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Capitolo 10

Teoria delle perturbazioni.

10.1 Introduzione

Molti dei problemi fisicamente interessanti che si presentano in natura non sono esattamen-
te risolubili in Meccanica Quantistica, per questo motivo & particolarmente utile sviluppare
delle procedure approssimate di soluzione. Uno di questi metodi € il cosiddettmo
perburbativo se nella formulazione del problema compare un parametro piccolo, chiamia-
molo A, e si conosce la soluzione p&r= 0, si cerca una soluzione approssimata come
serie di potenze ii. Tralasciando per il momento il problema matematico della conver-
genza della serie ottenuta in questo modo, ci si aspetta un risultato tanto migliore quanto
piu il parametro & piccolo.

In concreto il parametro da considerare si pud presentare in forme diverse, alcuni
esempi sono:

1. Una Hamiltoniana di un sistema & descritta da certi parametri: pud avere interesse
sapere cosa succede per una “piccola” variazione del’Hamiltoniana:

(a) Come cambia lo spettro di un oscillatore armonico se si introduce una piccola
anarmonicita?

(b) Due sistemi separati hanno una dinamica nota, che effetti possono nascere se si
ammette che i due sistemi possano interagire debolmente?

(c) Come cambia lo spettro di una Hamiltoniana per piccole variazioni della geo-
metria del problema? Ad esempio come si calcolano i livelli energetici per una
buca di potenziale debolmente non sferica?

2. Una parametro importante puo essere il tempo di interazione: la perturbazione del
sistema avviene in modo molto veloce (o molto lento) rispetto ai tempi caratteristici
del sistema imperturbato. In questo caso il param&téal rapporto dei tempi.

3. Una interazione pud avvenire su scale spaziali molto piccole, in questo caso il para-
metroA € il rapporto fra la scala tipica dell'interazione e quella del sistema.

Come si vede I'elenco comprende una grande varieta di fenomeni. Le tecniche usate nei
vari ambiti possono essere diverse e talvolta il tipo stesso di domanda cambia, in tutti i
casi € essenziale individuare qual’é il parametro in gioco ed avere un’idea degli ordini di
grandezza.

Il metodo perturbativo non é 'unico schema di approssimazione possibile, nel seguito
studieremo kpprossimazione semiclassieail metodo variazionale.E forse superfluo
sottolineare che in presenza di un problema fisico concreto alcuni di questi metodi vengono
usati contemporaneamente. La tecnica perturbativa che svilupperemo in questo capitolo
prende il nome di serie perturbativaRialeigh-SchrodingefRS).

3



4 CAPITOLO 10. TEORIA DELLE PERTURBAZIONI.

E usuale nell’esposizione del metodo perturbativo distinguere due casi: quello in cui
le perturbazioni sono indipendenti dal tempo e quello in cui c'e’ una dipendenza esplicita
dal tempo. In molti casi questa suddivisione € abbastanza artificiale ma la seguiremo nella
prima parte dell’esposizione per ragioni di semplicita. In questo capitolo ci occuperemo
delle perturbazioni indipendenti dal tempo.

10.2 Perturbazione dello spettro discreto non degenere.

Consideriamo un sistema descritto da un’Hamiltoniblgasupponiamo di conoscere tutti
gli autovalori e gli autostati dH,. Consideriamo una piccola perturbazione del sistema
della forma

H(A) =Hy+AV (10.1)
A sara il nostro parametro di sviluppo. Supponiamo in particolare di considerare un auto-
valore non degeneli, di H, appartenente allo spettro discretdji Sotto queste ipotesi
Ci si aspetta che debba esistere un autovatdfe ed un autostatpy (1)) tali che

H(A)lw(2)) =E@A)ly(4)) (10.2)

con

limE(A) =B, lim [y(4) = |yp) (10.3)

In altre parole ci aspettiamo che per— 0 gli autovaloriE(A) di H(A) e i corrispondenti
autostati tendano verso le corrispondenti grandezze imperturbate.

In assenza di degenerazione una volta dgfdo stato|y,) e fissato univocamente,
cerchiamo allora una soluzione della (10.2) nella forma

W) = W) +Alwy) + A2 wo) + . A" y) + ... (10.4)
E=Ey+Ag +A%,+... (10.5)

L'equazione (10.2) &€ omogenea e la determinazione di una sua soluzione richiede una nor-
malizzazione del vettorgy); normalmente si uséay|y) = 1. Nel caso in esame & piu
semplice usare vettori non normalizzati ed usare il vincolo

(Wolw) =1 (10.6)

L'operazione di normalizzazione, se necessaria, pud essere effettuata in un secondo tempo
Una discussione piu approfondita di questo punto € fatta alla fine del paragrafo. Nel seguito
supporremo che lo stato inizialg,) sia normalizzato. La (10.6) implica che la correzione

al vettore|y,) & dellaformay) = |y,) + |y, ) dovey | appartiene al sottospazio di Hilbert
ortogonale al vettore di partenza. La (10.6) impone, ordine per ordihe in

(Wolym)=0 n>1 (10.7)

Sostituendo gli sviluppi (10.4) nell’equazione (10.2) ed imponendo che questa sia sod-
disfatta ordine per ordine ih si ottiene il sistema

(Ho—Eo)lwo) =0 (10.8a)

(Hy—Eg)lwy) +(V —&)|wp) =0 (10.8b)

(Ho—Eg)lwo) +(V —&)|yy) + (&) W) =0 (10.8c)

(Ho—Ep)ws) + (V — &) |¥) + (—&)wy) + (— &) wp) =0 (10.8d)

(Ho— E) ) +V]yp 1) — kﬁ v —0  (108e)
=1

1Una procedura in cui la normalizzazione & implemenadtinitio & delineata nei complementi.
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Soluzione al primo ordine.

Cominciamo a calcolare la correzione al primo ordinelindeterminata dalla (10.8b).
PoicheH, € un operatore autoaggiuntdw,) € I'autovettore relativo all’autovalorg,:

(Wol(Hp—Ep) =0 (10.9)
Proiettando siiy,) la (10.8b) ed usando la (10.7) si ha
(WolVwo) =& (10.10)

che determina la correzione al primo ordine per l'autovalore. Siangnprgli autostati
normalizzati diH,, che costituiscono una base per lo spazio di Hilbert. La correzigpje
e scrivibile nella forma

vy =3 (nlwy) [m) (10.11)

Nella somma (10.11on comparel termine corrispondente allo statgy) in forza della
(10.7), indicheremo sempre con un apice le somme di questo tipgn)Per y,) I'ortgo-
nalita degli autovettori dH, implica (n|y,) = 0, quindi moltiplicando a sinistra la (10.8b)
per(n| si ottiene

1
(En—Ep)(nlyy) + (nV]yp) =0 = |yy) = z; |n>ﬁ<n\v\‘lfo> (10.12)
0 n
La somma, ripetiamo, e estesa sugli stati con energia divergg da

Soluzione per iterazione.

L'insieme delle equazioni (10.8) si puo risolvere iterando la procedura usata al primo ordi-
ne. Supponiamo di conoscere le correzioni fino all'ordirel. Moltiplichiamo la (10.8¢)

per (y,|. La condizione (10.9) annulla il primo termine, il vincolo (10.7) annulla tutti i
termini della somma eccetto quello cke- n, e risulta

&n = (YolVIv, 1) (10.13)

che determina la correzione all'ordidé per I'autovalore. Moltiplicando ora a sinistra per
(n| la stessa equazione si ha, usafaay,) = 0:

1 1
(Njyn) = Eo— En Ny, 1) — ﬁ kglgk<n|‘l’n,k> (10.14)

La (10.14) determina I'approssimanig in termini dello sviluppo nella bage).
Come esempio riportiamo il valore della correzione al secondo ordine all’autovalore
dell’Hamiltoniana:

&= (WolVIyy) = 3 (wolVIn) (n[V]yp) (10.15)

_1
Eo—En
Uso dei proiettori.

Alla soluzione si pud dare una forma operatoriale, che sara utile in seguito, definendo il
proiettoreP sullo stato|y,) ed il proiettore ortogonal®, sulla varieta ortogonale|g):

P=|yo)(wl Q=3,Im(n 1=P+Q (10.16)
La soluzione trovata si puo scrivere operatorialmente come
1
lyy) = Q=——7-QV|wp) (10.17)

Es—Ho
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L'idea di base & la seguente. Un qualunque operatangermini dei proiettori ammette la
decomposizione

A_ (PAP PAQ
~ QAP QA

Consideriamo il casé = E, — H,, questo operatore non & invertibile perche ha un kernel
non nullo, (Ey — Hy)|y,) = 0, ma I'operatoré(E, — H,)Q & invertibile, perché abbiamo
assunto I'Hamiltoniana non degenere. Quindila (10.17) & semplicemente la soluzione della
equazione

(Eo —Ho)lvy) = Vi) (10.18)

nel sottospazio ortogonale|g,). ScriviamoV = PV +QV il primo termine non contri-
buisce alla soluzione vista I'ortogonalita dei proiettori, a questo punto prima proiettiamo
'equazione (10.18) e dopo prendiamo l'inverso dell’operatore a sinistra.

Posto

1
G=Q Q (10.19)
Eo—Ho
le relazioni precedenti si possono scrivere
€= (Vo) ly1) = GV|yp) (10.20a)
& = (WolVIyr) = (o |VGVIyy) (Vo) = GV|yy) —£,Glyy) (10.20b)

Se ordine per ordine si calcolano le correzioni agli autostati, oltre che gli autovalori, si
possono ottenere alcune interessanti relazioni. Ad esempio:

&= (WlV[¥o) = (WoIVGV|yy) — e (Wo|V Glyy) = (v |V]wy) — & (yy|yy)  (10.21)

In pratica avendo calcolatg; ) il calcolo di e, diventa semplice.
In generale

n-1 n-1
lyn) =GVIy,_1) — > &GV, =CVIv, 1) — > & Clw) (10.22)
k=1 k=1

Per gli autovalori segue, usanfig,) = GV/|y,):
n-2

&n = (VolVI¥h_1) = (WolVGVIY, 5) — > &1 (WolVClwy)
k=1

n-2
=WV, o) = > & valw (10.23)
k=1

La (10.21) e il casn = 3 della (10.23): il punto notevole & che per il calcolo della
correzione all’'ordinen, n > 2, dell’autovalore serve solo la soluzione fino all’'ordme 2.

Osservazioni.

e llrisultato al primo ordine it & normalizzato, infatti, sfruttanday,|y;) = 0 si ha
(Wol + A (w1 ) (lwo) +Alyy)) = 1+ 0(4%)

¢ La correzione, allo stato fondamentale e sempregativa percheg, > E,. Questo
risultato & particolarmente interessanteese= 0, in questo caso la presenza di una
perurbazion@iminuisce semprtenergia dello stato fondamentale.
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e Teorema di Hellmann-FeynmanSupponiamo che una Hamiltoniana dipenda da un
parametrdR. Sia|y(R)) un autostato e&(R) I'autovalore corrispondente. Per una
piccola variazione del parametro

H(R) — H(R —8R

(R —HR)+ 55
Possiamo calcolare la variazione dell’autovalore usando la teoria delle perturbazioni
al primo ordine:

5E = (y| J25Rlv) + 0(R?)

da cui, nel limiteSR— 0
JE
JR
quindi la variazione dell'autovalore si calcola immediatamente dalla variazione ope-
ratoriale della Hamiltoniana, questo é il contenuto del teorema. Il tipo di ragiona-
mento usato in questa dimostrazione puo essere usato per ottenere una costruzione
alternativa della serie perturbativa, come sara mostrato in uno dei complementi.

=(y | V) (10.24)

e Normalizzazione. Possiamo considerare gli statbrmalizzatj multipli degli stati
appena calcolati:

Wn=Z/%v)  Nvlvin=1= 2 = (vly) (10.25)
Z,, rappresenta la probabilita di trovare lo stato imperturlygtaello stato esatte:
{(WolWnI? = Zy[(wolw) P = 2, (10.26)

quindi deve esserg,, < 1. All'ordine pit basso non banale

Zn;l =1+ 2%y lyy)
Quindi dalla (10.12) e I'ortogonalita degli stati|k) = &,

Zy=1-22{yily1) =1-2° Y (volVIn 72 1V 1vg)

1
(Ey—En)?
V|n)|2 de

_1o g2y LWl —1422%% (10.27)

2 (Ep—En? 9E,

Nella formula precedente la derivata rispetto all'energia imperturBgta intesa
tenendo tutti gli elementi di matrice ® fissi. La (10.27) si generalizza a tutti gli
ordini. Consideriamo infatti una perturbazio¥ = SE;|y,)(y,|, proporzionale
cioé al proiettore sullo stato imperturbato, del’Hamiltonid&he: Hy +AV. Usando
la teoria delle perturbazioni al primo ordine I'enerdiadello stato, normalizzato,
|w)y cambia di

OE = 6By (W) (Wolw)n = 6E0|<WOWI>N‘2 =Z,,0E,
dacui
JE

5E (10.28)

Zy =
e Discutiamo come promesso la questione del vincolo (10.6). Al variare del parametro
perturbativoA fare la serie perturbativa significa assumere una analiticifg imel
senso che ad un ordine finito gli autovettori e gli autovalori del sistema sono polinomi
in 4. In questo contesto i limiti

im [y(3))  lim ()
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sono ben definiti perché I'Hamiltoniana & assunta non degenere.

L'equazione agli autovalori € omogenea, quindiigél )) & una soluzione lo & anche
c(4)|y(A)). Consideriamo allora la funzione @i a(A) = (y,|y(1)). a(0)=1e
per continuité(4) # 0 in un intorno did = 0, quindi il ket[1/a(1)]|y (1)) soddisfa
al vincolo (10.6).

Questa semplice discussione pud essere generalizzata mettendo in luce alcune sot-

tigliezze della procedura. Immaginiamo di considerare un cambiameit@aine
I'effetto di una perturrbazionéA -V. Supponiamo anche di aver normalizzato, per
ogni A gli stati, cosa che & sempre possibile fare, dividenddygrLa discussione
precedente, con il cambiamento di ruolg; — y(1) y(1) — y(A + 64), implica
che possiamo sempre fare in modo che

(W()|y(A+64)) = (y(4)|y(2))

almeno pedA sufficientemente piccolo. Ovvero, localmente, deve essere possibile
soddisfare all’equazione

(W) 1y () =0 (10.29

Come abbiamo detto, dividendo eventualmente| p&rpossiamo assumere gli stati
normalizzati, percio:

0= 2 (W) W(R) = (WA) W) + (e wA)w(A)

<1//(l)|%1//(l)> =ip immaginario puro (10.30)

Abbiamo la liberta di scegliere la fase dello statol ), quindi operando il cambia-
mento|y’) = e '**)|y) segue

d da
/ / T
(W (W) 57V () = =i 57 +iB(R)

Imponendo adx di soddisfare I'equazione

T B(A) (10.31)
possiamo ottenere

0
(V' (W)57v'(2) =0

che é la condizione (10.29). L'equazione (10.31) ammette selopatmenteuna

soluzione, quindi per piccoll la discussione é corretta. vedremo piu avanti che per
grandi valori diA ci possono essere complicazioni, anche in casi molto semplici.

10.2.1 Esempi.

Esercizio 1. Studiare I'effetto delle seguenti interazioni sui livelli di un oscillatore armo-
nico:

bq %moczq2 g oo (10.32)
Nel fare i calcoli conviene passare a variabili adimensionali:
_ (I l/ZQ — (hmw)Y?pP (10.33)
q= mo p= .

e introdurre gli operatori di creazione e annichilazione

Q- sata) P-@-a) H-ho(dary) (03
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Osservazione. | potenziali polinomiali ontengono una potenza finitaaga” quindi solo
un numero finito di stati intermedi contribuiscono alle correzioni perturbative alla hamilto-
nianaH,

Esercizio 2. Assumiamo che il protone sia costituito da una sferetta uniformemente carica
di raggioR. Dopo aver dimostrato che all'interno della sfera il potenziale elettrostatico

®0) =16l % 3]

calcolare gli effetti sui livelli del’atomo di idrogeno, trattandlo-V, , all'interno della
sfera come una perturbazione. Verificare che

2 /R\?> m¢ 2/R\?
AE(ls):5<a> -r2255<a> a.u.

AE(25) = flo (:)2 . mef _ % (2)2a.u. AE(2p) = 0/(8%)

Spiegare perché a priori ci si aspetta il risultato precedente per glpstati

Osservazione. Un modo leggermente piu generale per affrontare il problema precedente
é il seguente. Indichiamo cafie|p la distribuzione di carica del nuclep € la densita
“numerica”). SupponendB < a
Zle| Z|e|
r r

BE —e [dr|y(v - =) = ey(0) [Prv - =)

Introducendo l'identita &= %Ar2 e integrando per parti
AE = %e\w(0)|2/d3r AV + 472|683 (1)]r2
Utilizzando I'equazione di Poisson ed il fatto che l'integrale®i(® (r) & nullo:
8E = ZanZle?y(O) [drpr? = 2 21 y(0) (e

Per una distribuzione uniforme= 3/47R3 si verificano immediatamente i risultati prece-
denti: in generale si ha che il cambiamento in energia & proporzionale al raggio quadratico
medio della distribuzione di carica.

10.3 Livelli degeneri.

La teoria perturbativa precedentemente esposta si applica al caso(m\tik) < E, —
E,, in caso contrario, in particolare quando si ha una degenerazione, occorre cambiare
leggermente strategia.
SiaE, il livello imperturbato. Ped — 0 si avraE(A) — E, ma a priori non sappiamo
in qualestato va a finirey). SiaG lo spazio vettoriale generato dagli autostati corrispon-
denti all'autovaloreE,. g, la degenerazione del livello, cioé la dimensionésgi avremo
g, Stati linearmente indipendenti e a priori ognuno di esso puo evolvere in uno stato diverso
con l'introduzione della perturbaziorig/.
Introduciamo come prima il proiettoie sulla varieta degli stati corrispondenti all’au-
tovaloreE,: ora sara una matriag x g,; Q indichera sempre il proiettore ortogonale.
Qualunque sia lo statay,), I'equazione(H, — Ey)|y,) = 0 continua a valere.
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Consideriamo ora I'equazione al primo ordine
(Ho—Eg)lwy) +(V —€)[yp) =0 (10.35)
Come prima proiettiamo sulla varie@y:
PV —¢&)|y,) =0

Questa ora € un’equazione matriciale, in pratica un sistema di equazioni lineari omogeneo.
Qonsid_eriamo infatti il nostro generico stato (incognitgy), indicando corjg,) una base
in G, si ha

%
Vo) = > Cley) (10.36)
K=1
e sostituendo nell’equazione precedente, moltiplicando a sinistrgpesi ha
(g IV]g))ci=ec0 = V¢ =g (10.37)

Questa & un’equazione agli autovalori peed ha soluzione non banale solo se
det(V—¢,)=0 (10.38)

che e 'equazione caratteristica per il sistema. Questa equaziong,aagici, gli autova-
lori appunto, e in corrispondenza di questi autovajgrautovettori:

[W02)-[T2) -1 o)

In questa base la matriaé & diagonale ed il livello originarid,, si disintegrain diversi
sottolivelli. Ci possono essere due situazioni distinte:

1) Si hannag, autovalori diversi: in questo caso si ha una disintegrazione completa, o,
come si dice normalmente, viene completamente rimossa la degenerazione.

2) Alcuni autovalori sono uguali; si ha una parziale rottura della degenerazione.

Vediamo come si prosegue nei due casi.

Caso 1.

Scegliamo uno degli autostati precedenti, diciap corrispondente all’autovalore,.
Questo stato fa le veci diy,) nel caso non degenere. Proiettiamo I'equazione (10.35) con
Q: avremo il mescolamento di questo stato con gli statidli H, dovuto alla perturbazione:

Q(Hy—Ep)lyy) +Q(V —y)|A) =0 = Q(Hy—Ep)lyy) +QV|A) =0  (10.39)

La matriceQ(H, — E;)Q continua ad essere invertibile, come nel caso non degenere, e Si
ha

1
Vi) = Qg —-QVIA (10.40)
Tutto ora prosegue come nel caso non degenere, si avra
1
= (AV V(A 10.41
e, = (AV Qg ~-QVIA) (10.41)

ed iterativamente si possono trovare le correzioni successive. Il puptotante da sot-
tolineare & che il proiettor® non éil proiettore sugli stati diversi dgA) ma il proiettore
sugli stati ortogonali &,. Scrivendo la (10.41) in modo esplicito, ad esempio:

€= Z:n<A|V|m> (mV|A) (10.42)

EO_HO

gli stati |m) sono quelli corrispondenti agli autovaldgi, # E, di H,, e non, ad esempio,
gli stati|B),|C) ... della varietaG,,.



10.4. SISTEMA A DUE LIVELLL 11

Caso 2.

Supponiamo che alcuni degli autovalori dell’equazione secolare (10.38) siano uguali. In
questo caso occorre reiterare la procedung,) non € univocamente determinato se si
riferisce ad un sottolivello degenere, ma sara un combinazione lineare di stati, inserendo
guesta combinazione nell'equazione ggrsi ha un’'ulteriore equazione secolare: se gli
autovalori sono diversi la degerazione e rimossa al secondo ordine, se no si va avanti.
Algebricamente la questione é chiara ma spesso i calcoli in questo caso sono lunghi e non
ci soffermeremo su questo punto. C’é un caso importante in cui la situazione si semplifica:
€ possibile che per ragioni di simmetria due, o piu stati, restino degeneri a qualunque ordine
in teoria delle perturbazioni, questo normalmente avviene se nel problema c’'e qualche
simmetria. In questo caso la situazione € semplice: scegliamo gli stati, dig/amB),

in modo da diagonalizzaM. Questi stati non si mischieranno mai fra di loro e quindi per
ognuno di essi possiamo applicare le formule precedenti.

Per essere espliciti consideriamo un sistema atomico in presenza di un campo elettrico
esterno. Sél, e invariante sotto rotazioni avremo, trascurando lo spin, una degenarazione
di ordine 2 + 1 dei livelli. Chiamiamoz I'asse che individua la direzione del campo
elettrico. Linterazione é della forma

V == _dzéa

doved; é la componente del dipolo elettrico:

d; = —esz

la somma e estesa a tutti gli elettroni. L’hamiltonidha= Hy+V € invariante per rota-

zioni attorno all'asse, quindi M, & ancora un buon numero quantico, ma in generale gli
austati diL, M, ) non sono degeneri fra loro percfig H] # 0. L'hamiltoniana ha una
simmetria aggiuntiva esatta: una riflessione per un piano passante perllassia tutto
invariato, ad esempio I'operaziofe y — —y. In questa operazion®!, ) — |—M, ) come

e facile vedere, quindi questi due stati sono necessariamente degeneri. Come vedremo una
generalizzazione di questo argomento é legata al time-reversal ed al teorema di Kramers.

10.4 Sistema a due livelli.

Consideriamo un sistema quantistico descritto da due soli stati,—). L'Hamiltoniana
del sistema sitd = H, +V:

—-E, -A —E 0 0 —A
() A (58 (58 e

E, & una costante additiva che non gioca nessun ruolo e verra ignorata nel resto del paragra-
fo. Supporremo per semplicitireale. Il sistema € facilmente diagonalizzabile risolvendo
I'equazione secolare per gli autovalori ét— A1) = 0. Come esercizio seguiamo pero una
strada piu istruttiva. Il sistema (10.43) puo essere sempre pensato come uno spin 1/2 in un
“campo magnetico” con componehti

B,—E, B«=A H=-0,8,—0,B=-0B (10.44)

2| segni nella (10.43) sono stati scelti in modo da semplificare questa identificazione. Per uno spin 1/2 l'intera-
zione si scrive- 1o - B, doveu e il momento magnetico, quindi il camj@delle formule seguenti va identificato
conuB nel caso concreto di uno spin.
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In coordinate polari, chiamandbl’angolo diB con 'assez

B, =Bcos6 By =Bsino H=-B ( (10.45)

A
B=,/E2+A? tang = —
E1

Diagonalizzare I'hamiltoniana significa percio effettuare una rotazio@anlsenso antio-
rario attorno all'assg del sistema di riferimento (o ruotare il vettdBan senso orario). In
una rappresentazione 1/2 del momento angolare tale rotazione é:

cosO sin@
sin@ —cos@

0 0 0 cosd sin§
R:exp(|§c52) = €S +isin; o, = _sin?  cos} (10.46)
e si ha, come e facile verificare
Ro,R" = cosflo; —sinfo,  Ro;R' =sinBo, + coso, (10.47)

Sostituendo nella (10.45) si ha effettivamente

i o _(-B O
RHR = Bcg_( 0 B)

| due autovettori, corrispondenti allo stato fondamenfgje=d allo stato eccitatf®) sono
i ruotati degli stati+),|—):

Coh (1) cos$
o3 ()

_sin®
&) =R-)=R' (g) = ( :;25) (10.48)
2

Il lettore puo verificare sostituendo nella (10.45) che
Hlg)=-Blg)  Hle)=+Ble)

Riconsideriamo ora i risultati dal punto di vista della teoria perturbativa. BRef O il
livello € non degenere. Non c’é correzione al primo ordine sui livelli pekeh® |+) =
(—|V|—) =0, mentre la correzione agli stati €

o =)+ 0 ) -+ (G ) =+ (5) )

o=+ E 2 =+ () P - (5)

in accordo con lo sviluppo al primo ordine éhdelle espressioni (10.48).
PerE, — 0 il sistema diventa degenere, I'angddonon e piccolo. Poiché tah=
A/E, si ha che il valore db, nel limite di degenerazione, dipende dal segnAtk,, per

'esattezza
+Z E/A>0
-2 E;/A<O

lim 6=
E,/A—0

Corrispondentemente, ad esempio

1
i V2 |
v
ehm. 19 {jz(l—>—l+>)EA> Ao (10.49)
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Figura 10.1: Energia dello stato fondamentale in funzion elidi By, By.

Glistati|S), |A), simmetrico e antisimmetrico, diagonalizzano 'Hamiltoniana degenere
ma vediamo che il vettorg) non & analiticoin A: infatti & discontinuo peA — 0. Questo
e esattamente cid che a priori ci si aspetta nella teoria delle perturbazioni di un livello
degenere: I'energia dello stato fondamentale val&|, & continua ma ha derivata prima
discontinua, gli stati dipendono invece in maniera discontinua dalla perturbazione. Per
A — 0 lo stato|g) tendo ad uno stato della varieta bidimensionale descritta-ga—), ma
il limite a cui tende non & univoco. E semplice generalizzare questa analisi al casain cui
e complesso; il “campo magnetic8’avra anche una componentelntroducendo ancora
coordinate polari per descriveBe

Bx=Bsin6cosp By =Bsinfsing B,=Bcosh B=/E2+]A]2

La components pud essere rimossa con una rotazione dittorno all'asse R,(¢) =
exp(ig/2- 05). Nella nuova base

) =Ri(@)+) =e'E4) |- =Ri(p)-)=¢€%|-)

I’'Hamiltoniana assume la forma precedente e l'analisi si ripete. In questo caso il ter-
mine fuori diagonale A| > 0, quindi nel limite di degenerazione I'energia dello stato
fondamentale e lo stato sono

Eg=—|Al=—,/B2+B2 |9>:\%(|+>'+|_>/) :% (;é) (10.50)

La singolarita ha ora una forma conica, nello spazio dei paramgts,, mentre lo stato
fondamentale dipende ora ¢a
In generale dalla (10.48) segue

lg) = cos? -+) + sin9|—)’ — cos2e i l+) + sindd$ -) (10.51)
2 2 2 2

Notiamo che pexp che varia da 0 a2 lo stato|g) acquista una fase, cioé cambia se-

gno. Come vedremo nel capitolo 15 nel caso di una variazione lenta del dtapase

acquistata dal vettorlg) € puramente geometrica ed € una delle caratteristiche topologiche

legate alla singolarita prima illustrata nella funzidag(fase di Berry).
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Esercizio 3. Verificareesplicitamentehe il vettore (10.51) e 'autostato con energia piu
bassa dell’lHamiltoniana. Si consiglia di riscrivéfeusando le matrico, .

Vogliamo illustrare un ulteriore punto, delicato, che & proprio alla base dello studio
della fase di Berry. Consideriamo I'Hamiltoniana del sistema per un certo valBr@ dp.
In generale il sistema € non degenere. Supponiamo ora di cambiare leggeénespte
usiamo la teoria delle perturbazioni. Come abbiamo visto localmente € sempre possibile
soddisfare il vincolo (10.29) che per lo stato fondamentale si traduegldng) = 0. Se
calcoliamo esplicitamente le derivate, usando I’ espressione (10.51)

d

<g|%\g> =0 (10.52a)
d i

<9|%\9> = —5¢0s9 (10.52b)

L'espressione (10.52b) &, correttamente, puramente immaginkrtalenentepud essere
riassorbita da una fase(¢), v. eq.(10.31):

da 1 [0}
%_écose a_Ecose

Questa fase perd non puo essere estesa globalmente. diffathi 4 o (0), cioé la fase non
€ una funzione ad un solo valore. Come discuteremo piu amadgostanzialmente la fase
di Berry.

Modello per la molecolaNH,

Una molecola di ammoniac&H, e costituita da tre atomi di idrogeno coplanari ed un
atomo di azoto fuori da questo piano, il tutto con una configurazione di piramide triangola-
re. Se “fotografiamo” la molecola congelando le rotazioni gli stati saranno contrassegnati
dalle piccole oscillazioni degli atomi attorno alle loro posizioni di equilibrio. E chiaro, per
simmetria, che I'azoto a priori pud avere due posizioni di equilibrio, una sopra il piano
formato dagli atomi di idrogeno ed una sotto. Il potenziale che determina le oscillazio-
ni dell’'azoto deve avere quindi due minimi corrispondenti ai due punti di equilibrio. Se
consideriamo solo I'asse perpendicolare al piano, il problema si riduce ad un problema
unidimensionale con un potenziale della forma approssimativa illustrata in figura 10.2.

: . . . .
-15 -1 -0.5 0 05 1 15
Z, asse molecolare

Figura 10.2: Rappresentazione schematica di una molecola di ammoniaca e del potenziale
per I'atomo di azoto.
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Il potenziale & simmetrico per riflessioni— —z. |l corrispettivo quantistico di questa
descrizione deve essere I'esistenza di due stati, quasi stazippgfi-—) corrispondenti
appunto ad oscillazioni attorno alle due posizioni di equilibrio. Questa pero non puo essere
la descrizione realistica del sistema, sappiamo che in un potenziale unidimensionale sim-
metrico la funzione d’onda dello stato fondamentale deve essere pari, mentra gl stati
e |—) vanno uno nell'altro per inversione, quindi non sono autostati della paritd. Quello
che accade quantisticamente & che la particella da una parte della buca puo attraversare la
barriera di potenziale e passare dall'altra parte, & cio che si cteffietto tunneling Im-
pareremo a calcolare questo effetto in seguito. Qui vogliamo solo scrivere I'Hamiltoniana
effettiva che descrive questa situazione. Se non ci fosse attraversamento della barriera i due
stati dovrebbero essere completamente simmetrici e 'Hamiltoniana sarebbe

HOZ(%O é)()) p:(‘i é) (10.53)

Abbiamo anche scritto I'operatore di parifd, che scambia i due stati fra loro. Leffetto
dell'attraversamento di barriera provoca una sovrapposizione degli stati nelle due regioni
ed in corrispondenza gli elementi di matrice dell’Hamiltoniana fuori diagonale non saranno
esattamente nulli, ma appunto proporzionali a questa sovrapposizione delle funzioni d’'onda

H_ (—EZ —E?> (10.54)

Siamo esattamente nella situazione descritta all'inizio di questo paragrafo, né&l,casb
| due autostati dH sono

I+ +1-) =) —1+)
=1 _ = e=—"—"=A 10.55

9) 7 S e 7 IA) (10.55)
Siccome sappiamo che lo stato fondamentale deve essere simmetrico in questo caso si deve
avereA > 0, come discusso prima. Dall'espressione esplicitR,déq.(10.54), possiamo
verificare immediatamente cliég) = |g) P|e) = —|e). Useremo questo modello per la
molecola di ammoniaca nel seguito del capitolo per esemplificare I'effetto Stark su sistemi
degeneri.

Esercizio 4. In meccanica quantistica sappiamo che la scelta delle fasi per uno stato & arbi-
traria, quello che contano sono i raggi. D’altronde il segné €i (+|H|—) sembra dipen-

dere dalla scelta della fase dello sthtg. Come si concilia questo fatto con I'affermazione
che lo stato fondamentale dell’equazione di Schrédinger deve essere simmetrico?

10.5 Effetto Stark su oscillatore armonico

Si chiama effetto Stark I'effetto sui livelli energetici di un sistema indotto da un campo
elettrico statico uniforme. Tratteremo in dettaglio questo effetto per sistemi piu realistici
nel seguito, consideriamo ora il caso semplice di un oscillatore armonico.

Il modello & quello di un dipolo oscillante, cioé di una careckegata elasticamente.
g indica la coordinata canonica. Il sistema ha un operatore di dipolo elettie®q e
I'interazione col campo e descritta da

_ 1 2 1 2.2
H= 2mp + 2ma) q-—efq (10.56)
Riscrivendo il termine di potenziale come

1 1

“mo’g? —ef = émco2 (q (10.57)

mw?2 2 mw?

es >2 1242
2
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e cambiando variabili con la trasformazione canonica

es
P=p Q=02
I’'Hamiltoniana si riscrive
1,1, ., 1e28?
=m0 e (10:59)
ed é chiaro che si ha uno spostamento di tutti i livelli della stessa quantita
16262
AE=-Z—— 10.
> w2 (10.59)
Verifichiamo questo risultato con la teoria perturbativa.
e Al primo ordine, per parita:
(niV[n) = —e¢'(njgn) = 0
e Al secondo ordine gli unici stati che contribuiscono s¢me- 1), |n— 1).
h\Y? 1 h\Y? [nt1
LH=(— — 1= — =
man+2) = () Fstmansy = (o))"
nAY2 q AA\Y2 m
“=(—) —=@a'n-1=(— -
main-1)= () 50RIn-1= (o) |/
quindi
1h n n 16262
SE@ = = (e£)? =—c— 10.60
me( ) hnw — ho(n—1) * hinw — ho(n+1) 2 mw? ( )

Osservazioni.

e |l sistema imperturbatof = 0), € invariante sotto parita e non ha dipolo elettrico, in
qualunque stato stazionario.

¢ |l sistema perturbatoon e invariante sotto paritad ha un dipolo elettrico, un dipolo
indotto. L'Hamiltoniana (10.58) € invariante sotto la trasformazi@ne> —Q, che
non ¢ la trasformazione di parita del sistema originario, quindi i suoi autostati sono
invarianti, da cui, per uno stato stazionario esatto:
ef e
dy)=e =e ey —|v) = — 10.61
{vldly) = e(yldly) = &{y|Qlw) +e(v| _5lv) = (10.61)
e |l coefficiente di proporzionalita fra dipolo indotto e campo esternopolarizzabi-
lita o del sistema, quindi in questo caso

o e
T mw?

Notiamo chex ha le dimensioni di una lunghezza al cubo, cioé di un volume.

e L'energia di interazione, misurata dal cambiamento del livello energetico del sistema

(10.59) e della forma
1
AE = —Za&?
2
in accordo con la teoria classica. Notiamo che in questo caso I'energia dello stato

diminuisce in accordo con quanto notato prima.
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e Larelazione
JAE

05
€ una verifica del teorema di Hellmann-Feynman:

—a&

oH
<w\@w/> = —eylqy) = —aé

10.6 Interazione di dipolo e polarizzabilita.

Vediamo come i risultati ottenuti nel paragrafo precedente per il dipolo si generalizzano
ad un sistema qualunque in interazione di dipolo elettrico, in particolare ad un atomo.
L'Hamiltoniana dia interazione elettrostatica di un sistema di cargghe un potenziale
elettrostatico estern® si scrive

V= Zeaq)(qa) (10.62)
Supponiamo che il sistema sia “piccolo” e distribuito attorno a una posi&omel nostro

sistema di coordinate. Allora postp = R + X5 possiamo sviluppare in serie la (10.62)
limitandoci al primo ordine irx

VY ea®(R) -y €aXa-E(R)+0 (aZ‘;:f) (10.63)

L'approssimazione & buona quando il termine trascurato € piccolo.

In questo paragrafo ci limiteremo allo studio di sistemi globalmente neutri, ad atomi,
una generalizzazione di questa discussione ed alcune precisazioni saranno svolte nel ca-
pitolo 14. Per un atomo il primo termine nella (10.63) & nullo. Nel secondo termine il
fattore che contiene le variabili del sistenxa, ha un’importante proprieta: non dipende
dalla scelta dell'origine delle coordinate, infatti per traslazione

Xa — Xag+a = Zeaxa—> Zeaxa+2eaa:2eaxa
a a a a

descrive quindi una proprieta intrinseca del sistema, come & noto questa quantita si chiama
dipoloed e definita da

d="Y ex (10.64)
Z aNa

In effetti & facile vedere che il dipolo del sistema si puo scrivre in termini delle sole
coordinate elettroniche rispetto al nucleo:

zeaxa = Z*|e|xe| JrZ|e|XN =—|e| Z(Xel 7XN)

In pratica € come scegliere il nucleo nell’origine del sistema di coordinate. In questo modo
la (10.64) prende la forma che abbiamo usato anche nel paragrafo precedente

d :era (10.65)
e

L'Hamiltoniana di interazione (10.63) si riscrive nella forma:
V=-d& (10.66)

doved ¢ il dipolo elettrico del sistema efl il campo elettrico calcolato nell’origine, cioé
per le coordinate nucleari.
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Proprieta sotto parita.

Supponiamo che I'Hamiltoniartd sia invariante sotto parita. Esplicitamente questo signi-
fica che esiste un operatore unitaFimello spazio di Hilbert, la cui azione sulle variabili
posizionex, €

PxoPT=—xq, P'=p (10.67)

e che commuta con I'Hamiltoniana
[PH]=0 (10.68)

Dalla (10.68) discende che é diagonalizzabile simultaneamentdiacioe fra i numeri
quantici degli autostati dil possiamo annoverare anche gli autovalofPdPoichéP? = 1
gli autovalori diP, 17, possono essere safil..

Il valor medio dell'operatore di dipolo squalunqueautostato della parita € nullo.
Infatti

(wldy) = (y|PPdPP|y) (y|PTPdP'P|y)
= —[np*(yIPdPT|y) = —(y|d|y) (10.69)

In generale, a meno di degenerazioni accidentali, due autostéticon valori dinp
differente non sono degeneri in energia, cioé appartengono ad autovalori differeipti di
in questo senso possiamo dire, genericamente, che ogni autosthtwadparita definita e
quindi: il valor medio del dipolo elettrico su un qualunque autostato del’Hamiltoniana &
nullo:

(Wold|wp) =0 (10.70)

Come abbiamo detto I'unica eccezione a questo teorema ¢ la presenza di una degenerazione
accidentale dell’Hamiltoniana: ad esempio gli staip in un potenziale coulombiano han-

no parita opposta ma la stessa energia. Bisogna ora distinguere fra modelli vari e realta fisi-
ca: in natura, almeno al livello di energie di cui ci occuperemo in questo testo, I'unica vera
interazione e quella elettromagnetica: comunque complicato sia il sistema I'Hamiltoniana

di base € quella elettromagnetica e quésitavariante sotto parita.

Se poi andiamo ad indagare con cura, cosa che in una certa misura faremo nel seguito
del capitolo, in naturaon esistona@egenerazioni accidentali, ad esempio nello stesso ato-
mo di idrogeno esistono altri termini nel’Hamiltoniana, oltre a quello coulombiano, che
rimuovono la degenrazione. Questo non & un teorema ma & da una parte budrlaénso
l'altra una constatazione: i sistemi reali sono atomi e molecole e questi sistemi, per via
di varie correzioni come l'interazione fra spin e momento orbitale, correzioni relativisti-
che e quant’altro, non presentano degenerazione accidesi@ia Alcuni sistemi pero
presentano una degeneraziapprossimatacome I'atomo di idrogeno o alcune molecole.
Questa circostanza permette di definire approssimativamente, in certe condizioni, un dipolo
elettrico “intrinseco” del sistema, ed in questo senso si parla di “dipolo del sistema”.

Dal punto di vista osservabile un dipolo & definito dalla risposta del sistema ad una
variazione infinitesima di un campo elettrico, formalmente

JE
D=-— 10.71
56 (10.71)
E é I'energia del sistema in presenza di campo. Se
limD=D,#0 10.72
fm,D=Do# (10.72)

si dice che il sistema ha un dipolo intrinseBg, Il termine quadratico i’ produce invece
un dipolo proporzionale & e questo viene chiamato dipolo indotto.

Si tratta quindi di studiare come cambiano i livelli energetici del’Hamiltoniana in
presenza di un campo esterno, I'insieme di questi fenomeni prende il nome di effetto Stark.

3Suffragato dall’analisi fatta nel paragrafo precedente: in una Hamiltoniana generica si ottiene degenerazione
solo con un aggiustameto a mano dei parametri.
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Effetto Stark.

Supponiamo che lo stato sia non degenere e che gli elementi di mathtsidno nulli

fra stati con energi&,, cosa che si verifica di sicuro se il sistema, in assenza di campo
elettrico, € invariante sotto parita, eq.(10.70). Possiamo allora applicare le formule per la
teoria perturbativa su stati non degeneri. Il primo contributo non nullo al valore dell’energia
si ha al secondo ordine W

1 1
SE® =3 (Wold- Eln g g, (nld-8lvo) = 5,64, (10.73)

dove si é definito il tensore di polarizzazione:

o =3 1 (WoldiIn) (n[d;[wg) +(j < 1) (10.74)

1
En—Eg
L'assenza del termine linearedhsignifica che non si ha dipolo intrinseco. Si ha invece un
dipolo indotto:

D=—52=D =0 (10.75)

Il termine & appropriato: classicamente € dovuto alla deformazione del sistema in presenza
del campo, quantisticamente & proprio il valor medio dell’operatoe di dipolo sullo stato
modificato dalla presenza del campo. Questo, come nel caso dell'oscillatore, puo essere
verificato in due modi

¢ Dal teorema di Hellmann-Feynman. Usardie= Hy, —d - &

JE JH
@6 =~ 5z = ~Wi5z¥) = Widly) (10.76)

e Calcolo esplicito. Scrivendo lo stato perturbato al primo ordine cogge+ |y, ):

/ 1 \dk|‘lfo>
lvy) = zn|n>ﬁ<n|—dké‘)k\y/0 z n) *Eo

si ha per il valor medio del dipolo:
—(<1//1\+< 0l (1wo) + [w1)) = (| [wo) + (Woldhwr)
=She—e E k [(WoldIm)(nldi | wp) + (woldi ) (nidy | wo) | = 56

Come si vede dalle formule precedenti I'ordine di grandezza per I'effetto considerato &

e?a’ 3
o~ E [a] =Ccm

Se I'energia di legame & di tipo elettrostatico ci si aspiBa- €/a e quindia ~ a’, cioé
la polarizzabilita &€ proporzionale al volume del sistema.

Osservazione

Il tensoreo;; € simmetrico. Possiamo decomporlo in una parte proporzionale all'identita ed in una
parte a traccia nulla:

1
o _ockk36 +( akk§6ij)za(‘i,j+ﬁij (10.77a)

=3 2:1<"’o|di|”>ﬁ<nldi\%> (10.77b)
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L'operatore che compare nella (10.77b)

2 E EOn|d

€ ovviamente invariante sotto rotazioni perché la somma é effettuata su tutti gli stati, quindi su tutte
le proiezioni del momento angolare degli staji e le energi€,; sono supposte non dipenderelda
cioé il sistema € invariante sotto rotazioni.

Nel multipletto di momento angolare a cui appartiepg) allora, per il teorema di Wigner-
Eckart, questo operatore deve essere un multiplo dell'identita, vale a dire il valorsulo stato
[wo) = In,Jd, jz), non dipendedalla proiezionel, del momento angolare.

Il tensoreﬁij d’altro canto € un tensore simmetrico a traccia nulla, quindi trasforma secon-
do la rappresentaziong= 2 di SO3). Sempre dal teorema di Wigner-Eckart segue che i suoi
elementi di matrice, nel multipletto di momento angolare cui appartignsono proporzionali a
I +3J - %328”-. quindi se chiamiamo assda direzione di” e quantizziamo secondo questo
asse, la separazione indotta sui sottolivelli al variar® 8ia la forma

SE(J, ) = %é"z a+B(J? — %J(J+1)) (10.78)

Notiamo chea rappresenta il baricentro dello spostamento energetico: fare la traccia € la stessa
cosa che sommare g quindi la somma sui vari termini proporzionalBasi annulla, il che si puo
verificare anche direttamente notando che

1 J=+J

1
— P =2J0+1
11,2, 30T

Notiamo infine che gli stati cod, opposto sono degeneri. Questa & una conseguenza del fatto che
I'Hamiltoniana totale, compresa la perturbazione, & invariante per riflessioni attorno ad un piano
passante per 'asse es. il pianoxz In questa operazione la proieziodedel momento angolare
cambia segno, quindi due stati che differiscono per il segrdp $hno necessariamente degeneri.

C’é una differenza fondamentale fra il caso dell'oscillatore armonico e quello generale.
In virtu delle regole di selezione per un oscillatore a partire da uno §tatsono rag-
giungibili, con elementi di matrice di dipolo, solo gli stati+ 1) cio significa, come &
esplicitamente messo in evidenza nella (10.60), che solo un denominatore di energia com-
pare:E, — E,_, = hw. Sappiamo che le transizioni elettromagnetiche in un sistema sono
regolate appunto dalle differenze di energie dei livelli e, come vedremo, le ampiezze di
probabilita di transizione sono determinate, in approssimazione di dipolo elettrico, dagli
elementi di matrice di dipolo. Identificando i salti energetici con le righe spettrali di un si-
stema, vediamo che alla polarizzabilita di un oscillatore contribuisce una sola riga spettrale,
l'unica presente in approssimazione di dipolo, mentre per un sistema generico la polariz-
zabilita e legata a molte righe. Da un punto di vista classico questo € legato al fatto che un
sistema generico non & armonico. E chiaro che un campo elettrico statico & il caso limite
a frequenza nulla di un campo oscillante del tiyd) = &, coswyt. Le transizioni indotte

da questo tipo di campo, un'onda piana elettromagnetica, sono legate alle righe spettrali,
quindi per un certo verso la polarizzabilita di un sistema & uno dei parametri pit semplici
che descrivono la complessita di un sistema.

10.6.1 Effetto Stark su livelli quasi degeneri.

Vediamo ora come cambiano le considerazioni precedenti in presenza di livelli (quasi) de-
generi. L'esempio pit semplice &€ ancora un sistema a due livelli, precisamente la molecola
di ammoniaca descritta alla fine del paragrafo 10.4.

Nel legame molecolare azoto-idrogeno I'atomo di azoto é elettronegativo e tende ad
attirare gli elettroni degli atomi di idrogeno. In una situazione come quella rappresentata
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nella figura 10.2 la distribuzione di carica & asimmetrica rispetto al pigribmomento di
dipolo sugli stati+), |—) sara quindi non nullo, poniamo

d=(+led+) —d=(—|ed—) (+]ez—)=0 (10.79)

il segno relativo fra i due termini € obbligatorio. Fisicamente & dovuto al fatto che quando
I'azoto inverte la posizione rispetto al piano I'asimmetria di carica diventa di segno opposto,
matematicamente € dovuto al fatto che gli stati sono ottenuti dagli stati+) attraverso
I'operazione di parithdefinita nella (10.53). Per riflessione attorno al piagyoz — —z
quindi

(~led—) = (+|P'ezR+) = —(+]ez+)

come scritto nella (10.79). Analogamente, assumendo che con la nostra scelta delle fasi gli
elementi di matrice siano reali:

x=(+|ed—) = (—|PTezR+) = —x* = —x

che e 'ultima uguaglianza scritta nella (10.79).

Notiamo che gli statj+),|—) non sono autostati dell’Hamiltonianaguindi la (10.79)
non € in contraddizione con l'affermazione generale (10.70). Possiamo anzi facilmente
verificare che per gli autostati della parita e dell’Hamiltonidgg,|e), v. eq.(10.55),

(glezg) = 0= (eleze)

Supponiamo ora che sia presente un campo elettrico diretto lungo z,agselementi
di matrice dell’Hamiltoniana diventano:

_ (E,—d&  -A
H—( A Eo+dg) (10.80)

Questa Hamiltoniana non commuta piu con la pazita —z ovviamente. La (10.80) &
esattamente il modello studiato nel paragrfo 10.4Epn- d&’, e possiamo quindi scrivere
direttamente autovalori ed autostati, che indicheremo/gon |e) . per chiarezza

E = E,F /D21 (d&)2 (10.81a)

" cos§ o —sing o A (10.615)
, = e, = tan = — .
Vs sing ¢ cosd d&

Dalle (10.81) si capisce bene con quale meccanismo possa nascere un effetto Stark lineare
e quindi una, apparente, violazione della (10.70). Per campi elettrici grandi, in modo che
d& > A gli autovalori ed autostati diventané  0):

E=EFds  |ge=+) les=|-) (10.82)

Classicamente si pud dire che nella molecola I'atomo di azoto si “allinea” col campo
elettrico, o che il dipolo del sistema si allinea col campo elettrico. In questo regime si
ha

s(0eZ9), ~ (+ez+)=d  ,(eleze), ~ (—|ez—) = —d (10.83)

e a tutti gli effetti il sistema si comporta come se avesse un dipolo permanente.
Per piccoli campi pero, cioé pdé’ — 0, ( supponiamaé > 0,0 — n/2):

1 d2£2>

E—EyT (A+2A 9, =l0) 18, =1e (10.84)

4L’operazione di riflessione attorno al piarginrealta & la combinazione di una operazione di parita e di una
rotazione di 180 gradi attorno all’asager brevita chiamiamo parita anche questa operazione, stiamo assumendo
in ogni caso che le rotazioni attorno all'asssiano una simmetria del sistema e questo, quindi, non influenza la
nostra discussione.
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si ha quindi, correttamente, un effetto Stark quadratico e la polarizzabilita degli stati & data
da:

d2 dZ
Possiamo anche verificare le (10.85) direttamentedBer» 0 0 — £ — % e
1 d& d&
9, = 75 (04 50 + A ol (10.863)
1 d& d&
o2 5 (0= 501 - @+ 5l ) (10.86b)
Calcolando il valor medio dézsugli stati (10.86) si ottiene
d? d?
~(0lezg), = K@@ clelezle), = —K@@ (10.87)

in accordo con la (10.85). Notiamo che lo stato eccitato ha momento di dipolo indotto con-
trario a quello di€, cioé si comporta, in campo elettrico, come un materiale diamagnetico
in campo magnetico. Questo non deve stupire: la polarizzabilita & definita positiva solo per
lo stato fondamentale.

Un meccanismo simile a quello qui descritto avviene per tutti i sistemi che presentano
un “dipolo permanente”. Ad esempio vedremo nel paragrafo successivo che trascurando
la separazione fra gli stadie p in un atomo di idrogeno, assumendo cioé presente la sola
interazione coulombiana, il sistema & degenere e, ad esempio, il livell® ha un effetto
Stark lineare, nel compemento 10.H verra calcolato I'effetto Stark tenendo conto delle
correzioni relativistiche e si constatera che per piccoli campi I'effetto &€ quadrati€o in

10.7 Effetto Stark sul livello n=2 dell’atomo di Idrogeno.

Un esempio tipico in cui puo essere illustrata la teoria delle perturbazioni su livelli degeneri
e l'effetto Stark sul primo livello eccitato dell’atomo di idrogeno.

Effettueremo il calcolo standard e poi commenteremo sul significato e I'approssima-
zione di quanto fatto.

Pern = 2 si ha, in approssimazione non relativistica, un livello 4 volte degenere, con la
notazione convenzionale gli stati sono

29 |2p,0)  [2p,+1) (10.88)

Scegliamo I'asse di quantizzazione del momento angolare lungo la direzjale¢ campo
elettrico. L'Hamiltoniana di interazione é

V=—ez (10.89)

Regole di selezione.

Per calcolare gli elementi di matrice i osserviamo che esistono le seguenti regole di
selezione:

1) V e dispari sotto parita, quindi connette solo stati a parita diversa, quindi sono diversi
da zero solo gli elementi di matrice fra lo state gli statip.

2) V commuta cori; quindi non connette stati dd differente.

Dalle due osservazioni precedenti discende che 'unico elemento di matrice eventualmente
non nullo &
(2s|V|2p,0)
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ed il suo complesso coniugato. Usando la forma esplicita delle funzioni d’onda, in unita
atomiche:

1 —r/2 r 1 —r/2 3 1 /2
= —¢€ 1-- = —=re —Cc0sh = ——7z€
Vs = an ( 2) Y00 =5 /% 4z 2\V8rn
Si ha, ricordando che la media angolare di‘&g %:
_ 1 2qrat " _
(2sV|2p,0) _—9516ﬂ/d§2r dre 7 (1) =
e LA (1o — —ee k- Len =
= egl67r 3/ drr (1 Z)e = e£12(4. 25.)_396”’

In unita normali(2s|V|2p,0) = 3esa. La matriceH sulla varieta(2s, 2p) si scrive allora,
ordinando gli stati coif2s), |2p,0), |2p, 1),|2p, —1)

E, 3¢a 0 0
3 E, 0 0
0 0 E O
0 0 0 E

(10.90)

Come preannunciato il campo elettrico non rimuove completamente la degenerazione. Gli
stati |2s), |2p,0) sono mescolati fra loro. Le correzioni perturbative Bgdsi ottengono

dall’'equazione secolare
—& 3ead\
det(seaé’ 82) =0
e sono
£, = +3eaf

Ed é facile vedere che gli autostati si ottengono come somma e differenza dei due stati di
partenza. La situazione finale & allora

[2p,£1) E=E
1

A) = 75 (125 +129.0) E =E,—3ca¢
1

B) = 75 (128 [20,0) E—E,+3eaf

Vediamo quindi che siamo in presenza di un effetto Stiagare Possiamo verificare che
gli autostati|A), |B) hanno un dipolo medio non nullo, cosa permessa visto che non sono
autostati della parita:

(AlZIA) ~  =((2s72p,0) + (2p,0/Z2s)) = —3a

NI NI

(B|Z|B) ~ —>({(2s/22p,0) + (2p,0[Z|2s)) = +3a

Osservazioni.

Dal calcolo fatto vediamo che il livello = 2 si separa in 3 livelli con distanza relativaZ3.
Poichéa ~ 0.5-10-8cm, misurande® in V /cm si ha una separazione

3&ea~15.-108¢eV

che per campi “ragionevoli’§ < 10°V/cm, & piccola e quindi la teoria perturbativa fun-
ziona.

Lo schema adottato & ragionevole nella misura in cui il livello di partenza sia effettiva-
mente degenere. In realta ci sono degli effetti che stiamo trascurando:
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1) Si verifica, come e da aspettarsi, che la separazione cresce con il numero quantico
principale,§E ~ n?, questo perché il raggio dell'orbita cresce come

2) Leffetto del secondo ordine ¥2/AE. Per grandi campi e livelli eccitati questo
contributo cresce in importanza, poiché le differenze di energia fra i livsHi,
diminuiscono.

3) Linterazione relativistica fra il momento angolare orbitale e lo spin produce una di-
sintegrazione del livello @, in pratical. non & un buon numero quantico ed i livelli
sono distinti dall’autovalore dj?, conj = | +s. Questa correzione rimuove parzial-
mente la degenerazione e si ha un livello goa 3/2 e un livello conj = 1/2. In
questa approssimazione lo statq/g resta degenere con lo statplg,z. Abbiamo
trascurato questo effetto nel calcolo. La separazione di cui stiamo parlando si chia-
ma di struttura fine, e, come ordine di grandezza, & cifsald °eV. La trattazione
che abbiamo dato € corretta per campi abbastanza grandi da trascurare la separazione
di struttura fine.

4) Per campi piu deboli ci sono ancora altri effetti da considerare, da una parte si ha
una, piccola, interazione fra il momento magnetico nucleare e quello elettronico,
dall'altra correzioni indotte da processi virtuali di emissione e assorbimento di fotoni,
provocano una separazione fra il IivellexlgZ e 2p1/2. La separazione dei livelli,

dettaLamb shift & circa 10° eV, per I'esattezza sul livella = 2 la separazione
Stark diventa confrontabile con il Lamb shift per campi di circa 475 V/cm. Questo
significa che in questo regime e per campi piu piccoli, I'effetto Stark deve diventare
quadratico, una situazione gia incontrata nel caso di un sistema a due livelli.

10.8 Stato fondamentale dell’Elio.

Come seconda semplice applicazione della teoria perturbativa proviamo a calcolare il con-
tributo all'energia dello stato fondamentale dell’elio trattando la repulsione elettrostatica
degli elettroni come perturbazione. In questo paragrafo useremo unita atomiche

h2 me*
a=— E,= —5 =2Ry~27.2eV
me 07 R2 y
In queste unita per I'atomo di idrogeno
1
En=—-
T2
Consideriamo per I'elio una Hamiltoniana del tipo:
1 1 zZ Z 1
H=—ZA -0 ————+—— (10.91)
2 2 g ry ry—ry

L'ultimo termine nella (10.91) ¢ la perturbazione.

Limitando l'interazione alla forma (10.91) abbiamo trascurato diversi termini, oltre a
tutti i tipi di correzione relativistica abbiamo trascurato I'effetto di massa finita del nucleo:
guesta correzione € presente in modo non banale in questo sistema perche siamo in presenza
di un problema a 3 corpi e non ci si pu6 in generale ridurre ad un sistema in campo esterno
fisso usando la massa ridotta, come nel caso idrogenoide. Ci aspettiamo per questo effetto
una correzione dell'ordine dn/M ~ 10~2 dovem & la massa dell’elettroneM la massa
nucleare. Questo ed altri effetti saranno trattati in dettaglio in un capitolo sucessivo.

Un altro problema non banale € capire in quale spazio di Hilbert stiamo facendo teoria
perturbativa. L'Hamiltoniana imperturbata
1 1 z Z

Ho:*§A1*§ 27

.
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e quella di due elettroni indipendenti in un campo centrale. Finora abbiamo sempre trattato
problemi di singola particella e lo spazio di Hilbert del sistema era descritto dalle funzioni
d’onday(x) della particella. Come vedremo quantisticamente ci sono dei vincoli agli stati
ammissibili nello spazio di Hilbert anche per particelle indipendenti. Usando la teoria delle
perturbazioni al primo ordine I'unico stato che serve € lo stato di part¢pga, Come
vedremo in questo caso lo stato fondamentale del sistema imperturbato & descritto da una
funzione d’onda che & semplicemente il prodotto delle funzioni d’'onda dei singoli elettroni.
Per il singolo elettrone nella Hamiloniana imperturbata, idrogenoide, i livelli energetici
sono dati d&gj,, = —172. Come spiegato lo stato fondamentale del sistema imperturbato
e descritto dal prodotto delle funzioni d’'onda dei singoli elettroni nel fondamentale, cioé

_ 1
W) = [1s,1s,) V=R Yoo Rig=22%%e%" Y= Van (10.92)

corrispondente ad un’energia imperturbata
2
Ey= 2Esing =-Z

Al primo ordine perturbativo lo spostamento del livello fondamentale €, usando le (10.92),

~ 478 4783 1
vV _ 3 3 e 27r e 27, o 10.
<WO| |W0> /d I’ld r2 |:47T € 1 A € 2 |r1_r2| ( 0 93)
Posto Zr; = x;
1 Z 1
(Wo|V |wg) = —f/d:”x d3x,e *ale Xl (10.94)
O‘ ‘ 0 (47'[)2 2 1 2 |X1—X2‘

Questo integrale ha la forma di un’autoenergia elettrostatica per una distribuzione di carica
p=¢€e":

1
Ues= 5 / B, o (x,)

Indicando conV (x;) il potenziale creato nel punte, dalla densitgp(x,) ed usando il
risultatoV = Q(r)/r per una distribuzione sferica di carica:

Uesz/dgxlp(xl)v(xl) :/d3xlp(xl)xll|Q(Xl)

X1 =X 0z)

Passando a coordinate radiali,= [X;[, X, = |X,|:

Q(xy) =4z /OXl dxze"‘2x§ = (4m)2— e 1(2+2x, +x3)]

Ues= (47)? / dx e 1%, [2— 7% (24 2% +x3)] = (47:)2§

8
Quindi
5
(WolVwg) = Zé (10.95)
Da cui:
1., 5 2 5
E~ _EZZ + éZ =—[Z°— éZ] ~ —2.75a.u. Eexp~ —789eV=—2.90a.u.

Dal punto di vista sperimentale la cosa piu semplice da misurare € il potenziale di ionizza-
zione, cioe I'energia necessaria a estrarre un elettrone legato. L'elettrone che rimane legato
fa parte di un sistema idrogenoide, quindi I'energia di ionizzazione &

1
| = fEZZfE (10.96)
E bene usare sistemi diversi per fare lo stesso calcolo, in questo modo ci si pud familia-
rizzare con altri strumenti di calcolo: nel complemento 10.A il calcolo precedente é rifatto
usando le trasformate di Fourier.
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10.9 InterazionelLS

Come abbiamo visto nel capitolo precedente le correzioni relativistiche al moto di una
particella in un campo elettrico esterno introducono una interazione del tipo

V=Als (10.97)

Per un campo a simmetria centrél@ una funzione della sola coordinata radiale

Come vedremo nello studio dei sistemi atomici lo stesso termine di interazione si pud
scrivere nel caso di molte particelle, e S rappresenteranno il momento angolare totale
del sistema ed il suo spin. Per quanto riguarda la teoria perturbativa I'unica cosa che qui
interessa e chie e Ssiano buoni numeri quantici, cioe siano conservati dalla Hamiltoniana
imperturbateH,,.

Queste ipotesi sono sicuramente verificatélg@ invariante sotto rotazioni delle sole
variabili spaziali e non dipende dallo spin. Ogni livello energetico, in assenza di degenera-
zioni accidentali, ha allora una degenrazig@k + 1)(2S+ 1). Uno stato stazionario sara
individuato da un numero quantiecoche individua il livello e dai numeri quantici relativi
adL eS

ly) =In,L,L;,SS) (10.98)

Per calcolare I'effetto della perturbazione (10.97) dobbiamo applicare la teoria delle per-
turbazioni su stati degeneri, il che significa diagonalizzare I'operatosel sottospazio
descritto dagli stati (10.98) aufisso.

In questo caso il calcolo & molto semplice in quanto

. _} 2 _12_2
L-S=3 (P -L*-5) (10.99)

L'Hamiltoniana €& invariante sotto rotazioni, quindlié un buon numero quanticd., Slo

sono per ipotesi, quindi se scriviamo gli stati come autostal?dl,, abbiamo automati-
camente diagonalizzato I'Hamiltoniana. | coefficienti di Clebsh-Gordan servono appunto a
costruire gli autostati voluti quindi la base che diagonalizza I'Hamiltoniana é

n3.%)=5ClE (InLL.SS) (10.100)

Poiche I'Hamiltoniana totale € invariante sotto rotazioni globali, cioé orbitali e di spin, ogni
livello risultera avere una degenerazione residlia 2, corrispondente ai diversi valori di
Jz.

L'effetto sui livelli energetici si legge immediatamente dalla (10.99):

AE, — An% (3+1) —L(L+1)— SS+1)] (10.101)

Il coefficienteA, € I'elemento di matrice dell’operato#e |l modo piu semplice per cal-
colarlo & considerare uno qualunque degli stati (10.100) e stimare I'elemento di matrice
dell'operatore (10.97). Per sistemi di singola particella gli stati (10.98) hanno la forma

Ra(1)Yim (6, 9)Wo

dovew, € uno spinore di Pauli, e quindi, & semplicemente l'integrale radiale dell’ele-
mento di matrice.

Il numero di livelli ottenuti dipende da quanti valori disono possibili. Dalla teoria del
momento angolare sappiamo chd_se Sil numero di livelli € 25+ 1, mentre e R+ 1 se
L < S Infisica atomica si parla di doppiets= 1/2, tripletti, S= 1, quartetti etc., anche
se |'aggettivo rispecchia la molteplicita solo nel casp S. Questa “disintegrazione” del
livello si chiamastruttura finadel livello.
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Per indicare il livello si usa una notazione di tipo spettroscopico mutuata dalla no-
menclatura dei livelli dell’'atomo di idrogeno, si hanno lived|iP,D,F,G... a seconda che
L=0,1,2,3,4.... Siusa di solito una notazione del tipo

2S5+1 PJ

si scrive cioé la “molteplicita”, 3+ 1, come un indice in alto, a sinistra, ed il valore di
J come indice in basso a destra. Ad esem?pFP?/2 indica un livello appartenente ad un
doppietto,S=1/2,conJ=3/2eL =1.

Per una particella in campo centralenel capitolo precedente, (9.15), si € mostrato che
la funzioneA nella (10.97) vale:

1 du
= 522 dr (10.102)
Per un campo coulombiant, = —Z€&/r si ha percidA, > 0. Per atomi complessi I'ele-

mento di matricé\, puo avere entrambi i segni, a seconda della configurazione elettronica,
tratteremo questo problema nel capitolo 14.

In un atomo, la lunghezza caratteristica ¢ il raggio di Bahe h?/mé e i momenti
angolari sono espressi in multipli 4j quindi

La costanteadimensionale
o= ~ (10.103)

é chiamatecostante di struttura fine caratterizza la grandezza della disintegrazione dei
livelli: gli effetti sono di ordinea? cioé tipicamente di 16° — 10~* eV per energie carat-
teristiche dei livelli di qualche eV.

La (10.101) fornisce una buona descrizione della struttura dei livelli atomici. Per il
calcolo esplicito della costant®, occorre avere la forma esplicita delle funzioni d’on-
da, ma possono essere fatte alcune considerazioni generali. La separazione fra due livelli
successivi vale

Dy 13=E; 1 —E=AQ+1) (10.104)

indicando una separazione lineare ¢bn Ad esempio se si hanno piu di due livelli il
rapporto
Byiogi1  J42
Bygy  I+1

e indipendente d&, quindi dai dettagli della funzione d’onda. Se la (10.105) non € ve-
rificata significa che l'ipotesi fatta, cioé clieed S fossero buoni numeri quantici per la
parte restante del’Hamiltoniana, viene a cadere. Ad esempio vedremo nel capitolo 14 che
per atomi pesanti I'interazione di dipolo magnetico fra gli elettroni, interazione spin-spin,
e dello stesso ordine di grandezza o piu grande, dell'interazi®e questo modifica la
sequenza dei livelli.

L'atomo di idrogeno presenta alcune particolarita dovute alla degenerazione accidenta-
le dei livelli. Questa degenerazione non ha influenza sul calcolo degli elementi di matrice
per I'accoppiamenttSma la degenerazione coulombiana permane in una certa misura an-
che dopo le correzioni relativistiche e fa si che i livelli energetici £€@diversi ma con lo
stesso momento angolare totgleontinuino ad essere degeneri, a parita di numero quan-
tico principalen. Una discussione abbastanza dettagliata della situazione si puo trovare
nel complemento 10.E. Occupiamoci qui per semplicita del solo sgatdiesto stato,
tenendo conto dello spin ha una degeneraz{@8s-1)(2L + 1) = 6. In presenza dell'inte-
razioneL Sil numero quantico conservatoj&he pud assumere i valorf2,3/2 si avranno

(10.105)
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Alta risoluzione

[]

Figura 10.3: Visione schematica di uno spettro di struttura fine.

cosi due livelli, uno con degenerazione 2, I'altro con degenerazione 4, indicatipgpp 2

e 2p3/2. Linterazione (10.102), nel caso di un atomo idrogenoide,dea —Z€& /r ha la
forma

3
e lo spostamento dei livelli & dato dalla (10.101) tor 1,S=1/2
A eh? 1
AE(Zpl/Z) =-A AE(2p3/2) =5 A= ZWC2<2p|r—3 |2p) (10.107)
Per gli stati idrogenoidi
U adm e+ 3)(e+1)
e quindi, pem=2/=1
enr 1 1 &
74 =" - T 7421
A= 2nvc?ad 24 24Z [ZaB]

L'energia fattorizzata & il Rydberg. Si noti la caratteristica dipendé&dze delle corre-
zioni rispetto all'energia imperturbatz? Ry. PoichéA > 0 il livello con j maggiore viene
innalzato mentre quello coppiu piccolo viene abbassato dall'interazione. La separazione
frai due, detta appunto separazione di struttura fine &

1
Fop = AE(2py),) —AE(2py ) = ﬂszzoz2 .Z’Ry=7%453.10"%eV (10.108)

Numericamente per I'idrogeno la frequenza associ%a)/,h, vale

1
- Fop = 10.95GHz (10.109)

Se pensiamo ad una riga della serie di Balmer, 4a-32p, essa corrisponde ad una
frequenza di transizione di circa

1/1 1

=~ (-2 ) Ry~2893 10°GHz

Yh (8 27) y

Una riga spettrale di questo tipo, osservata ad alta risoluzione, rivela una piccola struttura,
una struttura fine appunto: la riga € separata in due componenti che differiscono della
quantita (10.108), cioé circa di una parte irf 1Q.a situazione & schematizzata in figura
10.3.
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10.9.1 Doppietto e basé;, S,

Puo essere utile effettuare il calcolo della separazione di struttura fine direttamente nella
base|L,)|S,), vediamo come effettuarlo nel caso di un doppieBes 1/2. Linterazione

ALS commuta cord, quindi gli elementi di matrice da considerare sono solo quelli con un
dato autovalore di,. Il massimo ed il minimo autovalore possono essere realizzati in un

solo modo 1 1 1 1
B=L+3) =015 |&=-L-3)=|-L}I-5) (10.110)

Gli altri autovalori diJ, possono essere realizzati in due modi diversi. Chiamavdo
l'autovalore diL;:

|M>\%> |M+1>|—%> (10.111)

Si hanno in tutto R coppie di stati della forma (10.111), corrispondenti ai valMrik L.
Introducendo gli operatori di salita e di discesa, hermitiani coniugati uno dell’altro:

L. =Letily S, =Sc+iS (10.112)

I'Hamiltoniana di interazione si puo riscrivere

1 1

-39 =9

Gli unici elementi di matrice non nulli di, sono quelli della forma

Per spin 1/2

(M+1|L M) =/ (L+M+1)(L—M) (10.114)

ed analogamente pér .
Usando la decomposizione (10.113) € chiaro che i due stati “estremi” (10.110) sono
autostati dv con autovalore

L
L=Ag (10.115)
Nelle altre coppie di stati la matrice di perturbazione ha la forma:
IM)|3) IM+1)|-3)
M) |3 AY SV(L+M+1)(L-M
IM)[3) 2 2V ( )(L—M) (10.116)
M+1)|-3) \ 3V/L+M+I)(L—M) —AMLL
Questa matrice ha autovalori:
A, = gL Azz—g(LJrl) (10.117)

gli autovalori sono indipendent dd. 1l primo di questi autovalori coincide con quello gia
trovato, (10.115). Si ha quindi lo spettro:

E, = gL deg. 2. +2 E,= —g(L+ 1) deg.2 (10.118)

che coincidono con la (10.101) pée= L + % elJ=L- % con la corretta degenerazione
2J+1.
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10.10 Interazione iperfina.

Nel capitolo precedente abbiamo visto che l'interazione magnetica dell’elettrone col mo-
mento magnetico nucleare &

e /1 e [8n 3 o 1
V= mc<r3“N ~é> ~ e {suNSS( (1) — (my-S—3(1y -F)F - 9) =3 (10.119)

E utile definire un fattore giromagnetico nucleare, in analogia con quello elettronico:

€ en
By =N 2mpcs'\' Hp= 2|m|pc (10.120)
Si noti che nella (10.120) abbiamo usato la carica di un singolo protone e la massa corri-
spondente, useremo la stessa definizione per qualunque nucleo, questo perche tutti i nuclei
hanno momenti magnetici dello stesso ordine. La grandggziefinita nella (10.120) si
chiamamagnetone di Bohr nuclearéntroducendo il fattore giromagnetico, 2, dell’elettro-
ne, e misurando i momenti angolari in unitésdichiamandd lo spin nucleare

8n 3 s 1 1
Y, :A{3|55< J(r)—(1-S=3(1-F)F-9) St <r3 | -L) } (10.121)
Dove abbiamo definito:
eh
A:*mﬂpggNEWB|HpggN>o £=nhL s=hS ="

cioel élo spin nucleare in unita di Poichéme/m, ~ 1/2000 il fattore magnetico nucleare
e dell'ordine di 10°2 quello elettronico.

Come ordine di grandezza gli elementi di matric& diu stati atomici, con lunghezza
caratteristica ~ ag = h?/me, sono dati da
A m ,€& e

= —°—

a my ag %= 137

(costante di struttura fine) (10.122)

Quindi sono circa 10’ volte piu piccole di una tipica energia atomica e 3@olte piu
piccoli di una tipica interazione di struttura fine. Malgrado cio l'interazione (10.121) &
molto importante, da una parte perché € la prima interazione a livello atomico che coinvol-
ga la struttura nucleare, dall’altra perché transizioni fra livelli energetici determinati dalla
(10.121) avranno lunghezze d’onda dell'ordin€A010° — 10’ ~ 10— 100cm cioé nel
campo della radiofrequenza, un campo molto sfruttato in diverse tecnologie.

Studieremo solo il caso di un singolo elettrone, quindi la struttura iperfina di atomi
idrogenoidi o quella di atomi alcalini, in cui ci si pud limitare a considerare I'interazione
del solo elettrone periferico.

Notiamo innanzitutto che nella (10.121) solo il primo termine contribuisce all’'ener-
gia per le ondes. Infatti I'ultimo & proporzionale al momento angolare, il secondo &
proporzionale al tensore a traccia nulla

XiX;
Un tensore di questo tipo ha le proprieta di trasformazione di un momento angolare 2 quindi
per le regole di transizione del momento angolare non puo avere elementi di matrice fra due
stati conL = 0.

Come vedremo il contributo pit importante alla struttura iperfina viene proprio dalle
ondeS, quindi concentriamo la nostra attenzione sul primo termine della (10.121):

VAC A%”|36<3>(r) (10.123)



10.10. INTERAZIONE IPERFINA. 31

L'analisi di questa interazione & simile a quella che abbiamo fatto per I'interaki@ne
Consideriamo un dato livello elettronisalell’Hamiltoniana imperturbatd,), ad esem-

pio un livello nsdell’'atomo di idrogeno. Il sistema elettrone nucleolLha: O per tutti gli

stati di questo livello. Il livello ha una degenerazigf@S+ 1) dovuta allo spin elettronico

ed una degenrazior{@l + 1) dovuta allo spin nucleare. Una base sul sottospazio di Hilbert

determinato dall'autovalore scelto ldj, cioe dal livello, & fornita da

) |S SHIIL12) (10.124)

« € l'insieme dei restanti numeri quantici dell’elettrone, tipicamente la funzione d’'onda
radiale. SiccoméedSsono fissati, possiamo includerliino semplicemente non scriverli.
Gli elementi di matrice dV su questo sottospazio hanno la forma

(@ (S, 1V [0} S 13) = AT (] 6°(1) 0) (15,41 - SISy 1)
= AT (025, S SIS, ) (10.125)

Quindi il problema & semplicemente diagonalizzare nel sottosg@rie 1)(2S5+ 1) la
matrice (10.125).

Lo spin elettronico e lo spin nucleare non commutano separatamente con la (10.123).
I momento angolare totale commuta, essendo I’'Hamiltoniana invariante per rotazioni, in
ondas L = 0, quindi il momento angolare totale coincide con lo spin totale del sistema
nucleo - eletrone, indichiamo il momento angolare totalefomquindi in ondas:

F=1+S

| valori possibili di F si determinano secondo le solite regole di addizione del momento
angolare, sé > S F assumera tutti i valori possibili fra—Sel + S cioé 25+ 1 valori,
altrimenti, perS< |, S—1 <F < S+ 1 per un totale di P= 1 valori.

In termini diF si ha

|.S= % [F?-S*—12] = % [F(F+1)—S(S+1)—1(1+1)] (10.126)
Quindi 'Hamiltoniana & diagonale nella ba$eF;) e, prendendo I'elemento di matrice su

uno stato elettronico i suoi autovalori sono:

21

E :A%W(O) 5[F(F+1)—SS+1)—1(+1)] (10.127)

Atomo di idrogeno.

In questo cas®&=1/2,1 = 1/2 eF pud assumere i valori,Q. Sostituendo il valore della
funzione d’onda nell'originely(0)|?> = 1/zn%a° si ottiene

12A |1 F=1 2 Mplugl |1 F=1
E 1?2 _ < 10.128
F n33a3{_3 F=0 e INT -3 F=0 ( )

Consideriamo il livello &. Per la separazione di struttura fine si ha

AE=E, —E, fggN'ume‘

Ricordando cha € espresso tramite la massa ridotta e la definizione di unita atomica:
Me
(

1+, £ —1au=2R
mp) aB y
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-3 -3

g . m me\ “4 , g m me) "8 »

AE=Zgy— |1+ — = U=gy— |1+ — —a‘R 10.129
ZgNmp< +mp) 3> ad 29Nmp< +mp> 3Ry )

Per il protone si ha, approssimativamegie= 5.5857 e sostituendo gli altri valori noti si

ottiene, in frequenza

f— % ~142513MHz A — % — 21.0605cm (10.130)

Riportiamo il numero sperimentale, uno dei valori piu precisi in assoluto in fisica:
1420405751768+ 0.001 Hz (10.131)

Ci limitiamo a dire che la discrepanza & dell'ordine dirt@- «?, in accordo col fatto cha
abbiamo trascurato le correzioni relativistiéhe

L'estensione della procedura seguita ad onde diverse dall'sadm utile esercizio sul
teorema di Wigner-Eckart, il lettore interessato la puo trovare nel complemento 10.F. ||
risultato, vedi eq.(10.378), & che lo spostamento dei livelli energetici & dato da

L L+ F(F+1)—JJ+1)—1(1+1)
fo] =% 7A<r3> 3051 5 (10.132)
Per I'atomo di idrogeno, usando I'espressione
1 1 1 1
I|=|nl) = 0 2_ -
<n |r3|n> n3a3 6(64‘%)(64-1) |W( )| n_n3a3
la (10.132) e la (10.127) danno, per gli s&tp
an 3 2 1 4 3
OEns, , = A~ [F(F +1) - 2} YOI = —=5A3 {F(F +1) - 2] (10.133)
4 3],1 1 4 3
OEnp, , =Ag [F(F +1)— 2} (3) = 33" {F(F +1)— 2} (10.134)
4 9] ,1 1 4 9
OEnny, = ATe [F(F +1)— 2} (3) = =3P%E {F(F +1) - 2] (10.135)

Nei primi due casF = 0,1, nel terzoF = 1,2. La differenza fra i due livelli di struttura
iperfina e percio, nei vari casi:

8A 1 8A 2 B8A

ST MeT3 e ™eT 15 3w (10139

Il contributo piu rilevante, come ci si attendeva, € per I'osda

10.11 Effetto Zeeman.

In questo paragrafo vogliamo studiare I'effetto di un campo magnetico sui livelli energetici
di un atomo. Cominciamo col richiamare la teoria classica, dovuta a Lorentz. Classi-
camente ad una riga spettrale di frequengae associata I'oscillazione di un elettrone,
l'introduzione di un campo magnetico porta alle equazioni del moto

e e
mx = fma)gXJrEV/\BE fmngf%v/\B (10.137)

Scegliamo il sistema di riferimento in modo cBesia diretto lungo I'asse. |l sistema
(10.137) descrive due oscillatori perpendicolari al campo, nel piaped uno parallelo,

5C’e una correzione di ordine in realtd perchd@ — 2 ~ /7, questo valore & stato messo in conto nella
(10.130)
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quello lungo I'asse.. Per capire intuitivamente I'influenza Bi sul moto, ricordiamo che
le equazioni del moto in un sistema di riferimento ruotante con velocia angolare uniforme
Q si scrivono

mv=F+2mvAQ+mQA (XAQ) (10.138)

il secondo termine nella (10.138) ¢ la forza di Coriolis. Per piccoli campi magnetici quindi
un oscillatore in campo magnetico & equivalente ad un oscillatore visto in un sistema di
riferimento ruotante con velocita angolare

_ldB

Q=-wz o =5

(10.139)
al primo ordine nella velocitad angolare. Questa affermazione ovviamente si estende a qua-
lunque sistema, non solo agli oscillatori ed & nota céemeema di Larmor.La velocita
angolarew, € chiamatdrequenza di Larmar Sottolineiamo che la rotazione é risultata
oraria perche la carica dell’elettrone € negativa.

Un moto circolare antiorario (+) o orario (-) € descritto nel piarypdai vettori posi-
zione

X, = A(cosmgt,sinmgt)  x_ = A(coswyt, — sinagt) (10.140)

quindi un’oscillazione lineare, ad esempio quella lungo I'aspeid sempre essere vista
come la sovrapposizione di due moti circolari:

A(coswyt,0) = %(x+ +x_)

Se passiamo ad un sistema di coordinate rotante con velocita angplaresenso orario
e chiaro che il moto antiorario, rispetto all'asse fissat®B¢daa una velocita angolare di
o, + @_ mentre quello orario ha una velocita angolarengi— o, . Quindi I'effetto del
campo e quello di separare i tre modi di vibrazione in tre frequenze distigtel, + o, .

Un modo analitico per verificare la stessa cosa € il seguente. Le equazioni del moto nel pisino
scrivono
K= —0fx+20y Y= —0fy— 20X

Scrivendoé = x+ iy si ottiene pek I'equazione
E=—wgt-2i o &
Ponendd® = ™ si ricava I'equazione caratteristica per

—a?= —w§+2wLa

o=—0+,/03+0?
corrispondenti a frequenze di oscilazione
0 = /02 + 02+ 0o ~ o)+ o (10.141a)
0=,/ + 0 — o ~ 0y— o (10.141b)

che ha soluzioni

Quindi classicamente ogni riga spettrale in campo magnetico dovrebbe separarsi in tre
componenti, la separazione fra le righe é fissatade: |€|B/2mc

Si ha un’altra conseguenza importante. Classicamente l'intensita dell’emissione di luce
€ proporzionale al quadrato dell’accelerazione della carica nella direzione trasversa a quella
di osservazione. In un oscillatore I'accelerazione & proporzionale al dipolo del sistema:
ea=d = —n?d.
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Quindi osservando la luce lungo I'assiédipolo oscillante lungo quest’asse non contri-
buisce all’emissione e si osservano solo due righe, a frequejzeo, , con polarizzazioni
circolari, essendo il dipolo sul piang rotante. Per I'esattezza il dipolo antiorario ha fre-
guenzaw, + o, quello orariow, — @, quindi la luce con polarizzazione sinistra (+) ha
frequenza piu alta.

Viceversa osservando lo spettro indirezione ortogonale al campo, in direzdiocia-
mo, si vedono solo gli effetti delle componenti del dipolo lurg®y, quindi una riga con
luce polarizzata linearmente lunga frequenzan, e due linee a frequenas, + w_ po-
larizzate linearmente lungg dovute alle componenti di Fourier dei due moti nel piano.

In direzione generica, come il lettore pud facilemente verificare, si osserva una linea con
polarizzazione rettilinea lungo I'asgee due linee con polarizzazione ellittica a frequenza
, £ . La fenomenologia descritta finora prende il nomeftttto Zeeman normale

In meccanica quantistica I'effetto di un campo magnetico € di aggiungere all’Hamilto-
niana imperturbata il termine

e

2mc
g € il fattore giromagnetico dell’elettrone, ed assumiamo direttanmgrt®. Chiamando
zla direzione del campo magnetico e misurando i momenti angolari in unitddi AL
etc., la (10.142) si scrive:
|e|Bh

e (L 25) = ho (Lo +2S) (10.143)

vediamo quindi che ricompare la frequenza di Larmor che pud anche essere scritta in
termini del magnetone di Bohr:

Hg = (£+gs) B (10.142)

ho, = |ug|B (10.144)

La (10.143) vale per un qualunque numero di elettroni, perché ovviamente il cBmpo
agisce su tutti gli elettroni del sistemh; S rappresentano I'operatore momento angolare
totale e I'operatore di spin totale del sistema.

In generald. e Snon sono separatamente conservati, come abbiamo visto, a causa delle
interazionilL - S, e questo implica che gli effetti del campo magnetico dipendono in qualche
modo dalla struttura fine del sistema. Per capire le energie in gioco notiamo che

|ug| ~5.78838174910 °eVT 1~ 58.10 eV T ? (10.145)

Il Tesla, (T), cioé 16 gauss in unita CGS, & l'unita di misura del campo magnetico. Lor-
dine di grandezza della struttura fina&a.u. ~ 10~% —10~°eV, quindi per piccoli campi,
molto piu piccoli di un Tesla, la separazione di struttura fine non & trascurabile mentre per
campi grandi possiamo trascurarla, il discrimine & fornito dal rapporto fra la frequenza di
Larmor o e la separazione di struttura fing o. Talvolta per campi piccolig < ogSi

usa il nome di effetto Zeeman, mentre per campi intermedi- g, 0 grandi,, > @

di effetto Paschen-Back.

Cominciamo dal caso semplice in cui non c’e lo spin, cioé consideriamo stefi-edn
Questo naturalmente non ¢ il caso dell'idrogeno o dello spettro dei metalli alcalini, ma
illustra bene la connessione fra caso classico e quantistico. Fra I'altro in questo caso si
deve riottenere proprio il limite di grandi campi magnetici, in cui si trascura la struttura
fine e quindi lo spin.

Per capire bene quanto segue occorre anticipare un aspetto della radiazione che svilup-
peremo nel capitolo 16. Le righe spettrali pit intense in uno spettro sono quelle dovute a
transizioni di dipolo elettrico, esattamente come nel caso classico:

(f|dli) transizionei — f (10.146)

Se consideriamo I'assecome asse di quantizzazione del momento angolare possiamo
scrivere le tre componenti indipendenti del dipolo nella forma
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esattamente come si fa per il momento angoldisg.comporta come un vettore per rotazio-

ni spaziali quindi le regole di selezione genella (10.146) sonAL = 0,41, la transizione

AL = 0 e proibita nel caso di un singolo elettrone per ragioni di parita, lo stato ha parita
(—1)" solonel caso di un singolo elettrone. La transizione-® & proibita. Per quanto
riguarda le singole componenit, emissione

d; luce polarizzata rettilineamente lungo z (10.148a)
d_ luce polarizzata circolarmente + (10.148b)
d, luce polarizzata circolarmente - (10.148c)

Le regole precedenti sono semplici da capire: un fotone polarizzato circolarmente sinistro
emesso lungo I'asseha un’unita di momento angola#gh lungo I'assez, questa e “portata
via” all'atomo attaverso un elemento di matride che abbassa di 1 la componehtedel
sistema atomico. In assorbimento i ruolicdi,d_ nelle (10.148b),(10.148c) si invertono.

In assenza di spin I'Hamiltoniana (10.143) € immediatamente diagonalizzabile

Hg = ho, L (10.149)

quindi si ha una serie di livelequispaziatil'intervallo di energia fra due livelli consecutivi

e hay, ed il numero di livelli 2 4 1, il numero di possibili valori di,. Notiamo che

la separazione € simmetrica attorno al livello imperturbato originario, che corrisponde a
L,=0.

Consideriamo ora transizione una fra due livelli atoniidi, Siahw, = E; — E; la fre-
guenza della riga associata alla transizione in assenza di campo magnetico. Seillizello
spin 0, anche il liveldf ha spin 0 perche le transizioni di dipolo elettrico non influenzano lo
spin. Quindi la separazione in campo magnetico nei due livelli & la stessa, data sempre dal-
I'espressione (10.149). Se riportiamo accanto lo schema dei due livelli, facendo coincidere
il baricentro corl, = 0, abbiamo la figura 10.4, fatta nel cdse= 2,L; = 1. Le transizioni
possono avvenire, in virtl delle regole di selezionel ssolo fra livelli adiacenti, cioé con
lo stessd., o fra livelli che differiscono di un posto.

Come si vede bene dalla figura le transizioni possibili avwengono nel modo seguente

AL, =0 operatore: d; — pol. rettilinea freq. hw =E; —E; = ho,
AL,=+1  operatore: d,. — pol.— freq. ho = h(wy— o)
AL;=+1  operatore: d_ — pol.+ freq. ho = h(wy+ o)

Questa € esattamente la situazione classica: si ha una separazione in tre righe e la frequenza
di separazione & proprio la frequenza di Larmor. Le proprieta di polarizzazione dei fotoni
sono in accordo con le aspettative classiche.

Supponiamo ora che i due stati abbiano spin ma il campo magnetico sia molto grande,
in modo da poter trascurare la struttura fine, siamo nel caso limite dell’effetto Paschen-
Back. | livelli iniziali hanno una generazion@L + 1)(2S+ 1), e sono degeneri appunto
perche trascuriamo la struttura fine. In questo caso possiamo prendere come base di stati
IL.Lz,S'S;) che naturalmente & una base completa nel sottospazio dell’Hamiltoniana re-
lativo al livello considerato: mancando linterazioh8&, L, ed S, continuano ad essere
buoni numeri quantici. L'Hamiltoniana (10.149) é di nuovo diagonale in questa base con
autovalori:

haoy (L +2S,) (10.150)

Questo spettro & praticamente identico a quello di prima: livelli equispaziatbdil, +
25, varia fra— (L + 2S) e L + 2S) per un totale di

#livelli = 2(L +29) +1 (10.151)

Il baricentro dello spettro & ancora I'energia imperturligf@erchey L, = 0= 3 S,. Esso
coincide o no con un livello a seconda cBsia intero o semintero, Ad esempio pet
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HB d,

Figura 10.4: Effetto Zeeman normale.

0,S=1/2 i due liveli sonohw = +ho /2, il centro € zero ma nessuno dei due livelli
coincide col centro.

PoichéL; puo variar di una unita e an-
che, i livelli sono distanziati fra loro sempre
della stessa quantitd®,o, : qui € essenziale L,

'uguaglianzag = 2, naturalmente. La cosa /O deg. 1
che cambia rispetto al ca®= 0 & sempli- 2 e o deg. 1
cemente il numero e la molteplicita dei sin- ¥

goli livelli. Gli autovalori (10.150) vanno da 1 e o deg. 2
—L —2Sal + 2S, distanziati di uno. La mol- <

teplicita € data da quanti modi si puo fare un 0 ®.. ~o deg. 2
numero in questo intervallo sommantdped N

S,. Per contare la degenerazione si pud ad Le o deg. 2
esempio partire da un datg ed aggiungere 2 e ‘\o deg. 1
o sottrarre 3, per i variS; e contare in quanti A '
modi si arriva ad un dato numero. La situa- o deg. 1
zione & semplificata nella figura accanto per

L=2S=1/2.

In una transizione di dipolo elettrico lo spin non cambia, quindi la situazione per il livello
energetico finale é identica a quella vista in precedenza: nel caso limite di un forte campo
magnetico si ha I'effetto Zeeman normale, anche in presenza di spin.

Passiamo ora al caso di campi piccoli rispetto alla struttura fine /@ipé< E.. In-
nanzitutto quanto visto finora ci dice che per campi piccoli ma ancora grandi rispetto alla
struttura iperfina, che ricordiamo € dell’ordine di‘f(IEFS, possiamo trascurare gli effetti
del nucleo. Questa situazione quindi & quella tipica per campi fra 1 Tesla, che corrispon-
dono ad un’energia magnetica di circa8510°eV e 10T ~ 10gauss regime in cui
eventualmente possono intevenire effetti legati al nucleo atomico.

Supponiamo per fissare le idee> S. Sappiamo allora che un dato livello si separa in
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virtu dell’'interazione spin orbita in@+ 1 livelli con J variabile daL —SaL+ S

Supponendo come gia detta, < E-g possiamo applicare la teoria delle perturba-
zioni degenere ad ogni livello di struttura fine, questo significa appunto trascurare termini
dell'ordine ugB/E-g < 1. chiamandax I'insieme dei numeri quantici che individuano il
livello, una base per i2+ 1 stati in questione é naturalemente

,d,d5) (10.152)

L'Hamiltoniana
Hg = hoy (L2 +25,) (10.153)

€ invariante per rotazioni attorno all’asseguindi commuta cod, ed € diagonale nella base
(10.152). Si tratta quindi di calcolare gli elementi di matrice diagofwld, J,|L;|c,J,J;)
e gli analoghi pes,.

Il teorema di Wigner-Eckart ci assicura che all'interno di un singolo multipletto tutti i
vettori hanno elementi di matrice proporzionali, quindi in particolare sono proporzionali a
J. Gli elementi di matrice dell’Hamiltoniandg hanno percio la forma

Hg = ho 93, (10.154)

il fattore g; viene chiamatdattore di Landé

Il calcolo dig; & una semplice applicazione del teorema di Wigner-Eckart: all'interno
del multipletto gli elementi di matrici di qualunque vettore sono proporzionali agli elementi
di matrice diJ, quindi come matrici{2J + 1) x (2J+ 1), cioésolo all'interno di questo
multipletto :

L=cJ (10.155)
moltiplicando ped si ha
c?=(L-J) (10.156)
poiche
J-L=S = JXP4L2-2.L=9%
si ha

JL= % (P+L2-9%) = % B +1)+L(L+1)—S(S+1) (10.157)

ed infine dalla (10.155) e dalla (10.156), a livello di elementi di matrice

JO+1)+L(L+1)—SS+1)

L =
2J(3+1)

J (10.158)

Per gli elementi di matrice d basta scambiare il ruolo di e S nelle righe precedenti:

JUO+1) —L(L+1)+SS+1)

S:
2J(3+1)

J (10.159)

mettendo assieme la (10.158) e la (10.159) otteniamo, per gli elementi diagdrgali di

JO+1)+L(L+1)—SS+1) _JI+1)—-L(L+1)+SS+1)
ho 2 { 200+ 1) 2 20(3+1)
B JUI+1)—L(L+1)+S(S+1)
= hoyJ, {” 23+ 1)

Quindi il fattore di Landé vale

JU+1)—L(L+1)+S(S+1)
2JJ+1)

gy =1+ (10.160)




38 CAPITOLO 10. TEORIA DELLE PERTURBAZIONI.

Se il fattore giromagnetico dell’elettrone non & 2, dalla (10.159) si ha:

JU+1)—L(L+1)+S(S+1)

9;=1+(1+(g—2)) 2J(J+1)

(10.161)

Perg; = 1 la separazione dei livelli energetici indicata nella (10.154) e quella classica.
Vediamo che pe6= 0, ad esempiog; = 1, la cosa & consistente con quanto aspettato
perché in questo caso non c’'e separazione di struttura fine.

Perg; # 1 i livelli continuano ad essere equispaziati ma con intervaipg;. Gia
guesto € in contrasto con una interpretazione “semiclassica” dell’effetto, in cui per il teo-
rema di Larmor, cioé il ragionamento fatto all'inizio del paragrafo, dovremmo avere delle
separazionha, .

L'effetto pit evidente comunque si ha sul numero di righe: nella transizione fra due
livelliin generale il fattoreg; cambia, quindi la spaziatura fra i due livelli & differente e con
riferimento alla situazione riportata in figura 10.4 la frequenza dipende da quale particolare
sottolivello si considera. Prendiamo ad esempio una transizione da uno uno stato con un
momentoJ' ad uno stato con momendd < J. Le transizioni indotte da,, conAJ, =0
hanno frequenza:

ho = (E; —E;) +ho (g, — g;3} ) = hay, + hay I (g — 9;) (10.162)

chedipendedal,. Allo stesso modo una transizione indottaddache, ricordiamo é quella
che da luogo alla luce polarizzata sinistra, compdyta sz + 1 e quindi ha frequenza

ho = (B, —E;) +ho (g3, — g;3)) = hawy + haoy |3 (g —9¢) + 6 (10.163)

Anche qui si hanno frequenze diverse al variare del sottolivello Zeeman. In conclusione
si hanno piu di tre righe, I'effetto Zeeman viene dedftetto Zeeman anomaldotiamo
che in realta I'effetto Zeeman anomalo & la norma, in pratica a campi magnetici ragionevoli
I'unico caso in cui si ha effetto Zeeman normale € il caso irsei0 o in generale i fattori
di Landé dei due livelli sono uguali.

E facile convincersi che per una transizidne f in emissione, cod, > J; dli sposta-
menti in frequenza, il numero di righe e la polarizzazione sono dati da

dhay (Jz(g —9¢) #righe:(2J; +1) (10.164)
d_hw (J(9 —9;) +9; #righe:(2J; +1) (< ) —1#=2)]
d, hew (J(9 —9¢) — 9 #righe:(2J; +1) (B> —J; +1#=2)]

DoveJ, varia da—J; < J, < J;. L'ultima colonna si riferisce al caso in cili= J;. Lascia-
mo al lettore I'esercizio di scrivere I'analoga tabella nel caso in cui lo stato iniziale abbia
momento angolare piu piccolo.

Come esempio concreto consideriamo la riga gialla del sodio. Il sodio € un metallo
alcalino con un elettrone periferico in uno sta&) Ber usare la terminologia vista nell’a-
tomo di idrogeno. La riga gialla in assorbimento corrisponde alla transizisre 3p,
in emissione ovviamente alla transizionp 3> 3s. Gli altri elettroni fanno da spettatori
e costituicono un insieme chiuso can= 0,S = 0, quindi i numeri quantici dell’'atomo
dipendono solo dall’elettrone periferico.

Lo stato  hal =1 eS=1/2 quindi ha una struttura fine, con due livellla=1/2 e
J=3/2. In effetti la riga gialla & costituita da due righe distinte con lunghezze d’onda

3p, ), — 38, 5895924A  3p,, — 35 ,: 5889950 A (10.165)

La prima riga ha lunghezza d’onda piu grande (frequenza piu piccola) in accordo col fatto
giarilevato che il coefficient& nell’hamiltoniana di struttura fin&¢ - sé positivo per il caso
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di singolo elettrone (come nell'idrogeno). Si stima immediatamente che la separazione di
struttura fine rispetto alla frequenza di riga

Come valore dell’energia, dalla (10.165) si ha

N 3
Eyj,—Eyp ~21-10 %V (10.166)

3/2

in perfetto accordo con quanto aspettato per una tipica interatineDalla (10.145)
discende che per campi fino a qualche centinaio di gauss siamo in regime di campo debole.
| fattori di Landé dei vari livelli si ricavano dalla (10.160):

2 4
93sy,) =2 9Bpyy) =3  9BPy,) =3

e danno luogo, v.(10.154) agli spostamenti di energia:

1 2
SE(3s, ;) = thay  SE(3p,,) =+7hay SE(3p,,) = <j:3,2) he,  (10.167)

Uno schema delle transizioni & riportato in figura 10.5.

Jz Jz
+3/2 | 20,
NI
N
\\
d; d,
+1/2 | +130W0, ———) + W +1/2 | +2/13 W ———) + Wy
\\V/‘d+ AN /‘ ds
N d N d
s P 7, p*]
A2 |3 w - w12 |apo dz S o
d, L L p L
e
///d+
-3/2 2 QO
3p12 3s1/2 3p32 38172

Figura 10.5: Effetto Zeeman anomalo per il sodio.

Dalla figura si ricavano direttamente gli spostamenti in frequenza

2 2 4 4

3Py =38, k(g 3o d_: ghoy d i —zhoy
3Pz, =35, et (5’—5)71% d_: (é,l)fw)l_ d, : _(571)ﬁwL

in accordo con la (10.164). La prima riga si divide in 4 righe e la seconda in 6.

10.11.1 Effetto Pashen-Back: Idrogeno.

Per campi magnetici intermedi I'energia tipica di interazione magngjiéae dello stesso
ordine di grandezza degli elementi di matrice dell'interazione e quindi le mfigieiH,
Hamiltoniana di struttura fine, vanno diagonalizzate simultaneamente.

Per chiarire formalmente la procedura i passi logici sono:

1) Siconsidera I'effetto dell'interazioriég + Hgg su un livello degenere dell’Hamilto-
niana imperturbathl,. Sel, Ssono buoni numeri quantici una base di autostat di
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é|a,L.L;,S'S,) dovea genericamente indica I'insieme dei numeri quantici esclusi
L,S, ad esempio il numero quantico principale per 'atomo di idrogeno. Un dato li-
vello corrisponde ad ur fissato. Il sottospazio di Hilbert relativo a questo livello

ha una degeneraziofieL + 1)(2S+ 1). Esssendo fissato d’ora in poi sara sottinteso.

2) In questo sottospazio possiamo scegliere, invece della base precedente, una base
let,J,J;), doved puo assumere tuttii valori frd — S e|L+ 9, seL > S Il vantaggio
e che in questo modo automaticameHig, & diagonale, in quanto I'operatoke S
e diagonale in questa base. La scelta non € obbligatoria ma puo essere conveniente.

3) In questa base, costituita sempre da un tota(@ldi+ 1)(2S+ 1) elementi, occorre
scrivereHg e diagonalizzare la matrice totat ¢+ Hg.

PoniamoQ, = ha_per snellire le formule che seguono. L'Hamiltoniana
Hz =Q, (L:+2S)

€ invariante sotto rotazioni attorno all’asgequindi commuta conJ, ed ha elementi di
matrice solo fra stati con lo stesdg Il numero di stati conJ, fissato & al massimo uno
per ogni livello di struttura fine, cioé per ogni valore possibild dad esempio per > S
si hanno &+ 1 livelli, quindi la matrice totale in realta e fatta a blocchi e i blocchi di
grandezza massima sono matfs+ 1) x (2S+ 1), per spin ¥2 matrici 2x 2.

Il calcolo degli elementi di matrice € anche molto semplice. Dal teorema di composi-
zione del momento angolare sappiamo come si fanno a scrivere esplicitamente gli autostati
di J,J; in termini di autostati dL.L,, S, S;:

3.0 =5 (LL2.S S 3) L L) S S) (10.168)

| coefficienti che compaiono nella (10.168) sono i coefficienti di Clebsh-Gordan. La parte
dello stato che non dipende dai numeri quantici di momento angolare non viene toccata dal-
l'interazione ed € la stessa per tutti gli stati, quindi non contribuisce agli elementi matrice.
Esplicitamente ogni stato nel sottospazio considerato & della forma

)3, )

dove|a) € la parte che descive il resto dei numeri quantici, ad esempio la parte radiale della
funzione d’onda per un atomo di idrogeno. Per gli elementi di matri¢g,dii ha:

((el(3 5) Hg ()9, 32)) = (ar] o) (', L Hg|[J, I7) = (I, | Hg|J, I)

Consideriamo come esempio esplicito il caso del livalte 2 dell’atomo di idrogeno.
Dovrebbe essere chiaro che la procedura sara valida per un qualunque atd®ae Lahe
L = 1. Innanzitutto 'Hamiltonianalg & invariante sotto parita quindi gli stat 2 gli stati
2p hanno storie separate.
Per gli stati 3, L =0,S=1/2,J=S=1/2, il fattore di Landé, (10.160) vale 2 e le
energie degli stati sono
E(25,J,) = Ex+23,Q, (10.169)

E, € I'energia del livello in presenza di interazione di struttura fine. Il valore esplicito e
calcolato nel complemento 10.E, ma qui non gioca alcun ruolo. si hanno quindi due livelli
con separaziongQ, rispetto al livello di base.

Passiamo al livello g, sianoEl/z,E3/2 le energie dei due livelli di strutttura fine. un
valore approssimato per la di1‘fererii§\/2 —E, /2 e stato dato nel paragrafo 10.9, un valore
pill preciso si trova nel complemento 10.E. In totale si hanr@2 6 stati, corrispondenti
aivaloriL=1,S=1/2.
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La decomposizione degli stati é:

2 =1n13) 3= =11 -3) (10.170)
2 h=rwih 2o 0= 2mi-h - fhod
Sh=2orbirnn  ab=Eorh -2

Gli stati conJ, = £3/2 sono gia diagonali petl;, perché non mischiano con nessun altro
stato. Poiché

3

(Lot 2515, %5) = (Lo 25 1) [ 5) = £2/1) |3)

si hanno immediatamente, su questi due stati, gli autovalori del’Hamiltoniana:

Eyp+2Q (10.171)

Per gli stati con), = i% si ha, dalle decomposizioni (10.170)

(Lz+281 \/>| I* (Lz+23z fl |*
(Lz+23z [IO l—* (Lz+23z [IO l—*

E quindi le Hamiltoniane in questi due sottospazi hanno la seguente forma

3.3) 13,3)
2 V2
1 13.2) | Best 3 3
3= oo E, ,+- (10.172a)
2 S PP R F
330\ —3 A 3
|%7_%> ‘%7_%>
2 V2
1 3.-3) Aps—3Q ——5O
h=-3" Eypt- D (10.172b)
2 1
13,3 3% 32

Nelle (10.172) abbiamo indicato esplicitamente gli stati su cui sono calcolate le matrici e
abbiamo indicato coA ¢ la separazione di struttura fine:

Brs= (Eyp—Eyjo) (10.173)

Gli autovalori delle matrici % 2 nelle (10.172) si calcolano facilmente. E pitl chiaro espri-
mere tutto attraverso il rapporio= Q, /A4 che & il parametro adimensionale importante.
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Omettendo la costante additiE@ P

3+ 3x— V94 6x+9x? 10, perB — 0
—
6 %AFS perB — oo
1
Y= 5ibeg (10.174a)
3+3x+VO+6x+9¢  [Agt+3Q perB—0
6 Q perB — o
3—3x—V9—6x+9x2 -10, perB — 0
—
6 -Q perB — o
1
h=—5 g (10.174b)
3—3x+v9—6x+9x2 Are—2Q, perB—0
_ L, JOFrsT 3%
6 0rg perB — w

Dalle (10.174) e dalle (10.171) si riconosce che per piccoli campi si recupera I'effetto Zee-
man anomalo: la prima e la quinta equazione delle (10.171) danno uno shift in frequenza
i%QL per lo stato 211/2. Per lo stato 23/2 la terza e la settima equazione forniscono uno

spostamentat%Q,_, le (10.171) uo spostaments2Q, , esattamente la stessa situazione
del sodio, vedi figura 10.5 ed eq.(10.167), che aveva gli stessi numeri quantici di momento
angolare.

PerB — o i termini lineari inB nelle (10.174) son¢0,+Q, ), nelle (10.171}2Q, , in
totale 5 livelli, che vanno daL — 2Sal 4 2Scon separazione classid@; , si ritorna cioé
all'effetto Zeeman normale.

Un punto interessante & il seguente. Come si vede dal lignite0 nelle (10.174) il
primo ed il terzo autovalore sono quelli che in assenza di campo concidono con il livello
2p. Il primo autovalore cresce col campo. Come € ampiamente discusso nel complemento
10.E il livello 2s subisce, in forza di correzioni quantistiche, un innalzamento, detto Lamb
shift, rispetto al livello 2)1/2 e la separazione in frequenza fra i due é di circa 1GHz.
In un campo magnetico le energie degli statisibiscono uno spostamentd,Q, , vedi
eq.(10.169), quindi I'energia dello stato cen= —1/2 diminuisce e va a coincidere con
I'energia dello stato 91/2. le due quantita da confrontare sono

3+3x—v9+6x+9x2
6
Ovvero, sottrandEl/2 a entrambe le quantita, chiamanéd Lamb-shift:

34+ 3x— /94 6x+9x2
6

Exx—QL  Eypt+les

(10.175)

Q=F-Q Q=25

Numericamente

1 1 1
EF ~ 1058 MHz ﬁAFSB 10969 MHz ﬁQL =1.3996x B(gaus$MHz  (10.176)

La situazione in funzione d8 &€ mostrata in figura 10.6. Quando due livelli energetici si
incrociano si parla dievel crossing Il level crossing fra questi due stati avviene per un
campo magnetico di circa 600 gauss. Tutti i fenomeni di mescolamento fra lo stato 2
lo stato 2, un esempio é I'effetto Stark lineare, dipendono dalla differeza di energia fra
i livelli, il fatto di poter variare questa differenza, e quindi le modalita di mescolamento,
variando il campo magnetico offre uno strumento di indagine importante.
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Figura 10.6: Level crossing fra i Iivellisg/2 e 2p1/2 dell'idrogeno.

10.11.2 Effetto Pashen-Back: Doppietto.

Vediamoin generale come si effettua il calcolo per I'effetto Pashen-Back per un doppietto
conL qualsiasi. In questo caso, per far vedere unaltro punto di vista al lettore, usiamo la
base costituita dagli autostatildi e S,, come nel paragrafo 10.9.1.

Riscriviamo I'Hamiltoniana nella forma, sciven@l = hw_ per brevita:

1
V=0 (Lo +25) +AL-S=Q (Lo +25) +A|LS+ 5 (LS +L.S,)|  (10177)

J, & conservato anche in presenza di campo magnetico. Indichianmd tantovalore di
L, e conM; quello diJ,. Gli staticonM; =L+1/2eM;=—-L—-1/2

1 1
L)|= —L)|—-=
LI L5
sono autostati d¥ con autovalori:
1 A 1 A
Q (L+2= =L —-Q, (L+2= —L 10.17
(trzz)+5 (Lez3)+5 (10.178)
Per le restanti 2 coppie di stati, coM < L,
1 1.1 1 1,1
|M>|§>:| J*§>\§> |M+1>|*§>:\MJ+§>|*§> (10.179)
possiamo scrivere la matrice Hamiltoniana usando le formule (10.114):
IM)|3) IM+1)[—3)
IM)|3) AZ+Q (M+1) 5V(L+M+1)(L-M)

(10.180)

IM+1)[—2) \ 5/ (L+M+1)(L—M) —AME L0 (M)



44 CAPITOLO 10. TEORIA DELLE PERTURBAZIONI.

Gli autovalori di questa matricex22 sono

A Q 1 1
Ay = -7+ 7L(2M +1)— 2\/QE+A2(L+ §)2+AQL(2M +1) (10.181a)
A Q 1 1

Il lettore puo verificre che questi autovalori, ier 1, M = 0, —1, danno il risultato (10.174).
In questo casd.g = 2A/3, vedi eq.(10.118).

Per come abbiamo scelto gli stati, (10.179) possiamo anche sckiver#l; — /12, al
variare diM, M, acquista tutti i valori eccettfM;| = L+ 3, e si ha

A 1 1
11:_4+QLMJ—2\/QE+A2(L+2)2+2AQLMJ (10.182a)
A 1 2 2 1 2
A==+ QUM+ 510+ AL+ 5)2+2AQ M, (10.182b)

10.12 Paramagnetismo e diamagnetismo atomico.

Lo studio del paramagnetismo e del diamagnetismo in meccanica quantistica ha un’'im-
portanza sia pratica che concettuale. In mecanica classica infatti il paramagnetismo puo
solo essere descritto supponendo che gli atomi abbiano un momento magnetico intrinseco,
non quello dovuto al moto orbitale degli elettromientre il diamagnetismo non & proprio
spiegabile, nel senso che rigorosamente non c’é effetto diamagnetico in fisica classica. Il
motivo & semplice. L'unica influenza di campo magnetico sul moto orbitale degli elettroni,

o di cariche in generale, € la sostituzione

D—p— gA (10.183)

nell’Hamiltoniana. Se imponiamo che le osservabili siano invarianti di gauge,le os-
servabili fisiche subiscono la stessa sostituzione, cioé I'impulso pud comparire solo nella
combinazione (10.183).

Il valor medio statistico di una quantita & determinato, classicamente, dalla funzione di
partizione

z— / dpdgexp(—H (p,q) /KT (10.184)

p.g sono le coordinate canoniche del sistema. Se € presente un campo magnetico avremo

z- / dpdgexp(—H (p— EA,q) KT (10.185)

Sottolineiamo il fatto che le coordinagee g sono coordinatédipendentiche descrivono

lo spazio delle fasi del sistema, in particolare le varigpiliariano nell’intervallo—co <

p; < +. Possiamo allora effettuare nellintegrale (10.185) il cambiamento di variabili
(una traslazione nellp):

I'I:p—gA

lo Jacobiano della trasformazione € 1, ed i limiti di integrazione non vengono cambiati
perche le variabilp non sono vincolate. Si ha allora

z— /dl‘ldqexp(—H(I‘I,q))/kT (10.186)
che coincide con la (10.184), quindi I'effetto del campo magnetico sul moto orbitale &

nullo! 1l discorso resta immutato per il valor medio di qualunque quantita fisica gauge
invariante.
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Il punto cruciale in meccanica quantistica & che la funzione di partizionesi scrive
come un integrale su variabili non vincolate ma come

7 — e—En/kT
2
doveE, sono le energie degli stati.

10.12.1 Paramagnetismo atomico.

Consideriamo un gas perfetto, quindi un sistema termodinamico in cui le singole com-
ponenti possono essere considerate statisticamente indipendenti, per concretezza parliamo
di atomi. Se introduciamo un campo magnetico si avra per ogni atomo una Hamiltoniana
H(B), con autostatin) e autovalorEs(B). Secondo la formula generale (10.24) & possibile
definire un valor medio quantistico di dipolo magnetico per ogni stato:

(nm|n) = —;—BEn(B) (10.187)

Macroscopicamente questo dara origine ad una magnetizzazione per unita di volume
M=Nm m= Z Pn{(n|m|n) (10.188)
n

DoveN € il numero di atomi per unita di volumeg la probabilita di equilibrio dello stato,
a temperaturd’:

1 En(B) o E®
Pn = Zexp(f T ) Z= Ze KT (10.189)
Usando la (10.187):
1 d _En(B) 190 d
m=- Z (_8BE”(B)> e kI = kTZEZ = kTE logz (10.190)

Nota. Per i lettori che hanno una certa familiarita con la meccanica statistica € opportuno dimo-
strare la connessione fra la definizione (10.190) della magnetizzazione e la definizione macroscopica
della stessa quantita. Consideriamo un sistema omogeneo all'equilibrio termico a tempEratura
immerso in un campo magnetico, uniforni&, Se si varia in moddsotermoil campo si ha una
variazione dell’energia libera del sistema:

SF = —.#5B (10.191)

e la (10.191) é la definizione macroscopica di magnetizzazione. L'energia libera & connessa alla
funzione di partizione da

Z=exp—F/kT)  F=—kTlogZ (10.192)
Mantenendo costante la temperatura, dalla (10.191) e dalla (10.192) segue
d
M= kTa—B logz (10.193)

Se il sistema &€ composto da parti statisticamente indipendenti I'energia libera totale & la somma delle
energie libere delle parti, ovvero la funzione di partizione & il prodotto delle singole funzioni di
partizione, quindi

M =NM, (10.194)
dove M, indica la magnetizzazione del singolo sistema (atomo). Per sistemi omogenei e campo
magnetico costante I'energia libera & proporzionale al volume del corpo, e costante macroscopica-
mente sul campione, quindi anche la magnetizzazione totale € omogenea e proporzionale al volume,
# =VM. Dividendo per il volume la (10.194) riotteniamo la (10.190) e la (10.188).
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Numericamente si ha
ugB ~ 6 x 10° x B(gauss eV

quindi per campi minori di circa 1 Tesla possiamo applicare la teoria perturbativa per cal-
colare gli autovalorEp(B), usando come stati imperturbati del sistema quelli di struttura
fine.

L'Hamiltoniana di interazione é

e 2
=—uB+ e Ea (BATra) (10.195)
— e —
p=5— Ea (la+2s3) = —ug(L +29)

Le somme nella (10.195) sono estese a tutti gli elettroni atomici. Abbiamo introdotto le

usuali notazioni: o
e

Chiamanddg, le energie imperturbate del sistema, si ha, usando la teoria delle perturba-
zioni al secondo ordine e ponenBdungo l'assez

1
En(B) = En—FnB— fGnBZ (10.196a)

Fn = (n(2))[n) 22 S'“Z‘ E, 4j@z<n|(x§+y§)\n> (10.196b)

Nella definizione diG, abbiamo fattorizzato un segne, la si confronti con la (10.15).
Sempre inGy la somma &, come al solito, estesa a tutti gli stati con energia diversa dallo
stato|n).

Per temperature non troppo basse si ha sicuramente

En(B) — En ~ ugB < KT (10.197)

possiamo allora sviluppare in serie la funzione di partizione e scrivere

Fo 1 1
Z= Zer[1+B+ BZ(

1
5 21 -G )] (10.198)

(kT)? kT

Moltiplicando e dividendo per la funzione di partizione in assenza di campo:

En
= e kT
©=2
o1 1,/ 1 1
z- [1+ —FiB+ 3B ((kT)ZF” kTG"ﬂZO (10.199)

Dove ora le medie sono fatte rispetto al sistemperturbatq cioé in assenza di campo. Se
il sistema € isotropo, cioé invariante sotto rotazioni, come supporremo,

Fn=0 (10.200)

Infatti se il sistema €& invariante sotto rotazioni i livelli sono degeneri sul numero quantico
M;, autovalore di,, quindi tutti questi stati sono equiprobabili e, per ogni livello:

Mz = g<MJ|.uZ|MJ> =0
J
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Segue

Z= {1+ %BZ <(k#)2n k1T>] zZ, (10.201)

Dalla (10.190) si ha allora, al primo ordine i

m= (ﬁF +Gn)B xX= (ﬁF +Gn) (10.202)

La quantitay, che esprime la proporzionalita fra campo magnetico e momento magnetico,
si chiamasuscettivita magnetical.a caratteristica dipendenza T della suscettivita ma-
gnetica é dettdegge di Curie e naturalmente vale solo §& # 0. Come si vede dalla
(10.202) esiste una suscettivita residuapes « data dal termin&,,.

Le sostanze copg > 0 sono dettparamagnetichequelle cony < 0 diamagnetiche

Stimiamo i vari contributi. Innanzituttg=,| > 0 quindi gli eventuali contributi di tipo
diamagnetico provengono solo dal term{Bg Sullo stato fondamentale il primo addendo
di G, € positivo, il secondo negativo, quindi per lo stato fondamentale di un gas l'unico pos-
sibile contributo diamagnetico deriva dal secondo addené dStimiamo separatamente
i vari contributi.

1) Per quanto riguardd,|?, se non & nullo, ha come ordine di grandezza

1o M
Pl ~ (10.203)

2) Consideriamo il secondo addendd3ji. Usando I'invarianza sotto rotazioni
—  — 1—
Xa=Y3= érz

usando come distanza tipica il raggio di Balr= h?/mé si puo stimare

92* e 28 .UB
T @aB e ~ (10.204)

dove E, € una tipica energia elettronica, dell’ordine di qualche eV, quindi que-
sto fattore € depresso rispetto al termine precedente per un feltgEg che per
temperature normali & molto piccolo.

3) Per quanto riguarda il primo addendd@}j notiamo che I'operatorg,, agendo solo
sulle variabili angolari e di spin, non influenza gli altri numeri quantici, ad esempio
il numero quantico radiale per un sistema idrogenoide. Se I'atomo possiede una
struttra fine i termini dominanti nella somma (10.196b) provengono dai livelli di
struttura fine e quindi il contributo & dell’ordine di

ug o ug

AE. ~ o?E, (10.205)

e quindi circa 16 volte pit grande del termine (10.204). Se invece non ci sono
sottolivelli di struttura fine, da una parte il denominatore con le differenze di energia
e dell'ordine diE,, dall'altra I'operatoreu, ha elementi di matrice nulli, al primo
ordine nell'interaziond.S, fra stati appartenenti a diversi multipletti di struttura fine.

In effetti gli stati|n) sono, usando la teoria perturbativa per I'accoppiaments

!/
) = oMy} + 3 g1, 0.My)
B

con
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I'operatorep,, non potendo intervenire sui numeri quantici principali, ha elementi
di matrice solo sulle correzioni agli stati, quindi & dell'ordineugjor® e percio, in
assenza di struttura fine, il primo addendd@diha come ordine di grandezza

G o 10.206
0

trascurabile in confronto all’'ultimo addendo@j.

10.12.2 Calcolo della suscettivita magnetica.

Vediamo in qualche caso particolare come si calcola la sucettivita magpetica

Bassa temperatura

Supponiamo che la temperatura sia sufficientemente bassa in modo che nella distribuzione
di Boltzmann sia rilevante solo lo stato fondamentale. Distinguiamo i vari casi.

1) L =0,S=0. Non c’e struttura fine. La richiesta sulla temperatura &
KT < E; —E,

doveE, — E, ~ eV ¢ la separazione in energia dal primo livello elettronico eccitato,
una condizione quasi sempre verificata. Per0,S=0

(n|tz|m) =0

quindi I'unico contributo rilevante alla magnetizzazione, vedi eq.(10.206), & dato dal
secondo termine if5,. Poiché lo stato € invariante sotto rotazioni:

1e
X = *émT2<0| Zr§|o> (10.207)

Abbiamo indicato corj0) lo stato fondamentale. L'atomo dunqueli@magnetico
Questo tipo di situazione si presenta, ad esempio, nei gas nobili.

2) J# 0. Anche qui se non c'e struttura fine, ad esempie 0, la richiesta sulla
temperatura & quasi sempre verificata, se c'é struttura fine si intendd e piu
piccolo degli intervalli di struttura fine:

KT < Apg

In questo caso lo stato fondamentale ha degenerazibrelZe tutti gli stati sono
equiprobabili, avendo la stessa energia, quindi fare la media statistica equivale a
mediare sM,. L'elemento di matrice dii, & quello calcolato per I'effetto Zeeman:

(M| My) = —g; M, (10.208)
doveg; ¢ il fattore di Lande, eq.(10.160). Si ha percio

— 1 1
R =551 %QEMSME = 3HEII+1) (10.209)
ed il corrispondente contributo alla suscettivita &

2= 5 BHEIA+) (10.210)

Come abbiamo precedentemente spiegato le correzioni dovute al tern@qalla
(10.210) sono completamente trascurabili. Infatti anche il termine dovuto al secondo
ordine in teoria delle perturbazioni & dell'ordineigi/ A ¢, trascurabile in confronto

alla (10.210) per basse temperaturekEe< Agg.
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3) J=0,L,S# 0. In questo caso il contributo precedente e nullo, e quello principa-
le € dovuto alla correzione perturbativa al secondo ordingninvedi eq.(10.205).
Lintervallo di temperature e sempre limitato H& < Agq.

Il calcolo puo ad esempio essere fatto per un atomolcenl,S= 1 e lo lasciamo
come esercizio al lettore. Il punto importante & che questo contributo:

2
X Z E._E, (10.211)

e positivo, quindi il sistema & ancora paramagnetico, ma, nei limiti di temperatura
indicati, la suscettivita & indipendente @a

Alta temperatura  Se si ha una struttura fine I'energia termiapuo facilmente essere
dello stesso ordine, e spesso molto piu grande, degli intervalli di strutura fine, ricordiamo
che a temperatura ambierk& ~ jseV. Nel limitekT > A la situazione si semplifica.
Nel seguito trascuriamo il termine diamagnetico del’Hamiltoniana, che non gioca alcun
ruolo.

PerkT > A g tutti gli stati corrispondenti allo stesso multipletto di struttura fine hanno
lo stesso peso statistico, quindi si pud pensare di ottenere la suscettivita semplicemente
“dimenticando” la struttura fine. Operiamo per il momento in questo modo, faremo poi
vedere che il risultato é effettivamente corretto.

Se si trascura l'interaziorle- S 'Hamiltoniana di interazione

V=—uB (10.212)

e diagonale su tutto lo spazio di Hilbert, in altri termini tutto il suo contributo ai livelli
energetici &

AE, = —(n|u,|n)B (10.213)
senza correzioni al secondo ordine, come il primo termine del fatBgre Quindi la
suscettivita é

1 —
X = gkl (10.214)

Poiche gli stati sono degeneri, la media equivale a fare la somma sugli stati e dividere per la
degenerazione del livello, cid2L + 1)(2S+ 1). Essendqu, diagonale possiamo scrivere

S [(nlzm)? = (nluzln) (nlpzn) = %<nluz\k><k\uzln> =Y (nZIm) = Tr(uf)

n n

La traccia € invariante per cambiamenti di base, possiamo quindi scegliere ldhSe
e si ha allora

_%
kT
Sulla base scelta gli operatdrj edS, sono indipendenti e si ha

X L2 +4S+2L,S,+2SL,

LS =L,S=0

e quindi
1,1
X = ﬁgg§ [L(L+1)+4S(S+1)] (10.215)
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NOTA: Non é obbligatorio scegliere la balge)|S;), allo stesso modo si sarebbe potuta scegliere
l'usuale baséJ,M;) usata per diagonalizzare I'interazioh8, ma sarebbe statbagliato usare la
(10.208) per calcolare gli elementi di matrice di in questa base: nelll’'espressione (10.208) si &
usato il teorema di Wigner-Eckart che lega gli elementi di matricke,d, a quelli diJ, masolo
allinterno della stessa rappresentazione irriducibile, ciddissato. Se si considerano tutti i valori
di J contemporaneamente non si possono trascuraare gli elementi di matri¢cg,duori diagonale.

La derivazione proposta della (10.215) da un lato sembra ragionevole dall’altro incom-
prensibile: la separazione fra primo e secondo ordine perturbativo nelle (10.196) dipende
dal rapportougB/Arg non dalla temperatura. Se si considera piccola la separazione di
struttura fine la correzione al second’ordine

Zz S|[,Lz|n

sembra diventare dominante e questo dipend&,:gaa da un contributindipendentalalla
temperatura alla suscettivita, esattamente il contrario di quello che che c’e scritto nella
(10.215). Se supponiamo che in ogni caso, come effettivamepigBa A il secondo

ordine deve essere trascurabile ma il primo ordine sembrerebbe dare un contributo che ¢ la
somma dei contributi (10.209) portando ad una suscettivita

_1pe 1

- - 2
D5+ oW HD@+Y (10.216)

Questa somma non ha niente a che fare con I'espressione (10.215).

Per spiegare tutti questi punti partiamo dalla media esatta su tutti gli stati di struttura fi-
ne, eq.(10.202). Cominciamo a contare le energie a partire dallo stato fondamentale, quindi
temperatura alta rispetto alla separazione di struttura fine signifiEhegakT. |n) indica
uno stato di struttura fine, la media statistica pesu questi stati si scrive, trascurando |l
termine diamagnetico,

)2 (| pz[s) (S| pz|)
Zz o izl +2z e (10.217)

A denominatore, supponendiy/kT < 1 si ha semplicemente la degenerazione dello stato

Z= Zl (2L+1)(2S+1)
L'ordine 0in 1/T del numeratore &
2y z w = 2; ”'“Z‘S —0 (10.218)

Questa espressione si annulla perché il denominatore & antisimmetrico nello ssambio
mentre il numeratore & simmetrico. Questo €& il motivo per cui non c'é un termine indipen-
dente darl ad alta temperatura. Questo € in accordo con la (10.215) e non contraddice la
(10.211) che si riferiva a temperature inferiodag/k.

Al termine di ordine ¥T contribuiscono il primo termine della (10.217) ed il termine
che deriva dal secondo sviluppando I'esponenziale:

1 ”|IJZ\S SWZ|”>
kTZ [ (n| iz ) 2 2; En (10.219)

Sfruttando sempre I'antisimmetria possiamo scrivere il secondo di questi termini nella
forma

2
2y e ”'“Z'S -3 (6 E>M=;<n|uz|s><s|uz|n> (10.220)
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Ricordiamo ora che gli stafn) sono un insiemeompletoper I'insieme dei livelli consi-
derati, in pratica sono della former,J,M;) quindi sono semplicemente una base per una
rappresentazione (riducibile) del gruppo delle rotazioni. Sommando la (10.220) al primo
termine della (10.219) si ha quindi

o { 3 () )+ 3 0l s } & S nledin

ed infine per la suscettivita

1

Y (n|uZ|n (10.221)
kT(2L+1 )(2S+1) Z z

X =
Questa e esattamente la media (10.214) che abbiamo calcolato precedentemente, quindi
riotteniamo il risultato (10.215).

Abbiamo presentato in dettaglio questo calcolo per il suo significato metodologico: fa
vedere in dettaglio in che senso dei livelli energetici appaiono degeneri se le differenze di
energie sono piccole in confrontdka. La cosa interessante appunto € che se si trascurano
termini dell’'ordine diAg/KT questo non solo dice che possiamo considerare degenere il
sistema, dal punto di vista termodinamico, per le variabili come I'energia, e questo & owvio,
ma anche per variabili come la suscettivita che regolano la “risposta” del sistema a campi,
statici, esterni. In altre parole se si misura la suscettivita con precidjogéT non ci si
accorge della struttura fine di un livello, a maggior ragione, ad esempio, non ci si accorge
della possibile struttura iperfina.

10.12.3 Saturazione e limite classico.

Come abbiamo visto il contributoo all’ energia magnetica del sistema & proporzionale a
(IJBB

per il paramagnetismo mentrel'%; per il diamagnetismo. C’é quindi un am-

p|o mtervallo di temperature in cui il paramagnetlsmo e dominante. Supponiamo quindi
di trascurare completamente il termine diamagnetico. Il parametro interessante € allora il
rapportougB/KT. Fino a questo punto ci siamo limitati allo studio di piccoli campi, vedia-
mo ora cosa succede per campi (relativamente) grandi. Ci limiteremo al caso di un singolo
livello di struttura fine, ad esempio un livello c@= 0. Sapendo che per campi grandi
I'effetto Pashen-Back implica semplicemente che possiamo dimenticarci della struttura fi-
ne potremmo anche considerare il caso di piu livelli ma la trattazione si complicherebbe
senza aggiungere nulla di qualitativamente nuovo.

In assenza di diamagnetismo e di struttura fine I'Hamiltoniana di perturbazione

,“B

e diagonale, siamo cioé nella situazione del paragrafo precedente. Il contributo alla funzio-
ne di partizione dovuto al campo magnetico pud essere calcolato esattamente, senza fare
sviluppi in serie. Usando la (10.208) si ha, indicando gdirfattore giromagnetico:

zZ= ge% (HBgMyB) (10.222)

J

da cui possiamo calcolarci la magnetizzazione tramite la (10.190)

d
kTEIogZ

Il caso piu semplice si ha pér=1/2:

z-2cosh(“BgB> m= H8% tanh(“Bg ) (10.223)

2kT 2 2kT
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In particolare per alte temperature:

M (#739) kTB

e si riconosce ancora la legge di Cugie- 1/T e I'accordo con la (10.210) pér= %
Per momento angolare generico, usando l'identita:

11— X2n+1 Xn+% _ anf%

AT

k=-—n

1 1
X2 —X"2

la funzione di partizion& si scrive

Z= sinh(gJuBB(J + ;)) /sinh(gJuBB(;)>

B
m=gugd L, (gﬂg‘] ) (10.224)

Abbiamo introdotto le funzioni di Langevin

1 T
L
1/2

0.9+ 4
08t L -- g
0.7+ L -7 J
0.6F . J

ron)

<

—p5- o E

|
0.4F v B
0.3+ / 4
0.2+ 4 B

0.1 B

Figura 10.7: Funzioni di Langevin per diversi valoriXi

LJ(X):;Iog{sinh(z‘] 1 >/s. h(zj)}:

241 (2041 1
= th( 25 x)—choth(ZJ) (10.225)

Le funzioni di Langevin mostrano chiaramente il limite classico. Per momento angolare
J, classicamente il momento magneticqug= ugg;J. Questo fattore € proporzionale
al'argomentox delle funzioni di Langevin. Tenendo fissa questa quantita e facendo il
limite J — o si ha

- 1 L UoB
Jlmo L;(X) = Leo(X) = coth(x) — M Jll_rnomf Holo <kT> (10.226)
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Questo e esattamente il valor medio classico per un’interazigng- B. Chiamandod
I'angolo frap, e B, classicamente si ha:

. g HgBcosh g HgBcosd [J,B kT
m, = (/ dQugycosfe ¥ )/( dQe w ) =Ny, [coth(k_l_> - uB}

che é proprio la relazione (10.226).
Per grandi valori delllargomento

)I(mo Lyx)=1
e la (10.224) da:
m P Ougd = Uy (10.227)

che ha un significato intuitivo: per grandi valori del campo il momento magnetico atomico
si allinea completamente al campo esterno, si ha cioé una saturazione. |l valore limite di
guesto momento magnetico € proprio il valore classico. Questo effetto, ed il limite classico,
sono chiari se si fa un grafico delle funzioni di Langevin, come in figura 10.7

10.13 Interazione di quadrupolo.

Consideriamo come nel paragrafo 10.6 l'interazione di un sistema di cariche in campo
esterno, diciamo per brevita un atomo:

Con le stesse notazioni di quel paragrafo, ponendo
Oa=R+Xa

e sviluppando in serie il potenziale fino al secondo ordine tioé fino al secondo ordine
rispetto alle lunghezze caratteristiche del sistema

2
V= Z €a®(R) + Z €a(Xa); a(cj;l(?ll:‘)) * % Z €a(Xa)i (Xa); aalq?lbge)
a 5 J

Il fattore

X = Zea(xa)i(xa)j
a
€ un tensore simmetrico e possiamo decomporlo in una parte a traccia nulla ed in una
proporzionale all'identita

X = %5ijxkk+(xij - %kasij)

Il potenziale estern@ soddisfa I'equazione di Laplace nella zona dell’'atomo quindi il

termine in 6”- non contribuisce all'interazione (10.228). Raccogliendo per comodita un

fattore 1/3 abbiamo:

IOR) 1 2 9?P(R)
+ =) €a(KXa)i(Xa); — (Xa)6;;)

IR, GZ e a IRR;
Consideriamo un sistema neutpt, e, = 0. Il primo termine (10.229) si annulla, il secondo
costituisce la gia nota interazione di dipolo, I'ultima si chiama interaziorguéddrupolo
ed il tensore

V=Y eadR)+ Y ealx) (10.229)

Qij = Y €a(3%a)i(Xa); — (X3) &) (10.230)
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prende il nome di quadrupolo del sistema.

Come gia detto nel paragrafo 10.6 il termine di dipolo non dipende dall'origine delle
coordinate se la carica totale & nulla. Lo stesso si puo dire del tensore di quadrupolo se
si annullano sia la carica che il dipolo, come si verifica immediatamente con la sostitu-
zionex — X+ a. Per sistemi atomici siamo in effetti in questa situazione, nel senso che
come abbiamo vistdd) = 0 sugli stati stazionari, quindi il momento di quadrupolo ha
un significato intrinseco. Esattamente come nel paragrafo 10.6 le coordinséganno
allora le coordinate degli elettroni rispetto al nucleo e la somma andra fatta sulle cariche
elettroniche.

Il termine di interazione di quadrupolo si scrive percio (sottindendiamo Il'indicke
distingue gli elettroni):

Q.,aa @ =Y e(3xx; —r°g;) (10.231)

Le derivate si intendono calcolate sulla posizione del nucleo.

Per calcolare I'effetto sui livelli energetici del’Hamiltoniaig, occorre calcolare gli
elementi di matrice del tenso(g; sugli autostati dell’Hamiltoniana imperturbata. Comin-
ciamo col notare che per uno stato ¢ba 0,J =1/2,

(n,d=0/Q;In,J=0)=0 (10.232)

Infatti Qj si trasforma come un momento angolare 2 e I'elemento di matrice (10.232) &
nullo per le regole di selezione sul momento angolare: la somma di un momento angolare
2 (il quadrupolo) e di un momento angolate= 0,1/2 (lo stato) ha come risultato un
momento angolare 2, 021/2 che non ha quindi proiezione sul sotttospazio degli stati
a momento angolare 0 2. Quindi solo gli stati con momento angolate> 1 possono
avere un mometo di quadrupolo.

PerJ > 1/2 si puo ottenere una certa semplificazione utilizzando il teorema di Wigner-
Eckart. La media del tensore a traccia n@|§deve essere proporzionale, su un multipletto
a J fissato, al tensore simmetrico a traccia nulla costruito &orQuindi per uno stato
lv) =1|n,J,J;), nindica i numeri quantici aggiuntivi rispettodaJ,,

3 2
(VIQylw) = ZJ(Z‘JQJ_DW’ (‘]i‘]j +J39 - 3‘]25”') v) (10.233)

La normalizzazione nella (10.233) e stata scelta in mod@glmincida con il valor medio
di Q2 sullo stato con il massimo valore 8inel multipletto, cio&l, = J, come &€ immediato
verificare. Per brevita la (10.233) sara scritta nella forma

3Q;
2J(21-1)

e Q) e detto direttament@momento di quadrupoldello stato.

Notiamo cheQij, al contrario del dipolo, € pari sotto inversione spaziale, quindi la
simmetria sotto paritd impone che siano nulli elementi di parita diversa, e non impone
vincoli per il valor medio su uno stato.

Come esempio pratico consideriamo un campo esterno a simmetria assiale, chiamiamo
z l'asse di simmetria. Poiché deve valere I'equazione di Laplacabpempoiche stiamo
assumendo simmetria assiale si deve avere

RP=fDP=A  ZD=-2A

Q= (JJ +3,9 — 325”) (10.234)

tutte le altre derivate seconde sono zero perché non sono invarianti per rotazioni attorno
all'assez.
L'Hamiltoniana di interazione si riduce percio a

1 1
HQ = é(QXX‘Fny—Zsz)A: _észA
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nell’'ultimo passaggio abbiamo usato il fatto c@g € a traccia nulla. Utilizzando la
(10.233) si ha
Q

oF = 2)(2) - 1)

(3(3+1) —3m?) (10.235)
doveM e l'autovalore diJ;.

Come e sottinteso dalla notazione il nume&rpdipende dal, cioé dal momento angola-
re totale. D’altronde I’operato@ij € composto da sole variabili orbitali. Se la separazione
di struttura fine & maggiore dell'energia di interzione di quadrupolo, cosa che senz’altro
suporremol., S sono buoni numeri quantici quindi deve essere possibile espri@ire
termini di sole variabili orbitali, ovvero, scrivendo il teorema di Wigner-Eckart per la sola
parte orbitale:
3
T 2L(2L—-1)

La (10.236) e intesa come valor medio sulle sole funzioni d’'onda orbitali, trascurando le
variabili di spin.

Larelazione fr&Q; e Q, dipende solo dal teorema di Wigner-Eckart, non dal particolare
tensore considerato. Nel complemento 10.G é affrontato esattamente questo problema per
il tensoref;; — %5”- ed é dimostrato che il rapporto dei coefficienti nelle espressioni in
termini diJ e diL & determinato dalla relazione

3Q, 3Q

2)(23+1)  2L(2L—1) -d(J,L,9) (10.237)

2 2
Q (LiLj+LjLi3L 5”.) (10.236)

doved € una costante, scritta nella equazione (10.399a). Nel caso particolare di spin 1/2, il
pit semplice dopo lo spin 0, la costante vale, vedi (10.400)

2L-1 .
11 YTt
d:
A+3 .,
a1 VT2
e la (10.237) si semplifica in
B 1 C(L-1)(2L+3) 1
Q=Q (J—L+§) QJ_WQL J=L E) (10.238)

Come esempio calcoliamo i momenti di quadrupolo per I'atomo di idrogeno nello stato
2p. Dalla definizione dQ, si ha:

Q.= (2p,Ly = +1|(3Z2 —r?)|2p,L; = +1) (10.239)

Usando le armoniche sferiche

B 3 sinb .,

Y= F\ 43 e (10.240)

possiamo separare la parte angolare dalla parte radiale e scrivere

2 3 4, 2
Q=1 >/d§2§sm26(3c0§6—1):—6<r ) (10.241)
Usando(r?) = aE;”—ZZ(Sn2 +1-3L(L+ 1)) siricava, per lo stato}2
4

Q = = -30a3 = 24a3 (10.242)
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Effettuando direttamente il calcolo @; dobbiamo distinguere fra lo stat@Z, e lo stato
2p1/2. Al solito il valore diQ; e quello calcolato sulla componente piu alta del multipletto.
Nel primo caso, separando la parte di spin dalla parte orbitale
3 3 1

2p, =, +=) = |+D|+=

2p.5,45) = [+1)]+3)
e quindi banalmente

1,1
Q= (+1EZ )+ {+5[+5) = (+1E -r)[+1) =Q

in accordo con la (10.238).
Nel secondo caso dobbiamo trovare zero, avendesil/2. Il termine piu alto del
multipletto haJ, = 1/2 ed usando i coefficienti di Clebsh-Gordan:

11 2 1 1 1
2 b= 2mi-h - fhond
Poiché I'operatore non coinvolge lo spin, 0 anche perch@#a-r?) ha regola di selezione
AL,=0
2 2 1 2
Q, = (r?) /dQ(3co§9 -1 <3 Y4 ++3 10| )

usandoy;, = /3/4n cose assieme alle (10.240) si ottie@g = 0, come aspettato.

10.14 Cambiamenti delle condizioni al bordo.

Alcuni problemi in Meccanica Quantistica possono essere schematizzati come il moto di
una particella all'interno di una regione delimitata da una certa superficie

S$x)=0 (10.243)
Nel caso dell’equazione di Schradinger il tipico problema agli autovalori & nella forma
Hy =Ey 1,,\% =0 (10.244)

Supponiamo di saper risolvere il problema (10.244), cosa succede se si cambia di poco |l
bordo? cioé se la superficie & delimitata da

S(x)=0 (10.245)
Una strategia possibile & cercare un cambiamento di variabili in modo tale che
x="F@&):  SX(¢&))=%(8) (10.246)

cioe esprimendo la nuova superficie tramite il cambiamento di variabile si ritorna alla vec-
chia superficie§, e quindi alla nota condizione al contorno. Per quanto riguarda I'Ha-
miltoniana, questa dipende da scriviamoH (x) per chiarezza. Possiamo ora scrivere
l'identita

H(x) =H()+(H(X) —H(§))=H(E)+V (10.247)
Il problema in termini della variabilé & quello noto, essendo la superficie in questa va-
riabile nella formag,(§) = 0, e per piccoli cambiamenti di supeficie la variazione dell’'Ha-
miltoniana pu0 essere trattata perturbativamente. La variazione di energia dei livelli sara
percio

SE = (y[H(x(§)) —H(&)|y) (10.248)

dove|y) & l'autostato dell’lhamiltoniana di partenza. Consideriamo alcuni esempi prima di
discutere alcune proprieta della (10.248).

6Tutto quello che diremo vale senza cambiamenti per condizioni pitl generali detgipe o,y = 0, dove
dn € la derivata normale alla superficie.
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Particella in un parallelepipedo.

Per controllare la (10.248) consideriamo un caso esattamente risolubile. una particella
libera di massan confinata in un parallelepipedo di Ig&, b,c). Come € noto i livelli di
energia sono dati da

h? Rr? (N ng nj
H=—5-0 E—2m<+b2+ ) (10.249)

Quindi una variazione del tipo
a—a(l+8y) b—Db(1+6) c—c(l+6) (10.250)
conéy, 9, 6c < 1, produce una variazione di energia

h2m? n2 ng
Il cambiamento di variabili per annullare la funzione d’onda sul parallelepipedo modificato
e naturalmente (la scriviamo per variazioni arbitrarie):

x= (11808 y=(1+8)& z=(1+8)& (10.252)

in questo modo quandd;,&,,&;) = (a,b,c) le coordinate originali giacciono sulla fron-
tiera modificata. La perturbaziohédella (10.247) é allora, per piccole variazioni, ribat-
tezzando di nuoveég,, &,,&;) con(x,y,2):

82 2 82 hz
V=(-2 -2 2 — 10.253
( %o 5y(9y2 62822>[ 2m ( )
Notiamo che la (10.253) vale, come trasformazione di scala delle coordinatpjadan-
gue geometrig il modello particolare, il parallelepipedo in questo caso, interviene quando
si effettua il valor medio dV sullo stato. Siccome in un parallelepipedo I'Hamiltoniana é
separabile nelle tre variabili cartesiane si ha, @&y, 5;) = (0a, &, &)

2 2.2
sE= " { 2<‘5an1’r _ 5. 27

2 -2
-~ J L - 260'”3”} (10.254)

C2
in accordo con la (10.251). Notiamo che nella trasformazione di scala (10.251) si ha una
trasformazione di voluméV = 3(3, + &, + 6¢)V. Per deformazioni ugualda = &, = &,
oV =36,V e la (10.253) implica
Jd(E) _ 2(E)
— =" 10.255
aVv 3V ( )
Questa é I'analogo dell’equazione di stato di un gas perfetto, o meglio €, come vedremo,
una espressione del teorema del viriale. Alla (10.255) ci si pu0 arrivare, per una particella
libera, considerando una geometria qualunque. In una trasformazione di scala cambiano
solo le distanze, mentre gli angoli rimangono invariati, questo corrisponde ad una trasfor-
mazioner — (14 A)r. Per ridursi al caso non riscalato occorre percio la trasformazione di
variabili
r=(1+1)p

Poiché il laplaciano, cioé I'energia, € una funzione omogenea di gradarr,

1

&=ty

A, =~ (1—24)8, (10.256)
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come si verifica immediatamente in coordinate polari. Nella trasformazione il volume, che
e una grandezza omogenea di grado 3 cambiadtbr- 3AV. Dalle equazioni (10.247),

(10.256) segue allora
20V
0E =—-2A(E) = —§7<E> (10.257)
che é la (10.255) per una geometria generica. Siccome abbiamo visto che la variazione di
scala é universale, cioe vale per qualunque geometria, interessiamoci ora ai cambiamenti di
forma, cioé a fisso volume. Consideriamo il caso di una sfera, leggermente piu complicato

del parallelepipedo.

Particella in una buca sferica.

Un modello di nucleo ultrasemplificato consiste nel considerare i nucleoni come particelle
libere in una buca di potenziale sferica, di ragBonel limite di buca molto profonda il
confinamento diventa geometrico, cioé la funzione d’onda ha supporto solo all'interno della
sfera. Ricordiamo che gli autostati sono descritti da funzioni d’'onda di particella libera e
gli autovalori sono determinati imponendo che la funzione d’onda si annulli sulla sfera:

212 , )
E_%; V=R, m(6,0); Rk|+kaz+{k2—£(£;1)}RM:o (10.258)

Supponiamo che il nucleo subisca una deformazione che lo porti ad assumere una forma di
ellissoide di rotazione allungato

Xy 2
Per piccole deformazioni
a=R(1+8,) b=R(1-4,)

Il volume di un ellissoide & #/3ab? quindi se imponiamo che non cambi, cioé se ci inte-
ressiamo solo alla variazione di forma, otteniadge= 26,. la trasformazione di variabili

che riporta I'ellissoide alla sfera € ancora la (10.252) e la perturbazione sempra la (10.253),
in cui imponendo il vincolo di volumex = 8y = —§,, € 0, = 26;,:

5| 5] (10.260)

> 9? 92 h?
b | 9x2 } =2m

92 h?
Nella (10.260) si riconosce proprio la componertedi un operatore tipo quadrupolo,
38i8j — 6”-A, cioé un tensore simmetrico a traccia nulla, quindi dalla (10.234) abbiamo,
Su uno stato coh, M fissati,M é I'autovalore di_,:

__3Q 2 1
SE = D [M SL(L+ 1)] (10.261)

doveQ indica il valor medio dell'operatore sul termine piu alto del multipletto, bba- L.
Il calcolo esplicito é fatto in fondo al paragrafo e risulta

h? , 2L 2L
Q=205 {_k 2L+3} - 2‘SbEzL+3
e quindi
B 4 , 1

Se si vuole tener conto dell'interazione spin-orbita occorre sostifuirenQ, secondo la
procedura sviluppata nello studio egli elementi di matrice del quadrupolo.
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Deformazione generica.

Uno dei vantaggi nella formulazione (10.248) & che si ha completa liberta nella scelta della
trasformazione, purche si abbia corrispondenza fra la superficie “semi@icequella da
studiare,S. Sfruttiamo questo fatto per capire la variazione dei livelli in una buca sferica
per unaarbitraria variazione della superficie. Ci limiteremo a variazioni a simetria assiale,
cioe non dipendenti dall’angolp per non complicare troppo I'esposizione ma sara chiaro
come il metodo si possa estendere anche al caso generale.

La piu generale forma di una superficie “quasi sferica” &

r=R(1+f(0)) (10.263)
f, da intendersi a quadrato trascurabile, & sviluppabile in serie di armoniche sfreriche:
f= ;anY[0 (10.264)

Se si impone che il volume sia costante non c’e il termine proporzion#g, anfatti il
volume contenuto dalla superficie &

v :/rzdrde/dQ%R3(l+3f)

e 'unico termine della (10.264) che puo dare un contributo non nullo € appgvjg Vo-
lendo studiare le sole variazioni di forma, quelle di volume gia sappiamo come funzionano,

poniamoa, = 0.
Come esempio, la (10.259) si puo riscrivere nella forma
X2(1+28,) +Y?(1+268,) + Z(1—258,) = R (10.265a)
r(1-25,(3co$0-1) =R = r~R(1+§,(3co6-1)) (10.265b)

Compare solo il termine cofi= 2, come prevedibile, essendo il risultato precedente espri-
mibile tramite un tensore di quadrupolo. La superficie (10.263) pud essere ricondotta alla
sfera di raggid= tramite il cambiamento di variabili:

r=p1+£f(0) p~r(l-f) =0 ¢'=0 (10.266)

In questa trasformazione di variabili si avra una variazione in forma dell'operatore di
Laplace e lo spostamento in energia dei livelli sara dato da

h2
OE=[- %} (8[A]) (10.267)
In coordinate polari
10 (,0 1[1 9 (. 0 1 02
A_ﬂ&<rw>+ﬂ[wwa66mgw>+g¥6&ﬂ] (10.268)

(10.269)

19 (,0 1[d% cosh d 1 92
=550 r~— +7 724' T =+ — 332
rZor \ ' or r2 0602  sin@ 90  sinfg do
Scriviamo allora, al primo ordine irf i termini che contribuiscono @[A] utilizzando
il cambiamento di variabili (10.266). Occorre fare attenzione alla trasformazione della
variabile6:
d dp o 0
5*55*(1_”% =
Jd 90" d dpd _d f,8N

d
90 9000 969p 96 ' 'ap oo | Pap

LZN i,f’ 9 iff’ 9 Nifzf’ iiff” 9
(992<ae/ ”ap> (ae/ p&'p)ae'z Popae ~ ' Pop
cosd d cosp’ [ d , 0

sin(—)ae_sine’(ae’_ pap>

2 dpa 92

= arap 172055
, 0
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Quindi, al primo ordine inf. riscrivendor, 6, ¢ per le variabili:

_ 1,0 d 1.9 «cosbl,_,Jd
oAl = —2fA—2= fa—% =f 3 smerfar (10.270)

L'integrale in® annulla gli ultimi tre termini, infatti nel valor medio su uno stato, integrando
per parti:

' oY cosO

; P AVARNE LA\ 1) 2| _
/smede{ T Y| sn9| |
_/de[ singf'——— | ‘ f”sin9|Y|2—f’cose|Y|2} =0

Quindi il risultato generale &

(8[a]) = —2fA  8E =-2(f)E| (10.271)

e I'ultima media é solo un integrale angolare, in pratica un coefficiente di Clebsh-Gordan.
Il risultato (10.271) ha una interpretazione fisica interessante: I'energia scala ¢ofme 1
in questo problema, una variazione percentdatiel raggio provoca percio un cambiamen-
to 6E = —2AE. La (10.271) dice che questa affermazione & vera in generale, come media
sullo stato, qualunque sia il tipo di deformazione, quindi anche se dipengle da
Come controllo del risultato riconsideriamo il caso precedente doves, (cos’ 6 —
%), v. ed.(10.265b). L'integrale angolare €, vedi eq.(10.294b)

2 3MZ2-L(L+1)

[dareoso-3) -3 s

dando cosi il risultato

M2 —IL(L+1)
OF =125, (2L—1)(2L+3)

in accordo con la (10.262).

Influenza delle condizioni al contorno.

Il risultato (10.248) che qui riportiamo per comodita

6E = (y[H(X()) —H(E)[w) (10.272)

presenta, nella sua semplicta, alcune sottigliezze sulla definizione degli operatori e del’'Ha-
miltoniana che meritano di essere messe in luce.
Poniamo il problema sotto forma di domande

1) Lequazione di Schrédinger € un’equazione differenziale: € perfettamente legittimo
fare i cambiamenti di variabile, ed il risultato chiaramente non dipende dai “nomi”
che si assegnano alle variabili. Quindi se partiamo da una soluzione dell’equazione
di Schrodinger con autovalokg

H (X)y,(X) = Eqyp(X) Yo(X) =0xe€ §, (10.273)
si puo benissimo fare il cambiamento di variabile dell’equazione (10.246) e scrivere
H(X(8))wo(X(8)) = Egwo(X(5)) (10.274)

Come fanno gli autovalori dil (x(§)) e H(&) ad essere diversi e dare un risultato
non nullo nella (10.272)~.
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2) Sipuo anche decidere di fare una trasformazione di variabilnohecambil bordo,
oppure, il bordo pud essere all'infinito e quindi non cambiare. Non puo essere che
in questo caso si abbia un risultato non nullo, quesiee esseran semplice cam-
biamento di variabili. D’altronde questo non é cosi ovvio dalla equazione (10.272):
dove compare il bordo in questa equazione?

Cominciamo dal primo punto. & vero che effettuando le derivate necegggxig )) sod-
disfa I'equazione (10.274) mzon soddisfa al bordo dié alla corretta condizione al con-
torno. Infatti la trasformazioné: £ — x(&) é fatta apposta per effettuare la corrispondenza

(&) =S

quindi al bordo di§ la funzione 1;/0(x(§))]‘§es0 = y,(S;) # 0. Chiamiamov,, il volume

delimitato daS, eV, il volume delimitato daS;. Potrebbe venire l'idea di restringere la
funzioneyy in un opportuno sottinsieme #,, diciamoV,, in modo che sul bordo d,
la funzioni si annulli. Questo non si pud fare: se immagianiaimacina all'identita e
quindi localmente invertibilef (S;) # S, e quindi la condizione al contorno non sarebbe
verificata suS; .

Notiamo che se il bordo non cambia, cioéSe= S, allora y,(x(&)) & una soluzio-
ne con le corrette condizioni al bordo, quindi I'autovalore non deve cambiare, e questo
ci tranquillizza almeno sul fatto ovvio che si possa cambiare variabile in un’equazione
differenziale.

Resta comunque il problema di capire dove che c’é scritto che gli autovalori delle
Hamiltoniane sono diversi e dove c’entra il bordo.

La (10.274) benché non dia I'autostato cercato &€ un’equazione differenziale soddisfatta
dayy(x(&)). Integriamola pet €V, dopo aver moltplicato pap,, che supporremo reale
per semplicita:

[ AEAEWENHKE) Vo((E) = By [ dEIE W(X(ENYG(X(E)  (10.275)

Abbiamo introdotto per completezza anche lo Jacobiano della trasformazione di variabili
& — x, anche se non gioca alcun ruolo nel seguito.

L'integrale a destra nella (10.275) non & uno, perché al variaeniV, 'immaginex
non copre necessariameie Comungue per piccole trasformazioni possiamo scrivere

J=1+68J HX(@&))=H(E)+8H  wp(x(§))=wo+ 5y, (10.276)
Ad esempio se' = &' + f/(&), conf piccola,
Wo(x(§)) = wo(&) + oy, (10.277)

All'ordine 0 ricordiamo chey, & normalizzata ed autostatoldi&) quindi la (10.275) &
un’identita. Uguagliando il primo ordine nelle variazioni si ha

/'5 (8IWE+ 8 YoH (€)W + WoH (€)Y + WodH ) =E, /;; (I8 +2y,0y;,) (10.278)
6J si semplifica in ogni caso, quindi come anticipato non entra nell'argomento. Nella

(10.278) compare esattamente I'elemento di matric&Hliche stima I'incremento degli
autovalori. Portando a destra tutto il resto

J¥oH vo= [ 6v5(Eo— H(EDVo + wolBo— H(E)Sve) (10.279)

Quindi se H é autoaggiunto otteniam@H) = 0. Il punto & cheH é autoaggiuntsolo
sulle funzioni che si annullano sul bor&, e 6y, non appartiene a questo spazio, o come
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si dice tecnicamente non appartiene al dominio di hermiticittl @). Lo si vede bene
nell’espressione (10.277):

Sy(S) = fi(So)&i Vo(S) #0

Usando la forma-h?/2mA per I'Hamiltoniana, integriamo allora per parti la (10.279)
tenendo conto dei termini al bordo e usando il teorema di Stokes:

/éWOA‘SWO:/éD(WODSWO)*/DWOD(SWO:
= /SO n(yoHdwp) — / n(dypOyyp) + / Ayodyy (10.280)

n e la normale alla superfici§,. Il terzo termine nella (10.280) €& quello solito e va a
cancellaree, nella (10.279). Il primo & nullo perchg,(S,) = 0, resta il secondo:

h? h? i ek
(VolH[vp) = — 5 /SO N(SVe0Yp) = — 5 /SO (49,003 v (10.281)

Nella (10.281) & esplicitamente evidente ¢hto il contributo proviene dal bordo, e che
se la deformazione lascia invariante il bordo, cidéS)) = 0 I'autovalore non cambia.
Vediamo che il valore dif' all'interno del dominio non gioca alcun ruolo, & questo il
motivo per cui I'espressione @iE € la stessa qualunque sia la trasformazione scelta.

Solo la combinazione simmetrica del tensaték contribuisce alla (10.281), possia-
mo come al solito decomporre questo tensore in una parte a traccia nulla ed in una parte
proporzionale all'identita:

(' £9)symm= %(ni fXp kel — géiknw‘) + %@kn f
Lasciamo al lettore il compito di interpretare la (10.281) come “tensore degli sforzi” della
trasformazione.
Come controllo riconsideriamo il caso del parallelepipedo. Poniamo l'origine delle
coordinate in un vertice del solido. Consideriamo una deformazione alla volta, ad esempio
guella relativa alla coordinata f ha solo la prima componente e vale

f = 8ax- (1,0,0) (10.282)

Le autofunzioni del problema sono date da

2 . nax [2 . nwy [2 . Ngwz
vfnl,nz.ns:\&smla\/;sm 2b \[Csm 30 = ¢n, (X, 2)¢n, (YD) ¢, (z,C)

ed il contributo delle sei facce all'integrale (10.281) &, a parte il fattoié/2m:

I, = /dydz[axy/(?xy/fl]x:af Aoy | ol
l,= /dZdX[ay‘l’aXV’fl|y:b - 3yll/9xllff1|y:o}
l3= /dXdY[an’aX‘l’fﬂz:c_ azwaxwfllz:()}

Perl,:

Il—/obdy/ochan(y,b)|2|(pn3(z7c)|2(a5a) m [Eﬂ o

n2x2
= 253 >
a a Ix=a a
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I, el5 sono nulli, infatti consideriamo ad esempio la parte dipendenyérdg. Ci sono due
fattori, uno per ogni funziong. Nella partedsy la componente iy non viene modificata,
e la funzione si annulla sul bordo, quindi:

o(Y)oyo(y)|,_, =0

la stessa cosa vale per gli altri termini. Quindi il contributo di questa deformazione alla
variazione di energia &
h? 12

Eet =
S 2m! 2m

(10.283)

2.2
26, {nln ]

a2
in accordo con la (10.251).

L'ultimo dubbio potrebbe sorgere sulla correttezza della derivazione fatta all’inizio del
capitolo per la variazione degli autovalori, visto che in questo caso i domiiedH + 6H
sono diversi. Vediamo che non & cosi .

Siay(x) 'autovalore diH (x) nel dominioV, e E,; I'autovalore corrispondente

H)W(X) = Eyp(X (10.284)

In assenza di deformazione i domini coincidono e anche gli autovalori. Poniamo allora,
passando alle variabi:

VOE) = woE)+3y [ sy =0 (10.285)

La condizione di ortogonalita nella (10.285) € corretta pefbppé assunto essere al primo
ordine nella perturbazione, quindi tutte le altre quantita, compreso il dominio di integra-
zione, possono essere considerate all’ordine 0. Sviluppiamo la (10.284) al primo ordine e
integriamo dopo aver moltilicato per,(&):

| vo(& [(HE@) + M) (vo+ 8%)] =, | (w6 +wodw) (10.236)

Vo

A destra il primo integrale & 1 perchg, (&) & normalzzata proprio sul volumé,, il
secondo integrale & nullo per la (10.285). Si ha allora, usandbl ¢hpy, (&) = Eyy,(&):

Eo+ /V [WodHWo+yoH(§)dv] = E, (10.287)
0

Il punto cruciale ora e chg(S;) = 0 i punti suS; sono 'immagine di, quindi, per come
abbiamo definitd y:

0=vy(S) =y ) +8y(S)

il primo termine & nullo per la condizione al contornoyg, il secondo, essendo del primo
ordine, puo essere calcolato anche§y quindi, a meno di termini del secondo ordine
o0y (S) = 0. Quindi nella (10.287) puo essere integrto per parti ed agendo a sinistra da

EO/V/05V’:0
N,

Risulta allora
E, = Ey+ (wpl0H|wp)

che é il risultato aspettato.
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Calcolo elemento di matrice.

L'elemendo di matrice da calcolare &

. P
M= /d3xy/ (B-35)y =K -3.4,

Iy 0
M= / Py 32"’ / d3x a"; a;’; (10.288)

La funzione d’onda coM = L ha la forma
. L
w:R.c(XT'y) (10.289)

doveC é la costante di normalizzazione per I'armonica sfe¥ga Quindi la derivata
rispetto az agisce solo sul fattor®/r- dando

Z[R

821”2 -

R _ R
T er} C(x+iy)- = cosd [R/ — Lr] Y, (10.290)

L'elemento di matrice (10.288) ha quindi la forma
/ d*xcoL 6 {Rf L2 } Y, 2 (10.291)
L'integrale radiale, integrando per parti, si scrive
FR:/err {NZ ZLR—R RZLZ] /dr ZR'Z 2rLRF(+L2R2}
/dr (PR +LL+1)R) (10.292)

Nel primo termine si pud di nuovo integrare per parti ed usare le equazioni del moto
(10.258)

(1) _ 202 [ 4r 92 P
_/drr R = /drdr(r R’)R_/dr( 2IRR—-r“R'R) =
[ar {ZrRRrZR (fR/kzm LL; Y R)} -
/dr [Kr2R2 — REL(L + 1)

Sostituendo nella (10.292) il termine dipendentes cancella, e I'altro € semplicemente
la norma della funzione radiale, quindi:

Fr=Kk (10.293)

Per quanto riguarda la parte angolare nell'integrale (10.291) scriviamo

1 1 1 /16xn 1
0 =(cofH—)+== Y,
co (co 3)+3 3\/ 5 0+ 3

L'integrale sulle armoniche sferiche € sostanzialmente un coefficiente di Clebsh-Gordan e

vale
5 3M%2—-L(L+1) 5 L
_ =) — /= 10.294
T Vamaens|,” Varerey 10299
1 2 3M2—-L(L+1)

I3 (2L—1)(2L+3) (10.294b)

/dQ|YLM |2Y20 L

/dQ|Y,_M|2(c0526 -
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e quindi

2 L 1 1 2L
= |- — L ZF|=_—ZK|1- =/ 10.2
= [ PRt R] : [ 2L+3} (10.295)

, 2L

— K2 _ — _K2_“—=
M= -3ty =K

(10.296)
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Appendici e Complementi

10.A Richiamo sulle trasformate di Fourier.

Riportiamo alcune proprieta di base delle trasformate di Fourier. Data una furiziehe
definiamo la sua trasformata di Fourietramite la formula

f(k) = /d3x e (x) = Z(f) (10.297)

Si pud dimostrare che I'operator & una trasformazione invertibile i?. Linversa
della (10.297) é

3 . ~
f(x) = / (gn'§3 & (k) (10.298)

Le formule precedenti possono essere estese a trattare distribuzioni, in particolaré per la
di Dirac si ha immediatamente:

F(8) = ./'d3x e X §(x) = 1 (10.299)

Utilizzando la (10.299) é facile dimostrare le identita

. 3
/ & F(x)g(x) = / (gﬂ';s F(K)§(k) (10.300a)
50 = / ((2’:;3 gk (10.300b)

Un'importante proprieta delle trasformate di Fourier € che trasformano il prodotto di convo-
luzione delle funzioni in prodotto delle trasformate. Si definisce prodotto di convoluzione,
e si denota cori x g, I'espressione

() = (F+g)(x) = [ & f(x=y)ay) (10.301)

Inserendo le trasformate di Fourier si ricava, usando la rappresentazioné&:della

7| [ &y tc-yaw)] = t0at0) (10.302

L'altra proprieta importante € che gli operatori differenziali si trasformano in moltiplica-
zioni sulle trasformate:
F0,f] =ik f (k) (10.303)

in pratica € la rappresentazione di Schrodinger per I'operatore impulso. Vediamo alcuni
casi particolari che useremo nel seguito.

7| fattori (27) in queste formule sono le normalizzazioni normalmente utilizzate in fisica, spesso nella
letteratura matematica il fattore di normalizzazion@#)~3/2 in modo da rendere le formule piti simetriche.

67
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1. Funzionel/r

Consideriamo la trasformata di Fourier dell'equazione di Poisson:
1
A= —4n83(x)

Usando la (10.301) si ha
1 4rn

1
2

2. Potenziale di Yukawae ' /r.
Perr £0
—Ur 1 2 —Ur —Ur
A _ d (r.e > :#2L

rordr? r
Tenendo conto della singolaritaiin= 0:

(—Aﬂtz)%“r = 4m53(r) (10.305)
quindi
7 {e‘r‘”] - %ﬂuz (10.306)
3. Esponenzialee ',
Fle ] — 7%3; {e_rm} - (k28fﬁ2>2 (10.307)

Esempio.

Come esempio di applicazione delle formule precedenti calcoliamo tramite trasformata di
Fourier la correzione perturbativa del livello fondamentale dell’elio dato dall’equazione
(10.94) che riportiamo qui per comodita

1 Zr 1
E = \/ - _- = 3y d3x. e X1la= 1%l
(WolV|wg) (4n)? 2./d X, d°%, e M1le™1"2 X, %]
Utiizzando la (10.300a)
1 zZ [ d%k
E=_——_~ [ " ZzEehkhg [/ e Xl & ]
(4m)22 ) (2m)3 ( ) X, X; =Xy

Scrivendo la trasformata della convoluzione utilizzando la (10.302) ed utilizzando le for-
mule trovate precedentemente per I'esponenziale ed il potenziale Coulombiano:

e L Z &k 8t 4r 8r 297z /w 1
C @m)22) (2m)3 (KR+1)2 K2 (R+1)2 2875 Jo  (KR+1)4
4z [ 1
= — ki
n/o d (k2+1)%

L'integrale, ad esempio, si puo fare col metodo dei residui:

© 1 1dd = 1 1 d® e 1
A00= [} Ky ot =505 o Ko a) = 12808 ) NG 1 o)
e 1 27i
k = = oY
/_wd K@ra) 2va ¢
1d 4, 5

~7/2
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quindi
4z 5
(WolVIvo) = —I(1) = gZ (10.308)

che coincide con il risultato (10.95) ottenuto nel testo.

10.B Forza di Van der Waals.

Ricordiamo che I'espressione del potenziale elettrostatico e del campo elettrico di un dipolo
e:
1
V=— E= —r—g(d —3(nd)n) (10.309)

Consideriamo due atomi, entrambi nello stato fondamentale. In prima approssiamzione,
vedremo dopo in che senso, possiamo considerare i nuclei fissi e gli elettroni nel poten-
ziale dei singoli nuclei. Nei prossimi capitoli vedremo che se gli atomi sono abbastanza
vicini hascono altri tipi di effetti dovuti al fatto che gli elettroni possono “saltare” da un
atomo all’altro. Questi effetti, che sono alla base del legame chimico, decrescono esponen-
zialmente con la distanza, stiamo supponendo che i due atomi siano a distanza di qualche
raggio atomico, in modo da poter trascurare questo tipo di legame.

In questa approssimazione I'Hamiltoniana del sistema si compone di 3 termini

H=H,+H,+H,.,

H;,H, sono le Hamiltoniane dei singoli atont, , I'energia di interazione elettrostatica.
Essendo gli atomi neutri I'unica interazione possibile & quella dipolo-dipolo:

A

B %

1
[=d [dyd; —3(d; -n)(dy-n)] =
doveR € la distanza relativa, B il versore che va dall'atomo 1 all'latomo 2. Abbiamo
fattorizzato le costant&’ e 1/R. LoperatoreA ha le dimensioni di una lunghezza al
guadrato.

Per concretezza supponiamo di considerare I'atomo di idrogeno e Pasadliretto
lungo la congiungente degli atomi. L'Hamiltoniana di interazione ¢é allora

Hy, = _dZ'El =

& &
Hyp = @( 1°12—322) = B (X +Y1Y2 = 222,) (10.310)
Per sistemi indipendenti la funzione d’onda si pud considerare fattorizzata

ly) =~ [yy)|ws)

Se il sistema non ha momento di dipolo intrinseco si ha come correzione al primo ordine
degli autovalori dH
(WlHp,ly) =0

quindi la prima correzione & al secondo ordine

= Z VIAIN g (nAlw) (10.311)

Alcune osservazioni.

e Per lo stato fondamentale, come al solito, la correzione € negativa, il che significa
che I'energia diminuisce, e questo corrisponde ad una fattrattiva.

e U~ 1/R quindiF ~ 1/R’, & la forza di Van der Waals.
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e Nel modello presentato ci sono delle approssimazioni: per grandi distanze la forza
non & “istantanea” e le correzioni dovute al ritardo portanb & 1/R’. SeAw &
la tipica frequenza di transizione questi effetti compaiono a distanze dell’ordine di
c/A®.

Esercizio. Cosa succede se si hanno due atomi di idrogeno, uno nello st&td'dltro
nello stato ? Il sistema & degenere?

10.C Formulazione tramite trasformazioni canoniche.

Il metodo esposto in questo paragrafo € il metodo piu diretto per generare una serie pertur-
bativa ed & stato il primo ad essere formulato[1].

Trovare gli autovalori e gli autostati dell’Hamiltoniakb= H, + AV, significa geome-
tricamente trovare una trasformazione unit8i@le cheSHS assuma una forma diago-
nale. Assumendo chid, sia gia diagonale, possiamo pensare di svilup@areserie di
potenze ink:

S=1+AS,+1%S,+... (10.312)
L'unitarieta diSimpone i vincoli:
1=SS=1+A(S,+9) +A*S,+S+5S) +... (10.313)

Indicando corD la matrice diagonalizzata, che ha cioé sulla diagonale principale gli auto-
valoridiH

D =E8 E=E9+AEM+A%E@ 4. ..
il problema é trovar&tale che:
S(H,+AV)S' =D (10.314)
Gli autostati saranno dati da
00 ="K = 19) = TS i)k =S (10.315)

Infatti
HI®) = SitH[K) = SitHgls) = (HS Y)4ls) = (S D)

nell’'ultima espressioneon c'é sommaui.

Al primo ordine inA l'unitarieta di S, (10.313), impone ch§, & un operatore anti-
hermitianoSI = —§,, ed in particolare quindg,, = 0. La (10.314) da, usando questa
informazione

9 = (S )sElS)

si|

SiHo— HoS; +V =DW (10.316)
La parte diagonale dell’'equazione fornisce la prima correzione all'autovalore dell’energia
v, = (i[V[i) = EY
mentre gli elementi di matrice fuori diagonalg danno (non c’€ somma su gli indici):

. . 1
0=V;j + (il(S;Ho — HoS) i) = Vij + (S (EI” —EY) (S =V E0_EO
[ j
Sostituendo nella (10.315) si ritrova il risultato noto (10.12). Allo stesso modo si possono
ottenere le correzioni di ordine superioredin
La trasformazione unitari&fornisce automaticamente degli stati normalizzati, & utile
pensare ad come una “rotazione” nello spazio di Hilbert, eq.(10.315). Come in tutte
le rotazioni la variazione infinitesima di un vettore & ortogonale al vettore di partenza, e
guesto € il motivo geometrico per cui al primo ordine la correzione all’autostasimo,
|¢Ei1))> e ortogonale all'autostato imperturbdip la cosa & espressa in questo contesto dalla
relazione(i|S i) = 0.
Questo metodo & molto simile alla procedura utilizzata in meccanica classica.
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10.D Metodo di Dalgarno-Lewis.

In molti problemi la correzione al primo ordine ai livelli energetici, (10.10), da informazioni
significative, in altri & necessario ricorrere all’approssimazione successiva, ad esempio se,
per motivi di simmetria ad esempio, la correzione al primo ordine & nulla. In questo caso
occorre valutare una somma in generale infinita di termini, come ad esempio nella (10.15).
La relazione ricorsiva (10.13) insegna che il vero problema risiede, all’ordimel calcolo
dell'autovettore all'ordinen— 1, |y,,_,). Per essere concreti pensiamo alla correzione del
secondo ordine. Per calcolagg & necesarigy;) che si ottiene dalla risoluzione della
(10.8b). In questa equazione possiamo pensare di aver gia caleplgopponiamo nel
seguito di dover risolvere un problema in rappresentazione di Schrodinger per una singola
particella. L'HamiltonianaH, e della forma

hZ
Hy=—-——A+U 10.317
e supponiamo che il potenziale sia una certa funzMe. Includiamo il parametrd
nella definizione dV. La soluzione cercata per, € allora la soluzione di un'equazione
differenziale non omogenea:

(Ho—Eg)yi+(V —&)yy=0 (10.318)

Supponiamo che questa equazione ammetta una soluzione regubare |l nucleo del-
I'equazioneH, — E; & non nullo, & generato per autovalori non degeneri dalla funzione
V,- Quindi sep & una soluzione, allora ancle+ cy, € una soluzione. Imponendo la
condizione di ortogonalita (10.6) si puo determinare

C=—/1//6‘<p

e quindi determinare univocamente la soluzione ceragta; ¢ + cy,. Nel caso, comune

in questa situazione, in cui la perturbazione al primo ordine € nulla, per il calcalp di
non € nemmeno necessario calcolare il coefficienitefatti il contributo di questo termine
sarebbe(y,|V|y,) = cg; = 0. La situazione si puo ulteriormente semplificare tramite un
cambiamento di variabili. Se cerchiamo la funzidneella formag = F (x) y,(x), vediamo
che, essendH, — E;) y, = 0, F soddisfa all'equazione

2
“ o [WoAF -+ 20F O] + (V — &)y =0 (10.319)

in cui non compare piu esplicitamente il potenzidleln questo modo possiamo trovdre

e calcolaree, calcolando un semplice elemento di matrice, abbiamo cioe ridotto il calcolo
della serie (10.15) a quello della soluzione di un’'equazione differenziale, questo compito

e di solito piu semplice sia dal punto di vista analitico che da quello numerico. La base
di questo metodo € stata sviluppata nella referenza[4]. Pud essere data una trattazione piu
formale in termini di operatori, scrivendo cioe la relazigng) = F|y) in termini ope-
ratoriali, come ad esempio in ref.[5], ma nel seguito adotteremo lo schema qui delineato.
Come applicazione calcoliamo I'effetto Stark sul livello fondamentale di un sistema a sim-
metria sferica, ad esempio I'atomo di idrogeno. Scegliendo il campo elettrico lunfo I'asse

z la perturbazione si scrivé = —ez8'. Poichey, € pari: (y,|zly,) = 0, quindi non c’é

effetto al primo ordine. Al secondo ordine

1
&, = —e5(ylzy,) = —éaé'”z (10.320)

|y;) soddisfa all’equazione (ricordando che= 0):

2

h
(—%AJrU(r))q/l:ezéowo (10.321)
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Usiamo d’ora in avanti unita atomiche, in duie,m vengono posti 1. |l secondo membro
della (10.321) si trasforma come I'armonica sfer¥gg sotto rotazioni, cerchiamo quindi
la soluzione nella forma

vy = EZF(r)yy(r) (10.322)
Indicando con un apice le derivate rispetto alla variabile radialda che
‘9i‘/’o:?‘/’6 d;(zF) = 65F +ZﬁF’ 3, W,0: (zF) = wi( F+zF’
aIaI(ZF) 6 IF —|—83 IF/+Z(§_7)F/+ 77|F// 4ZF/+ZF//

sostiuendo nella (10.322) e usando il fatto cm,esoddlsfa alr equazione di Schrdodinger
imperturbata si ottiene:

2z Z z
A {rF’—i— 2F”} + W [FF +zF’} = —zy,

(f.:ur;,:”) 50( +|:> 1 (10.323)
0

Questa equazione € valida per un qualunque potenziale centrale. Vediamo alcuni esempi
espliciti

cioe

10.D.1 Polarizzabilita dell’'atomo di idrogeno.

In questo caso

1L+ ¥
Yo VT Y
e la (10.323) diventa ;
“F'4+F(2-1)—F =—r (10.324)

2
La soluzione regolare di questa equazione & semplicengnje= 1+ 5 quindi la corre-
zione del primo ordine allo stato é

vy =621+ 5) Vo (10.325)
Notiamo chey; e dispari, quindi automaticamente e ortogonalg, aSi ha infine
02 [43y4,2 rn_ 1 r2 2,2 n_ 9.
g, = g/dxwozz(prz)_ 47:3/ dror?e (14 5) = -2
Da cui la polarizzabilita:
9 9
a=-[ual= 5ag (10.326)

Notiamo che la correzione al terzo ordiage nulla, come si verifica immediatamente
dalla (10.21). In generale sono presenti solo le correzioni di ordine pari, in effetti I'Hamil-
toniana é invariante formalmente per la sostituzione —z, & — —&. Gli autovalori, fun-
zioni di &, devono allora essere funzioni pari. Questa conclusione si applica solo allo stato
fondamentale dell’atomo, a cui si possono applicare le formule della teoria perturbativa su
stati non degeneri.

Esercizio 5. Applicare lo stesso metodo per calcolgrgx). Si trova
w2 3 2/(5
=& —
v, c+ 16+24+8( +5r+r ﬂ%

Fissarec dalla condizione di ortogonalita g,. Il risultato éc = —81/16. Usare lay,
trovata per calcolare la correzione al quarto ordine per I'energia dello stato fondamentale.
Si trova:

&= —E(Wl2Zly,) — &y lyy) = ﬁg
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Discussione numerica.

Consideriamo I'espressione della polarizzabilita per lo stato fondameistdég’atomo di
idrogeno sotto forma di serie

1s|z|n |2
a=2y T e (10.327)

Alla somma contribuiscono solo gli stati discreti del tijpo¢ = 1, ¢, = 0), cioe li statip, e
gli stati del continuo. Siccome tutti gli addendi nella (10.327) sono positivi si puo dare un
limite superiore semplice alla polarizzabilita usando la completezza degli stati:

1

1 16
2= S |(1slZn) P =2——(152|1s) = £ = =
@ <2 T3, sl =2~ 52y

oolw| N

p~ =2s
avendo usato 1
(1s|Z|1s) = §\<1s|r2|1s> =1

Ed in effetti 9/2 < 16/3. Una stima per difetto pud essere fatta tenendo conto solo del
primo stato: lo stato g Utilizzando la funzione d’'onda

4 —r/2
= e
Yo = 4 /20
si ha
2 5

(18)Z]2p) = 4v/2 <3>

da cui ) 1

5 olIS220F 27 595 9 45
Eyp—Ex 3 2

Usando le espressioni degli statijnp,¢ = 1,¢, = 0) si puo ottenere, vedi es.[2]

1 28n7(n 1)2n 5
(1s|Znp)|* = T3 (nryEs

quindi il contributo alla polarizzazione degli stati discreti vale

128n7(n 1)2n 5
Oiscr = 22 % n_|_ 1)2n+5

~ 3.6629

Ocont = O — ocdisct =0.837

Dalle stime precedenti si deduce che circa il 65% alla polarizzazione & dovuto allo stato
2p, circa il 16% proviene dagli statip,n > 2 ed il resto dal continuo.

E istruttivo dare una stima del contributo del continuo. Approssimando le funzioni del
continuo con onde piane, I'elemento di matrice da considerare &

. 190 .
Z, = /d3XékXZl[/0 = T—/dsxékx%
i dk;
Utilizzando la trasformata di Fourier di un esponenziale:

_ d e M 8ru
Zle ] :_duy[ r } T (K24 p2)2

si ha
32\f k2
«~ ka3
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da cui

2/ dk |zk|2 2° 4n7r/wdk kK M7 7
(2m)3 14 _7r3 37 " (1+k)7 3wl 3
Quindi la stima tramite onde piane & una stima in eccesso. Uno dei motivi & il seguente.

Sappiamo che
z |(1s]Zjn)|? = (15 Z|1s) = 1

Una stima del contributo dello spettro continuo fatto con onde piane di questa regola di

somma é ., »
d3k 2" 4 ®
/ z 2= / dk— =1
(2m)3 733" Jo T (1+k2)8
chiaramente in eccesso. Questo risultato € aspettato a priori, perché le onde piane formano

da sole un insieme completo, quindi la somma precedente deve necessariamefate gare
1.

10.E Struttura fine dell'atomo di Idrogeno.

Nel capitolo 9 abbiamo ricavato la hamiltoniana effettiva che descrive le interazioni di un
elettrone in campo elettromagnetico estef®oA) all’'ordine v2/c?:

1 e \2 p* eh ier?
H_%( ¢ ) “ i T® omc® B g UNE
eh eh?
~ 4250 (EAP)— g 550 E (10.328)

Nel caso dell’atomo idrogenoide si ha a che fare con un elettrone di massspin 1/2,

che interagisce con un nucleo di maséas> m e caricaZ|g|. In prima approssimazione
possiamo considerare il nucleo puntiforme e quindi caratterizzato dalla sua carica e dal suo
spin. Nel limite di massa infinita del nucleo questo si comporta come un campo esterno
coulombiano e quindi possiamo applicare la (10.328)Ben0, E = Z|e|/r3r. La (10.328)

si semplifica allora nella formae& —|€|):

p? p*  z& Zéh 1 Zen?

= —— — — —— —_— L
2m  8msc? r +4m?c2 r3 +8mz 2

Dal principio di indeterminazione e dal teorema del viriale, chiamamifloaggio caratte-
ristico del sistema

48 (r) (10.329)

noopzé 1 1w
P m a ZaB_Zme’-

Ricaviamo allora per il parametro di sviluppo relativistit:
3 1

\'

la costante adimensionade prende il nome dcostante di struttura fineE facile stimare
I'importanza dei vari termini nella (10.329) e quindi I'energia caratteridfcadella strut-
tura fine. Indicando coE I'energia caratteristica del sistema, cioé dell'ordingtlim o

Zé&/a:

p* > o zeh 1 Zeh h > o
gez “ELY e a2~ EL
zeh? zeh? 1
iz 000~ Sl T
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Il parametro di sviluppo & quindZa)?. Per I'atomo di idrogeno o per I'elio ionizzato tale
parametro & dell'ordine di 1d. L'energia caratteristica della struttura fine & quindi, per
atomi leggeriEg g ~ (Za)?E ~ 10~*Ry.

Poiché le correzioni relativistiche si comportano come potenze pariadée non ci
fossero altri termini nell'interazione elettrone-protone dovremmo aspettarci una precisione
dell'ordine div*/c* ~ 1078 per i livelli energetici calcolati con I'Hamiltoniana (10.329).

Ci sono almeno altre due correzioni a quanto detto:

1) Il nucleo non ha massa infinita. In approssimazione non relativistica I'intero effetto
e riassorbito, in un sistema a due corpi, dal considerare la massa ridotta

mM

Y (10.331)

m-—u=
Il fatto che sia riassorbito a tutti gli ordini significa che una volta adottattome
parametro di massa non ci sono correzioni del {ipgM)X. Il moto relativistico
puo introdurre delle correzioni a questo processo, le prime correzioni saranno allora
dell'ordine (m/M)(v?/c?) ~ 10~7 — 1078,

2) Il nucleo puo avere uno spin, € il caso dell'idrogeno, ed un momento magnetico, del-
l'ordine di eii/Mc. Questo momento magnetico interagira col momento magnetico
dell’elettrone e I'interazione di due dipoli magnetici € dell’ordine

T 1 ~ ﬁi NEZZOCZT

2r3 " mMe a3 M

Quindi anche questa interazione € “tracurabile”, ma ha una particolarita: non & in-
variante per rotazione delle sole coordinate elettroniche, ma solo per rotazione delle
coordinate nucleari ed elettroniche. In altre parole il momento angolare jalale

solo elettrone non é conservato, questo induce in generale una rimozione di degene-
razione che € osservabile e caratteristica di questo termine. Questo tipo di interazione
viene chiamatanterazione iperfina verra trattata in un altro paragrafo.

3) Nella Hamiltoniana (10.329) il campo elettromagnetico svolge un ruolo “classico”
nel senso che non é trattato come un sistema quantistico. La quantizzazione dell'inte-
razione provoca uno contributo aggiuntivo all’energia dei livelli: & il cosiddedtob

shift La scoperta sperimentale e la spiegazione teorica di questo effetto sono stati una

delle piu importanti conquiste nella comprensione dell'interazione elettromagnetica.

~

Passiamo ora all'analisi dei vari contributi. Ci limiteremo per semplicita ai livelli piu bassi
dello spettro, quelli con numero quantico principate 1,2. Nel seguito useremo unita di
misura atomiche e porreni= 1. | risultati saranno scritti nella forma = Eq(1+ ca?).
Se si vuole considerare uno ione cos- 1 basta moltiplicards, perZ? ed il fattore cor-
rettivo ¢ perZ?, come si dimostra immediatamente effettuando la trasformazione canonica
X — %x , p — Zp nella (10.329). In unita atomiche la (10.329) ha la forma

21 a®>, a’1 no?

N @ L) Y 503
H=" -~ 8p+2r3£ s+ 58)(r) (10.332)

10.E.1 Calcolo della struttura fine.

Il termine di accoppiamenthS si puo trattare secondo lo schema generale delineato nel
paragrafo 10.9¢ e snon commutano con I’'Hamiltoniana nja= £ + s naturalmente si. In
assenza di questa interazione i livelli avevano, a parte la degenerazione accidentale propria
del campo coulombiano, una molteplic{® + 1)(2s+ 1) = 2(2¢ + 1) ed il sottospazio di

Hilbert relativo ad un dato livello era generato dai ket,, s, s;). Scrivendo

£.s= % i2—02 ¢ (10.333)
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vediamo che possiamo assumere come nuovi ket di base che diagonalizzano la perturbazio-
nelj, jz¢,s). In altre parole, scontinuano ad essere buoni numeri quantici, la scelta degli
autostati dij, j, diagonalizza I'Hamiltoniana di perturbazione e si possono direttamente
applicare le formule della teoria delle perturbazioni non degenere. Le stesse considerazioni
valgono per il terzo ed il quinto termine nella (10.332).

Utilizzando il fatto che i ket|n, j, j;) sono autostati dell’hamiltoniana imperturbata
possiamo utilizzare I'equazione di Schrédinger per scrivere

4 2
1 ne) = 00 (Eae 7 ) o)

e possiamo immediatamente scrivere il contributo al primo ordine ai livelli energetici uti-
lizzando la (10.332) e la (10.333)

. a?(_, 1 1
AE(n;j,e,s):—? En+2En(nI\F|nI)+<nl|r—2|nl> (10.334)
a? (. 3 1 no? )
o (1040 =+ 1= 3 ) il -+ 75 iy )

L'ultimo termine evidentemente contribuisce solo agli sgathentre il penultimo & zero
sugli statis. Dall’espressione nota delle autofunzioni dell’atomo di idrogeno si ha:

1 1 1 1 1 1 1 1
ni=nh== (5N =5————  (nl|5n)=5—~F——
(nij=inh) == (nl|7nD) M0+ (il n) N0+ 3)(0+1)
1
2 _ —
VW@ = 25 =0 (10.335)

Per/ =0, =1/2 si ha, in unita atomiche:

. o? 3 2 a1 a? 3
AE(n, J,O,S) = —7 (_4n4 + n3) +?$ = _ﬁ <1— 4n> a.u. (10336)

Per/ > 1 sihaj = ¢+1/2 e conviene riscrivere i vari contributi in termini glicon un po
di pazienza si ha:

1 1 [1/(j+1) £=j+1/2
<nl|r2|n|>n3{1ﬁj+) E:}i_1§2

—(j+3/2) (=j+1/2
i—-1/2  (=j-1/2

1 {[(j+1/2><1+3/2><1+1>1-1 (=j+1/2

j(j+1)£(£+1)3/4—{
nl ! nl) =
MEW S \G-v2Ge 20t =12

Sommando i vari contributi nei due casi:

N o® (1/(j+1)) , o® [-1/(j+1)(j+1/2)
AE(”'J’&S)__2<_)_2n3{ 1] }uns{ 1/j(j+1/2) }

__o®( 3\ @ [1/(j+1/2)

T2\ 4at) 2m | 1/(j+1/2)
quindi tutti i contributi hanno la stessa forma e questi coincidono con il caso particolare
¢ =0della (10.336):

2
AE(N; j,0,8) = ——= [H—JEL/Z — jn} a.u. (10.337)
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Dalla (10.337) segue che le correzioni di struttura fine dipendono sojpaeao implica
che la degenerazione coulombiana & solo parzialmente rimossa: pem, da&ti con/
diverso maj uguale hanno la stessa energia. Cosi ad esempio la (10.337) predice che gli
stati &1/2 e 2p1/2 debbano essere degeneri.

Per scrivere esplicitamente le energie degli stati ricordiamo che le correzibhsono
state riassorbite usando la massa ridotta, in questo senso i livelli idrogenoidi, senza tener
conto della struttura fine, sono dati da

1_, 51 m
R & la costante di Rydberg, riferita ad un nucleo di massa infinita:
1meé 1€¢ 1
_-ME_2f _ (10.339)

T 28 T 2ag 2
In letteratura si trova spesso la notazidteo Ry per la costante (10.339). Dalla (10.338)
e dalla (10.337) segue:

E(n,j) (10.340)

z2 (Za)?[ 1 3 m , 4
_RAnZ(1+ n [j+1/2_4n]>+ﬁ(Ma’a)

Il termine correttivo andrebbe moltiplicato pernon peRR,, ma a quest’ordine la correzio-
ne é irrilevante, in realta nel capitolo precedente abbiamo dimostrato che tale sostituzione
e corretta a meno di un termine indipendente dallo spin.

E istruttivo confrontare queste previsioni con i valori sperimehtali

H eq.(10.340) He* eq.(10.340)
1s,, | -0.999466509 -0.999468985 -3.999631998 -3.999664828
2s,,, | -0.249867761 -0.249868078| -0.999925149 -0.999929518
2p, ,, | -0.249868082 -0.249868078 -0.999929417) -0.999929518
2p;,, | -0.249864748 -0.249864751 -0.999876044 -0.999876274
3s,,, | -0.111052015 -0.111052109| -0.444405774; -0.444407203
3p12 -0.111052111] -0.111052109| -0.444407046 -0.444407203
3p;,, | -0.111051123 -0.111051124 -0.444391231] -0.444391427
3d;,, | -0.111051124 -0.111051124 -0.444391257| -0.444391427
3d;,, | -0.111050795 -0.111050795 -0.444385986/ -0.444386168

Tabella 10.1: Energie dei livelli pett, He ionizzato. | valori sono in Rydberg.

Come si vede 'accordo é ragionevolmente buono e migliora al crescaredticorre
perd notare che la correzione piu grande rispetto al v&[ﬁ%: —Z2.R/n? & puramente
cinematica e deriva dal sostituiReconR,.

Per concentrare la nostra attenzione sulla struttura fine riportiamo nella tabella 10.2,
espresse in fequenze, le differenze di energia a parita di numeri quaptidl fattore di
conversione &

Ry = 32898419580 GHz (10.341)

Notiamo che la discrepanza piu grande fra dati e teoria per I'ldrogeno & 1 GHz. Misu-
rare questa differenza su frequenze di riga dell’ordine 8i@GBz significa una precisione
di una parte su 10°

8| dati seguenti sono a disposizione in rete, il lettore |i pud trovare al sito
http://physics.nist.gov/PhysRefData/Handbook.
9] primi a osservare la struttura fine sull’atomo di idrogeno furono Michelson-Morley nel 1887.
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H €q.(10.337) He* eq.(10.337)
2s,,,—2p,,, | 1.058 0.000| 14.041 0.000
2p;,, —2p,, | 10.969 10.943| 175.589 175.165
3s,,,—3p,, | 0.315 0.000 4.185 0.000
3p;,—3p;,, | 3.250 3.242| 52.029 51.901
3pg,,—2d;,, | 0.003 0.000 0.086 0.000
3d;,, —3d;,, | 1.082 1.081| 17.341 17.300

Tabella 10.2: Differenze di energia espresse in GHzpeHe ionizzato.

Dalla tabella appare che I'accordo, per gli standard attuali, € semiquantitativo: in parti-
colare la (10.337) prevede una degenerazione fra i Iivellybze 2p1/2 che non é confortata
dai dati. D’altra parte la non degenerazione & “piccola”. Dal punto di vista delle righe spet-
trali I'effetto pitt marcato € che, ad esempio, una riga della serie di Balmer & un realta sdop-
piata, ad esempio quella per la transizione-2 3s. Predire correttamente I'ammontare
dello sdoppiamento & un notevole miglioramento rispetto alla teoria ditohr

La prima misura sperimentale della differensgl/g— 2p1/2 e dovuta a Lamb e Rether-
ford nel 1947. A conferma di quanto detto sulla difficolta di ottenere questo tipo di dati la
misura ha richiesto I'uso di tecniche a radiofrequenza che semplicemente non esistevano
prima della seconda guerra mondiale.

Cerchiamo di capire perché questo risultato & cosi importante. Come si vede dalla
tabella 10.2 lo spostamento

F= E(2$1/2) - E(2p1/2) ~ 1.059GHz (10.342)

dettoLamb shift € dell'ordine di /10 della separazione di struttura fine fra i livgdliquin-

di la discrepanza é dell’ordine dj10E.s. Abbiamo gia discusso che qualunque correzio-

ne a questo risultato nell'ambito delle ipotesi fatte & al massimo dell'ordine HELQ

quindi la misura del Lamb shift indica in modo inequivocabile che abbiamo dimenticato
qualche interazione. In realta I'equazione di Dirac prevede una degenerazione esatta dei
livelli, quindi la situazione & anche peggiore.

10.E.2 Interpretazione semiclassica del Lamb shift.

Supponiamo di trattare quantisticamente il campo elettromagnetico, la procedura esplicita
sara vista piu avanti, ora vogliamo solo dare un’idea della fisica in gioco.

Supponiamo di considerare il nostro sistema come immerso in una scatola cubica di
lato L molto grande, alla fine dei calcoli faremo il limite— c. Per semplicita poniamo
condizioni periodiche al contorno, in modo che ogni quantita sia periodica sulla lunghezza
L della scatola, luungo i tre assi coordinati,

Un campo elettromagnetico contenuto in una scatola di questo tipo ha un comporta-
mento ben noto: sono ammesse tutte le vibrazioni con numero d’onda multipft/di 2
Ognuno di questi modi di vibrazione pud essere pensato come un oscillatore armonico.
Considerare il campo elettromagnetico quantizzato significa sempicemente dire che que-
sti oscillatori sono quantistici e non classici: non sono altro che gli oscillatori di Planck
nella versione elaborata da Einstein. Come vedremo gli stati eccitati di questi oscillatori
rappresentano i fotoni, in assenza di fotoni ogni oscillatore € nello stato fondamentale che
corrispondera ad una sorta di campo quantidiigoPer lo stato di vuoto, assenza di fotoni,

10| primo a fare una predizione teorica dello spettro di struttura fine & stato Sommerfeld nell’ambito di una
estensione relativistica della teoria di Bohr. Per certi aspetti I'accordo é fortuito, nella teoria mancava anche lo
spin. La prima predizione in meccanica quantistica € stata fatta con I'equazione di Dirac.
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naturalmente il valor medio di questo campo sara nullo:
(Eq)y=0 (10.343)

Il suffissoy indichera che effettuiamo la media sulla funzione d’onda del campo quantisti-
co.

Un campo classico, ad esempio il campo coulombiano del nucleo, & una configurazione
classica sovraimposta allo stato fondamentale del campo quantistico. In questa situazione
il campo elettrico“vero” sentito dall’elettrone sag, + Eq.

Il campo avra delle fluttuazioni attorno al valor medio nullo, ed in pratica in ogni punto
dello spazio possiamo immaginare sia presente un piccolo campo fluttuante, a media nulla.
Sotto I'influenza di questo campo I'elettrone subira una forza e fluttuera anch’esso con
un’ampiezz& determinata da: )

mé = eE (10.344)

Le coordinate elettroniche agiscono sulla funzione d’onda elettronica e quindi non dipen-
dono dalle variabili del campo, ma I'equazione (10.344) fa dipendere la fluttuazioni di
gueste coordinate dal campo quantistico, in questo modo, indirettamente, il campo elettro-
magnetico agisce sulle variabili elettroniche. in altre parole se scriviamo per la coordinata
xe dell’elettronexe = x + &, la parte€ dipende dal campo quantistico.

In virtt di queste fluttuazioni I'energia elettrostatica dell’elettrone acquista un valore
aggiuntivo:

U0y = U0+ (E)AVX) + 26812V =UX) + £ €907

Abbiamo assunto isotropia per le fluttuazioni. Poiché per un campo coulomBrahe-
Z&4r8®)(r) si ha un contributo ai livelli energetici del tipo

Z4n
6

221
36% 3(8%)8, (10.345)

Per valutar€ consideriamo I'equazione del moto per una componente di frequenza
del campo, si ha

AE, = (&2)(v] §OM)y) =Zez%n\llf( 0)[2(&?) =

‘gw——WE N /dw§2 mz/d (10.346)

Il quadrato del camp&?2 & chiaramente connesso con I'energia del campo elettromagneti-
co. Abbiamo detto che nello stato fondamentale del campo elettromagnetico, cioé in assen-
za di fotoni, tutti gli oscillatori della cavita sono nello stato fondamentale, quindi ognuno
di essi ha un’energia minima tliw /2. Possiamo allora esprimere I'energia come la somma
delle energie di punto zero degli oscillatori, ricordando che la luce ha due polarizzazioni
ogni modo di vibrazione va contato 2 volte:

/ x (E2+B?) = / d3xE? — zh—“’k (10.347)

osc 2
dovew, e la frequenza di oscillazione del mokoQuindi

3

ok
2 2 3yF2 _
(€)= [doEs - L3/d XE?= T2 hay = 47r/(2n)3hw

osc

Abbiamo usato l'usuale formula per la somma sui modi di una cavita, trasformando la
somma in un integrale sul numero d’'onda. Ponekeow/c ed effettuando I'integrazione
angolare:

2 h
2 _ & 3
/dwEw =-3 /dww (10.348)
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quindi la densita spettrale del campo e

2h
2 _ £ 3
E; = p- c3w (10.349)
e sostituendo nella (10.346)
_2€h
2
(&%) = 2C3/d (10.350)

Questa espressione diverge, dobbiamo introdurre una qualche sorta di cutoff. Per alte fre-
quenze & ragionevole dire che la massima frequenag,g~ mc/h, sia perché abbiamo

fatto un modello non relativistico sia perché ad altissime frequenza ci aspettiamo che I'e-
nergia “inerziale” dell’elettronemc non possa pitl seguire le rapide oscillazioni del cam-

po. Per basse frequenze il taglio naturale é fissato dall'energia tipica dei livelli, in questo
regime la parte “classica” del campo deve intervenire nelle equazioni del moto dell’elettro-
ne, & proprio questa interazione che determina gli stati legati del sistema, quindi poniamo
hay,i, ~ Z%€? /ag. Otteniamo allora

<§2> 2[,?2]2;' gwmax 2 max

(10.351)
min
Nella (10.351) abbiamo messo in evidenza il raggio Compton dell’elettroresi/mc

Notiamo chere/ag = o € Wmax/ @i = 1/(Z)? Sostituendo nella (10.345) si ha, per gli
statis:

14_,& 18, Omax_ o 1843 1
AE,, = B3 —Z ™ %IOQ o =Ry —33— “alog 222 (10.352)
Numericamente per il livello2dell'idrogeno si ricava:
AE, ~ 1.33GHz (10.353)

che in accordo qualitativo con il risultato sperimentale (10.342).
Dal punto di vista numerico il punto rilevante & che la correzione & del tipo

E,- ologa ~ Exgaloga

quindi maggiore di tutte quelle prese in considerazione precedentemente.

Logicamente il calcolo puo essere fatto in modo sistematico. Una idea della procedura
sara esposta nel capitolo 16.

Riportiamo comunque qui per referenza il risultato del calcolo per un livello con nume-
ro quantico principal& e momento angolare orbitate

8z4 a3 19
AE(n,0) =~ = [Zlog +log o K(n.0) 30] (=0 (10.354a)
eperl{>0:
87% a® 3j(j+1)—0(t+1)—-3/4
BENO =53 R ['Og Kine) "8 (01 1)(20+1) } (10.354b)

R e al solito la costante di Rydberg. | coefficienti adimensioifdln, /) sono definiti
dall'uguaglianza

Z°R

(10.355)

|Og(Kn4) z pnospsrb(Es — Eno) = Z PnsPsn(Es — En) log
S S
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Lo staton, che compare a sinistra nella (10.355) € uno statm lo stesso numero quantico
principale din, cioe lo statms | coefficientiK (n¢) possono essere valutati numericamente
e i primi valori sono

K(1,0)~ 198 K(2,0)~ 16,6398 K(2,1)~ 0.970430

I coefficientiK , come si vede sono una media pesata dei logaritmi delle energie di ecci-
tazione del sistema, e sostituiscono il (@ che compariva nella trattazione semplificata
data prima.

L'effetto piu rilevante si ha per gli stai che vengonadnnalzatidal Lamb shift. Ag-
giungendo questo effetto ai livelli calcolati di struttura fine, la tabella 10.2 diventa

H FSL] He [ FSL

2s,,-2p,, | 1058 1.052| 14.041] 13.826
2p,/,— 2Py, | 10.969] 10.969| 175.589| 175,571
3s,,-3p,, | 0315 0313 4.185| 4.118
3p5, 3P, | 3.250| 3.250| 52.029| 52.021
3p,,—20,,, | 0.003| 0.004| 0086 0.064
3d,,3d,, | 1.082| 1.083| 17.341| 17.340

5/2

Tabella 10.3: Previsioni per le differenze di energia tenendo conto del Lamb shift.

L'accordo e eccellente e pud essere migliorato calcolando gli ordini successivi in teoria
delle perturbazioni.

La differenzaE(Zsl/z) - E(2p1/2) e molto studiata sperimentalmente e teoricamen-
te perché € un test molto significativo per la correttezza dell'attuale comprensione dei
fenomeni elettromagnetici.

Il raffronto fra i dati sperimentali e quelli teorici &

AEexp=105783912)MHz ~ AE;e, = 1057838(6) MHz (10.356)

L'incertezza teorica é principalmente dovuta ad effeti non legati all’'elettrodinamica: il pro-
tone non & puntiforme, il suo raggio & citRa= 0.85- 10~ 13cm. Dall’esercizio alla fine del
paragrafo 10.2 una stima del contributo di questo effetto al Lamb shift &

1R
O0E ~ — — Ry~ 0.043MHz
20a3
Quindi la struttura interna del protone gioca un ruolo nella determinazione piu precisa
dell'effetto.
Il confronto fra teoria ed esperimento pud essere spinto piu a fondo in casi in cui la

sorgente del campo coulombiano non ha interazioni nucleari, come ad esempio i mesoni
0 nel positronio.

Notal.
Il secondo contributo nella (10.354b) &

%((24052)Ry. j(j+1)—2(e+1)—3/4

(l+1)(20+1)

confrontando con il contributo alla struttuta fine dell’accoppiamésteq.(10.334) (peg = 2)

j(j+1)—6(¢+1)—3/4
((0+1)(20+1)

(9-1)((Z*a®)Ry-
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vediamo che questo contributo & dovuto al fatto che

g—1:1+% g—2— (10.357)

o
T
Un calcolo analogo a quello del Lamb shift dimostra che effettivamente in virtu delle fluttuazioni
del campo elettromagnetico quantistico il momento magnetico anomalo dell’elettrone subisce una
modifica, data proprio dalla (10.357).

Nota2.

Siamo fiduciosi sul fatto che almeno qualche lettore si sia posta la leggittima domanda: perché
si & considerato il contributo delle fluttuazioni all’energia poteziale dell’elettrone e non all'ener-
gia cinetica? Se seguiamo lo stesso procedimento per il terpﬁ/ﬁn otteniamo, usando che
approssimativamente = x+&, per la singola frequenza di Fourier una variazione di energia cinetica

&

mw?

1.2 m ,

(3E)o = 5 (Ealy = 5 0%(65) =

= E2
2m @

Sommando sui modi della cavita e usando la (10.349)

_2€h / do
T amé

L'integrale al solito diverge, introducendo una frequenza di taglio sotto forma di una scala di energia

(DmaX: /\/h Sl ha

AE=—— 10.358
T me ( )

Questo risultato sembra assolutamente catastrofico. Innanzitutto come nirinmc e quindi il
contributo all'energia &, almeno, milioni di volte il valore imperturbato, in secondo luogo la dipen-
denza da\ ora € quadratica, non logaritmica, il che significa che anche un piccolo errore sulla stima
di A pud portare a risultati molto diversi.

In realta la situazione non & cosi drammatica. |l valore trovato (10.358) non ha niente che fare con
I'interazione elettrone - nucleo, in altre parole avremmo trovato lo stesso valore anche per una par-
ticella libera. Non dipende neanche dall'impulso della particella libera, € una costante, ma siccome
cio che si misura sono semptdferenzedi energie, il valore di questa costante, benché formalmente
infinita, non & osservabile, cioé non ha alcuna conseguenza sui livelli dell'atomo di idrogeno: ricor-
diamo che lo zero convenzionale dell’energia € assunto come il valore dell’energia per una particella
libera ferma, cioé la quantita misurata

E-E(p=0)

Se scriviamo I'energia di una particella libera dobbiamo ricordarci del termine di massa:

2

_ b~
Efmc,2+2m

a quest'ordine perturbativo il risultato (10.358) significa che cido che misuriamo come massa dell’e-
lettrone &

=M+ — o A
Moss T md
Nello spirito di un’espansione perturbativa possiamo allora invertire la relazione e scrivere
a N
m=m, (10.359)
S r "Tbssp4

Siccome stiamo calcolando un effetto all'ordine perturbativo pit bassq in tutti i nostri risutati
possiamo sostituiren,ss al posto dim e quindi ritorniamo al calcolo fatto in questo paragrafo. Un
notevole risultato teorico ottenuto pressocche in coincidenza con la determinazione sperimentale del
Lamb shift, & la dimostrazione che questa procedura si puo usare in modo consistente a qualsiasi
ordine della teoria delle perturbazioni e tutti i cutoff tipcspariscono: é quella che si chiatearia
della rinormalizzazione.

Un punto interessante su cui non possiamo soffermarci € che nella teoria relativistica per parti-
celle di spin 1/2 in realta la dipendenzanddaA é di tipo log/\, non quadratica.
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Esercizio 6. Supponiamo che il campo coulombiano decresca cofné™ con |e| <
1. Trattando la differenza col caso coulombiano come una perturbazione ricavare per gli
spostamenti dei livelli dell'atomo di idrogeno (in unita atomiche):

AE(1s) = 1— %r(z—e)
AE(2s) = %_ %F(Z—eH—%F(S—e) _ %r(4_e)
AE(2p) = %— ir(4—e)

Dimostrare che per piccodi

_£
12

L'accordo fra teoria ed esperimento del Lamb shift impone

AE(2s) — AE(2p) = au. = —%Ry

le] < 6-10kHz/Ry ~2-10" 11

Commenti sul confronto con i dati.

Nel paragrafo precedente abbiamo confrontato le previsioni teoriche con le separazioni di
struttura fine, mentre avremmo potuto fare un confronto diretto con i livelli energetici, per
come avevamo presentato i dati in tabella (10.1). Il motivo e duplice: da un lato volevamo
effettivamente studiare la struttura fine dall’altro occorre dire che sperimentalmente non si
misura I'energia di un livello ma sempre una differenza di energia, cioé delle righe spet-
trali. Lo “zero” dell’energia viene fissato dal limite asintotico in frequenza dello spettro,
in pratica I'energia di ionizzazione per I'atomo o lo ione. Questo gia di per se dice che i
numeri presentati in tabella (10.1) sono in realta il risultato di una rielaborazione dei dati.
L'aspetto piu delicato € pero il seguente: le righe misurate non sono ovviamente mono-
cromatiche ma hanno una larghezza, dovuta a vari effetti che discuteremo nel capitolo 16.
Inoltre come gia detto nel testo ogni riga ha una sua struttura iperfina che per I'idrogeno,
ad esempio, € dello stesso ordine del Lamb shift. | numeri in tabella (10.1) sono estrat-
ti dai dati sperimentali utilizzando la teoria della struttura iperfina ed analizzando la sua
influenza sulla forma delle righe, in altre parole sono il frutto di un’analisi piuttosto so-
fisticata. Logicamente su alcune transizioni o su alcuni livelli energetici la precisione &
molto spinta perché sono stati progettati degli esperimenti “dedicati” a questa misura co-
me ad esempio I'esperimento di Lamb e Retherford, o esperimenti piu recenti molto piu
precisi. Le possibili fonti di errore sui dati sono quindi molteplici e in questo testo non

e il caso di addentrarci sulla significativitd dei numeri presentati. Riportando la fonte:
http://physics.nist.gov/PhysRefData/Handbook i numeri per I'idrogeno in tabel-

la (10.1) hanno un errore limitato all’'ultima cifra che abbiamo riportato, quindi precisi in
qualche parte su 20 Tipicamente gli errori per le separazioni indotte dal Lamb shift so-
no piccoli perché questo tipo di effetto & stato molto analizzato sia sperimentalmente che
teoricamente. Ad esempio il numero riportato nelle (10.356) é tre ordini di grandezza piu
preciso di quello ricavabile dalla tabella 10.1.

Fatta questa premessa riportiamo comunque il confronto con i valori delle energie dei
singoli livelli. La maggior parte dell’energia &€ determinata dal valore della teoria di Bohr,
E\” = —Z2/n?Ry,, dove la costante di Rydberg & calcolata in terminini della massa ridotta
del sistema

Ry, = Ry

me+M
M & la massa dell’atomo. E chiaro che gli spettri calcolati con la costante a massa infi-
nita, Ry, avrebbero una grosso errore, dell’'ordine di®lOPer apprezzare la precisione

delle previsioni rispetto ai dati sottraiamo questo contributo dai datie dai valori teorici e
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riportiamo, in Rydberg, la quantita 4@E — Egone) PEr i vari livelli, in pratica isoliamo
direttamente sui livelli energetici gli effetti delle interazioni di struttura fine. Il risutato e
riportato in tabella 10.4

Come si vede I'accordo & buono, al solito resta nelle previsioni teoriche il residuo della

Livello H eq.(10.340)| He* €q.(10.340)
1s,,, | -0.10829| -0.13306 | -1.80146| -2.12976

2s,,, | -0.03841] -0.04158 | -0.62186| -0.66555
2p,, | -0.04162| -0.04158 | -0.66454| -0.66555
2p,, | -0.00828] -0.00832 | -0.13081| -0.13311
3s,,, |-0.01384] -0.01478 | -0.22235| -0.23664
3p,, | -0.01479] -0.01478 | -0.23507| -0.23664
3p,, | -0.00492| -0.00493 | -0.07692| -0.07888
3d,, | -0.00493] -0.00493 | -0.07718| -0.07888
3d,, | -0.00164] -0.00164 | -0.02447| -0.02629

3/2
5/2

Tabella 10.4: 1§(E — Eg,,,). | valori sono in Rydberg

degenerazione coulombiana vista in precedenza. Aggiungendo il contributo del Lamb shift
si ha il confronto riportato in tabella 10.5

Livello H FS+LS He* FS+LS
1s,,, | -0.10829| -0.10836| -1.80146| -1.80773

2s,,, | -0.03841| -0.03842| -0.62186| -0.62415
2p,,, | -0.04162| -0.04162| -0.66454| -0.66618
2p;,, | -0.00828| -0.00828| -0.13081| -0.13250
3s,,, | -0.01384| -0.01384| -0.22235| -0.22430
3p;, | -0.01479| -0.01479| -0.23507 | -0.23681
3p;,, | -0.00492| -0.00492| -0.07692| -0.07869
3d,,, | -0.00493| -0.00493| -0.07718| -0.07888
3d -0.00164| -0.00164| -0.02447| -0.02617

5/2

Tabella 10.5: 1&E — Eg,,). | valori sono in Rydberg

Come si vede I'accordo € pressocche perfetto nei limiti degli errori sperimentali. Per
I'elio I'errore sulla differenza di energia fra i multipletti eccitati ed il fondamentale e stima-
to a circa 0002cnT ! ~ 2. 10-8Ry, cioé un 2 sulla penultima cifra nella tabella. Siccome
tutte le energie sono estratte per differenza dal fondamentale quest & una stima dell’errore
dei dati.

Per completezza indichiamo le correzioni principali ai risultati fin qui presentati. Nel
capitolo precedente abbiamo calcolato I'Hamiltoniana effettiva per descrivere le correzioni
m/M. Abbiamo visto che usando la massa ridotta i termini correttivi non dipendono dallo
spin e quindi non influenzano la struttura fine. Il lettore interessato pud trovare nel prossimo
paragrafo il semplice calcolo dell’effetto rimanente, il risultato &

1m > (Z°R)

(10.360)
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In aggiunta ci sono naturalmente le correzioni al calcolo teorico del Lamb shift. |l termine
pit importante di queste correzioni riguarda i livelk vale

1 1 1
AE, = $825(x4~ (14 = —=log(2) +

T8 o (10.361)

5

—~\.R

192 R

La lista dei contributi non € esaustiva ma abbiamo elencato i piu importanti.
Con I'aggiunta di queste piccole correzioni la tabella precedente diventa la tabella 10.6,

mentre le separazioni di struttura fine sono date nella tabella 10.7.

Livello H FS,LS,corr He" FS,LS,corr
1s,,, | -0.10829| -0.10826 | -1.80146| -1.80247
2s,,, | -0.03841| -0.03840 | -0.62186| -0.62347
2p,,, | -0.04162| -0.04162 | -0.66454| -0.66620
2p;,, | -0.00828| -0.00828 | -0.13081| -0.13252
3s,, | -0.01384| -0.01384 | -0.22235| -0.22409
3p,,, | -0.01479| -0.01480 | -0.23507| -0.23682
3p;,, | -0.00492| -0.00492 | -0.07692| -0.07869
3d,,, | -0.00493| -0.00493 | -0.07718| -0.07889
3d;,, | -0.00164| -0.00164 | -0.02447| -0.02618

Tabella 10.6: 1&(E — Eg,,). | valori sono in Rydberg

H FS,LS,corr He* FS,LS,corr
28, — 2Py /5 1.058 1.059| 14.041 14.055
2p;,,—2p,, | 10.969 10.969| 175.589 175.571
3s,,, =3Py, 0.315 0.315 4.185 4.186
3p3 5= 3Py, 3.250 3.250| 52.029 52.021
3p3/5 2d3 2 0.003 0.004 0.086 0.064
3d5 5= 3d3 5 1.082 1.083| 17.341 17.340

Tabella 10.7: Separazioni di struttura fine, in GHz.

Possiamo ritenere soddisfacente I'accordo nei limiti delle approssimazioni fatte. Il fatto
che alcuni livelli, come i livellid, coincidano con i valori teorici nella tabella 10.6 mentre
sembrano differire nella tabella 10.7 & solo un effetto dell’arrotondamento nella scrittura
dei risultati.

10.E.3 Correzioni di massa.

Abbiamo visto nel capitolo precedente che le correziofil sono inglobate nella Hamil-
toniana:

1 [3p* Ze2h2n5(3)r
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Questi termini non dipendono dallo spin quindi il loro contributo dipende solo dai humeri
quanticin, £. In unitd atomiche, ponendo anche-= 1:

1 [3p* 1 .
Hy = [g ~283() — o (07 +7(?-p)p) (10.363)

Usando come nel paragrafo 10.E.1 I'equazione di Schrodinger ed indicando per brevita
con una barra il valor medio sugli stati:

o 1\2
3:<Enm) 83(r) = Iy (0)°

Allo stesso modo

1 1 1
—p2==(E =
orP r(”€+r)

Per I'operatore rimanente notiamo che in coordinate radiali i verisefi’(?'r non dipendono
dar e possiamo scrivere

. % X; X 0 92
FEpP=—0 790 = 5%~ 5

Usando I'equazione di Schrodinger in coordinate polari:

1/ 9%y 20y L%y 1

| _ZZr L ) (E =
2( o ror rZ) <”'+r)w
abbiamo, sulle autofunzioni dell’Hamiltoniana idrogenoide:

1. 1oy ((l+1)1 1
ér(r'p)p'l/—FW—TFZW‘F(EnH’F)‘V

Per il valor medio del termine che compare nel’Hamiltoniana:

1T, ((+1)T 1 ) . 1oy
o (FPp=——"> r3+r(E”'+r)+/drwr28r

Le autofunzioniy sono della forma ,(r)Y,,,, conR , reale e I'integrale si calcola imme-
diatamente in coordinate polari:

1 9\y|> 4m [~ 9|yl
2 _— = — —_— 2
/er drop 5= /0 dr =5 27y, (0)|
Sommando i vari termini

3 1\?
S(Ewt) - alvO-

1
Fu = 31

1 1. 4+1)1 1 1
rE )ra—r<Em+r>+2ﬂlwne<o>2] -

173, _ T 1T ¢u+)T ,
:M[zEnﬁEnfr‘Zrz* 2 3 VO

Notiamo che il termine if(¢+ 1) va considerato solo sugli stati cég 0 mentre |'ultimo
termine & non nullo solo sugli stati Utilizzando le espressioni note per i valori medi, vedi
eg.(10.335), si ottiene

cioé il risultato dipende dipende solo dal numero quantico principale. Introducendo le unita
di misura normali

Ay, =

Z? m

Fu = ~Zma b

(Za)?- Ry (10.364)
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10.F Struttura iperfina per L > 0.

Nel paragrafo 10.10 abbiamo scritto la Hamiltoniana di interazione iperfina nella forma

Y% —A{S;|55<3>(r) —(1-S=3(1-F)F-9) r% + <r13 | L)} =Vs+V,  (10.365)

ed abbiamo visto che in ondasolo il primo termine, indicato colg, da un contributo

non nullo. Viceversa gli altri due termir¥, , sono i soli che danno un contributo get

0. Consideriamo uno livello con numeri quantici elettronidi, S fissati, tipicamente un
livello di struttura fine. Per le sole variabili elettroniche questo livello ha una degenerazione
(2J+1). La variabile di spin nucleare porta la degeneraziof@la- 1) x (2| + 1) e questa
degenerazione e rotta dalla Hamiltoniana (10.365). A causa dell'interazione (10.372) solo
il momento angolare totale del sistema

F=J+1 (10.366)

é conservato: si avra una separazioné2ir+-1) o (2J+ 1) livelli a seconda chd > | o
I > J. Il secondo termine nella (10.365) ha la forma

1 -
S (3fif; - ) (10.367)

La parte orbitale € un tensore simmetrico a traccia nulla quindi il teorema di Wigner-Eckart
ci dice che deve essere esprimibile tramite un tensore a traccia nulla costruitg. con
Poniamo allora, sempre in senso matriciale all'interno del multipletto:

3, — & = o (3LiLj+3LjLi—2L26ij) (10.368)

Il fatto che gli operatorl; non commutino fra loro ha imposto di scrivere esplicitamente la
simmetrizzazione. Il momento angolare, anche come operatore, soddisfa alla relazione

o X;
Moltiplicando a sinistra e a destra la (10.368) rispetivamente_ipetj

2 2y 2 2| 2 2y 2
L2 =g [aL2L243LL L~ 2L 22 =g [L2L2BLL L, (10.369)

Usando le regole di commutazione del momento angolare
212 2y 2 i
LiLLiL; =L +ig, L LiL; =L"L +—s.jkLk[LiLj]

=it 2
i

=L%L%+ 5 ik Eijmbilm = L2L2 L2
Si e usata l'identitd; , &, = 26, Sostituendo nella (10.369) si ricava [ogf
1 1
T TALrn -3 (LDt (10.370)
Il termineV, della (10.365) si riscrive allora
2.3 - L) — . .
v, AT2L2-S-3(1-L)(S-L)—3(S: L) L)+|-|_ (10.371)

NE (2L—1)(2L+3)

Operando come nel paragrafo 10.11 il teorema di Wigner-Eckart impone, in senso matri-
ciale all'interno degli stati in questione:

L=cJ S=c¢ (10.372)
L
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Moltiplicando le uguaglianze precedenti @esi ricava immediatamente, vedi anche equa-
zioni (10.158) (10.159)

Q4D 4LL+1) —SS+1)

c = 200+ 1) (10.373a)
CJU+1) -L(L+1)+8(S+1)
Cg= TAEEY (10.373b)
Possiamo anche usare la relazione
1) — 1)-L(L+1
co=sL =20 S(S;L J-L{L+Y) (10.374)
e scrivere A 2L+ 1) 5
_ A +1)Cs—0C s
=09 oL D3 o (10.375)
Usando FF+1)-JUO+1)-I1(I+1
13— FEFD -0+ -1 +1) (10.376)

2

dalla (10.375) si possono calcolare gli autovaloWdisui vari membri del multipletto.
Nel caso particolare in c8= 1/2 le formule precedenti si possono semplificare in

1 L(2L +3) I=L+}
=50+ 10.377a
LT 23(J3+1) {(L+1)(2L—1) J=L-1 ( )
23311 10.377
s 2J(J+1) {_(ZL—D J=L-1 (10.377b)
1)L J=L+1
Cs=73- 10.377¢
2 {—(L+1) J=L-1 ( )

Raccogliendo un fattore comur%](\] +1) il termine in parentesi quadra nella (10.375)
diventa, nei due casi:

1 L(L+1)(2L —3L%(2L
JoL, L. LL+D@E+3)-32@L+3)

FLEL+3) =2L(L+1)

2 (2L—-1)(2L+3)
1 —L(L+1)(2L-1)+3(L+1)%(2L—1) B
I=L-3: 2L DL 13) +(L+1)(2L—1)=2L(L+1)

cioé lo stesso in entrambi i casi, e si pu0 allora scrivere

CAL(L+Y), . ALLFL)FF+1)-I@+1)—I1(1+1)
L7 r330+1) T r3JA+1) 2

(10.378)

Per calcolare i valori medi di questo operatore occorrera prendere il valor medid di
sullo stato.

10.G Un’applicazione del teorema di Wigner-Eckart.

Consideriamo una rappresentazione irriducibile del gruppo delle rotazioni con momento
angolard_. Un esempio esplicito &, ad esempio, un livello atomico, in assenza di spin e in
assenza di degenerazioni accidentali: se 'Hamiltonldr@ommuta con le rotazioni spa-

ziali, H, L edL, possono essere diagonalizzati simultaneamente e ad ogni autovalore del-
I’'Hamiltoniana, in assenza di degenerazioni accidentali, € associata un momento angolare
definito, cioé una rappresentazione irriducibile del gruppo delle rota2iof8).



10.G. UN’APPLICAZIONE DEL TEOREMA DI WIGNER-ECKART. 89

Il teorema di Wigner-Eckart asserisce che gli elementi di matrice che all'interno di
guesta rappresentazione irriducibile tutti i tensori che trasformano a loro volta come rap-
presentazioni irriducibili, hanno elementi di matrice proporzionali, il che significa che sono
multipli dello stesso oggetto. | tensori pit semplici che si possono considerare sono proprio
quelli costruiti a partire dalle componentildi

Un momento angolare 1 significa un vettore, quindi il teorema di Wigner-Eckart affer-
ma cheall'interno di una data rappresentazione:

(aB) = oy {alL|B) (10.379)

cioé tutti i vettori hanno elementi di matrice proporzionali a quelli del momento angolare.
Una rappresentazione chn= 2 significa un tensore simetrico a traccia nulla, e di nuovo
il teorema di Wigner-Eckart afferma cha'interno di una data rappresentazione:

(a]S;|B) = c (| (LiLj Ll — §L26ij> 1B) (10.380)

doveSeé il tensore in questione. Il termine a destra nella (10.380) € il tensore simmetrico
a traccia nulla costruito con. Notiamo che la non commutativita delle componentidi
costringe a scrivere separatamebte; e L;L;. La costante di proporzionalig dipende
dall'operatore, abbiamo posto l'indideper ricordare che siamo in una rappresentazione
irriducibile del momento angolare orbitale.

In molti problemi, ad esempio nel calcolo del quadrupolo, nel calcolo della struttura
iperfina, etc., occorre calcolare gli elementi di matrice del tensore costruito tramite i versori

delle coordinate 1
dovef; = x;/r. Il fatto & abbastanza naturale perché & chiaro che qualunque tensore di
rango 2 costruito con le variabili orbitali di una particella & del tfigo)S; .

La formula (10.380) ci dice allora che all'interno del multipletto
A A 1 2 2
rirj_§5ij =C LiLj'H-jLi_éL 8 (10.382)

Abbiamo scritto la (10.382) come uguaglianza di operatori perché la (10.380) vale per tutti
gli elementi di matrice. A costo di apparire pedanti insistiamo sul fatto che ci limitiamo
agli elementi di matrice all'interno della stessa rappresentazione. Sull'intero spazio di
Hilbert la (10.382) & banalmente falsa: I'operatore a sinistra ha elementi di matrice fra
rappresentazioni diverse 8(0(3), quello a destra no.

Per calcolare la costante notiamo che vale I'identita

. 1 1
FiLi = inl-i = P NE8X P = 0 (10.383)

Classicamente la (10.383) € ovviaa p € ortogonale a. La (10.383) vale anche a livello
quantistico perché come si vede non dipende dal fattosadap; non commutano. Il lettore
pud anche facilmente dimostrare che esse{)qdpj] = ih&lj simetrico negli indici, j, vale
anche la relazionk;x, = 0, anche se non servira esplicitamente nel seguito.
Moltiplicando dunque la (10.382) a sinistra jiele a destra pel; otteniamo

~L2=q (L2 aLLLL - 2%?) (10.384)
. i
LILJLILJ = (L2)2+|£ijkLkLiLj = (L2)2+ ieijkLk[LiLj]
12
— (L22+ L g8 mbylm = (L2)2— L2 (10.385)

2
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Abbiamo usato l'identith

&k &ijm = 20m (10.386)
Sostituendo nella (10.384) si ha
1 1
—_ = 2 —_ = — = —
1=a@l"=9 = a=-giin-3 @igye-y 1038
e quindi
o 1o 2,

Aggiunta dello spin.
In presenza dello spin il teorema di Wigner-Eckart asserisce che al pastetla (10.382)
dovremmo usaraé.

Fif _%5” =c <JiJj+JjJi—§J26ij> (10.389)
Abbiamo usato appositamente un nome diverso per la costante di proporziajakp;

punto perche siamo ora in rappresentazioni irriducibild dad esempio in livelli di una
struttura fine.

In generale
J=L+S (10.390)
e gli autostati diJ, J, sono espressi tramite quellidiL;, S, S, tramite:
“-7 57 ‘J,‘]Z> = %<L7 LZ7 S, SZ|J7‘]Z> : |La LZ) S> SZ> (10391)
Lz,

i coefficienti{L,L,, S S||J,J;) sono i coefficienti di Clebsh-Gordan. Abbiamo scritto espli-
citamente a sinistr&, S per indicare chel & costruito a partire da un datoed un dato
S

Qui ¢’é un punto un po delicato a cui fare attezione. La formula (10.391) & senz’'altro
vera, esprime solo una proprieta della composizione del momento angolare, ma per spe-
cificare gli autostati di una Hamiltoniana, in generale, occorrono altri numeri qu&ntici
Questo significa che in termini di autostati del’Hamiltoniana la (10.391) dice solo che

|a7‘Ja ‘JZ> = ;“—7 LZ, S7 SZ|‘J7‘]Z> : Z CS|S; L7 LZa 57 SZ> (10392)
Lz, S

e non & neanche detto che gli staflL,L,,S S;) siano autostati di.

In questo caso non ci sono semplificazioni particolari che si possono fare alla (10.389).
Puo pero accadere che S siano, almeno in una certa approssimazione, buoni numeri
quantici, cioe I'insiemex dei numeri quantici che definisce gli stati contién&. In questo
caso il ket rappresentativo dello stato ha la forma

ML, SJ, ) (10.393)
e si puo effettivamente scrivere
|n>|L>SJ7JZ> = |n> %“—a LZ,S7 SZ|J7‘]Z> : “—7 LZa S SZ> (10394)
Lz,

Notiamo che questa identita algebrica immediatamente verificabile & anche un modo di &criverg +1)
in rappresentazione aggiunta del gruf@(3), incui i generatori appunto sorilqjk.

12Dal punto di vista matematico lo spazio di Hilbert & decomponibile in una somma di rappresentazioni irridu-
cibili del gruppo delle rotazioni, ma ogni rappresentazione pud comparire pit di una volta, ad esempio ci possono
essere tanti stafi tanti statip etc. Glialtri numeri quantici distinguono appunto una rappresentazione dall’altra.
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Questo per fortuna € il caso pit comune e si presenta quando l'interaziohe Sgda per-
turbazione piu importante ad una Hamiltoniana inlci# sono buoni numeri quantici. Ad
esempio € il caso dell'atomo di idrogeno o il caso di atomi pitu complicati in cui, in prima
approssimazione, il moto degli elettroni pud essere visto come un moto in campo centrale
(il nucleo e la distribuzione media di carica degli altri elettroni) e I'interaziong & la piu
importante perturbazione. Se invece la perturbazione piu importante fra due elétgroni,

e del tipoL(i) ~S(j) + L(j) . S(i) si vede facilmente che questo operatore non commuta con

L2 e conS?, cioéL, Snon sono buoni numeri quantici, e la decomposizione (10.394) non &
pit valida. Un caso simile si presenta per atomi pesanti, in cui I'interazione dominante non
€ piuL - S. Qui pero tratteremo solo il caso “semplice” in cui la deomposizione (10.394) &
valida.

In questo caso & possibile collegare la costaptla costante, . Infatti come abbia-
mo detto la (10.382) & un’identita operatoriale all'interno di uno stesso multiplettd con
definito, e nella (10.394) compare un saloquindi si pud ancora scrivere:

fifj—%(i

2
s (M Uhg) a0

3
Bisognera ora scrivere il tensore a destra della (10.395) in termihi @rmai la tecnica
dovrebbe essere chiara, il teorema di Wigner-Eckart dice

2 2.

Moltiplicando a sinistra pej; e a destra ped;

(JL)?+JL:LJ,

2 2
ikl 1—3L2J2=d[(J2)2+JiJjJiJj—3(J2)2} (10.397)

Notiamo che, usandd— L = Se facendo il quadrato, si ha

JUI+1)+L(L+1)—S(S+1)

J-L=
2

(10.398)

all'interno del multipletto, quindiJ - L commuta con tutti gli operatori. Utilizzando le
regole di commutazione del momento angolare e la (10.398)

3333, = (37)? - come pet;

. i
i2
|
= (JL)2+ & sks) = (JL)2—(JL)

Sostituendo nella (10.397)

2(JL)2—(JL) — gLZJz =d [g(JZ)Z — —32}
3(JL)(2(0L) = 1) —L(L+1)I+1) =d J(I+1)(21 - 1)(23+3)
e quindi
~ 3(L)(2(L) —1) - 2L(L+1)I(I+1)
d= A1 1)(2I-1)(23+3) (10.3992)
C;=¢ -d= __ -d (10.399Db)

(2L—1)(2L+3)
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Nel caso particolare @8= 1/2 le formule precedenti si semplificano notelvomente. Usan-

do la (10.398) si ha

2L-1
= - J=L+1
2L+1 J t3
d= (10.400a)
A+3 .,
A+l Yz
1 1 1 1
— =_1 —L+1
@ D)@L+3) ~ 230ty JThtz
¢, — (10.400b)
_ 1 =_1 1 J=L-1
CL-D(2L+1) 43IJ+1) 2

Nel paragrafol0.F viene in pratica eseguito lo stesso calcolo in un ordine diverso.

Il calcolo di questa sezione ha una chiara interpretazione semiclassica. Trascurando le
interazioni di spin il versoré precede attorno al vettore conservéatoll coefficientec,
esprime la media sul moto elettronico. L'introduzione dell'accoppiamen®fa precede-
re lentamente il vettore attorno al vettore conservailige questo corrisponde al passaggio
dal coefficiente; a quelloc;.

10.H Effetto Stark e struttura fine.

Nel paragrafo (10.7) abbiamo discusso l'effetto Stark per il livelle 2 dell’atomo di
idrogeno, tracurando la struttura fine del sistema. MisurahdoV/cm

e ~0.5-1085eV

PoichéE2p3/2 - E2P1/z ~ 4.510%eV, vedi eq.(10.108), 'approssimazione & ragionevole

per campi superiori a qualche migliaio di V/cm, per campi inferiori occorre tener conto
dell'interazioneL - S.

Sia H, I'Hamiltoniana non perturbata, cioé con la sola interazione coulombiana. |I
livello n = 2, tenendo conto dello spin ha una degenerazione® % 3 = 8, dovuta agli
orbitali 2s e 2p idrogenoidi. La teoria delle perturbazioni degenere su questo livello si
ottiene diagonalizzando I'Hamitoniana

Vist Vstark

Come abbiamo visto in diverse occasioni conviene cominciare a diagonalizzare uno dei
due termini dell’Hamiltoniana e scrivere I'altra interazione in termini degli elementi di
matrice sulla base di autovettori della prima. In questo caso sappiamo che Id Hase
diagonalizza l'interazion&S, quindi scriveremo in questa base gli elementi di matrice di
Vstarke Anche l'altra alternativa & possibile, e la analizzeremo alla fine del paragrafo. Non
c’é bisogno di scrivere una matricex8 se si tiene conto delle simmetrie. Ponendo I'asse
znella direzione del vettor&

Vs

—ef7 (10.401)

tark —
1) Questa Hamiltoniana € invariante per rotazioni attorno all’assgindi commuta
conJ; ed ha elementi di matrice solo fra stati con lo stekso

2) E dispari sotto parita quindi ha elementi di matrice solo fra stati a parita diversa, cioé
se p nel nostro caso.

3) Perriflessione in un piano contenente I'agsad esempiaz I'Hamiltoniana € inva-
riante, in questa operazione, che & una riflessione, il momento angolare lungo I'asse
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z cambia segno (& un vettore assiale), quindi gli stati con momento angplsire
trasformano negli stati con momento angolai®. Poiché I'Hamiltoniana commu-
ta con questa operazione, gli stati cnpositivo sono degeneri con quelli cdg
negativo, in pratica basta limitarsi a studidye> 0.

Notazioni

Per cercare di non appesantire troppo la notazione ma nello stesso tempo non ingenerare
confusione indicheremo gli stati in cui abbiamo diagonalizdafe con

0,3 13,3)s (10.402)
mentre quelli originali, in cui era diagondlg e S,, nella forma

Pl S) sk S) (10.403)

Gli stati si distinguono anche perche nella prima fothgasemintero, mentre nella seconda
L, € intero.

Secondo i punti esposti sopra lo st@o%}r, non é toccato dall’effetto Starck, lo stesso
vale per lo statq%, fg>p. La loro energia resta invariateE3F‘2. | sei stati rimanenti Si
possono dividere in quelli cody, positivo e quelli conJ, negativo, la situazione fra i due
e simmetrica. Si tratta quindi di studiare la perturbazione sul sottospazio generato dai tre

stati
31 11 11

|§7§>p |§7§>P ‘§a§>8
Nel calcolo semplificato nel paragrafo (10.7) abbiamo gia calcolato gli elementi di matrice
di zsulla parte orbitale di questi stati.

(10.404)

(292]2p) = 3a (10.405)

aeé il raggio di Bohr.

Per completezza scriviamo il risultato per un qualsiasi livelioPoichéz=r cosf e Yy, = 1/ &, Y;o = 1/ = cosd I'elemento di
matrice angolare

1 1
Qv3— = — 10.4
/d V3gcodo= (10.406)
Lintegrale sulle funzioni d’'onda radiali &
(n,grinp) = gn\/ n?—1 (10.407)

La (10.405) si puo dimostrare utilizzando la forma esplicita delle funzionid’'onda radiali, ma non insisteremo su questo punto.
Quindi dalla (10.406) e dalla (10.407) segue

(nszjnp) = ?n -1 (10.408)

che coincide con il risultato (10.405) per= 2.
La decomposizione in stali, L;)|S S,) degli stati|J,J;), perL = 1,S= 1/2 é data dai
coefficienti di Clebsh-Gordan:

31 1 1 2 1
|2a2>p_\/;pala_2>+\/;|pa072> (10409a)
11 2 1 1 1
|2’2>p:\/;pa1,—2>—\/;|p7072> (10.400b)

Gli elementi di matrice si calcolano ora facilmente usando I'espressione (10.405). Ad
esempio:

11 31 2 1 1
S<2,2|Z|2,2>p—\/;<S,0,22|p,0,2>—\/6a
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e I'hnamiltoniana si scrive

Eyp 0 —V6efa
3 Ae 0 —V2X
0 Ep,  V3eda =Ep +| 0 0 x (10.410)
2
_\/éeéaa \/éeéaa E281 2 *\@X X AL
2

Py

2
E2pl (Lamb shift). Abbiamo inoltre poste/3e£a = x per semplificare la discussione

Nella seconda forma abbiamo introdotto le differefge= Eop, ~Ezp, 80 =By —
2 2

2
seguente.
Perx>> A > A I'equazione agli autovalori per la matrice precedente si scrive

-2 0 —v2x
det[ 0 -2 x |=-2%34+3=0 (10.411)
—vV2x x =2

che ha radick = (0,++/3x) = (0,£3&a), si riottiene ciog il risultato del paragrafo (10.7):
per campi elettrici grandi rispetto alla struttura fine I'effetto Stark é lineare.

Perx < A, < Ag gli autovalori della matrice possono essere utilmente calcolati appli-
cando il metodo generale della teoria delle perturbazioni. Il ruokd,d svolto dalla parte
diagonale della matrice, la parte fuori diagonale, proporzionale ada perturbazione.

Al primo ordine inx non si hanno termini diagonali, quindi I'effetto & nullo, al secondo
ordine la variazione di energia & data dalla (10.15). Ad esempio per il primo autovalore,
che éA all'ordine 0, chiamando 1,2,3 i tre stati di base della matrice:

1 2x2

SE; = [(1V(3)? =
1 A -0 DD

analogamente per gli altri autovalori si trova

2 1 2
e m(y 5w

Un caso interessante come esercizio & considerare la situdgiogex < Ar. Il caso
non e realistico perché per I'idrogeno, come discusso nel paragrafo (10-£p.1Ar ma
puo servire per capire come funziona la teoria perturbativa.

Trascurandd\, la matrice da diagonalizzare diventa

A 0 —V2X
0 0 X
—vV2x x 0

Il sottospazio generato dai vettori2é degenere, qui si pud diagonalizzare passando alla
base

(12)+13) (12)=13)
V2 V2

Si possono calcolare facilimente gli elementi di matrice del tipdi|+) e scrivere la
matrice nella nuova base:

|+) = , autovalorex; |-) = , autovalore— x (10.412)

A —X X
-Xx x 0
X 0 —Xx
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Applicando ancora la (10.15) per il calcolo del primo autovalore si ha
2
X
E, ~ O+ 2E

Quindi in questa situazione ipotetica due livelli avrebbero un effetto Stark lineare, cioé
quelli corrispondenti agli stati%w 2p1/2 che sarebbero degeneri in assenza di Lamb shift,

mentre l'altro stato, @, /20 avrebbe un effetto Stark quadratico.

Scelta alternativa della base.

Torniamo alla diagonalizzazione della matrice (10.410) nel caso di grande campo elettri-
co, cioé per la matrice (10.411). Abbiamo visto che gli autovalori sarev@x. Gli
autovettori sono

A=0 vi= (ﬁ ﬁ,o) =|p; 1,—%> (10.413a)
VA V2= ([ ff) -1 {|p, 1>+|s,o >} (10.413b)
A =/3x (ff[) {|p, 1>+|so >} (10.413c)

cioé abbiamo ottenuto, come dovevamo, la base che diagonalizza I'effetto Stark lineare,
con esplicitata la dipendenza dallo spin. In questa base é facile trattare la struttura fine
come una perturbazione all'effetto Stark. Trascurangda matrice di interazione fine

nella basel, J, aveva come unico elemento non nillg, cioe il termineA nella (10.410).

Nella base (10.413) allora:

A A
(VIVLVY) = BpViVE = S5 (VHVV?) = BpViVE = =
A A
<V1‘VLS|V3> = A|:V11V13 =——F <V2\VLS|V3) = AFV].2V13 — _?F
e cosi via. Quindi 'Hamiltoniana, in questa base &
A Ap Ap
N S s B
H=| & —V3&+% -3 (10.414)
-3 -F VE+E

vediamo percio che la struttura fine, vista come perturbazione all’effetto Stark, al primo
ordine ha l'effetto di innalzare i livelli tutti della stessa quantita. Al secondo ordine si
ricava immediatamente

1 — 1 A;% 1 N
T o-(=v3X) 9 0 V3 9
s -t A2 1 6 A2
27 /3 9 —Zﬁx 9 63
57, = 1 AZ 1 A2 AR

- 4+ L
V33X 9 23 9 6V3x

Quindi I'energia dei livelli fino al secondo ordine €;

%F N (o, V3 > (10.415)

o o
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Livelli Stark

XIA

Figura 10.8: Livelli Stark sul livello n=2 dell'ldrogeno.

In figura 10.8 sono riportati i livelli calcolati numericamente, in unité\die le stime
perturbative (10.415). Nei livelli numerici si & tenuto conto anche del Lamb shift, altrimenti
le curve perturbative sarebbero state indistinguibili da quelle numeriche su questa scala,
dalla figura si ha dunque un’idea dell’'ordine di grandezza dell’errore che si fa nel trascurare
il Lamb shift nel caso dell’'effetto Stark. Si noti la forma quadratica dei livelli a piccolo
campo, in accordo con quanto visto prima.

10.1 Discussione sui dipoli permanenti.

Nel testo abbiamo piu volte insistito sul fatto che in generale in Meccanica Quantistica il
valor medio del dipolo elettrico su stati stazionari € nullo. Abbiamo anche visto come la
presenza di stati quasi degeneri possa, ad esempio nell’effetto Stark, simulare la presenza
di un dipolo permanente. In questo breve paragrafo vogliamo presentare un altro tipo di
situazioni in cui si verifica lo stesso fenomeno.

La quantita macroscopica direttamente connessa ai dipoli atomici ( 0 melecolari) € la
costante dielettrica. Il vettore di polarizzazidAe€he compare nella definizione di campo
di induzione elettrica

D=¢&+4nP

e il valor medio per un’unita di volume del momento di dipolo del sistefha.sua volta &
proporzionale al campo elettrico.

Nel caso di un gas perfetto, in cui le molecole sono statisticamente indipendenti,
P=Nd (10.416)

N & il numero di molecole per unita di volume.
In generale

(o}
I

R
Sy

(10.417)
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e questo, usando la definizione di costante dielettrica, valida per mezzi isotropi come un
gas,D = €&, porta a
€ =1+4nNa (10.418)

Classicamente possiamo immaginare che una molecola, o un atomo, abbia un dipolo
intrinsecod, e acquisti, in presenza di campo esterno, un dipolo indotto:

d=d,+a& (10.419)

o € la polarizzabilita molecolare.
L'energia di interazione fra dipolo e campo &

E=-d,& - %aé’z (10.420)

e questo riflette la definizione stessa di dipolo a livello microscopico:

JE

4="3%¢

(10.421)

Supponiamo di porre I'assgungo la direzione d€’. Per simmetria & ovvio chdy = dy =0
mentre, all’equilibrio termico

_ 1 :
&= / dQ(dycosh + a)ext o cosd+3as?) 7 _ / dQe & (10.422)
Z ¢é la funzione di partizione, relativa a questo grado di libefd;angolo solido, €6

I'angolo fra il dipolo elementare ed il campo.
Svilupando in serie d¥ si ricava, usandoog 6 = 1/3

d; = 1d§ E=as 10.423
z = |:3 ﬁ + a] =a ( . )
Questo é esattamente I'analogo elettrico di quanto abbiamo visto per il caso magnetico nel
paragrafo 10.12: la suscettivita elettriéaha un contributo proporzionale T (legge di

Curie) determinato dal dipolo “intrinseco”, ed un termine indipendent& daterminato

dalla polarizzabilita molecolare. Le molecole ady* 0 sono dettenolecole polari.

La (10.423) e, approssimativamente verificata ad alte temperature, si pone quindi il
problema di capire in che senso dalla meccanica quantistica viene prodotto un risultato co-
me la (10.423), visto che abbiamo insistito sul fatto che non esistono dipoli intrinseci. I
meccanismo, come discusso nello studio dell’effetto Stark, & basato sull’esistenza di stati
quasi degeneri, per illustrarlo prenderemo come esempio il modello di molecola di ammo-
niaca,NH,, presentato nel paragrafo 10.6.1. Prima rivediamo in generale I'espressione del
dipolo medio in meccanica quantistica, analoga a quella di dipolo magnetico medio nel
paragrafo 10.12. Per ogni autostato dell’lHamiltoniana il dipolo medio é definito da

0
(nld|n) = —55En(&) (10.424)
La distribuzione di probabilita & quella di Boltzmann:
Lot ¥
=€« Z= ;e T (10.425)

Si ha allora per il valor medio (qui si intende media statistica):

_ 1 d 5 kT oz dlog(Z
d:;pn<n|d|n>:ZZ[—8gEn}e ¢ =g =kT agéf ) (10.426)
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Torniamo ora al modello per 'ammoniaca. |l sistema & composto da due stati, corri-
spondenti alle configurazioni dell'azoto sopra e sotto il piano dei tre atomi di idrogeno.
L'Hamiltoniana di interazione in presenza di campo elettrico € data dalla eq.(10.80):

—d&  -A
H_ (Eo > 10.427
( A Ey+de (10.427)

+d e I'elemento di matrice del dipolo elettrico nei due stati. Gli autovalori di questa

Hamiltoniana sono:
E=ET VAZ+ (d&)2 (10.428)

In assenza di campo elettrico la separazione dei livelldé Nel seguito la costante
E, non gioca alcun ruolo e quindi la ignoreremo. La funzione di partizione si scrive
immediatamente:

Z= exp(ivAzzT(dg)z) +exp(—7VA2IT(dég)2) = 2cosh<Az+(dg)Z> (10.429)

KT

e dalla (10.426) segue per il dipolo medio, sviluppando al primo ordige in

2 2 2 2
d= M&tanh(%) ~ |dA|tanh<kAT> & (10.430)
Quindi la suscettivita, in questo modello &
o= Id:tanh(LA_l_') (10.431)
Abbiamo i due limiti ) 2 ) i
o T a oA (10.432)

Quindi il sistema si comporta come un dipolo permanente ad alte temperature, come un
sistema polarizzabile con dipolo intrinseco nullo a basse temperature. Notiamo che la
mancanza del fattore/3 nella (10.432) rispetto alla (10.423) & dovuto semplicemente al
fatto che abbiamo usato un modello molto semplificato, unidimensionale, erdendo cosi la
media angolareos 6 = 1/3 per I'angolo fra il campo elettrico a I'asse molecolare.

La polarizzazione molecola? /A nella (10.432) & esattamente quella calcolata dal-
I'effetto Stark per lo stato fondamentale del sistema, vedi eq.(10.85). Ad alte temperature
non e presente una polarizzabilita residua perche in questo modello le polarizzabilita dei
due stati hanno segno opposto e quindi si cancellano ad alte temperature, vedi eq.(10.85).

Intuitivamente possiamo dire che I'energia termica descrive la indeterminazione
nella misura dell’energia del sistema:lse e grande rispetto alla separaziahedue stati
sono praticamente degeneri e si ha un dipolo intrinseco, cioé si mette in moto il meccanismo
dell'effetto Stark lineare, se inve¢d & piccolo rispetto &, solo lo stato fondamentale ha
un peso statistico rilevante e, su questo unico stato, non si ha effetto Stark lineare, e non si
vede dipolo intrinseco nella misura macroscopica.

Questo tipo di meccanismo € quello all’opera in tutti i casi in cui si osserva una mole-
cola polare.

10.J Oscillatore anarmonico e serie perturbativa.
Vogliamo studiare in un caso pratico 'andamento ad alti ordini della serie perturbati-

va. Consideriamo a tale scopo I'Hamiltoniana di un oscillatore anarmonico, dove per
semplicita poniamon= 1, @ = 1 per la massa e la frequenza della parte armonica.

15 1,
H=>p +2x+g>(‘
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Lo svilupo perturbativo dell’energia dello stato fondamentale ha la forma
E= g E
=5 +d z n

Procedura

La funzione d’onda dello stato fondamentale & della fonga= exp(—x?/2). Ad ogni
ordine perturbativo gli elementi di matrice della perturbazighpossono al massimo me-
scolare fra loro stati che differiscono di 4 per i numero quanticd_e funzioni d’'onda
relative allo statgn) imperturbato sono polinomi di grado moltiplicati . E allora
naturale cercare la soluzione dell’equazione di Schrédinger (poniam):

1d? 1, v

nella forma ,
v =B(X)e z (10.434)

dove B € un polinomio. Sostituendodhsatz(10.434) nella (10.433) si ottiene p8r
'equazione

d’8 _ dB

a2 Xix —2g><4|3+ (2E)B=0 (10.435)

Sviluppiamo in serie dg e per I’ordmek—esmo consideriamo un polinomio di grado
4k. Questo € consistente, come gia detto, col fatto che-akimo ordine compaiono al

massimo 4 operatori di creazione, o al massimo una potexféan rappresentazione di

Schrddinger. poniamo percio:

x) =Y d*B(X)
kZO g
2k N
E=Y &g g=1
kZO k 0

le funzioni d’onda sono state normalizzate sceglieBg@®) = 1. Sostituendo nell’equa-
zione di Schrodinger ed uguagliando a zero, ordine per ordine, le varie potexZesii
ha

k
(2§ +2)(2] + DA 1~ 4iAG — 22 12— A +S;)83Ak,$j =

Il termine cons = 0 nella somma, usandg = 1 cancella il termine-A, ;:

k
i +2) Qi+ DA 1 —4A —2A 1 o+ ZleSAHj -0 (10.436)
S=

Il termine cons = k nella somma ha come coefﬂClerAg che & non nullo solo pgr=0
ed in questo caso vale 1. Quindi il termine coa 0 |mpone

k-1

—2A ;- Zigs (10.437)

che fornisce una relazione di ricorrenza pguna volta calcolatd ;. | termini conj # 0
si determinano quindi da

k-1
(2i+2) i+ DA 1 —4iA —2A 1 o+ ZleSAHj (10.438)
=
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Notiamo che in questa espressione non compare,pifi parte dg = 2K, il primo termine
enullo: A, ., =0, questo permette di determinaﬁt@j ricorsivamente:

A

le @i+2)2I+DAG 1~ A1 2t S; E s ]

k-1
(10.439)

con la sequenz@= 2k,2k— 1,2k —2...1. TrovatoA, , si calcolag,. Come si vede dalla
tabella e dalla figura seguenti la serie & a segni alterni e cresce molto velocemente. Nella
figura sono riportati i primi 50 valori in scala logaritmica.

200 log|Eq|
150
106
50
'"...01‘0 20 30 40 50

Figura 10.9: log|Ex|) in funzione din, i segni sono alternati.

3
Ei=+3
333
ST
g _ 916731
5= 7 256
g _ , 2723294673
7 2048
g _ , b4626982511455
o 65536
I 413837985580636167
n- 524288
I 8855406003085477228503
B 8388608
By 127561682802713500067360049
B 67108864
By 19080610783320698048964226601511
v 4294967296
Bt 44982060454076583616052969749145863
- 34359738368

E

4=

Ep=
Eio

12 =
Eiu=
16 —

18—

20 =

21

8

30885
128

65518401
1024

1030495099053
32768

~6417007431590595
262144

~116344863173284543665
4194304

~1451836748576538293163705
33554432

~191385927852560927887828084605
2147483648

~4031194983593309788607032686292335
1717986918

211491057584560795425148309663914344715
274877906944

| calcoli precedenti possono essere eseguiti facilmente con un qualunque programma di
manipolazione algebrica. Ad esempio un programma, piuttosto inefficiente, in Mathemati-
ca puo essere quello riportato di seguito.
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norder = 60; kshift =3; jshift =3;
maxordinestampato = 20;
A=
Table[0,{k,1,norder + 2 + kshift},{j,1,2*norder+3+jshift}];
ene = Table[0,{k,1,norder}];
Do[A[[k+kshift, jshift]] = 1,{k,0,norder}];
Do[
(
A[[k+kshift,j+jshift]] = 1/(4xj)*(
(2 j+2) (2j+1) Allk + kshift, j + 1 + jshift]] -
2 A[[k + kshift -1 , j + jshift -2 1] +
Sum[ene[[s]] * A[[ k-s+kshift, j + jshift]],{s,1,k-1}1);
ene[[k]] = - 2 * A[[k + kshift, 1 + jshift]] -
Sum[ene[[s]],{s,1,k-1}1),
{k,1,norder},{j,2%k,1,-1}]
Do[Print["Ek"," = ", InputForm[ene[[k]]/2]],{k,1,norder}]

Come si vede dalla figura 10.9 il comportamento asintotico € del tipo
En ~ nl

guesto indica una non convergenza della serie perturbativa e pone il problema del signifi-
cato della stessa. Nel prossimo paragrafo analizzeremo questo punto.

10.K Divergenze nella serie perturbativa.

In questo paragrafo discuteremo in modo quanto piu possibile elementare le ragioni della
divergenza della serie perturbativa ed il significato della serie $fef@eenderemo come
esempio concreto il caso dell'oscillatore anarmonico, analizzato nel paragrafo precedente.
Alcune delle considerazioni che seguono fanno uso del concetto di tunneling e del calcolo
della probabilita di attraversamento di una barriera di potenziale: il lettore puo trovare una
discussione di questi argomenti nel capitolo dedicato allo sviluppo semiclassico.

Cominciamo presentando un argomento dovuto a F.Dyson che, benché non completa-
mente rigoroso, coglie bene il motivo delle divergenze.

Argomento di Dyson

Supponiamo di voler calcolare I'energia dello stato fondamentale per il sistema
1 1
H= Ep2+ éx2+g>(1 (10.440)

L'operatoreH non ha patologie particolari, € un operatore autoaggiunto, I'energia & limi-
tata inferiormente ed il valore corrispondente allo stato fondameriiédp, e facilimente
calcolabile numericamente per ogni valore della costghte

L'espansione perturbativa consiste nello sviluppo in serie di potenze

E(g) =Ey+ Z Eng" (10.441)
n=1
Se tronchiamo I'espansione (10.441) ad un ordine finito, questa da un’approssimazione

molto buona del risultat&(g), in un senso che specificheremo meglio in seguito, cionon-
dimeno la serie (10.441) é divergente, abbiamo visto nel paragrafo precedeBie~che

13Notiamo che la divergenza delle procedure perturbative di calcolo non @ una patologia della Meccanica
Quantistica: lo stesso problema si presenta in Meccanica Classica ed € stato ampiamente discusso da Poincare.
In uno dei prossimi capitoli presenteremo dei metodi estremamente efficienti per tale calcolo numerico.
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L'evidenza numerica del paragrafo precedente pud essere anche dimostrata analiticamente.
Questo significa che la serie (10.4410n é analticain g = 0.

L'argomento di Dyson per spiegare questa non analiticita € il seguente. Supponiamo
che la serie sia analitica, con un certo raggio di convergBnaHora perig| < Rdovrebbe
riprodurre il valore dell’energia dello stato fondamentale; mager0 I'Hamiltoniana
non & limitata inferiormentecioé lo stato fondamentale non esiste, quindi la serie non puo
essere analitica.

L'argomento puo essere raffinato per fornire una spiegazione “dinamica” del fenomeno.
Perg < 0 il potenzialeV (x) = x?/2+ gx* ha la forma riportata in fig.10.10 Una particel-

14

1.2+ 4
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1t | X312 | R
\ I
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Figura 10.10V (x) perg = —0.05. Per comodita & riportato il poteziale imperturbet2
ed il valore dell’energia per lo stato fondamentale dell’oscillatore armonico.

la nello stato fondamentale imperturbato pud passare attraverso la barriera di potenziale
illustrata in figura, lo stato &, quindi, metastabile. Questa proprieta non & chiaramente ot-
tenibile a nessun ordine perturbativo, essendo ordine per ordine uno stato descritto da una
funzione inL2. Quindi questo effetto tunnel, responsabile della metastabilita degli stati,
deve essere all’'origine della non analiticita della funzifg).

10.K.1 Il problema dei domini.

Dal punto di vista matematico la ragione della mancanza di analiticita pud essere capita nel
modo seguente. Consideriamo una Hamiltoniana impertuyataA questa e associato

un dominioD(H,), sottinsieme dL2, costituito da tutte le funzioni per cui appurtty &
autoaggiunta. Ad esempio per funzioni di questo dominio

w9 <o

esiste cioe il valor medio dell’energia potenziale. Consideriamo in particolare una funzione
che si comporti comey, ~ 1/x2 allinfinito. Per questa si ha

1
/dx|u/0(x)|2x2 <o /dx|1//0(x)|2x4 ~ /dx? X
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Quindiy, non appartiene al dominio di k), essendo il valor medio dell’energia su questo
stato infinito. In altre parole esistono stati perfettamente legittimi dal punto di vistg di
per cui la perturbazione ¢ infinitamente grande, quindi per nessun valgrikogeratore
gx* pud essere considerato come una piccola perturbazibige a

L'argomento puo essere formalizzato in un teorema, il teorema di Kato-Rellich:

Teorema. SiaH(g) una famiglia di operatori, cope SC C. Se valgono le seguenti ipotesi
a) D(H(g)), il dominio diH(g) € indipendente dg.
b) Vy € D(H(9)), (w|H(9)|y) & una funzione analitica d@jin S.

alora

Vg, € Se per ogni autovalorg(g), isolato non degenere Hi(g,) esiste un intorndy, tale
cheH(g) ha un solo autovalorg(g) in un intorno diE(g,). La funzioneE(g) & analitica
nell'intorno diVgy, ed esiste una funziongy analitica ing tale che

H(9)vg = E(9)vg
Inoltre la serie di Taylor dE(g) coincide con I'usuale serie perturbativa p&(g).

In altre parole se valgono le ipotesi a),b) del teorema la situazione € perfettamente sotto
controllo, la serie perturbativa da il risultato esatto.
Una condizionesufficienteper la validita delle ipotesi € data dal criterio di Kato:

Teorema. Se esitono due numedi b tali che per ogniy € D(H), wD(V), valga la disu-
guaglianza in norma
IVl < allHowl| + bl wl|

allora valgono le ipotesi a,b del teorema precedente.

Come abbiamo visto nel caso dell’'oscillatore anarmonico il dominkb &istrettamente
contenuto nel dominio dil, quindi cade l'ipotesi a) del teorema di Kato-Rellich e la serie
perturbativa non e analitica.

E chiaro dall'enunciato del teorema che gli autovaliig) per I'oscillatore anarmonico
sono sviluppabili in serie intorno a qualunque valore positivg wlia non intorno @ = 0.

In altre parole man mano che ci si avvicina all’origine il dominio di analitidjaa cui si
riferisce il teorema decresce, fino ad annullargj ia 0.

Nel caso dell'oscillatore armonico molte delle proprieta di analiticita degli autovalori
possono essere studiate sfruttando un semplice argomento di scala, dovuto a K.Symanzik.
Consideriamo la trasformazione di scala

U (1) = A2y (Ax) (10.442)
E immediato verificare che la trasformazione (10.442) & una trasformazione unitaria e che
per un’Hamiltoniana del tipo
1 1
H(e,g) = 5 p°+ S o +gx’
2 2
si ha
UA)H(a,g)U (A1) = A7 2H(ar?, gA®) (10.443)
Poiché gli autovalori restano immutati per una trasformazione unitaria, segue, ponendo
A= g—1/6
En(L,0) = g"°En(g?%,1) (10.444)
Dalla (10.444) si puo dedurre che il purde= 0 deve avere una singolarita di tipo “radice
cubica”, inoltre utilizzando il criterio di Kato, € possibile dimostrare che la serie di “strong

coupling” s
En(g) = Zakg 2
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e convergente ed in particolare che il comportamento asintotico degli autovalori &

En(9) leﬁ
Si pud dimostrare che la superficie di Riemann relativa alla funZiige ha tre fogli con
una biforcazione g = 0, come suggerito dalla (10.444). In particolare si puo dimostrare
(Loeffl e Martin) che nel primo foglio, corrispondentgaag(g)| < «, la funzioneE(g) é
analitica.

Per lo studio dettagliato di questi aspetti rimandiamo alla letteratura citata nelle refe-
renze.

10.K.2 Serie asintotiche.

Abbiamo finora illustrato vari motivi per cui la serie perturbativa non & convergente ma
ancora non abbiamo una risposta al problema fondamentale: cosa ha a che vedere la serie
perturbativa con la soluzione esatta?

La risposta & simile, ancora una volta, all'analoga questione in Meccanica Classica:
la serie perturbativa, per l'oscillatore anarmonico e casi simili, non & convergente ma €
asintotica.

Definizioni.
Consideriamo un dominib del piano complesso della forma

D: largd < % 7 <R (10.445)

ed una funzione analitica iD, cioé nell'interno del dominio. La serig szk si dice
asintoticaalla funzionef (z) in D se e divergente e

N
f@- 3 fi2|<Cyald"t  WN (10.446)
k=0

In pratica la (10.446) asserisce che una serie € asintotica se comunque siNeeghs-
sibile trovare un intorno dell’'origine abbastanza piccolo in modo che la differenza fra il
valore della funzione e la somma parzitlessima della serie si&(Z\*1).

Il punto caratteristico delle serie asintotiche & che la loro somma pud essere stimata so-
lo con un ordine finito di approssimazione. Infatti la serie & divergente, quindi i coefficienti
Cy nella (10.446) crescono rapidamente. Fissata una certa preciss#ig € abbastan-
za piccolo per i primi ordini si ha che lo scartﬁ:,)\,\z|"‘ € minore die ma al crescere di
N, comunque piccolo si&| lo scarto supererd. Consideriamo come esempio concreto
una forma che comparira nel segup ~ AB KKkl Al variare dik, per grandi valori di
k, il minimo scarto si trova minimizzando I'espressiofigk) = B~*k!Z. Utilizzando lo

sviluppo
k! ~ kke *y/27k
si ha B
log(d) ~ klog(k) — k+ Iog(E)

che ha un estremo k= B/z e §(k) ~ exp(—B/z): per piccoliz, andare oltre I'ordiné
peggiora I'approssimazione.
In mancanza di informazioni aggiuntive la serie asintotica non determina univocamente
la funzione f(z). Consideriamo infatti la funziong(z) = exp(—a/z). L'espansione di
Taylor di questa funzione attorno all’origine €& identicamente nulla perchée
dn

d?g(z) o =0
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quindi f(z) e f(z) + g(2) hanno la stessa serie asintotica.
Un risultato importante si ha se il dominio di analiticita della funziéf® € abbastanza
ampio: una conseguenza di un teorema di Watson sulle funzioni analitiche asserisce che:

Teorema. Se la funzionef(z) & analitica in un dominidargz] < a/2 cono > =, cioé
in una zona piu estesa del semipiano destr@Cdiallora la serie asintotica determina
univocamente la funzione, esiste cioé un’'uni¢a) che ha come serie asintotisg f, 2.

Nel caso di problemi semplici di Meccanica Quantistica, come l'oscillatore anarmoni-
co, la situazione é esattamente quella configurata da questo teorema:

e Gli autovaloriE(g) sono funzioni analitiche nel piano complesstagliato lungo
I'asse negativo.

e La serie perturbativa standard, detta serie di Raleigh-Schrddinger, & una serie asinto-
tica.

La dimostrazione del secondo punto € abbastanza agevole e si riconduce essenzialmente ad
un conteggio dei termini possibili nello sviluppo perturbativo, la dimostrazione del primo
punto & piu delicata, ne daremo una ragione intuitiva nel capitolo dedicato all’espansione
semiclassica.

In situazioni pit complicate, come sistemi a infiniti gradi di liberta, solo in pochi casi
si hanno informazioni cosi dettagliate.

Quindi la situazione é la seguente: la serie perturbativa, benche divergente, individua
univocamente la soluzione esatta del problema. Resta un aspetto “pratico”: € possibile
avere una stima numerica della soluzione conoscendo i coefficienti perturbativi? O, in altre
parole, come si fa a ricostruire la funzioBég) a partire dalla serie perturbativa? Esistono
diverse tecniche adatte allo scopo.

Trasformata di Borel.

Nelle ipotesi del teorema precedente si dimostra che & possibile definire una serie conver-
gente:

f
B = ?TZk (10.447)

dettatrasformata di Boretella funzionef. Come appare dalla (10.447) i coefficienti della
serie sono depressi per un fattéteispetto alla serie originale. La trasformazione (10.447)
e invertibile -

(2= [ e'Blat (10.448)

Sostituendo la (10.447) nella (10.448) si riottiene in effetti la serie asintotica di partenza.
Un caso particolarmente importante € quello in cui

f,~CR(-A) !  A>0 (10.449)

La serie asintotica € a segni alterni, esattamente come nel caso dell'oscillatore anarmonico.
La trasformata di Borel ha la forma

Z\k
B =CYK(~%)
guesta funzione ha una singolarita pet —A < 0. La posizione della singolarita implica
che l'integrale (10.448) e finito. Se la serie non fosse stata a segni alterni la singolarita
sarebbe comparsa sull’asse positivo e la serie non sarebbe stata Borel-sommabile.
Una possibilita quindi & di calcolare i primi coefficienti perturbativi, dicialhoCo-
struire in modo approssimato, troncando la seridNa#isimo ordine, la funzionB(z) tra-

mite la (10.447), fare I'estensione analiticaBi) e con questa calcolare la funziohg),
tramite la (10.449).
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Approssimanti di Padeé.

Un metodo standard per ricostruire una funzione analtica &€ quello di approssimarla tramite
rapporti di polinomi, cio& con funzioni razionali. Si chiama approssimaft&! il rap-
porto fra un polinomio di grad®N ed uno di graddvl. Limitiamoci per semplicita agli
approssimanti diagonalP™N/. Per fissare questo approssimante occorre assegnare il va-
lore dei N+ 1) coefficienti dei polinomi. Se la serie parte dall’'ordigecioe 'ordine zero
e noto, i coefficienti sono. Considerando I'espansione perturbativa all’ordime et
uguagliando i relativi sviluppi di Taylor d?™:N/ questi coefficienti possono essere fissati.

Ad esempio nel programma in Mathematica fornito nel capitolo precedente per il cal-
colo dei coefficienti perturbativi dello stato fondamentale, basta aggiungere le righe:

ene = 1/2 ene;

f[z_]:= Sum[ene[[i]]*z~i/i!,{i,1,norder}]

< Calculus‘Pade‘;

hBP[t_]:=Evaluate[Pade[f[t],{t,0,norder/2,norder/2}11;

sommal[z_]:= 1/56%(1/2 + 1/z*NIntegrate[Exp[-u/z]*h[u]
,{u,0,Infinity}])

La prima istruzione € dovuta al fatto che il programma calcolava il doppio dell’energia.
Possiamo confrontare il risultato con quello “esatto” che ricaveremo risolvendo numerica-
mente I'equazione differenziale in un prossimo capitolo. Dalla tabella 10.8 si vede un buon
accordo, con 100 termini perturbativi si ha una discrepanza di cirt@ 3°.

Ordine perturbativo Padé | Risommazione perturbativa
20 [10,10] 0.244 712 561 179
40 [20,20] 0.244 910 058 398
60 [30,30] 0.244 917 070 948
80 [40,40] 0.244 917 393 021
] 100 | [50,50] | 0.244 917 406 958 |
| Risultato “esatto” | \ 0.244 917 407 212 |

Tabella 10.8: Risommazione della serie perturbativa per l'oscilatore anarmonico, &
riportato il valore diE,/5 perg = 5.

Riassumendo quanto visto finora:

a) Per sistemi stabili, tipo I'oscillatore anarmonico, gli autoval(@) sono funzioni
analitiche nel piano complesso con un taglio lungo I'asse negativo.

b) In questi casi la determinazione della serie asintotica determina univocamente la
funzioneE(g).

In questo paragrafo vedremo come si mettono assieme le varie informazioni, come si cal-
colano i valori asintotici dei coefficienti perturbativi e verificheremo il tipo di singolarita
presente nella trasformata di Borel delle funziBig).

10.K.3 Relazioni di dispersione.

Consideriamo una funzione analitica nel piano compléstgliato lungo I'asse negativo.
Possiamo applicare il teorema di Cauchy al cammino indicato in figura 10.11

RER )
(@) =5 ]i d7 = (10.450)
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Figura 10.11: Integrale di Cauchy.

L'integrale lungo il cerchio di raggi® tende a zero, pdR — o, assumendo che la funzione
allinfinito si annulli abbastanza rapidamente. Se schiacciamo i can@nif@_ sull'asse
negativo, le due determinazioni della funzione sonogper0

f(x+ie) suC, f(x—ig) suC_ X € [—00,0]

Lintegrale (10.450) si scrive percio

1 0 f(x+ie)—f(x—ig) _ 1 (0 Imf(x)
f(z)_‘lgmnoﬁ/imdx - :E'/imdx - (10.451)

Una relazione come la (10.451) si chiaméazione di dispersiond.a funzione é determi-
nata dalla sua discontinuita sul taglio. Supponiamo ora di considerare la serie asintotica

f:kazk

Sviluppando la serie geometrica nella (10.451) otteniamo

1 /0 Imf(x)

Quindi dalla conoscenza della discontinuita & possibile calcolare i valori dei coefficienti
peturbativi. Un punto rilevante & che ger « l'integrale (10.452) deve avere il contributo
dominante per piccoli valori dk, e quindi ottenibili se si conosce il comportamente a
piccoli x della teoria.

Supponiamo ad esempio chefita) ~ z Pe?/Z Si ha

0 —baa/x )
fk 1/ dxi 1 (_1)k+b/ efatthrkfldt:
0

T 2n)w X1 T 2x
- %r(m b)(—a) P (10.453)

quindi un andamento core dei coefficienti.
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Applicando le relazioni precedenti alla funzioBég) otteniamo

1/  ImE®X)
E = Elmde (10.454)

Questa relazione é esattamente in linea con I'argomento intuitivo di Dyson. Consideriamo
infatti per g < 0 un sistema tipo I'oscillatore anarmonico. Si & gia visto che in questo
regime gli stati devono essere metastabili. Come discuteremo molto piu dettagliatamente
in seguito, per uno stato metastaliiég) ha una parte immaginaria, negativa. Scriviamo
infatti

r
E(g)=Ex—i=
(g) R 2
L'evoluzione temporale dello stato e del tipo
y ~ e Bt = g iErlg /2 2 ~e

quindil” rappresenta la probabilita di decadimento per unita di tempo. Viceversa calcolando
I" possiamo conoscere Hg).

Esempio analitico.

Per illustrare i vari punti visti finora consideriamo la funzione
1 e X2 v
F =—/ dxe %9 10.455
9=/, ( )

Questa funzione € evidentemente singolaregperle e negativo. Notiamo cli€g) € una
funzione perfettamente definita g 0. Se sviluppiamo in serie attorno al pumgte- O

(o)=Y Rd = g [ e F (o0

L'integrale pu0 essere svolto analiticamente, € una funZigmea & piu istruttivo stimarlo
col metodo del punto sella per grandi valorikdi
Ricordiamo I'idea del metodo applicata a integrali di questo tipo. Se si deve calcolare
lintegrale di exg— f(x)) si trova il punto stazionariog, per cuif’(x,) = 0, sviluppando
fino al second’ordine

L (et et L /—lf"( R R
= e e o) = [ ezt = = o flx) 10.456
vrdl Vor 700) (10.456)

Nel caso in esamé (x) = 2 — 4klog(x), i punti sella sonax, = ++v/4k ed usando lo
sviluppo di Stirling per il fattoriale si trova

f ~ (—1)*16%! (10.457)
Stimiamo ora la parte immaginaria Big) perg < 0, sempre col metodo del punto sella.
In questo caso la parte esponenziale dell’'integrale

2
f(x) =2 +loix*

Il punto sella non banale € iy = +1/,/—4|g|. Per questo valore

1 "
o) =155 "0 =1+12ghg=—-2<0

Quindi
|mF(g) ~ efl/le‘gl — 1/169

Usando la (10.453) si riottiene il risultato (10.457).
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Applicazione all’'oscillatore anarmonico.

Applichiamo la teoria esposta nei precedenti paragrafi al caso dell'oscillatore anarmonico.
Per valori piccoli e negativi dj 'Hamiltoniana (usiamon=1,® = 1) é:
2
p 1
H="+5 —|gxt 10.458
e instabile, vedi fig.10.10. Il calcolo della probabilita di attraversamento della barriera sara
trattato nello studio dell’approssimazione semiclassica, il risultato, a meno di un fattore, &

b
ro exp—2/ V2mE =V (x)|dx (10.459)
a

dovea, b sono gli zeri della funzion& —V(x), V(x) € il potenziale. L'integrale & calcolato
nella zona classicamente inaccessilile; V(x).

Per piccoli valori di|g| “I'area” sottesa dalla barriera & grande quifidé una quantita
molto piccola. In prima approssimazione possiamo allora considéra@me il valore
imperturbato dell’energia, che nello stato fondamentale per il nostro problema Aale 1
Il primo punto di inversionea, corrisponde al punto di inversione classigoy 1. |l se-
condo zero della funzione si trova a distanZe- 1/|g|. In questa regione il terming &
trascurabile ed approssimativamente

E-vl~ X~ g = (gL —)
2 2|g|

Ai fini dell'integrale percio

1
a~0 b=y /o (10.460)
Quindi
1/v2g 1 1 /1 1
—lo F~2ﬁ/ dx ——XZ:—/d\/l— 2= _—
%) 0 \/ 2lgl ol Jo VY T 3
€ 1 1 1
M~e 3d =e3 ImE(g) ~ e% (10.461)
Ricordando la (10.453) si ha immediataménte
E, ~ (—3)*k! (10.462)

Quindi effettivamente la serie & a segni alterni ed € divergente, ma asintotica e Borel som-
mabile. Per avere una predizione quantitativa sui coefficienti occorre determinare il fat-
tore pre-esponenziale nella (10.461). Usando sempre I'approssimazione semiclassica un
calcolo piuttosto lungo, vedi ref.[6], fornisce

2 el/3g
V=g

e da questo risultato, utilizzando le relazioni di dispersione

ImE(g) = (1+06(9)) g— 0 (10.463)

(8% kot 1
B = (-1) <ﬂ3> 3T (k+ E) {l—i— ﬁ(k)} (10.464)
Nella figura seguente sono riportati rispettivamente i valori dei coefficigntiome cal-
colati nel paragrafo10.J e la stima asintotica (10.464), I'altra figura riporta la differenza.
Come si vede 'accordo é eccellente:

15per essere pignoli la relazione di dispersione va scrittéfig) — E(0)] /g per avere una buona convergenza
all'infinito, ma la sostanza non cambia.
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Figura 10.12: CoefficientE, analitici e asintotici sovrapposti. Nella seconda figura e
riportata la diffrenzeE(®9 — E,.

Risommazione di Borel.

Il comportamento (10.462) o (10.464) dei coefficienti perturbativi implica che la trasfor-
mata di Borel della serie ha una singolarita, approssimativamenie—=in-1/3, quindi
correttamete sull’'asse negativo. La conoscenza della posizione, approssimata, della singo-
larita della trasformata di Borel permette di provare altri metodi di continuazione analitica,

in alternativa o in concomitanza con gli approssimanti di Padé. L'idea schematicamente e
la seguente:

1) La definizione di trasformata di Borel permette la conoscenza del suo sviluppo in

serie
E(z) = ZEkzk =B(2) = chzk C = %Ek (10.465)

Se la singolarita della serie Bie inz= —ala convergenza della seriel) ha raggio

|zl = a. Per effettuare I'antitrasformata occorre conos&{® su tutto I'asse reale
positivo, col metodo di Padé si effettua estensione analitica della serie troncata, cioe
calcolata fino ad un dato ordine, tramite funzioni meromorfe. Un’altra possibilita &
di effettuare una trasformazione conforme del piano complesso che manda il piano
tagliato lungo I'asse negativo nel cerchio unitario, ad esempio:

4au
zZ= = (10.466)

2) Sostituendo la (10.466) nella (10.465) si ottiene uno sviluppo in seBiediinzione
diu:
B(z(u)) = ZB'(Uk (10.467)

al solito considerato troncato all’ordirié del calcolo perturbativa che stiamo con-
siderando. Assumendo, cosa che faremo, che i coeffi@grtdsi ottenuti non cre-
scano troppo velocemente ckrla serie (10.467) converge nel cerchio unitario, che
ricordiamo é I'immagine della supposta zona di analiticita nel pano

3) A questo punto possiamo applicare la trasformata inversa di Borel usando, per scri-
verezl'inversa della trasformazione (10.466):

. Vzta-y/a
u=u(z) = VAt va (10.468)

e l'antitrasformata &

00

E@)— /0 e'B(u(zt))dt (10.469)
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Questo metodo funziona bene jgiccolo, pud essere migliorato, ad esempio nel punto 2)
possiamo effettuare un’estensione di Padé della serie otttenuta. Rimandiamo alla letteratura
per I'analisi della ragione di convergenza della serie e del miglioramento del metodo.

Riportiamo a titolo di esempio I'applicazione all’oscillatore anarmonico, per un valore
non piccolo dig, g =5 nella tabella 10.9 ed i risultati analoghi et 1 nella tabella 10.10.
Ripetiamo che il metodo si puo raffinare, comunque I'accordo con il risultato esatto & sod-
disfacente. Nella versione qui proposta ilmetodo sviluppa delle instabilita per ordini molto
altiag=>5.

In fondo al paragrafo viene riportato il programma in Mathematica che implementa il
calcolo.

Ordine | Padé Risomm. Borel[cf] Padeé + Borel[cf]
20 [10,10] | 0.244 712 561 179 0.241 570 249 478 0.244 907 856 917
40 [20,20] | 0.244 910 058 398 0.243 676 850 222 0.244 917 158 641
60 [30,30] | 0.244 917 070 948 0.241 985 604 061 0.244 917 406 784
80 [40,40] | 0.244 917 393 021 0.242 962 107 516 0.244 917 498 892

|

[ “esatto” | 0.244 917 407 212

|

|

Tabella 10.9: Risommazione della serie perturbativa per l'oscilatore anarmonico, &

riportato il valore diE,/5 perg = 5.

Ordine | Padé Risomm. Borel[cf] Padeé + Borel[cf]
20 [10,10] | 0.160 753 948 765 0.160 746 830 927 0.160 754 120 530
40 [20,20] | 0.160 754 129 626 0.160 754 083 952 0.160 754 130 149
60 [30,30] | 0.160 754 130 244 0.160 754 123 486 0.160 754 130 24§
80 [40,40] | 0.160 754 130 247 0.160 754 130 027 0.160 754 130 903

| [ “esatto” | 0.160 754 130 247 [ |

Tabella 10.10: Risommazione della serie perturbativa per l'oscilatore anarmonico, €
riportato il valore diE,/5 perg = 1.
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stampax4pade.nb

m Calcolo di E_k per il potenziale xA2 /2 + g x4

gValue = 1; (* per la stampa =*)

norder = 80; kshift = 3; jshift = 3;
maxordinestampato = 20;
A = Table[O0, {k, 1, norder + 2 + kshift}, {j, 1, 2 *norder + 3 + jshift}];
ene = Table[0, {k, 1, norder}];
Do[A[ [k + kshift, jshift]] = 1, {k, O, norder}];
Do|[
(
A[[k + kshift, j +jshift]] = 1/ (4*3) *» (
(2j+2) (2j+1)A[[k+kshift, j+1+jshift]] -
2A[[k +kshift-1, j +jshift-2]] +
Sum[ene[[s]] *A[[k-s + kshift, j + jshift]], {s, 1, k-1}]);
ene[[k]] = - 2*xA[[k+kshift, 1+ jshift]] - Sum[ene[[s]], {s, 1, k-1}]),
{k, 1, norder}, {j, 2+k, 1, -1}];

m Risommazione della serie con Borel-Pade'

ene = 1/2xene; (*x i coeff. sono 2xE *)

f[z_] := Sum[ene[[i]]*2z"i/i!, {i, 1, norder}]; (* Serie di Borel troncata =x)
<< Calculus~Pade";

hBP[t_] := Evaluate[Pade[f[t], {t, O, norder /2, norder/2}]];

somma[z_] := 1/5% (0.5+ 1/z*NIntegrate[Exp[-u/z] *xhBP[u], {u, 0, Infinity}]);
(* Energia =)

= Trasformazione di Borel e rappresentazione conforme

a=1/3; (x -a = posizione prima sing. della trasf. di Borel =)

(* Calcolo dell' estensione analitica via mapping conforme *)

trasfdiretta = {z 4xaxu/ (l1-u)”2};

serieB[u_] := Evaluate[ Normal[ Series[ (f[z] //. trasfdiretta), {u, 0, norder}]]];
trasfinversa = {u (Sqrt[t+a] - Sqrt[a]) / (Sqrt[t+a] + Sqrt[a])};

fB[t_] := serieB[u] //. trasfinversa

cftBorel[z_] :=1/5% (0.5+1/z* NIntegrate[Exp[-t/z] »fB[t], {t, O, Infinity}]);
(* ant. Borel =x)

hBPcft[u_] := Evaluate[Pade[serieB[u], {u, O, norder /2, norder/2}]];
(*» Pade + Borel =)

fBpade[t_] := hBPcft[u] //. trasfinversa;

cftBorelPade[z_] :=

1/5%(0.5+1/z* NIntegrate[Exp[-t/z] »fBpade[t], {t, O, Infinity}])
Print["Pade = ", somma[gValue], " conform. =",

cftBorel[gValue], " Pad-Bor = ", cftBorelPade[gValue]]

"

Figura 10.13: Programma in Mathematica per la risommazione della serie perturbativa.
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