che

la correntegage invariantevedi eq[(9.1B):

h e
i =i— [(Oy) v —y*(Oy)] — —A |y|? 9.145
j=io (O y—y (Oy)] - —Aly| ( )
sia costante. la soluzione & considerare
Win = exp(—ikx— a0) = exp(—ikr cos® — af) (9.146)

Lintervallo di variazione d € —x < 6 < +x. La (9.14%) non & periodica i, e su questo
commenteremo in seguito, ma comungue descrive nella Aorad un’onda incidente
che da luogo ad una corrente gauge invariante costante, come si pu0 verificare usando le
componenti cartesiang (9.139) pere le relazioniokd = —y/r?, &6 = x/r?. Si ottiene
jx = —hk/m, j, = 0, che corrisponde ad un flusso di una particella al secondo che viaggia
in direzione dell'asse x negativo.

Cerchiamo una soluzionegolare, quindi monodroma, dell'equaziong (9.142). La
periodicita e la regolarita if significa chel, ha autovalorh?, con/ intero quindi si puo
scrivere

+00 )
=35 aR(r)e® (9.147)
{=—00
e le funzioni d’'onda radiali soddisfano a
22 19 1

Szt T~z (@) +K Ri(r) =0 (9.148)

Passando a variabili adimensionali= kr, vediamo che 1a[(9.148) & la equazione che
definisce le funzioni di Bessel, la soluzione generale é
Adipa+ BJ—(/?+0¢)

Poicheél, (z) ~ ¥ perz— 0 le soluzioni regolari, vedi ef.(9.143), sofp | € quindi:

40 )
=3 adiq2e (9.149)
f=—00
| coefficientia; devono essere determinati in modo da soddisfare la condizione al contorno.
Riportiamo ora i risultati principali di Aharonov Bohm, rimandando al lavoro originale
per le dimostrazioni:

11Commenteremo in seguito su questa decomposizione.
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1) I coefficientia, valgono
ay = (—i)lt+el (9.150)

2) Separiamo la soluziong (9.149) a seconda del segfio di

Y=yt y3=(-)"Jy 2
~+oo0 . — )
yi= /Z ()30, 0(2€°  ya= 5 ()26 (9.151)
=1 {=—o0
Si ha subito:
WZ(neva) = l[/l(r,—97—a) (9152)

Utilizzando lo sviluppo asintotico delle funzioni di bessel & possibile valutare le

somme[(9.151):

0 6<0 g l#0g7kx 9 <0 1
i— {e—'“"e—'kx o~0 V27 {o g-o0 RO

Questo éesattamenteil risultato aspettato dall’analisi dell’'esperimento di interfe-
renza, la soluzione nei due semipiani & asintoticamente una trasformata di gauge
della soluzione libera. notiamo che semiclassicamente i momenti angalafi
corrispondono a traiettorie di elettroni con momento angolare positivo e quindi pas-
santi nel semipiano superiore (almeno per grafdviceversal < 0 corrisponde a
traiettorie nel semipiano inferiore.

3) Perr — e f > 1/r e possibile valutare lo sviluppo asintotico, compreso il termine
di onda divergente, ottenendo:

iot6—ikr cosf eikr e—i8/2
e '™ ——————SinTot———— 9.153
Yy — (27r|kr)1/2 COS(%) ( )
Corrispondente ad una sezione d’urto
in? 1
do_sima (9.154)

d6 271k co26/2

Notiamo che I'apparente non monodromia ddlla (91153) & dovuta solamente al fatto
che lo sviluppo asintotico delle funzioni di Bessel non & uniforme, usando sviluppi
piu sofisticati, vedi ad esempio le referenze |Alv] si mostra esplicitamente che la
funzione d’'onday & monodroma, come d’altronde € stato imposto sin dall'inizio.
Notiamo che la sezione d'urtoperiodica nel parametro di flussa, confermando

le aspettative dell'esperienza con le frange di interferenza.

Un’'analisi alterativa dell'equaziong (9.7142) é fornita nella referenza [Berl]: una tecnica
simile a quella vista nel paragrdfo 9.A permette di ottenere la soluzione di Aharonov-Bohm
sommando su un intero che rappresenta il numro di “giri” attorno alla singolarita.
Nel caso particolare = 1/2 la somma sd nell’equazion€[(9.149) puo essere effettuata
analiticamente il risultato é:
. 1/2
v = M2 it +hrcoso) / falireoso) exp(iz2) dz (9.155)
V2 0
In questo caso la monodromia € evidente: la funzione d’améanulla sulla line& = .
Vogliamo infine citare il fatto che la soluzione pud anche essere scritta nel caso in cui
la stringa magnetica sia circondata da un cilindro impenetrabile di ré&gi©, nel limite
R — O si riottiene la soluzione di Aharonov-Bohm.
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9.C.1 Teorema di Eherenfest.

Abbiamo visto che si ha diffusione in presenza di una stringa magnetica. Visto che il cam-
po magnetico € nullo, come & compatibile questa conclusione con il teorema di Eherenfest?
Consideriamo uno stato qualunqyree calcoliamo la variazione nel tempo del valor me-

dio dell'impulso, questo & quanto di piu simile alla forza si possa definire in un contesto
guantistico:

f= m%/[w*vw] = %/{(Hw)*ww—w"m\/Hw} = |
— & [{Hyymy -y ) [y Hmy (2.156)

Usando le regole di commutaziorje (9.18) per il vettaré secondo termine dell@ (9.156)
siriduce a

e . B
z:/11/ VAB—BAV]y

che € l'usuale forza di Lorentz. Questo termine € nullo nel caso di una stringa magnetica. Il
primo termine nellg{9.156) € usualmente trascurato perché se I'opert@toaggiunto
si annulla. Nel nostro caso il problema ha una singolarita nell’origine quindi valutiamo
guesto contributo isolando I'origine con un piccolo cerchio di raggadla fine del calcolo
faremo il limiter — 0. 1l dominio di integrazione é limitato da un cerchio di raggie
da un cerchio di raggi® che manderemo all'infinito. Gli integrali verranno trasformati in
integrali di superficie tramite il teorema di Gauss. Il contributo dal cerBrédrascurato,
e il caso che si verifica, ad esempio, con pacchetti d'onda Iocal@ati

Consideriamo una singola componente della velocita, ad esempiobbiamo valuta-
re

i n
ﬁ/{(Hw)*mw—W*HmV— Xy} (9.157)
L'Hamiltoniana, usand@A = 0, ha la forma

A2 eh e
H=——0%°- —A0+-—A?
2m imc + 2me

Il termine quadratico i\ non da alcun contributo allg’(9.357). Il termine lineare si scrive:

i " 2 * * _ E 2 * _
mc./d X [(Ay* ) Amyy + y*A0myy| = mc/d xO(y*Amyy) =
e a , .
:—%/rdeg(u/ Amyy) =0
Linegrale si annulla perchd, = 0. Passiamo ora al termine[if.
ih 2 2., % *M2
_?n/d D%y myy — y DI myy | =
ih y y
= o [ OOV muy -y D(muy)}
ih

e J .,
=~ rd@{w &(mvxw(arw)mvxw} (9.158)

Dovremo efettuare il limite — O dell’espressione precedente. Nel caso della soluzione di
Aharonov-Bohm, avendosr(0) = 0, i contributi finiti devono sorgere da singolarita nelle

12 per il segno nelle espressioni seguenti ricordiamo che la normale esterna alla superficie di eatjgitta
insenso contrario &
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derivate. Scriviamo I'espressione per gli operatorinel caso della stringa magnetica

o 8 _Pfo eh®y] Afo . y]_H
MU= Px— A= 5 [8x c 27”2] =- [ax—larz} Dy (9.159a)
e ﬁ 0 .ehd x ﬁ 8 X ﬁ

Consideriamo per semplicita il caseOa < 1/2. Dallo sviluppo in serie delle funzioni di
Bessel

3@ =(2) r(v71+1) (1+0(2) (9.160)

segue che i termini principali (con derivata divergente) werello sviluppo [[9.151) pro-
vengono dai contributis e y3:

1
i5(1-a)y, oib 3(1-a) }k aie ? =Cor %(x—i 9.161
Yo ~ € e el 5 r f2—a) or % (x—iy) (9.161a)

7 a1 \* 1
~e 2% —1z20 [ Zk - = o 161
Y3~ € Jy — € (2 r) Fi+ta) Car (9.161b)

Le derivate si calcolano facilmente:
o—2

Dyy =Cp(1—a)r * +Czar® 2e71?

Dyy =i [—Cz (1—a)r*+Cs ocr"‘*ze*“’}

Quindi, per piccolir:

u/*%Dxu/ {Czrl *df L Cyr } [Cz(l o)r _O‘—&—Csocr“_ze_ie} (9.162a)
— ala-a) [-CoC; —C5C3) = fZMRe(Czcy (9.162hb)
W*%Dyw {C‘er *df 4 Cyr® } [ C(1-ay ‘“+C3ar“‘2e‘ie} (9.162c)
~i%0 Y 0 cie = 2% D) (9.162d)

si verifica facilmente che il termine d, w*Djy da lo stesso contributo. Sostituendo nella
(9:158), effettuando il limite — O e I'integrale inb:

A? A?
fx= —%Zn [—4o(a— a)Re(CoC3)] fy= —%Zn [—4o(a— a)In(CC3)]

Dalle (9.161) segue

 _ oin2gnaK 1 e N k 1 sin(za)
CoCy = &/%e 2r(2—a)r(1+o) = (sin(za) |003a))2a(1_a) T
Da cui 5
fy="—o S|n2(m) fy = —%(sin(na)cos(mx) (9.163)

Vediamo quindi che nel calcolo quantistico la forza viene fornita da un termine di superfi-
cie, che si aggiunge all’espressione classica del teorema di Eherenfest.

La forza lungo I'asse ha un’interpretazione semplice. Una patrticella che diffonde ad
angolo6 ha un impulsopyx = hkcosf. Limpulso iniziale, nella configurazione usata, é
px = —hk, quindi la variazione di impulso &

Dpy = Ak(1+ cosf) = Ak2co(9)
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Se® ¢ il flusso iniziale, il numero di diffusioni al secondo ad angélé ®do/d6 quindi

CD/dG 9% A p,

Il flusso corispondente ad un’onda pianﬁlém quindi

<px _ R sif(rar) 1 2R%k
—x /de 2cog(9) onk 062 m sirf(na)

che coincide col risultato precedente. Bgnon si puofar elo stesso ragionamento perche
si ha una grossa variazione di fase della funzione d’'onda lungo Yasska regione ~ &
in cui 'espressione asintotica (9.154) non vale.

9.D Precessione di Thomas.

Una esposizione generale e dettagliata della precessione di Thomas si puo trovare, ad esem-
pio in [Landau4] (par. 41), qui ci limiteremo ad una trattazione semplificata valida per
v —0.
Il problema & scrivere un’equazione come[la (9]109) per un caso generico, in cui la
particella si muove ed eventualmente sono presenti campi sia campi elettrici che magnetici.
Il primo punto da chiarire € che lo spin, quindi la direzidfiee definitonel sistema
di riferimento a riposadella particella. In un sistema in cui la particella si muove il vet-
tore spaziale; sara ottenuto tramite una trasformazione di Lorentz. Chiamiafnaon
guadrivettore che nel sistema di riferimento a riposo si riduce ad un vettore puramente
spazialga® = 0,a= ). Ricordando la forma delle trasformazioni di Lorentz & facile scri-
vereat “nel laboratorio” cioe in un sistema in cui la particella ha impytsaon I'usuale
terminologia per i parametri delle trasformazioni di Lorentz:

= ﬁ'}/CH | | CH a =&, a = }/C” = %CH (9.164)

dovea, ea; sono le componenti parallele e perpendicolari alla direzione del moto. Nel
seguito porremd = ¢ = 1 per non appesantire la notazione. [e (91164) possono essere
riscritte nella forma

P(&-p) o_.ap_p&
a= — a=c—=—> 9.165
&+ m(E + mc?) E mc ( )
Nell'ultima uguaglianza si € sfruttata I'espressione esplicia@lia relazione fr& e p.
Il quadrivettorea* soddisfera un’equazione covariante del tipo

dat
dt
ed il quadrivettoreX* sara lineare nei campi elettromagnetici e linear@n come la
(9:109).7 indica il tempo proprio.
A noi qui interessa la teoria a meno di fattefi/c, ci limiteremo cioé ai termini li-
neari nelle velocitdv. In questa approssimazione al posto del tempo proprio possiamo
considerare il tempbe le relazioni[(9.164) si semplificano:

:Xu

o_ P& p(&-p)
a =— a~ 9.166
mc C+ 2mPc? ( )
Nella (9.166) abbiamo tenuto I'ordind pera e questo & il punto delicato di tutto il calcolo:
noi vogliamo scrivere le equazioni del moto al primo ording,ima le equazioni del moto
in campo elettromagnetico:
dp

— = B 167
at eE + V/\ (9.167)
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contengono un termine, quello nel campo elettrico, dell’'ordine @ iQuindi derivando
una quantita di ording? si possono ottenere dei termini del tipoE che sono lineari .

Torniamo all'equazione p&”. |l vettorea & un vettore assiale, la forma piu generale
per la sua derivata

%:CoaAB+C1E(a~v)+C2v(a-E)+C3a(E-v) (9.168)
Nella formulazione completa i fatto@; sono delle funzioni di’Z ma per l'ordine a cui
siamo interessati possiamo considerarli costanti. In particolare-ped si deve riottenere
la (9.109), quindiCo = ge/2mc. Sempre restando al primo ordinevrin tutti i termini a
destra nella[(9.:168) possiamo sostitidreon{.

Aggiungendo e sottraendo un termine del tyga- E) la (9.168) si puo riscrivere nella
forma piu conveniente

da

dt
Effettuiamo ora una trasformazione di Lorentz con una piccola velvgit&oichéda/dt
€ la componente spaziale di un quadrivettore la sua variazione deve essere

2mc§ AB+MEA(EAV)+Av(E-E)+Aza(E-v) (9.169)

V2

o= - [ ] 50 e 0oy i

Per trasformazioni di Lorentz a piccola velocita:

v v
B—-B— E/\—O E—>E+B/\?O vV —V+Vo

Sostituendo nel secondo membro d€lla (9]169) il termine di variazione lineare nelle velocita
e:

_ngA(EA*HAl‘fA(EAVw+A2Vo(C E) +As{ (E-Vo) (9.171)

Confrontando 1[(9.170) con | (9.171) si ottiene:

e e
2me me
cioé l'invarianza di Lorentz fissa completamente i coefficienti.

Sostituendo I'espressione esplicitaalieq.[9.168), nelld (9.169) si ha allora, sempre
trascurando gli ordin¥® ed usando le equazioni del moto:

dg

dt tome 2me?
Usando l'identita:v(§ -E) —E(§ -v) = A (VAE) = —§ A (E A V) si puo riscrivere la
derivata nella forma:

dC e v

Quindi gli accoppiamenti col campo magnetico e col campo elettrico sono rispettivamente

Al=g Ay = As=0 (9.172)

EG V) +V(§ - E)] =05l ABH+U5 S E AEAY)+ —5V(E -E)

e %
— —(g—-1)(En= 9.174
05 B 5 (0-D(EAY) (0.174)

L'aspettativa ingenua era che un momento magnegigh si accoppiasse con il tra-
sformato di Lorentz del campB nel sistema a riposo dell’elettrone, ci& ¥ invece
I'accoppiamento &

\%
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Perg = 2, siccome 2- 1= 1= 2/2 si usa impropriamente dire che la precessione di
Thomas introduce un fattore 1/2, in realta provoca una sottragieng — 1.

Come controllo scriviamo le equazioni di Heisenberg per lo spirSe —s- F dalle
regole di commutazione del momento angolare segue

[s,HI] = —I[s,sjFj] = —ihgjsFj = ih(sAF); (9.176)
Sia ora I'Hamiltoniana del sistema nella forma
H =Ho+H,

doveHy & la parte che non dipende dallo sgifi,I’'Hamiltoniana [9.17p), dove oraé un
operatore. utilizzando 1@ (9.1]76) si ha

ds i

at - Rs=

S =5 [0 B+ (- DEAD)] (0.177)

h 2mc

La media su uno stato semiclassico fornigge= S e si riottiene 1a[{(9.175).

Nota. Il lettore particolarmente attento avra osservato che nello scrivere I'equéziong (9.168) abbiamo affermatarchettore

assiale. Normalmente in relaivita i vettori assiali vengono introdotti attraverso un tensore a due indici, come nel caso del campo
magnetico: il tensore di partenzag, che & decomposto in una parte eletti®a= E; ed una magneticBy conB; = %siijJk.

Il fatto & che per trasformazioni di Lorentz il vettdBenon si trasforma affatto coma# nelle [9:16}). La variabile di spin in effetti

€ una parte del momento angolare, la parte angolare del momento orbitale si scrive in relativita nella forma

XuPv — Xy Py

e anche lo spin deve percio essere trattato come un tensore a due indici antisimmetrico, cioé deve avere le stesse proprieta di
trasformazione del momento angolare orbitale, 8. ChiamiamoS*¥ questo tensore e rappresentiamolo come per il campo
elettromagnetico con due vettori, uno polare, tipo il campo elettrico e uno assiale, tipo il campo magnetico:

SY = (P,A)

lo spin Sé definito come il vettoré\ nel sistema di riferimento a riposo, in questo sistesmeSik = (S); € il generatore delle
rotazioni spaziali, esattamente cofxe\ p); € il generatore delle rotazioni orbitali. Il vettoa& usato nel testo e

a, = chz‘a SWMS" p’ (9.178)

|S & il valore del modulo dello spin nel sistema di quiete F¢ per un elettrone. Nel sistema di riferimento a rippée= (mc, 0)

ed il vettorea* ¢ proprio il versor€ usato nel testo. Il vantaggio dell'usoati rispetto a3*" risiede appunto nelle sue proprieta di
trasformazione piu semplici. Lasciamo al lettore la facile verificagthé un quadrivettore unitario di genere spazigat = —1,

e chea, p* =0.

9.E Correzioni relativistiche in campo esterno.

Nel testo abbiamo visto che al primo ordinevjft 'Hamiltoniana per un elettrone in campo

esterno ha la forma

1 e
H— 2m(p—fA> +eP—g5—s-B (9.179)

Abbiamo anche scritto la prima correzione ordine®nella forma
His= —(g— 1)~ s (EAp) (9.180)
LS = g ZTT'IZCZ p .
Occorre in realta fare una precisazione, gli operdig®) e p in generale non com-
mutano fra loro quindi in che ordine scriverli? La prescrizione che useremo € la cosiddetta

prescrizione di Weylper passare da una espressione classica ad una quantistica, scritta cioé
con operatori, effettuiamo la sostituzione

1 t
Ag = 5 (A+A ) (9.181)
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Per il prodotto di due operatori autoaggiunti questo equivale a simmetrizzare I'espressio-
ne. Oltre alla sua semplicitd una parziale giustificazione della prescrizione proviene dal
fatto che nell'interazione fondamentale elettromagnetica in effetti I'interazione compare in
forma simmetrizzata

p-A+A-p
Naturalmente la correttezza della prescrizione, nei casi che useremo, é assicurata dal fatto

che espandendo in serieic I'espressione corretta relativistica si ottengono in effetti i
risultati che presenteremo nel seguito. Con la prescrizione di Weyl:

1
(€ijkEjP)class— > &k Ej e+ &ijk PeEj) =
h h
EijkEJ‘ Pk + EeijkakEj = (E/\p)i + IE(D A E)i

come si verifica immediatamente usando la rappresentazione di Schrodinger per gli impul-
si. Per campi statici, come in un atonid A E = 0, e quindi, ad esempio, non ci sono
problemi di ordinamento per l'interazioés. In generale, ponendo per sempliaita: 2

e s-(OAE) (9.182)

e :
His= ——s-(E/\p)—lm

2mc

Energia cinetica.

In meccanica relativistica I'energia cinetica di una particella &

2 4
VPP + R —me ~ %_%WL@ (9.183)

il secondo termine nelld (9.183) va aggiunto quindi alla Hamiltoniana come correzione
di ordinev?/c2. In questo calcolo i termingA /c possono essere trascurati perché hanno
potenze aggiuntive di/t a denominatore.

Nel calcolo esplicito delle correzion?/c? a partire dall’equazione di Dirac compare
un altro termine, detttermine di Darwindella forma

eﬁZ
- 8mRc?

Questo termine & completamente localizzato nella sorgente del campo ed in particolare per
un campo coulombiano ha la forma

Hp = 0-E

eh? ZeRPn
———41Z1el6¥(r) = + =558 (r
Il termine Hp non ha una semplice interpretazione semiclassica. Intuitivamente si puo
dire che per effetti relativistici la funzione d’onda elettronica ha delle fluttuaZjopér
lunghezze pari al raggio Compton dell’elettrare= h/mc

1
(G)=0 (&)= §6ijr§
in questo modo I'energia elettrostatica in un potenzi@léda un contributo aggiuntivo
dovuto alle fluttuazioni:
(eV(x+8)) = V(x) + 5 (58i29V) = exrZ(aV) = Z2&r2s (1)

A meno di un fattore numerico si ha il termine di Darwin. Comunque il ragionamento é
essenzialmente un ordine di grandezza, se esiste un termine locale il fattore davanti deve



44 CAPITOLO 9. INTERAZIONI ELETTROMAGNETICHE.

essere per forzerZ per ragioni dimensionali. Nella derivazione dall’equazione di Di-
rac questo termine & intimamente collegato con lo spin, a riprova di cid questo termine &
assente, a quest’ordine, nell'’espansione/mper un campo a spin zero.

Noi prenderemo questo termine per buono e quindi I'Hamiltoniana completa in campo
esterno e della forma:

1 e \2 e p*
H_%(p—EA) +eP—go s B (9.184)
e _eh eh?
——chzs-(E/\p)—|—4mczs-(El/\E)—78mZCZEI-E

ed in particolare per un campo coulombiano

1 e \2 e
@z, Z€Mn
8m3c? + 2méc? r3e St 2m2c2 87

9.F Interazioni fra due particelle.

In un atomo reale il nucleo non ha massa infinita quindi ci aspettiamo che I'Hamiltonia-
na precedente abbia delle correziomi/M, doveme € la massa elettronicd) la massa
nucleare. Uno degli aspetti di questa questione é I'interazione iperfina, discussa nel testo.
Qui vogliamo accennare ai termini aggiuntivi alla (9185) che non dipendono dallo spin.
Ci limiteremo al caso del problema dei due corpi, un esempio di problema a piu corpi sara
visto nello studio dello spettro dell’elio.

Il parametrame/M & un parametro piccolo, dell’'ordine di 18 quindi ci limiteremo a
studiarne solo gli effetti al primo ordine.

Nel limite non relativistico il problema dei due corpi ha una Hamiltoniana della forma

2me  2M  frp—ry|

(9.186)

Gia sappiamo che passando a coordinate relative il problema si riduce al problema di un
singolo corpo con massa risofia= (MeM) /(Mg + M):
p?2 Zé&

:2;1 r

Quindi nel problema a due corpi la correzione di massa non relativistica € “banale” nel
senso che basta sostituire la massa rigotitla massa dell’elettrone in tutte le espressioni.
In particolare per un sistema idrogenoide con nucleo infinitamente pesante i livelli sono
espressi nella forma
1 mee?

—— =— 9.187

he Re=— ( )
Per ottenere i livelli relativi ad un nucleo di masShbasta considerare la costante di
Rydberg modificata

En:

M

me+M
Come si vede lo spettro fra due isotopi, esempio idrogeno e deuterio, & praticamente lo
stesso a meno di un cambiamento di scala. Nondimeno questa differenza € molto utile, ad
esempio se si vuole fare una separazione isotopica tramite tecniche laser, o semplicemente
si voglia stabilire la concentrazione di un determinato isotopo in un corpo: le righe di
assorbimento per i vari isotopi hanno una separazione in frequenza ben al di sopra delle
risoluzioni tipiche delle misure spettroscopiche.

Ra= R
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Consideriamo ora i termini di struttura fine. Il termine di Darwin per il nucleo & di
ordine I/M? e lo possiamo trascurare. L'accoppiamnérper I'elettrone va scritto come

iée S
2mgc? r3

guesto termine descrive I'accoppiamento dello spin elettronico col proprio momento ango-
lare orbitale. L'analogo termine per il nucleo & di ordinévi?, quindi trascurabile. C’&

poi I'accoppiamento dello spin e del momento angolare elettronico con lo spin nucleare, &
il termine di struttura iperfine gia considerato:

(9.188)

e /1
Hi __mc<r3”N'£> (9.189)
e 1 8=
A .5— AT Pl e ©)
mc[ (un-s—3(un-F)f-s) r3+ 3uNs6 (r)

Il primo termine della[(9.189) descrive I'interazione fra il momento magnetico del nucleo
ed il momento orbitale dell’elettrone, il secondo I'interazione fra i due momenti magnetici.
Se il nucleo ha massa finita abbiamo anche un termine di interazione fra il campo magnetico
creato dall’elettrone ed il moto orbitale del nucleo. Nel centro di massa il momento orbitale
e sempréd quindi questo termine aggiuntivo €, indicando eqn= Z|e| la carica del nucleo:

en /1
“Mc (ra“e“>

Ora e = ge/2meC = e/meC quindi questo termine si scrive

ene 1
e (ﬁse.g) (9.190)

Questo termine si aggiunge al termine di struttura fine e notando che

11
2mZ  meM

€ completamente riassorbito nella massa ridotta. In conclusione anche nei termini di strut-
tura fine scrivendaon al posto dime si riassorbono tutte le correzioni di ording/M.

C’é ancora un punto sottile da considerare: le correzioni al potenziale coulombiano.
Se il nucleo si muove la forza fra nucleo ed elettrone ha un ritardo, classicamente que-
sto ritardo va trattato scrivendo i potenziali di Lienard-Wiechert ritardati. Fino all'ordine
v2/c? & possibile trascurare i fenomeni di irraggiamento, quindi scrivere una lagrangiana
e derivare una Hamiltoniana tenendo conto delle sole variabili dinamiche delle particelle.
Questo e un problema classico di elettromagnetismo che non riportiamo qui, il lettore inte-
ressato puo trovare una dimostrazione in [Landau?2] (par. 65 ed esercizi). |l risultato & che
I'Hamiltoniana nel centro di massa del sistema & scrivibile nella forma

PP/l 1\ z¢ pt/1 1 &€ L, .
H—z(meW)‘r‘s@(ng+w>‘mm<p+(f'p>) (9.191)

~ oM

Il secondo termine & semplicemente lo sviluppo dell’energia relativistica per una particella
libera, che gia conosciamo. Usando la massa ridotta e trascurando i tegyiM? puod
essere riscritto nella forma
4 3 4
_p 3t
8msc2 ' 8mPMc2
L'ultimo termine & quello che esprime il ritardo.

(9.192)
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Per scriverlo in forma quantistica usiamo ancora la procedura di Weyl. Possiamo
considerare I'operatore

X =

=1
=1

(P?+fifjpip;) = = [P +F(F-p)p]

Scriviamo cioé tutti gli operatori impulso a destra. Si puo verificare con un breve calcolo
cheX = X' e quindi questo ordinamento da un operatore hermitiano.
In conclusione I'Hamiltoniana effettiva del problema a due corpi, coulombiano, &

H =Ho+Hrs+Hwm +Hurs (9.193)
1
Ho = ——p®+ed
0=5nP T
p* &€ Z ZeRPn

=— Z0.s+ 2250
Ars 8m302+2mzczr3e st 2chZ§ (r)
1 [3pt z& L, 2R 3
M—W[w‘m“’““'p)p)‘ m° “ﬂ
Hure— — < 1 )& —(un-s—3( _f)f_s)£+8l s64(r)
HFS = — r3I~lN me UN UN 3 3#N

Questa Hamiltoniana prende il nometdamiltoniana di Breit. Nello scrivere 1a[(9.193)
abbiamo riscritto il termine di Darwin in termini della massa ridotta.

Un punto rilevante & che 'Hamiltoniaré, non dipende dallo spin quindi non influen-
za la struttura fine dei livelli.

Esercizio 2. Dimostrare chep? +7(f - p)p & un operatore hermitiano. Pert 0 basta
effettuare le derivate opportune. Per dimostrare che non ci sono termini dél(tipai

pud notare che questi possono comparire solo quando due derivate agiscono suj/fattori 1
Si applichi il teorema di Gauss per dimostrare che le funzdgnj che provengono dai due
termini si cancellano fra loro.
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