
Indice

10 Teoria delle perturbazioni. 3
10.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
10.2 Perturbazione dello spettro discreto non degenere. . . . . . . . . . . . . . . 4

10.2.1 Esempi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10.3 Livelli degeneri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10.4 Sistema a due livelli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10.5 Effetto Stark su oscillatore armonico . . . . . . . . . . . . . . . . . . . . . 15
10.6 Interazione di dipolo e polarizzabilità. . . . . . . . . . . . . . . . . . . . . 17

10.6.1 Effetto Stark su livelli quasi degeneri. . . . . . . . . . . . . . . . . 20
10.7 Effetto Stark sul livello n=2 dell’atomo di Idrogeno. . . . . . . . . . . . . . 22
10.8 Stato fondamentale dell’Elio. . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.9 InterazioneLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10.9.1 Doppietto e baseLz,Sz . . . . . . . . . . . . . . . . . . . . . . . . 29
10.10Interazione iperfina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.11Effetto Zeeman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10.11.1 Effetto Pashen-Back: Idrogeno. . . . . . . . . . . . . . . . . . . . 39
10.11.2 Effetto Pashen-Back: Doppietto. . . . . . . . . . . . . . . . . . . . 43

10.12Paramagnetismo e diamagnetismo atomico. . . . . . . . . . . . . . . . . . 44
10.12.1 Paramagnetismo atomico. . . . . . . . . . . . . . . . . . . . . . . 45
10.12.2 Calcolo della suscettività magnetica. . . . . . . . . . . . . . . . . . 48
10.12.3 Saturazione e limite classico. . . . . . . . . . . . . . . . . . . . . . 51

10.13Interazione di quadrupolo. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.14Cambiamenti delle condizioni al bordo. . . . . . . . . . . . . . . . . . . . 56

Appendici e Complementi 67
10.A Richiamo sulle trasformate di Fourier. . . . . . . . . . . . . . . . . . . . . 67
10.B Forza di Van der Waals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.C Formulazione tramite trasformazioni canoniche. . . . . . . . . . . . . . . . 70
10.D Metodo di Dalgarno-Lewis. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10.D.1 Polarizzabilità dell’atomo di idrogeno. . . . . . . . . . . . . . . . . 72
10.E Struttura fine dell’atomo di Idrogeno. . . . . . . . . . . . . . . . . . . . . 74

10.E.1 Calcolo della struttura fine. . . . . . . . . . . . . . . . . . . . . . . 75
10.E.2 Interpretazione semiclassica del Lamb shift. . . . . . . . . . . . . . 78
10.E.3 Correzioni di massa. . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.F Struttura iperfina perL > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.G Un’applicazione del teorema di Wigner-Eckart. . . . . . . . . . . . . . . . 88
10.H Effetto Stark e struttura fine. . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.I Discussione sui dipoli permanenti. . . . . . . . . . . . . . . . . . . . . . . 96
10.J Oscillatore anarmonico e serie perturbativa. . . . . . . . . . . . . . . . . . 98
10.K Divergenze nella serie perturbativa. . . . . . . . . . . . . . . . . . . . . . . 101

10.K.1 Il problema dei domini. . . . . . . . . . . . . . . . . . . . . . . . . 102
10.K.2 Serie asintotiche. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

1



2 INDICE

10.K.3 Relazioni di dispersione. . . . . . . . . . . . . . . . . . . . . . . . 106



Capitolo 10

Teoria delle perturbazioni.

10.1 Introduzione

Molti dei problemi fisicamente interessanti che si presentano in natura non sono esattamen-
te risolubili in Meccanica Quantistica, per questo motivo è particolarmente utile sviluppare
delle procedure approssimate di soluzione. Uno di questi metodi è il cosiddettometodo
perburbativo: se nella formulazione del problema compare un parametro piccolo, chiamia-
molo λ , e si conosce la soluzione perλ = 0, si cerca una soluzione approssimata come
serie di potenze inλ . Tralasciando per il momento il problema matematico della conver-
genza della serie ottenuta in questo modo, ci si aspetta un risultato tanto migliore quanto
più il parametro è piccolo.

In concreto il parametro da considerare si può presentare in forme diverse, alcuni
esempi sono:

1. Una Hamiltoniana di un sistema è descritta da certi parametri: può avere interesse
sapere cosa succede per una “piccola” variazione dell’Hamiltoniana:

(a) Come cambia lo spettro di un oscillatore armonico se si introduce una piccola
anarmonicità?

(b) Due sistemi separati hanno una dinamica nota, che effetti possono nascere se si
ammette che i due sistemi possano interagire debolmente?

(c) Come cambia lo spettro di una Hamiltoniana per piccole variazioni della geo-
metria del problema? Ad esempio come si calcolano i livelli energetici per una
buca di potenziale debolmente non sferica?

2. Una parametro importante può essere il tempo di interazione: la perturbazione del
sistema avviene in modo molto veloce (o molto lento) rispetto ai tempi caratteristici
del sistema imperturbato. In questo caso il parametroλ è il rapporto dei tempi.

3. Una interazione può avvenire su scale spaziali molto piccole, in questo caso il para-
metroλ è il rapporto fra la scala tipica dell’interazione e quella del sistema.

Come si vede l’elenco comprende una grande varietà di fenomeni. Le tecniche usate nei
vari ambiti possono essere diverse e talvolta il tipo stesso di domanda cambia, in tutti i
casi è essenziale individuare qual’è il parametro in gioco ed avere un’idea degli ordini di
grandezza.

Il metodo perturbativo non è l’unico schema di approssimazione possibile, nel seguito
studieremo l’approssimazione semiclassicae il metodo variazionale.È forse superfluo
sottolineare che in presenza di un problema fisico concreto alcuni di questi metodi vengono
usati contemporaneamente. La tecnica perturbativa che svilupperemo in questo capitolo
prende il nome di serie perturbativa diRaleigh-Schrödinger(RS).

3



4 CAPITOLO 10. TEORIA DELLE PERTURBAZIONI.

È usuale nell’esposizione del metodo perturbativo distinguere due casi: quello in cui
le perturbazioni sono indipendenti dal tempo e quello in cui c’e’ una dipendenza esplicita
dal tempo. In molti casi questa suddivisione è abbastanza artificiale ma la seguiremo nella
prima parte dell’esposizione per ragioni di semplicità. In questo capitolo ci occuperemo
delle perturbazioni indipendenti dal tempo.

10.2 Perturbazione dello spettro discreto non degenere.

Consideriamo un sistema descritto da un’HamiltonianaH0, supponiamo di conoscere tutti
gli autovalori e gli autostati diH0. Consideriamo una piccola perturbazione del sistema
della forma

H(λ ) = H0 +λV (10.1)

λ sarà il nostro parametro di sviluppo. Supponiamo in particolare di considerare un auto-
valore non degenereE0 di H0 appartenente allo spettro discreto diH0. Sotto queste ipotesi
ci si aspetta che debba esistere un autovaloreE(λ ) ed un autostato|ψ(λ )〉 tali che

H(λ )|ψ(λ )〉= E(λ )|ψ(λ )〉 (10.2)

con
lim
λ→0

E(λ ) = E0 lim
λ→0

|ψ(λ )〉= |ψ0〉 (10.3)

In altre parole ci aspettiamo che perλ → 0 gli autovaloriE(λ ) di H(λ ) e i corrispondenti
autostati tendano verso le corrispondenti grandezze imperturbate.

In assenza di degenerazione una volta datoE0 lo stato |ψ0〉 è fissato univocamente,
cerchiamo allora una soluzione della (10.2) nella forma

|ψ〉= |ψ0〉+λ |ψ1〉+λ
2|ψ2〉+ . . .λ n|ψn〉+ . . . (10.4)

E = E0 +λε1 +λ
2
ε2 + . . . (10.5)

L’equazione (10.2) è omogenea e la determinazione di una sua soluzione richiede una nor-
malizzazione del vettore|ψ〉; normalmente si usa〈ψ|ψ〉 = 1. Nel caso in esame è più
semplice usare vettori non normalizzati ed usare il vincolo

〈ψ0|ψ〉= 1 (10.6)

L’operazione di normalizzazione, se necessaria, può essere effettuata in un secondo tempo1.
Una discussione più approfondita di questo punto è fatta alla fine del paragrafo. Nel seguito
supporremo che lo stato iniziale|ψ0〉 sia normalizzato. La (10.6) implica che la correzione
al vettore|ψ0〉 è della forma|ψ〉= |ψ0〉+ |ψ⊥〉 doveψ⊥ appartiene al sottospazio di Hilbert
ortogonale al vettore di partenza. La (10.6) impone, ordine per ordine inλ ,

〈ψ0|ψn〉= 0 n≥ 1 (10.7)

Sostituendo gli sviluppi (10.4) nell’equazione (10.2) ed imponendo che questa sia sod-
disfatta ordine per ordine inλ si ottiene il sistema

(H0−E0)|ψ0〉 = 0 (10.8a)

(H0−E0)|ψ1〉+(V− ε1)|ψ0〉 = 0 (10.8b)

(H0−E0)|ψ2〉+(V− ε1)|ψ1〉+(−ε2)|ψ0〉 = 0 (10.8c)

(H0−E0)|ψ3〉+(V− ε1)|ψ2〉+(−ε2)|ψ1〉+(−ε3)|ψ0〉 = 0 (10.8d)

. . . . . .

(H0−E0)|ψn〉+V|ψn−1〉−
n

∑
k=1

εk|ψn−k〉 = 0 (10.8e)

1Una procedura in cui la normalizzazione è implementataab initio è delineata nei complementi.
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Soluzione al primo ordine.

Cominciamo a calcolare la correzione al primo ordine inλ , determinata dalla (10.8b).
PoichèH0 è un operatore autoaggiunto e|ψ0〉 è l’autovettore relativo all’autovaloreE0:

〈ψ0|(H0−E0) = 0 (10.9)

Proiettando su|ψ0〉 la (10.8b) ed usando la (10.7) si ha

〈ψ0|V|ψ0〉= ε1 (10.10)

che determina la correzione al primo ordine per l’autovalore. Siano ora|n〉 gli autostati
normalizzati diH0, che costituiscono una base per lo spazio di Hilbert. La correzione|ψ1〉
è scrivibile nella forma

|ψ1〉= ∑′
n〈n|ψ1〉 |n〉 (10.11)

Nella somma (10.11)non compareil termine corrispondente allo stato|ψ0〉 in forza della
(10.7), indicheremo sempre con un apice le somme di questo tipo. Per|n〉 6= |ψ0〉 l’ortgo-
nalità degli autovettori diH0 implica 〈n|ψ0〉= 0, quindi moltiplicando a sinistra la (10.8b)
per〈n| si ottiene

(En−E0)〈n|ψ1〉+ 〈n|V|ψ0〉= 0 ⇒ |ψ1〉= ∑′
n |n〉

1
E0−En

〈n|V|ψ0〉 (10.12)

La somma, ripetiamo, è estesa sugli stati con energia diversa daE0.

Soluzione per iterazione.

L’insieme delle equazioni (10.8) si può risolvere iterando la procedura usata al primo ordi-
ne. Supponiamo di conoscere le correzioni fino all’ordinen−1. Moltiplichiamo la (10.8e)
per 〈ψ0|. La condizione (10.9) annulla il primo termine, il vincolo (10.7) annulla tutti i
termini della somma eccetto quello conk = n, e risulta

εn = 〈ψ0|V|ψn−1〉 (10.13)

che determina la correzione all’ordineλ n per l’autovalore. Moltiplicando ora a sinistra per
〈n| la stessa equazione si ha, usando〈n|ψ0〉= 0:

〈n|ψn〉=
1

E0−En
〈n|V|ψn−1〉−

1
E0−En

n−1

∑
k=1

εk〈n|ψn−k〉 (10.14)

La (10.14) determina l’approssimanteψn in termini dello sviluppo nella base|n〉.
Come esempio riportiamo il valore della correzione al secondo ordine all’autovalore

dell’Hamiltoniana:

ε2 = 〈ψ0|V|ψ1〉= ∑′
n〈ψ0|V|n〉

1
E0−En

〈n|V|ψ0〉 (10.15)

Uso dei proiettori.

Alla soluzione si può dare una forma operatoriale, che sarà utile in seguito, definendo il
proiettoreP sullo stato|ψ0〉 ed il proiettore ortogonaleQ, sulla varietà ortogonale a|ψ0〉:

P = |ψ0〉〈ψ0| Q = ∑′
n |n〉〈n| 1 = P+Q (10.16)

La soluzione trovata si può scrivere operatorialmente come

|ψ1〉= Q
1

E0−H0
QV|ψ0〉 (10.17)
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L’idea di base è la seguente. Un qualunque operatoreA in termini dei proiettori ammette la
decomposizione

A =
(

PAP PAQ
QAP QAQ

)
Consideriamo il casoA = E0−H0, questo operatore non è invertibile perchè ha un kernel
non nullo,(E0−H0)|ψ0〉 = 0, ma l’operatoreQ(E0−H0)Q è invertibile, perchè abbiamo
assunto l’Hamiltoniana non degenere. Quindi la (10.17) è semplicemente la soluzione della
equazione

(E0−H0)|ψ1〉= V|ψ0〉 (10.18)

nel sottospazio ortogonale a|ψ0〉. ScriviamoV = PV + QV il primo termine non contri-
buisce alla soluzione vista l’ortogonalità dei proiettori, a questo punto prima proiettiamo
l’equazione (10.18) e dopo prendiamo l’inverso dell’operatore a sinistra.

Posto

G = Q
1

E0−H0
Q (10.19)

le relazioni precedenti si possono scrivere

ε1 = 〈ψ0|V|ψ0〉 |ψ1〉= GV|ψ0〉 (10.20a)

ε2 = 〈ψ0|V|ψ1〉= 〈ψ0|VGV|ψ0〉 |ψ2〉= GV|ψ1〉− ε1G|ψ1〉 (10.20b)

Se ordine per ordine si calcolano le correzioni agli autostati, oltre che gli autovalori, si
possono ottenere alcune interessanti relazioni. Ad esempio:

ε3 = 〈ψ0|V|ψ2〉= 〈ψ0|VGV|ψ1〉− ε1〈ψ0|VG|ψ1〉= 〈ψ1|V|ψ1〉− ε1〈ψ1|ψ1〉 (10.21)

In pratica avendo calcolato|ψ1〉 il calcolo di ε3 diventa semplice.
In generale

|ψn〉= GV|ψn−1〉−
n−1

∑
k=1

εkG|ψn−k〉= GV|ψn−1〉−
n−1

∑
k=1

εn−kG|ψk〉 (10.22)

Per gli autovalori segue, usando|ψ1〉= GV|ψ0〉:

εn = 〈ψ0|V|ψn−1〉= 〈ψ0|VGV|ψn−2〉−
n−2

∑
k=1

εn−1−k〈ψ0|VG|ψk〉

= 〈ψ1|V|ψn−2〉−
n−2

∑
k=1

εn−1−k〈ψ1|ψk〉 (10.23)

La (10.21) è il cason = 3 della (10.23): il punto notevole è che per il calcolo della
correzione all’ordinen, n > 2, dell’autovalore serve solo la soluzione fino all’ordinen−2.

Osservazioni.

• Il risultato al primo ordine inλ è normalizzato, infatti, sfruttando〈ψ0|ψ1〉= 0 si ha

(〈ψ0|+λ 〈ψ1|)(|ψ0〉+λ |ψ1〉) = 1+O(λ 2)

• La correzioneε2 allo stato fondamentale è semprenegativa, perchèEn > E0. Questo
risultato è particolarmente interessante seε1 = 0, in questo caso la presenza di una
perurbazionediminuisce semprel’energia dello stato fondamentale.
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• Teorema di Hellmann-FeynmanSupponiamo che una Hamiltoniana dipenda da un
parametroR. Sia|ψ(R)〉 un autostato edE(R) l’autovalore corrispondente. Per una
piccola variazione del parametro

H(R)→ H(R)+
∂H
∂R

δR

Possiamo calcolare la variazione dell’autovalore usando la teoria delle perturbazioni
al primo ordine:

δE = 〈ψ|∂H
∂R

δR|ψ〉+O(R2)

da cui, nel limiteδR→ 0
∂E
∂R

= 〈ψ|∂H
∂R

|ψ〉 (10.24)

quindi la variazione dell’autovalore si calcola immediatamente dalla variazione ope-
ratoriale della Hamiltoniana, questo è il contenuto del teorema. Il tipo di ragiona-
mento usato in questa dimostrazione può essere usato per ottenere una costruzione
alternativa della serie perturbativa, come sarà mostrato in uno dei complementi.

• Normalizzazione. Possiamo considerare gli statinormalizzati, multipli degli stati
appena calcolati:

|ψ〉N = Z1/2
ψ
|ψ〉 N〈ψ|ψ〉N = 1 ⇒ Z−1

ψ = 〈ψ|ψ〉 (10.25)

Zψ rappresenta la probabilità di trovare lo stato imperturbatoψ0 nello stato esattoψ:

|〈ψ0|ψ〉N|
2 = Zψ |〈ψ0|ψ〉|

2 = Zψ (10.26)

quindi deve essereZψ ≤ 1. All’ordine più basso non banale

Z−1
ψ = 1+λ

2〈ψ1|ψ1〉

Quindi dalla (10.12) e l’ortogonalità degli stati〈n|k〉= δnk

Zψ = 1−λ
2〈ψ1|ψ1〉= 1−λ

2∑
n
〈ψ0|V|n〉

1
(E0−En)2 〈n|V|ψ0〉

= 1−λ
2∑

n

|〈ψ0|V|n〉|2

(E0−En)2 = 1+λ
2 ∂ε2

∂E0
(10.27)

Nella formula precedente la derivata rispetto all’energia imperturbataE0 è intesa
tenendo tutti gli elementi di matrice diV fissi. La (10.27) si generalizza a tutti gli
ordini. Consideriamo infatti una perturbazioneδV = δE0|ψ0〉〈ψ0|, proporzionale
cioè al proiettore sullo stato imperturbato, dell’HamiltonianaH = H0 +λV. Usando
la teoria delle perturbazioni al primo ordine l’energiaE dello stato, normalizzato,
|ψ〉N cambia di

δE = δE0 ·N〈ψ|ψ0〉〈ψ0|ψ〉N = δE0|〈ψ0|ψ〉N|
2 = Zψ δE0

da cui

Zψ =
∂E
∂E0

(10.28)

• Discutiamo come promesso la questione del vincolo (10.6). Al variare del parametro
perturbativoλ fare la serie perturbativa significa assumere una analiticità inλ , nel
senso che ad un ordine finito gli autovettori e gli autovalori del sistema sono polinomi
in λ . In questo contesto i limiti

lim
λ→0

|ψ(λ )〉 lim
λ→0

E(λ )
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sono ben definiti perchè l’Hamiltoniana è assunta non degenere.

L’equazione agli autovalori è omogenea, quindi se|ψ(λ )〉 è una soluzione lo è anche
c(λ )|ψ(λ )〉. Consideriamo allora la funzione diλ , a(λ ) = 〈ψ0|ψ(λ )〉. a(0) = 1 e
per continuitàa(λ ) 6= 0 in un intorno diλ = 0, quindi il ket[1/a(λ )]|ψ(λ )〉 soddisfa
al vincolo (10.6).

Questa semplice discussione può essere generalizzata mettendo in luce alcune sot-
tigliezze della procedura. Immaginiamo di considerare un cambiamento diλ come
l’effetto di una perturrbazioneδλ ·V. Supponiamo anche di aver normalizzato, per
ogni λ gli stati, cosa che è sempre possibile fare, dividendo per|ψ|. La discussione
precedente, con il cambiamento di ruolo:ψ0 → ψ(λ ) ψ(λ )→ ψ(λ +δλ ), implica
che possiamo sempre fare in modo che

〈ψ(λ )|ψ(λ +δλ )〉= 〈ψ(λ )|ψ(λ )〉

almeno perδλ sufficientemente piccolo. Ovvero, localmente, deve essere possibile
soddisfare all’equazione

〈ψ(λ )| ∂

∂λ
|ψ(λ )〉= 0 (10.29)

Come abbiamo detto, dividendo eventualmente per|ψ|, possiamo assumere gli stati
normalizzati, perciò:

0 =
∂

∂λ
〈ψ(λ )|ψ(λ )〉= 〈ψ(λ )| ∂

∂λ
ψ(λ )〉+ 〈 ∂

∂λ
ψ(λ )|ψ(λ )〉

e

〈ψ(λ )| ∂

∂λ
ψ(λ )〉= iβ immaginario puro (10.30)

Abbiamo la libertà di scegliere la fase dello statoψ(λ ), quindi operando il cambia-
mento|ψ ′〉= e−iα(λ )|ψ〉 segue

〈ψ ′(λ )| ∂

∂λ
ψ
′(λ )〉=−i

∂α

∂λ
+ iβ (λ )

Imponendo adα di soddisfare l’equazione

∂α

∂λ
= β (λ ) (10.31)

possiamo ottenere

〈ψ ′(λ )| ∂

∂λ
ψ
′(λ )〉= 0

che è la condizione (10.29). L’equazione (10.31) ammette semprelocalmenteuna
soluzione, quindi per piccoliλ la discussione è corretta. vedremo più avanti che per
grandi valori diλ ci possono essere complicazioni, anche in casi molto semplici.

10.2.1 Esempi.

Esercizio 1. Studiare l’effetto delle seguenti interazioni sui livelli di un oscillatore armo-
nico:

bq
1
2

mα
2q2 gq3 gq4 (10.32)

Nel fare i calcoli conviene passare a variabili adimensionali:

q =
(

~
mω

)1/2

Q p= (~mω)1/2P (10.33)

e introdurre gli operatori di creazione e annichilazione

Q =
1√
2
(a+a†) P =

i√
2
(a†−a) H0 = ~ω

(
a†a+

1
2

)
(10.34)
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Osservazione. I potenziali polinomiali ontengono una potenza finita dia,a† quindi solo
un numero finito di stati intermedi contribuiscono alle correzioni perturbative alla hamilto-
nianaH0

Esercizio 2. Assumiamo che il protone sia costituito da una sferetta uniformemente carica
di raggioR. Dopo aver dimostrato che all’interno della sfera il potenziale elettrostatico è

Φ(r) = |e|
[

3
2R
− 1

2
r2

R3

]
calcolare gli effetti sui livelli dell’atomo di idrogeno, trattandoV−Vcoul all’interno della
sfera come una perturbazione. Verificare che

∆E(1s) =
2
5

(
R
a

)2

· me4

~2 ≡ 2
5

(
R
a

)2

a.u.

∆E(2s) =
1
20

(
R
a

)2

· me4

~2 ≡ 1
20

(
R
a

)2

a.u. ∆E(2p) = O(a4)

Spiegare perchè a priori ci si aspetta il risultato precedente per gli statip.

Osservazione. Un modo leggermente più generale per affrontare il problema precedente
è il seguente. Indichiamo conZ|e|ρ la distribuzione di carica del nucleo (ρ è la densità
“numerica”). SupponendoR� a

∆E = e
∫

d3r |ψ|2(V− Z|e|
r

)' e|ψ(0)|2
∫

d3r(V− Z|e|
r

)

Introducendo l’identità 1= 1
6∆r2 e integrando per parti

∆E =
1
6

e|ψ(0)|2
∫

d3r [∆V +4πZ|e|δ (3)(r)]r2

Utilizzando l’equazione di Poisson ed il fatto che l’integrale dir2δ (3)(r) è nullo:

∆E =
1
6

4πZ|e|2|ψ(0)|2
∫

d3rρr2 ≡ 2π

3
Z|e|2|ψ(0)|2〈r2〉

Per una distribuzione uniformeρ = 3/4πR3 si verificano immediatamente i risultati prece-
denti: in generale si ha che il cambiamento in energia è proporzionale al raggio quadratico
medio della distribuzione di carica.

10.3 Livelli degeneri.

La teoria perturbativa precedentemente esposta si applica al caso in cui〈n|V|k〉 � Ek−
En, in caso contrario, in particolare quando si ha una degenerazione, occorre cambiare
leggermente strategia.

SiaE0 il livello imperturbato. Perλ → 0 si avràE(λ )→ E0 ma a priori non sappiamo
in qualestato va a finire|ψ〉. SiaG0 lo spazio vettoriale generato dagli autostati corrispon-
denti all’autovaloreE0. g0 la degenerazione del livello, cioè la dimensione diG0: avremo
g0 stati linearmente indipendenti e a priori ognuno di esso può evolvere in uno stato diverso
con l’introduzione della perturbazioneλV.

Introduciamo come prima il proiettoreP sulla varietà degli stati corrispondenti all’au-
tovaloreE0: ora sarà una matriceg0×g0; Q indicherà sempre il proiettore ortogonale.

Qualunque sia lo stato|ψ0〉, l’equazione(H0−E0)|ψ0〉= 0 continua a valere.
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Consideriamo ora l’equazione al primo ordine

(H0−E0)|ψ1〉+(V− ε0)|ψ0〉= 0 (10.35)

Come prima proiettiamo sulla varietàG0:

P(V− ε0)|ψ0〉= 0

Questa ora è un’equazione matriciale, in pratica un sistema di equazioni lineari omogeneo.
Consideriamo infatti il nostro generico stato (incognito)|ψ0〉, indicando con|ϕi〉 una base
in G0 si ha

|ψ0〉=
g0

∑
k=1

ck|ϕk〉 (10.36)

e sostituendo nell’equazione precedente, moltiplicando a sinistra per〈ϕi | si ha

〈ϕi |V|ϕ j〉c j = ε1ci ⇒ Vi j c j = ε1ci (10.37)

Questa è un’equazione agli autovalori perε1 ed ha soluzione non banale solo se

det(V− ε1) = 0 (10.38)

che è l’equazione caratteristica per il sistema. Questa equazione avràg0 radici, gli autova-
lori appunto, e in corrispondenza di questi autovalorig0 autovettori:

|ψ̃0,1〉, |ψ̃0,2〉 . . . |ψ̃0,g0
〉

In questa base la matriceV è diagonale ed il livello originarioE0 si disintegrain diversi
sottolivelli. Ci possono essere due situazioni distinte:

1) Si hannog0 autovalori diversi: in questo caso si ha una disintegrazione completa, o,
come si dice normalmente, viene completamente rimossa la degenerazione.

2) Alcuni autovalori sono uguali; si ha una parziale rottura della degenerazione.

Vediamo come si prosegue nei due casi.

Caso 1.

Scegliamo uno degli autostati precedenti, diciamo|A〉, corrispondente all’autovaloreεA.
Questo stato fa le veci di|ψ0〉 nel caso non degenere. Proiettiamo l’equazione (10.35) con
Q: avremo il mescolamento di questo stato con gli stati|n〉 di H0 dovuto alla perturbazione:

Q(H0−E0)|ψ1〉+Q(V− εA)|A〉= 0 ⇒ Q(H0−E0)|ψ1〉+QV|A〉= 0 (10.39)

La matriceQ(H0−E0)Q continua ad essere invertibile, come nel caso non degenere, e si
ha

|ψ1〉= Q
1

E0−H0
QV|A〉 (10.40)

Tutto ora prosegue come nel caso non degenere, si avrà

ε2 = 〈A|VQ
1

E0−H0
QV|A〉 (10.41)

ed iterativamente si possono trovare le correzioni successive. Il puntoimportante da sot-
tolineare è che il proiettoreQ non è il proiettore sugli stati diversi da|A〉 ma il proiettore
sugli stati ortogonali aG0. Scrivendo la (10.41) in modo esplicito, ad esempio:

ε2 = ∑′
m〈A|V|m〉

1
E0−H0

〈m|V|A〉 (10.42)

gli stati |m〉 sono quelli corrispondenti agli autovaloriEm 6= E0 di H0, e non, ad esempio,
gli stati |B〉, |C〉 . . . della varietàG0.
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Caso 2.

Supponiamo che alcuni degli autovalori dell’equazione secolare (10.38) siano uguali. In
questo caso occorre reiterare la procedura.|ψ1〉 non è univocamente determinato se si
riferisce ad un sottolivello degenere, ma sarà un combinazione lineare di stati, inserendo
questa combinazione nell’equazione perε2 si ha un’ulteriore equazione secolare: se gli
autovalori sono diversi la degerazione è rimossa al secondo ordine, se no si va avanti.
Algebricamente la questione è chiara ma spesso i calcoli in questo caso sono lunghi e non
ci soffermeremo su questo punto. C’è un caso importante in cui la situazione si semplifica:
è possibile che per ragioni di simmetria due, o più stati, restino degeneri a qualunque ordine
in teoria delle perturbazioni, questo normalmente avviene se nel problema c’è qualche
simmetria. In questo caso la situazione è semplice: scegliamo gli stati, diciamo|A〉, |B〉,
in modo da diagonalizzareV. Questi stati non si mischieranno mai fra di loro e quindi per
ognuno di essi possiamo applicare le formule precedenti.

Per essere espliciti consideriamo un sistema atomico in presenza di un campo elettrico
esterno. SeH0 è invariante sotto rotazioni avremo, trascurando lo spin, una degenarazione
di ordine 2L + 1 dei livelli. Chiamiamoz l’asse che individua la direzione del campo
elettrico. L’interazione è della forma

V =−dzE

dovedz è la componentez del dipolo elettrico:

dz =−e∑
k

zk

la somma è estesa a tutti gli elettroni. L’hamiltonianaH = H0 +V è invariante per rota-
zioni attorno all’assez, quindi ML è ancora un buon numero quantico, ma in generale gli
austati diLz, |ML〉 non sono degeneri fra loro perchè[L ,H] 6= 0. L’hamiltoniana ha una
simmetria aggiuntiva esatta: una riflessione per un piano passante per l’assez lascia tutto
invariato, ad esempio l’operazioneR : y→−y. In questa operazione|ML〉 → |−ML〉 come
è facile vedere, quindi questi due stati sono necessariamente degeneri. Come vedremo una
generalizzazione di questo argomento è legata al time-reversal ed al teorema di Kramers.

10.4 Sistema a due livelli.

Consideriamo un sistema quantistico descritto da due soli stati,|+〉, |−〉. L’Hamiltoniana
del sistema siaH = H0 +V:

H = E0 +
(
−E1 −∆
−∆∗ E1

)
H0 =

(
−E1 0

0 E1

)
V =

(
0 −∆
−∆∗ 0

)
(10.43)

E0 è una costante additiva che non gioca nessun ruolo e verrà ignorata nel resto del paragra-
fo. Supporremo per semplicità∆ reale. Il sistema è facilmente diagonalizzabile risolvendo
l’equazione secolare per gli autovalori det(H−λ ) = 0. Come esercizio seguiamo però una
strada più istruttiva. Il sistema (10.43) può essere sempre pensato come uno spin 1/2 in un
“campo magnetico” con componenti2

Bz = E1 Bx = ∆ H =−σ3Bz−σ1Bx ≡−σσσ ·B (10.44)

2I segni nella (10.43) sono stati scelti in modo da semplificare questa identificazione. Per uno spin 1/2 l’intera-
zione si scrive−µσσσ ·B, doveµ è il momento magnetico, quindi il campoB delle formule seguenti va identificato
conµB nel caso concreto di uno spin.
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In coordinate polari, chiamandoθ l’angolo diB con l’assez:

Bz = Bcosθ Bx = Bsinθ H =−B

(
cosθ sinθ

sinθ −cosθ

)
(10.45)

B =
√

E2
1 +∆2 tanθ =

∆
E1

Diagonalizzare l’hamiltoniana significa perciò effettuare una rotazione diθ in senso antio-
rario attorno all’assey del sistema di riferimento (o ruotare il vettoreB in senso orario). In
una rappresentazione 1/2 del momento angolare tale rotazione è:

R= exp(i
θ

2
σ2) = cos

θ

2
+ i sin

θ

2
σ2 =

 cosθ

2 sin θ

2

−sin θ

2 cosθ

2

 (10.46)

e si ha, come è facile verificare

Rσ3R† = cosθσ3−sinθσ1 Rσ1R† = sinθσ3 +cosθσ1 (10.47)

Sostituendo nella (10.45) si ha effettivamente

RHR† =−Bσ3 =
(
−B 0

0 B

)
I due autovettori, corrispondenti allo stato fondamentale|g〉 ed allo stato eccitato|e〉 sono
i ruotati degli stati|+〉, |−〉:

|g〉= R†|+〉= R†
(

1
0

)
=

(
cosθ

2

sin θ

2

)

|e〉= R†|−〉= R†
(

0
1

)
=

(
−sin θ

2

cosθ

2

)
(10.48)

Il lettore può verificare sostituendo nella (10.45) che

H|g〉=−B|g〉 H|e〉= +B|e〉

Riconsideriamo ora i risultati dal punto di vista della teoria perturbativa. PerE1 6= 0 il
livello è non degenere. Non c’è correzione al primo ordine sui livelli perchè〈+|V|+〉 =
〈−|V|−〉= 0, mentre la correzione agli stati è

|g〉= |+〉+ 〈−|V|+〉
E+−E−

· |−〉 = |+〉+
(
−∆
−2E1

)
|−〉 ' |+〉 +

(
θ

2

)
|−〉

|e〉= |−〉+ 〈+|V|−〉
E−−E+

· |−〉 = |−〉+
(
−∆
2E1

)
|−〉 ' |−〉 −

(
θ

2

)
|+〉

in accordo con lo sviluppo al primo ordine inθ delle espressioni (10.48).
Per E1 → 0 il sistema diventa degenere, l’angoloθ non è piccolo. Poichè tanθ =

∆/E1 si ha che il valore diθ , nel limite di degenerazione, dipende dal segno di∆/E1, per
l’esattezza

lim
E1/∆→0

θ =

{
+π

2 E1/∆ > 0

−π

2 E1/∆ < 0

Corrispondentemente, ad esempio

lim
E1→0+

|g〉=

{
1√
2
(|+〉+ |−〉)≡ |S〉 ∆ > 0

1√
2
(|−〉− |+〉)≡ |A〉 ∆ < 0

(10.49)
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Figura 10.1: Energia dello stato fondamentale in funzione di∆ e diBx,By.

Gli stati |S〉, |A〉, simmetrico e antisimmetrico, diagonalizzano l’Hamiltoniana degenere
ma vediamo che il vettore|g〉 non è analiticoin ∆: infatti è discontinuo per∆→ 0. Questo
è esattamente ciò che a priori ci si aspetta nella teoria delle perturbazioni di un livello
degenere: l’energia dello stato fondamentale vale−|∆|, è continua ma ha derivata prima
discontinua, gli stati dipendono invece in maniera discontinua dalla perturbazione. Per
∆→ 0 lo stato|g〉 tendo ad uno stato della varietà bidimensionale descritta da|+〉, |−〉, ma
il limite a cui tende non è univoco. È semplice generalizzare questa analisi al caso in cui∆
è complesso; il “campo magnetico”B avrà anche una componentey. Introducendo ancora
coordinate polari per descrivereB

Bx = Bsinθ cosϕ By = Bsinθ sinϕ Bz = Bcosθ B =
√

E2
1 + |∆|2

La componentey può essere rimossa con una rotazione diϕ attorno all’assez: Rz(ϕ) =
exp(iϕ/2·σ3). Nella nuova base

|+〉′ = R†
z(ϕ)|+〉= e−i ϕ

2 |+〉 |−〉′ = R†
z(ϕ)|−〉= ei ϕ

2 |−〉

l’Hamiltoniana assume la forma precedente e l’analisi si ripete. In questo caso il ter-
mine fuori diagonale è|∆| > 0, quindi nel limite di degenerazione l’energia dello stato
fondamentale e lo stato sono

Eg =−|∆|=−
√

B2
x +B2

y |g〉=
1√
2

(
|+〉′+ |−〉′

)
=

1√
2

(
e−i ϕ

2

e+i ϕ

2

)
(10.50)

La singolarità ha ora una forma conica, nello spazio dei parametriBx,By, mentre lo stato
fondamentale dipende ora daϕ.

In generale dalla (10.48) segue

|g〉= cos
θ

2
|+〉′+sin

θ

2
|−〉′ = cos

θ

2
e−i ϕ

2 |+〉+sin
θ

2
ei ϕ

2 |−〉 (10.51)

Notiamo che perϕ che varia da 0 a 2π lo stato|g〉 acquista una faseπ, cioè cambia se-
gno. Come vedremo nel capitolo 15 nel caso di una variazione lenta del campoB la fase
acquistata dal vettore|g〉 è puramente geometrica ed è una delle caratteristiche topologiche
legate alla singolarità prima illustrata nella funzioneEg (fase di Berry).
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Esercizio 3. Verificareesplicitamenteche il vettore (10.51) è l’autostato con energia più
bassa dell’Hamiltoniana. Si consiglia di riscrivereH usando le matriciσ±.

Vogliamo illustrare un ulteriore punto, delicato, che è proprio alla base dello studio
della fase di Berry. Consideriamo l’Hamiltoniana del sistema per un certo valore diB,θ ,ϕ.
In generale il sistema è non degenere. Supponiamo ora di cambiare leggermenteθ e ϕ e
usiamo la teoria delle perturbazioni. Come abbiamo visto localmente è sempre possibile
soddisfare il vincolo (10.29) che per lo stato fondamentale si traduce in〈g|∂

λ
g〉 = 0. Se

calcoliamo esplicitamente le derivate, usando l’ espressione (10.51)

〈g| ∂

∂θ
|g〉= 0 (10.52a)

〈g| ∂

∂ϕ
|g〉=− i

2
cosθ (10.52b)

L’espressione (10.52b) è, correttamente, puramente immaginaria elocalmentepuò essere
riassorbita da una faseα(ϕ), v. eq.(10.31):

dα

dϕ
=

1
2

cosθ α =
ϕ

2
cosθ

Questa fase però non può essere estesa globalmente. Infattiα(2π) 6= α(0), cioè la fase non
è una funzione ad un solo valore. Come discuteremo più avantiα è sostanzialmente la fase
di Berry.

Modello per la molecolaNH3

Una molecola di ammoniaca,NH3 è costituita da tre atomi di idrogeno coplanari ed un
atomo di azoto fuori da questo piano, il tutto con una configurazione di piramide triangola-
re. Se “fotografiamo” la molecola congelando le rotazioni gli stati saranno contrassegnati
dalle piccole oscillazioni degli atomi attorno alle loro posizioni di equilibrio. È chiaro, per
simmetria, che l’azoto a priori può avere due posizioni di equilibrio, una sopra il piano
formato dagli atomi di idrogeno ed una sotto. Il potenziale che determina le oscillazio-
ni dell’azoto deve avere quindi due minimi corrispondenti ai due punti di equilibrio. Se
consideriamo solo l’assez, perpendicolare al piano, il problema si riduce ad un problema
unidimensionale con un potenziale della forma approssimativa illustrata in figura 10.2.
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H

H H
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H

H H

-1.5 -1 -0.5 0 0.5 1 1.5
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-0.3
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0.2

0.3

0.4

U(z)

E
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Figura 10.2: Rappresentazione schematica di una molecola di ammoniaca e del potenziale
per l’atomo di azoto.
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Il potenziale è simmetrico per riflessioniz→−z. Il corrispettivo quantistico di questa
descrizione deve essere l’esistenza di due stati, quasi stazionari,|+〉, |−〉 corrispondenti
appunto ad oscillazioni attorno alle due posizioni di equilibrio. Questa però non può essere
la descrizione realistica del sistema, sappiamo che in un potenziale unidimensionale sim-
metrico la funzione d’onda dello stato fondamentale deve essere pari, mentra gli stati|+〉
e |−〉 vanno uno nell’altro per inversione, quindi non sono autostati della parità. Quello
che accade quantisticamente è che la particella da una parte della buca può attraversare la
barriera di potenziale e passare dall’altra parte, è ciò che si chiamaeffetto tunneling. Im-
pareremo a calcolare questo effetto in seguito. Qui vogliamo solo scrivere l’Hamiltoniana
effettiva che descrive questa situazione. Se non ci fosse attraversamento della barriera i due
stati dovrebbero essere completamente simmetrici e l’Hamiltoniana sarebbe

H0 =
(

E0 0
0 E0

)
P =

(
0 1
1 0

)
(10.53)

Abbiamo anche scritto l’operatore di parità,P, che scambia i due stati fra loro. L’effetto
dell’attraversamento di barriera provoca una sovrapposizione degli stati nelle due regioni
ed in corrispondenza gli elementi di matrice dell’Hamiltoniana fuori diagonale non saranno
esattamente nulli, ma appunto proporzionali a questa sovrapposizione delle funzioni d’onda

H =
(

E0 −∆
−∆ E0

)
(10.54)

Siamo esattamente nella situazione descritta all’inizio di questo paragrafo, nel casoE1 = 0.
I due autostati diH sono

|g〉=
|+〉+ |−〉√

2
≡ |S〉 |e〉=

|−〉− |+〉√
2

≡ |A〉 (10.55)

Siccome sappiamo che lo stato fondamentale deve essere simmetrico in questo caso si deve
avere∆ > 0, come discusso prima. Dall’espressione esplicita diP, eq.(10.54), possiamo
verificare immediatamente cheP|g〉 = |g〉 P|e〉 = −|e〉. Useremo questo modello per la
molecola di ammoniaca nel seguito del capitolo per esemplificare l’effetto Stark su sistemi
degeneri.

Esercizio 4. In meccanica quantistica sappiamo che la scelta delle fasi per uno stato è arbi-
traria, quello che contano sono i raggi. D’altronde il segno di∆ = 〈+|H|−〉 sembra dipen-
dere dalla scelta della fase dello stato|−〉. Come si concilia questo fatto con l’affermazione
che lo stato fondamentale dell’equazione di Schrödinger deve essere simmetrico?

10.5 Effetto Stark su oscillatore armonico

Si chiama effetto Stark l’effetto sui livelli energetici di un sistema indotto da un campo
elettrico statico uniforme. Tratteremo in dettaglio questo effetto per sistemi più realistici
nel seguito, consideriamo ora il caso semplice di un oscillatore armonico.

Il modello è quello di un dipolo oscillante, cioè di una caricae legata elasticamente.
q indica la coordinata canonica. Il sistema ha un operatore di dipolo elettricod = eq e
l’interazione col campo è descritta da

H =
1

2m
p2 +

1
2

mω
2q2−eE q (10.56)

Riscrivendo il termine di potenziale come

1
2

mω
2q2−eE =

1
2

mω
2
(

q− eE
mω2

)2

− 1
2

e2E 2

mω2 (10.57)
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e cambiando variabili con la trasformazione canonica

P = p Q= q− eE
mω2

l’Hamiltoniana si riscrive

H =
1

2m
P2 +

1
2

mω
2Q2− 1

2
e2E 2

mω2 (10.58)

ed è chiaro che si ha uno spostamento di tutti i livelli della stessa quantità

∆E =−1
2

e2E 2

mω2 (10.59)

Verifichiamo questo risultato con la teoria perturbativa.

• Al primo ordine, per parità:

〈n|V|n〉=−eE 〈n|q|n〉= 0

• Al secondo ordine gli unici stati che contribuiscono sono|n+1〉, |n−1〉.

〈n|q|n+1〉=
(

~
mω

)1/2 1√
2
〈n|a|n+1〉=

(
~

mω

)1/2√n+1
2

〈n|q|n−1〉=
(

~
mω

)1/2 1√
2
〈n|a†|n−1〉=

(
~

mω

)1/2√n
2

quindi

δE(2) =
1
2

~
mω

(eE )2
[

n
~nω−~ω(n−1)

+
n

~nω−~ω(n+1)

]
=−1

2
e2E 2

mω2 (10.60)

Osservazioni.

• Il sistema imperturbato (E = 0), è invariante sotto parità e non ha dipolo elettrico, in
qualunque stato stazionario.

• Il sistema perturbatonon è invariante sotto paritàed ha un dipolo elettrico, un dipolo
indotto. L’Hamiltoniana (10.58) è invariante sotto la trasformazioneQ→−Q, che
non è la trasformazione di parità del sistema originario, quindi i suoi autostati sono
invarianti, da cui, per uno stato stazionario esatto:

〈ψ|d|ψ〉= e〈ψ|q|ψ〉= e〈ψ|Q|ψ〉+e〈ψ| eE
mω2 |ψ〉=

e2E

mω2 (10.61)

• Il coefficiente di proporzionalità fra dipolo indotto e campo esterno è lapolarizzabi-
lità α del sistema, quindi in questo caso

α =
e2

mω2

Notiamo cheα ha le dimensioni di una lunghezza al cubo, cioè di un volume.

• L’energia di interazione, misurata dal cambiamento del livello energetico del sistema
(10.59) è della forma

∆E =−1
2

αE 2

in accordo con la teoria classica. Notiamo che in questo caso l’energia dello stato
diminuisce in accordo con quanto notato prima.
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• La relazione
∂∆E
∂E

=−αE

è una verifica del teorema di Hellmann-Feynman:

〈ψ|∂H
∂E

|ψ〉=−e〈ψ|q|ψ〉=−αE

10.6 Interazione di dipolo e polarizzabilità.

Vediamo come i risultati ottenuti nel paragrafo precedente per il dipolo si generalizzano
ad un sistema qualunque in interazione di dipolo elettrico, in particolare ad un atomo.
L’Hamiltoniana dia interazione elettrostatica di un sistema di caricheea in un potenziale
elettrostatico esternoΦ si scrive

V = ∑eaΦ(qa) (10.62)

Supponiamo che il sistema sia “piccolo” e distribuito attorno a una posizioneR nel nostro
sistema di coordinate. Allora postoqa = R + xa possiamo sviluppare in serie la (10.62)
limitandoci al primo ordine inx

V '∑eaΦ(R)−∑
a

eaxa ·E(R)+O

(
a2 ∂ 2Φ

∂R2

)
(10.63)

L’approssimazione è buona quando il termine trascurato è piccolo.
In questo paragrafo ci limiteremo allo studio di sistemi globalmente neutri, ad atomi,

una generalizzazione di questa discussione ed alcune precisazioni saranno svolte nel ca-
pitolo 14. Per un atomo il primo termine nella (10.63) è nullo. Nel secondo termine il
fattore che contiene le variabili del sistema,xa, ha un’importante proprietà: non dipende
dalla scelta dell’origine delle coordinate, infatti per traslazione

xa → xa +a ⇒ ∑
a

eaxa →∑
a

eaxa +∑
a

eaa = ∑
a

eaxa

descrive quindi una proprietà intrinseca del sistema, come è noto questa quantità si chiama
dipoloed è definita da

d = ∑
a

eaxa (10.64)

In effetti è facile vedere che il dipolo del sistema si può scrivre in termini delle sole
coordinate elettroniche rispetto al nucleo:

∑eaxa = ∑
el

−|e|xel +Z|e|xN =−|e|∑
el

(xel−xN)

In pratica è come scegliere il nucleo nell’origine del sistema di coordinate. In questo modo
la (10.64) prende la forma che abbiamo usato anche nel paragrafo precedente

d = e∑
el

xa (10.65)

L’Hamiltoniana di interazione (10.63) si riscrive nella forma:

V =−d ·EEE (10.66)

doved è il dipolo elettrico del sistema edEEE il campo elettrico calcolato nell’origine, cioè
per le coordinate nucleari.
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Proprietà sotto parità.

Supponiamo che l’HamiltonianaH sia invariante sotto parità. Esplicitamente questo signi-
fica che esiste un operatore unitarioP nello spazio di Hilbert, la cui azione sulle variabili
posizionexa è

PxaP† =−xa P† = P−1 (10.67)

e che commuta con l’Hamiltoniana
[P,H] = 0 (10.68)

Dalla (10.68) discende cheP è diagonalizzabile simultaneamente aH, cioè fra i numeri
quantici degli autostati diH possiamo annoverare anche gli autovalori diP. PoichèP2 = 1
gli autovalori diP, ηP, possono essere solo±1.

Il valor medio dell’operatore di dipolo suqualunqueautostato della parità è nullo.
Infatti

〈ψ|d|ψ〉 ≡ 〈ψ|P−1PdP−1P|ψ〉〈ψ|P†PdP†P|ψ〉
=−|ηP|

2〈ψ|PdP†|ψ〉=−〈ψ|d|ψ〉 (10.69)

In generale, a meno di degenerazioni accidentali, due autostati diH con valori diηP
differente non sono degeneri in energia, cioè appartengono ad autovalori differenti diH,
in questo senso possiamo dire, genericamente, che ogni autostato diH ha parità definita e
quindi: il valor medio del dipolo elettrico su un qualunque autostato dell’Hamiltoniana è
nullo:

〈ψ0|d|ψ0〉= 0 (10.70)

Come abbiamo detto l’unica eccezione a questo teorema è la presenza di una degenerazione
accidentale dell’Hamiltoniana: ad esempio gli statise p in un potenziale coulombiano han-
no parità opposta ma la stessa energia. Bisogna ora distinguere fra modelli vari e realtà fisi-
ca: in natura, almeno al livello di energie di cui ci occuperemo in questo testo, l’unica vera
interazione è quella elettromagnetica: comunque complicato sia il sistema l’Hamiltoniana
di base è quella elettromagnetica e questaè invariante sotto parità.

Se poi andiamo ad indagare con cura, cosa che in una certa misura faremo nel seguito
del capitolo, in naturanon esistonodegenerazioni accidentali, ad esempio nello stesso ato-
mo di idrogeno esistono altri termini nell’Hamiltoniana, oltre a quello coulombiano, che
rimuovono la degenrazione. Questo non è un teorema ma è da una parte buon senso3 dal-
l’altra una constatazione: i sistemi reali sono atomi e molecole e questi sistemi, per via
di varie correzioni come l’interazione fra spin e momento orbitale, correzioni relativisti-
che e quant’altro, non presentano degenerazione accidentaleesatta. Alcuni sistemi però
presentano una degenerazioneapprossimata, come l’atomo di idrogeno o alcune molecole.
Questa circostanza permette di definire approssimativamente, in certe condizioni, un dipolo
elettrico “intrinseco” del sistema, ed in questo senso si parla di “dipolo del sistema”.

Dal punto di vista osservabile un dipolo è definito dalla risposta del sistema ad una
variazione infinitesima di un campo elettrico, formalmente

D =− ∂E
∂EEE

(10.71)

E è l’energia del sistema in presenza di campo. Se

lim
EEE→0

D = D0 6= 0 (10.72)

si dice che il sistema ha un dipolo intrinseco,D0. Il termine quadratico inE produce invece
un dipolo proporzionale aE e questo viene chiamato dipolo indotto.

Si tratta quindi di studiare come cambiano i livelli energetici dell’Hamiltoniana in
presenza di un campo esterno, l’insieme di questi fenomeni prende il nome di effetto Stark.

3Suffragato dall’analisi fatta nel paragrafo precedente: in una Hamiltoniana generica si ottiene degenerazione
solo con un aggiustameto a mano dei parametri.
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Effetto Stark.

Supponiamo che lo stato sia non degenere e che gli elementi di matrice diV siano nulli
fra stati con energiaE0, cosa che si verifica di sicuro se il sistema, in assenza di campo
elettrico, è invariante sotto parità, eq.(10.70). Possiamo allora applicare le formule per la
teoria perturbativa su stati non degeneri. Il primo contributo non nullo al valore dell’energia
si ha al secondo ordine inV

δE(2) = ∑′
n〈ψ0|d ·EEE |n〉

1
E0−En

〈n|d ·EEE |ψ0〉 ≡ −
1
2

αi j EiE j (10.73)

dove si è definito il tensore di polarizzazione:

αi j = ∑′
n〈ψ0|di |n〉

1
En−E0

〈n|d j |ψ0〉+( j ↔ i) (10.74)

L’assenza del termine lineare inEEE significa che non si ha dipolo intrinseco. Si ha invece un
dipolo indotto:

D =− ∂E
∂EEE

⇒ Di = αi j E j (10.75)

Il termine è appropriato: classicamente è dovuto alla deformazione del sistema in presenza
del campo, quantisticamente è proprio il valor medio dell’operatoe di dipolo sullo stato
modificato dalla presenza del campo. Questo, come nel caso dell’oscillatore, può essere
verificato in due modi

• Dal teorema di Hellmann-Feynman. UsandoH = H0−d ·EEE :

αi j E j =− ∂E
∂Ei

=−〈ψ|∂H
∂Ei

|ψ〉= 〈ψ|di |ψ〉 (10.76)

• Calcolo esplicito. Scrivendo lo stato perturbato al primo ordine come|ψ0〉+ |ψ1〉:

|ψ1〉= ∑′
n |n〉

1
E0−En

〈n|−dkEk|ψ0〉= ∑′
n |n〉

〈n|dk|ψ0〉
En−E0

Ek

si ha per il valor medio del dipolo:

Di = (〈ψ1|+ 〈ψ0|)di(|ψ0〉+ |ψ1〉)' 〈ψ1|di |ψ0〉+ 〈ψ0|di |ψ1〉

= ∑′
n

1
En−E0

Ek

[
〈ψ0|dk|n〉〈n|di |ψ0〉+ 〈ψ0|di |n〉〈n|dk|ψ0〉

]
= αi j Ek

Come si vede dalle formule precedenti l’ordine di grandezza per l’effetto considerato è

α ∼ e2a2

∆E
[α] = cm3

Se l’energia di legame è di tipo elettrostatico ci si aspetta∆E ∼ e2/a e quindiα ∼ a3, cioè
la polarizzabilità è proporzionale al volume del sistema.

Osservazione

Il tensoreαi j è simmetrico. Possiamo decomporlo in una parte proporzionale all’identità ed in una
parte a traccia nulla:

αi j = αkk
1
3

δi j +
(

αi j −αkk
1
3

δi j

)
≡ αδi j +βi j (10.77a)

α =
2
3 ∑′

n〈ψ0|di |n〉
1

En−E0
〈n|di |ψ0〉 (10.77b)
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L’operatore che compare nella (10.77b)

∑′
ndi |n〉

1
En−E0

〈n|di

è ovviamente invariante sotto rotazioni perchè la somma è effettuata su tutti gli stati, quindi su tutte
le proiezioni del momento angolare degli stati|n〉 e le energieEn sono supposte non dipendere daJz,
cioè il sistema è invariante sotto rotazioni.

Nel multipletto di momento angolare a cui appartiene|ψ0〉 allora, per il teorema di Wigner-
Eckart, questo operatore deve essere un multiplo dell’identità, vale a dire il valore diα sullo stato
|ψ0〉= |n,J, jz〉, non dipendedalla proiezioneJz del momento angolare.

Il tensoreβi j d’altro canto è un tensore simmetrico a traccia nulla, quindi trasforma secon-
do la rappresentazioneJ = 2 di SO(3). Sempre dal teorema di Wigner-Eckart segue che i suoi
elementi di matrice, nel multipletto di momento angolare cui appartieneψ0 sono proporzionali a
JiJk + JkJi −

2
3J2δi j . quindi se chiamiamo assez la direzione diE e quantizziamo secondo questo

asse, la separazione indotta sui sottolivelli al variare diJz ha la forma

δE(J,Jz) =
1
2
E 2
[

α +B(J2
z −

1
3

J(J+1))
]

(10.78)

Notiamo cheα rappresenta il baricentro dello spostamento energetico: fare la traccia è la stessa
cosa che sommare suJz quindi la somma sui vari termini proporzionali aB si annulla, il che si può
verificare anche direttamente notando che

1
2J+1

Jz=+J

∑
Jz=−J

J2
z =

1
3

J(J+1)

Notiamo infine che gli stati conJz opposto sono degeneri. Questa è una conseguenza del fatto che
l’Hamiltoniana totale, compresa la perturbazione, è invariante per riflessioni attorno ad un piano
passante per l’assez, es. il pianoxz. In questa operazione la proiezioneJz del momento angolare
cambia segno, quindi due stati che differiscono per il segno diJz sono necessariamente degeneri.

C’è una differenza fondamentale fra il caso dell’oscillatore armonico e quello generale.
In virtù delle regole di selezione per un oscillatore a partire da uno stato|n〉 sono rag-
giungibili, con elementi di matrice di dipolo, solo gli stati|n±1〉 ciò significa, come è
esplicitamente messo in evidenza nella (10.60), che solo un denominatore di energia com-
pare:En−En−1 = ~ω. Sappiamo che le transizioni elettromagnetiche in un sistema sono
regolate appunto dalle differenze di energie dei livelli e, come vedremo, le ampiezze di
probabilità di transizione sono determinate, in approssimazione di dipolo elettrico, dagli
elementi di matrice di dipolo. Identificando i salti energetici con le righe spettrali di un si-
stema, vediamo che alla polarizzabilità di un oscillatore contribuisce una sola riga spettrale,
l’unica presente in approssimazione di dipolo, mentre per un sistema generico la polariz-
zabilità è legata a molte righe. Da un punto di vista classico questo è legato al fatto che un
sistema generico non è armonico. È chiaro che un campo elettrico statico è il caso limite
a frequenza nulla di un campo oscillante del tipoE (t) = E0cosω0t. Le transizioni indotte
da questo tipo di campo, un’onda piana elettromagnetica, sono legate alle righe spettrali,
quindi per un certo verso la polarizzabilità di un sistema è uno dei parametri più semplici
che descrivono la complessità di un sistema.

10.6.1 Effetto Stark su livelli quasi degeneri.

Vediamo ora come cambiano le considerazioni precedenti in presenza di livelli (quasi) de-
generi. L’esempio più semplice è ancora un sistema a due livelli, precisamente la molecola
di ammoniaca descritta alla fine del paragrafo 10.4.

Nel legame molecolare azoto-idrogeno l’atomo di azoto è elettronegativo e tende ad
attirare gli elettroni degli atomi di idrogeno. In una situazione come quella rappresentata
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nella figura 10.2 la distribuzione di carica è asimmetrica rispetto al pianoxy, il momento di
dipolo sugli stati|+〉, |−〉 sarà quindi non nullo, poniamo

d = 〈+|ez|+〉 −d = 〈−|ez|−〉 〈+|ez|−〉= 0 (10.79)

il segno relativo fra i due termini è obbligatorio. Fisicamente è dovuto al fatto che quando
l’azoto inverte la posizione rispetto al piano l’asimmetria di carica diventa di segno opposto,
matematicamente è dovuto al fatto che gli stati|−〉 sono ottenuti dagli stati|+〉 attraverso
l’operazione di parità4 definita nella (10.53). Per riflessione attorno al pianoxy, z→−z
quindi

〈−|ez|−〉= 〈+|P†ezP|+〉=−〈+|ez|+〉

come scritto nella (10.79). Analogamente, assumendo che con la nostra scelta delle fasi gli
elementi di matrice siano reali:

x = 〈+|ez|−〉= 〈−|P†ezP|+〉=−x∗ =−x

che è l’ultima uguaglianza scritta nella (10.79).
Notiamo che gli stati|+〉, |−〉 non sono autostati dell’Hamiltoniana,quindi la (10.79)

non è in contraddizione con l’affermazione generale (10.70). Possiamo anzi facilmente
verificare che per gli autostati della parità e dell’Hamiltoniana,|g〉, |e〉, v. eq.(10.55),

〈g|ez|g〉= 0 = 〈e|ez|e〉

Supponiamo ora che sia presente un campo elettrico diretto lungo l’assez, gli elementi
di matrice dell’Hamiltoniana diventano:

H =
(

E0−dE −∆
−∆ E0 +dE

)
(10.80)

Questa Hamiltoniana non commuta più con la paritàz→ −z ovviamente. La (10.80) è
esattamente il modello studiato nel paragrfo 10.4 conE1→ dE , e possiamo quindi scrivere
direttamente autovalori ed autostati, che indicheremo con|g〉E , |e〉E per chiarezza

E = E0∓
√

∆2 +(dE )2 (10.81a)

|g〉E =

(
cosθ

2

sin θ

2

)
|e〉E =

(
−sin θ

2

cosθ

2

)
tanθ =

∆
dE

(10.81b)

Dalle (10.81) si capisce bene con quale meccanismo possa nascere un effetto Stark lineare
e quindi una, apparente, violazione della (10.70). Per campi elettrici grandi, in modo che
dE � ∆ gli autovalori ed autostati diventano (θ → 0):

E = E0∓dE |g〉E = |+〉 |e〉E = |−〉 (10.82)

Classicamente si può dire che nella molecola l’atomo di azoto si “allinea” col campo
elettrico, o che il dipolo del sistema si allinea col campo elettrico. In questo regime si
ha

E 〈g|ez|g〉E ' 〈+|ez|+〉= d E 〈e|ez|e〉E ' 〈−|ez|−〉=−d (10.83)

e a tutti gli effetti il sistema si comporta come se avesse un dipolo permanente.
Per piccoli campi però, cioè perdE → 0, ( supponiamodE > 0,θ → π/2):

E→ E0∓
(

∆+
1
2

d2E 2

∆

)
|g〉E ' |g〉 |e〉E ' |e〉 (10.84)

4L’operazione di riflessione attorno al pianoxy inrealtà è la combinazione di una operazione di parità e di una
rotazione di 180 gradi attorno all’assez, per brevità chiamiamo parità anche questa operazione, stiamo assumendo
in ogni caso che le rotazioni attorno all’assez siano una simmetria del sistema e questo, quindi, non influenza la
nostra discussione.
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si ha quindi, correttamente, un effetto Stark quadratico e la polarizzabilità degli stati è data
da:

αg =
d2

∆
αe =−d2

∆
(10.85)

Possiamo anche verificare le (10.85) direttamente. PerdE → 0+ θ → π

2 −
dE
∆ e

|g〉E '
1√
2

(
(1+

dE

2∆
)|+〉 + (1− dE

2∆
)|−〉

)
(10.86a)

|e〉E '
1√
2

(
(1− dE

2∆
)|−〉 − (1+

dE

2∆
)|+〉

)
(10.86b)

Calcolando il valor medio diezsugli stati (10.86) si ottiene

E 〈g|ez|g〉E =
d2

∆
E E 〈e|ez|e〉E =−d2

∆
E (10.87)

in accordo con la (10.85). Notiamo che lo stato eccitato ha momento di dipolo indotto con-
trario a quello diE , cioè si comporta, in campo elettrico, come un materiale diamagnetico
in campo magnetico. Questo non deve stupire: la polarizzabilità è definita positiva solo per
lo stato fondamentale.

Un meccanismo simile a quello qui descritto avviene per tutti i sistemi che presentano
un “dipolo permanente”. Ad esempio vedremo nel paragrafo successivo che trascurando
la separazione fra gli statis e p in un atomo di idrogeno, assumendo cioè presente la sola
interazione coulombiana, il sistema è degenere e, ad esempio, il livellon = 2 ha un effetto
Stark lineare, nel compemento 10.H verrà calcolato l’effetto Stark tenendo conto delle
correzioni relativistiche e si constaterà che per piccoli campi l’effetto è quadratico inE .

10.7 Effetto Stark sul livello n=2 dell’atomo di Idrogeno.

Un esempio tipico in cui può essere illustrata la teoria delle perturbazioni su livelli degeneri
è l’effetto Stark sul primo livello eccitato dell’atomo di idrogeno.

Effettueremo il calcolo standard e poi commenteremo sul significato e l’approssima-
zione di quanto fatto.

Pern = 2 si ha, in approssimazione non relativistica, un livello 4 volte degenere, con la
notazione convenzionale gli stati sono

|2s〉 |2p,0〉 |2p,±1〉 (10.88)

Scegliamo l’asse di quantizzazione del momento angolare lungo la direzione,z, del campo
elettrico. L’Hamiltoniana di interazione è

V =−ezE (10.89)

Regole di selezione.

Per calcolare gli elementi di matrice diV osserviamo che esistono le seguenti regole di
selezione:

1) V è dispari sotto parità, quindi connette solo stati a parità diversa, quindi sono diversi
da zero solo gli elementi di matrice fra lo statos e gli statip.

2) V commuta conLz quindi non connette stati adLz differente.

Dalle due osservazioni precedenti discende che l’unico elemento di matrice eventualmente
non nullo è

〈2s|V|2p,0〉
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ed il suo complesso coniugato. Usando la forma esplicita delle funzioni d’onda, in unità
atomiche:

ψ2s =
1√
8π

e−r/2
(

1− r
2

)
ψ2p,0 =

1

2
√

6
re−r/2

√
3

4π
cosθ ≡ 1

2
√

8π
ze−r/2

Si ha, ricordando che la media angolare di cos2 θ è 1
3:

〈2s|V|2p,0〉=−eE
1

16π

∫
dΩr2dre−rz2

(
1− r

2

)
=

=−eE
1

16π

4π

3

∫ ∞

0
dr r4

(
1− r

2

)
e−r =−eE

1
12

(4!− 1
2

5!) = 3eE

In unità normali〈2s|V|2p,0〉 = 3eE a. La matriceH sulla varietà(2s,2p) si scrive allora,
ordinando gli stati con|2s〉, |2p,0〉, |2p,1〉, |2p,−1〉

E2 3E a 0 0
3E E2 0 0
0 0 E2 0
0 0 0 E2

 (10.90)

Come preannunciato il campo elettrico non rimuove completamente la degenerazione. Gli
stati |2s〉, |2p,0〉 sono mescolati fra loro. Le correzioni perturbative adE2 si ottengono
dall’equazione secolare

det

(
−ε2 3eaE
3eaE −ε2

)
= 0

e sono
ε2 =±3eaE

Ed è facile vedere che gli autostati si ottengono come somma e differenza dei due stati di
partenza. La situazione finale è allora

|2p,±1〉 E = E2

|A〉 ≡ 1√
2

(|2s〉+ |2p,0〉) E = E2−3eaE

|B〉 ≡ 1√
2

(|2s〉− |2p,0〉) E = E2 +3eaE

Vediamo quindi che siamo in presenza di un effetto Starklineare. Possiamo verificare che
gli autostati|A〉, |B〉 hanno un dipolo medio non nullo, cosa permessa visto che non sono
autostati della parità:

〈A|z|A〉 ' 1
2
(〈2s|z|2p,0〉+ 〈2p,0|z|2s〉) =−3a

〈B|z|B〉 ' −1
2
(〈2s|z|2p,0〉+ 〈2p,0|z|2s〉) = +3a

Osservazioni.

Dal calcolo fatto vediamo che il livellon= 2 si separa in 3 livelli con distanza relativa 3aE .
Poichéa' 0.5·10−8cm, misurandoE in V/cm si ha una separazione

3E ea' 1.5·10−8E eV

che per campi “ragionevoli”,E � 109V/cm, è piccola e quindi la teoria perturbativa fun-
ziona.

Lo schema adottato è ragionevole nella misura in cui il livello di partenza sia effettiva-
mente degenere. In realtà ci sono degli effetti che stiamo trascurando:
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1) Si verifica, come è da aspettarsi, che la separazione cresce con il numero quantico
principale,δE ∼ n2, questo perchè il raggio dell’orbita cresce comen2.

2) L’effetto del secondo ordine èV2/∆E. Per grandi campi e livelli eccitati questo
contributo cresce in importanza, poichè le differenze di energia fra i livelli,∆E,
diminuiscono.

3) L’interazione relativistica fra il momento angolare orbitale e lo spin produce una di-
sintegrazione del livello 2p, in praticaL non è un buon numero quantico ed i livelli
sono distinti dall’autovalore dij2, conj = l +s. Questa correzione rimuove parzial-
mente la degenerazione e si ha un livello conj = 3/2 e un livello conj = 1/2. In
questa approssimazione lo stato 2s1/2 resta degenere con lo stato 2p1/2. Abbiamo
trascurato questo effetto nel calcolo. La separazione di cui stiamo parlando si chia-
ma di struttura fine, e, come ordine di grandezza, è circa 4.5·10−5eV. La trattazione
che abbiamo dato è corretta per campi abbastanza grandi da trascurare la separazione
di struttura fine.

4) Per campi più deboli ci sono ancora altri effetti da considerare, da una parte si ha
una, piccola, interazione fra il momento magnetico nucleare e quello elettronico,
dall’altra correzioni indotte da processi virtuali di emissione e assorbimento di fotoni,
provocano una separazione fra il livello 2s1/2 e 2p1/2. La separazione dei livelli,

dettaLamb shift, è circa 10−6 eV, per l’esattezza sul livellon = 2 la separazione
Stark diventa confrontabile con il Lamb shift per campi di circa 475 V/cm. Questo
significa che in questo regime e per campi più piccoli, l’effetto Stark deve diventare
quadratico, una situazione già incontrata nel caso di un sistema a due livelli.

10.8 Stato fondamentale dell’Elio.

Come seconda semplice applicazione della teoria perturbativa proviamo a calcolare il con-
tributo all’energia dello stato fondamentale dell’elio trattando la repulsione elettrostatica
degli elettroni come perturbazione. In questo paragrafo useremo unità atomiche

a =
~2

me2 E0 =
me4

~2 = 2Ry' 27.2eV

In queste unità per l’atomo di idrogeno

En =− 1
2n2

Consideriamo per l’elio una Hamiltoniana del tipo:

H =−1
2

∆1−
1
2

∆2−
Z
r1
− Z

r2
+

1
|r1− r2|

(10.91)

L’ultimo termine nella (10.91) è la perturbazione.
Limitando l’interazione alla forma (10.91) abbiamo trascurato diversi termini, oltre a

tutti i tipi di correzione relativistica abbiamo trascurato l’effetto di massa finita del nucleo:
questa correzione è presente in modo non banale in questo sistema perchè siamo in presenza
di un problema a 3 corpi e non ci si puó in generale ridurre ad un sistema in campo esterno
fisso usando la massa ridotta, come nel caso idrogenoide. Ci aspettiamo per questo effetto
una correzione dell’ordine dim/M ∼ 10−3 dovem è la massa dell’elettrone eM la massa
nucleare. Questo ed altri effetti saranno trattati in dettaglio in un capitolo sucessivo.

Un altro problema non banale è capire in quale spazio di Hilbert stiamo facendo teoria
perturbativa. L’Hamiltoniana imperturbata

H0 =−1
2

∆1−
1
2

∆2−
Z
r1
− Z

r2
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è quella di due elettroni indipendenti in un campo centrale. Finora abbiamo sempre trattato
problemi di singola particella e lo spazio di Hilbert del sistema era descritto dalle funzioni
d’ondaψ(x) della particella. Come vedremo quantisticamente ci sono dei vincoli agli stati
ammissibili nello spazio di Hilbert anche per particelle indipendenti. Usando la teoria delle
perturbazioni al primo ordine l’unico stato che serve è lo stato di partenza,|ψ0〉. Come
vedremo in questo caso lo stato fondamentale del sistema imperturbato è descritto da una
funzione d’onda che è semplicemente il prodotto delle funzioni d’onda dei singoli elettroni.

Per il singolo elettrone nella Hamiloniana imperturbata, idrogenoide, i livelli energetici
sono dati daEsing =−1

2Z2. Come spiegato lo stato fondamentale del sistema imperturbato
è descritto dal prodotto delle funzioni d’onda dei singoli elettroni nel fondamentale, cioè

|ψ0〉= |1s11s2〉 ψ1s = R1sY00 R1s = 2Z3/2e−Zr Y00 =
1√
4π

(10.92)

corrispondente ad un’energia imperturbata

E0 = 2Esing =−Z2

Al primo ordine perturbativo lo spostamento del livello fondamentale è, usando le (10.92),

〈ψ0|V|ψ0〉=
∫

d3r1d3r2

[
4Z3

4π
e−2Zr1

][
4Z3

4π
e−2Zr2

]
1

|r1− r2|
(10.93)

Posto 2Zr i = xi

〈ψ0|V|ψ0〉=
1

(4π)2

Z
2

∫
d3x1d3x2e−|x1|e−|x2|

1
|x1−x2|

(10.94)

Questo integrale ha la forma di un’autoenergia elettrostatica per una distribuzione di carica
ρ = e−r :

Ues=
1
2

∫
d3x1d3x2ρ(x1)

1
|x1−x2|

ρ(x2)

Indicando conV(x1) il potenziale creato nel puntox1 dalla densitàρ(x2) ed usando il
risultatoV = Q(r)/r per una distribuzione sferica di carica:

Ues=
∫

d3x1ρ(x1)V(x1) =
∫

d3x1ρ(x1)
1
|x1|

Q(x1)

Passando a coordinate radiali,x1 = |x1|, x2 = |x2|:

Q(x1) = 4π

∫ x1

0
dx2e−x2x2

2 = (4π)[2−e−x1(2+2x1 +x2
1)]

Ues= (4π)2
∫

dx1e−x1x1[2−e−x1(2+2x1 +x2
1)] = (4π)2 5

8
Quindi

〈ψ0|V|ψ0〉= Z
5
8

(10.95)

Da cui:

E ∼−1
2

2Z2 +
5
8

Z =−[Z2− 5
8

Z]∼−2.75a.u. Eexp'−78.9eV=−2.90a.u.

Dal punto di vista sperimentale la cosa più semplice da misurare è il potenziale di ionizza-
zione, cioè l’energia necessaria a estrarre un elettrone legato. L’elettrone che rimane legato
fa parte di un sistema idrogenoide, quindi l’energia di ionizzazione è

I =−1
2

Z2−E (10.96)

È bene usare sistemi diversi per fare lo stesso calcolo, in questo modo ci si può familia-
rizzare con altri strumenti di calcolo: nel complemento 10.A il calcolo precedente è rifatto
usando le trasformate di Fourier.
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10.9 InterazioneLS.

Come abbiamo visto nel capitolo precedente le correzioni relativistiche al moto di una
particella in un campo elettrico esterno introducono una interazione del tipo

V = A`̀̀ ·s (10.97)

Per un campo a simmetria centraleA è una funzione della sola coordinata radialer.
Come vedremo nello studio dei sistemi atomici lo stesso termine di interazione si può

scrivere nel caso di molte particelle,L e S rappresenteranno il momento angolare totale
del sistema ed il suo spin. Per quanto riguarda la teoria perturbativa l’unica cosa che qui
interessa è cheL eSsiano buoni numeri quantici, cioè siano conservati dalla Hamiltoniana
imperturbataH0.

Queste ipotesi sono sicuramente verificate seH0 è invariante sotto rotazioni delle sole
variabili spaziali e non dipende dallo spin. Ogni livello energetico, in assenza di degenera-
zioni accidentali, ha allora una degenrazione(2L +1)(2S+1). Uno stato stazionario sarà
individuato da un numero quanticon che individua il livello e dai numeri quantici relativi
adL eS:

|ψ〉= |n,L,Lz,S,Sz〉 (10.98)

Per calcolare l’effetto della perturbazione (10.97) dobbiamo applicare la teoria delle per-
turbazioni su stati degeneri, il che significa diagonalizzare l’operatoreV sul sottospazio
descritto dagli stati (10.98) adn fisso.

In questo caso il calcolo è molto semplice in quanto

L ·S=
1
2

(
J2−L2−S2) (10.99)

L’Hamiltoniana è invariante sotto rotazioni, quindiJ è un buon numero quantico.L,S lo
sono per ipotesi, quindi se scriviamo gli stati come autostati diJ2,Jz, abbiamo automati-
camente diagonalizzato l’Hamiltoniana. I coefficienti di Clebsh-Gordan servono appunto a
costruire gli autostati voluti quindi la base che diagonalizza l’Hamiltoniana è

|n,J,Jz〉= ∑CJ,Jz
LS,Lz,Sz

|n,L,Lz,S,Sz〉 (10.100)

Poichè l’Hamiltoniana totale è invariante sotto rotazioni globali, cioè orbitali e di spin, ogni
livello risulterà avere una degenerazione residua 2J+1, corrispondente ai diversi valori di
Jz.

L’effetto sui livelli energetici si legge immediatamente dalla (10.99):

∆EJ = An
1
2

[J(J+1)−L(L+1)−S(S+1)] (10.101)

Il coefficienteAn è l’elemento di matrice dell’operatoreA. Il modo più semplice per cal-
colarlo è considerare uno qualunque degli stati (10.100) e stimare l’elemento di matrice
dell’operatore (10.97). Per sistemi di singola particella gli stati (10.98) hanno la forma

Rn(r)Ylm(θ ,ϕ)wσ

dovewσ è uno spinore di Pauli, e quindiAn è semplicemente l’integrale radiale dell’ele-
mento di matrice.

Il numero di livelli ottenuti dipende da quanti valori diJ sono possibili. Dalla teoria del
momento angolare sappiamo che seL≥ S il numero di livelli è 2S+1, mentre è 2L+1 se
L < S. In fisica atomica si parla di doppietti,S= 1/2, tripletti, S= 1, quartetti etc., anche
se l’aggettivo rispecchia la molteplicità solo nel casoL ≥ S. Questa “disintegrazione” del
livello si chiamastruttura finadel livello.
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Per indicare il livello si usa una notazione di tipo spettroscopico mutuata dalla no-
menclatura dei livelli dell’atomo di idrogeno, si hanno livelliS,P,D,F,G. . . a seconda che
L = 0,1,2,3,4. . .. Si usa di solito una notazione del tipo

2S+1PJ

si scrive cioè la “molteplicità”, 2S+ 1, come un indice in alto, a sinistra, ed il valore di
J come indice in basso a destra. Ad esempio2P3/2 indica un livello appartenente ad un
doppietto,S= 1/2, conJ = 3/2 eL = 1.

Per una particella in campo centraleU nel capitolo precedente, (9.15), si è mostrato che
la funzioneA nella (10.97) vale:

A =
1

2m2c2r
dU
dr

(10.102)

Per un campo coulombiano,U = −Ze2/r si ha perciòAn > 0. Per atomi complessi l’ele-
mento di matriceAn può avere entrambi i segni, a seconda della configurazione elettronica,
tratteremo questo problema nel capitolo 14.

In un atomo, la lunghezza caratteristica è il raggio di BohraB = ~2/me2 e i momenti
angolari sono espressi in multipli di~, quindi

A∼ ~2

2m2c2a2
B

U =
(

e2

~c

)2

U

La costanteadimensionale

α =
e2

~c
' 1

137
(10.103)

è chiamatacostante di struttura finee caratterizza la grandezza della disintegrazione dei
livelli: gli effetti sono di ordineα2 cioè tipicamente di 10−5−10−4 eV per energie carat-
teristiche dei livelli di qualche eV.

La (10.101) fornisce una buona descrizione della struttura dei livelli atomici. Per il
calcolo esplicito della costanteAn occorre avere la forma esplicita delle funzioni d’on-
da, ma possono essere fatte alcune considerazioni generali. La separazione fra due livelli
successivi vale

∆J+1,J = EJ+1−EJ = An(J+1) (10.104)

indicando una separazione lineare conJ. Ad esempio se si hanno più di due livelli il
rapporto

∆J+2,J+1

∆J+1,J
=

J+2
J+1

(10.105)

è indipendente daAn quindi dai dettagli della funzione d’onda. Se la (10.105) non è ve-
rificata significa che l’ipotesi fatta, cioè cheL ed S fossero buoni numeri quantici per la
parte restante dell’Hamiltoniana, viene a cadere. Ad esempio vedremo nel capitolo 14 che
per atomi pesanti l’interazione di dipolo magnetico fra gli elettroni, interazione spin-spin,
è dello stesso ordine di grandezza o più grande, dell’interazioneLS e questo modifica la
sequenza dei livelli.

L’atomo di idrogeno presenta alcune particolarità dovute alla degenerazione accidenta-
le dei livelli. Questa degenerazione non ha influenza sul calcolo degli elementi di matrice
per l’accoppiamentoLSma la degenerazione coulombiana permane in una certa misura an-
che dopo le correzioni relativistiche e fa sì che i livelli energetici con`,s diversi ma con lo
stesso momento angolare totalej continuino ad essere degeneri, a parità di numero quan-
tico principalen. Una discussione abbastanza dettagliata della situazione si può trovare
nel complemento 10.E. Occupiamoci qui per semplicità del solo stato 2p. Questo stato,
tenendo conto dello spin ha una degenerazione(2S+1)(2L+1) = 6. In presenza dell’inte-
razioneLS il numero quantico conservato èj che può assumere i valori 1/2,3/2 si avranno
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Alta risoluzione

⇒

Figura 10.3: Visione schematica di uno spettro di struttura fine.

così due livelli, uno con degenerazione 2, l’altro con degenerazione 4, indicati con 2p1/2

e 2p3/2. L’interazione (10.102), nel caso di un atomo idrogenoide, conU = −Ze2/r ha la
forma

HFS = Z
e2

2m2c2r3 `̀̀ ·s (10.106)

e lo spostamento dei livelli è dato dalla (10.101) conL = 1,S= 1/2

∆E(2p1/2) =−A ∆E(2p3/2) =
A
2

A = Z
e2~2

2m2c2 〈2p| 1
r3 |2p〉 (10.107)

Per gli stati idrogenoidi

〈nl| 1
r3 |nl〉=

Z3

a3
B

1
n3

1

`(`+ 1
2)(`+1)

e quindi, pern = 2, ` = 1

A = Z4 e2~2

2m2c2a3
B

1
24

=
1
24

Z4
α

2 [
e2

2aB
]

L’energia fattorizzata è il Rydberg. Si noti la caratteristica dipendenzaZ2α2 delle corre-
zioni rispetto all’energia imperturbata,Z2Ry. PoichèA > 0 il livello con j maggiore viene
innalzato mentre quello conj più piccolo viene abbassato dall’interazione. La separazione
fra i due, detta appunto separazione di struttura fine è

F2p = ∆E(2p3/2)−∆E(2p1/2) =
1
16

Z2
α

2 ·Z2Ry = Z44.53·10−5eV (10.108)

Numericamente per l’idrogeno la frequenza associata,F2p/h, vale

1
h

F2p = 10.95GHz (10.109)

Se pensiamo ad una riga della serie di Balmer, la 3s→ 2p, essa corrisponde ad una
frequenza di transizione di circa

ν =
1
h

(
1
8
− 1

27

)
Ry' 2.893·105GHz

Una riga spettrale di questo tipo, osservata ad alta risoluzione, rivela una piccola struttura,
una struttura fine appunto: la riga è separata in due componenti che differiscono della
quantità (10.108), cioè circa di una parte in 104. La situazione è schematizzata in figura
10.3.
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10.9.1 Doppietto e baseLz,Sz

Può essere utile effettuare il calcolo della separazione di struttura fine direttamente nella
base|Lz〉|Sz〉, vediamo come effettuarlo nel caso di un doppietto,S= 1/2. L’interazione
ALS commuta conJz quindi gli elementi di matrice da considerare sono solo quelli con un
dato autovalore diJz. Il massimo ed il minimo autovalore possono essere realizzati in un
solo modo

|Jz = L+
1
2
〉= |L〉|1

2
〉 |Jz =−L− 1

2
〉= |−L〉|−1

2
〉 (10.110)

Gli altri autovalori di Jz possono essere realizzati in due modi diversi. ChiamandoM
l’autovalore diLz:

|M〉|1
2
〉 |M +1〉|−1

2
〉 (10.111)

Si hanno in tutto 2L coppie di stati della forma (10.111), corrispondenti ai valoriM < L.
Introducendo gli operatori di salita e di discesa, hermitiani coniugati uno dell’altro:

L± = Lx± iLy S± = Sx± iSy (10.112)

l’Hamiltoniana di interazione si può riscrivere

V = LzSz+
1
2

L+S−+
1
2

L−S+ (10.113)

Per spin 1/2

S+ =
(

0 1
0 0

)
S− =

(
0 0
1 0

)
Gli unici elementi di matrice non nulli diL+ sono quelli della forma

〈M +1|L+|M〉=
√

(L+M +1)(L−M) (10.114)

ed analogamente perL−.
Usando la decomposizione (10.113) è chiaro che i due stati “estremi” (10.110) sono

autostati diV con autovalore

λ = A
L
2

(10.115)

Nelle altre coppie di stati la matrice di perturbazione ha la forma:


|M〉|12〉 |M +1〉|−1

2〉

|M〉|12〉 AM
2

A
2

√
(L+M +1)(L−M)

|M +1〉|−1
2〉

A
2

√
(L+M +1)(L−M) −AM+1

2

 (10.116)

Questa matrice ha autovalori:

λ2 =
A
2

L λ2 =−A
2

(L+1) (10.117)

gli autovalori sono indipendent daM. Il primo di questi autovalori coincide con quello già
trovato, (10.115). Si ha quindi lo spettro:

E1 =
A
2

L deg. 2L+2 E2 =−A
2

(L+1) deg. 2L (10.118)

che coincidono con la (10.101) perJ = L + 1
2 e J = L− 1

2, con la corretta degenerazione
2J+1.
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10.10 Interazione iperfina.

Nel capitolo precedente abbiamo visto che l’interazione magnetica dell’elettrone col mo-
mento magnetico nucleare è

V =− e
mc

(
1
r3µµµN · `̀̀

)
− e

mc

[
8π

3
µµµNsδ

(3)(r)−
(
µµµN ·s−3(µµµN · r̂)r̂ ·s

) 1
r3

]
(10.119)

È utile definire un fattore giromagnetico nucleare, in analogia con quello elettronico:

µµµN = gN
|e|

2mpc
sN µp ≡

|e|~
2mpc

(10.120)

Si noti che nella (10.120) abbiamo usato la carica di un singolo protone e la massa corri-
spondente, useremo la stessa definizione per qualunque nucleo, questo perchè tutti i nuclei
hanno momenti magnetici dello stesso ordine. La grandezzaµp definita nella (10.120) si
chiamamagnetone di Bohr nucleare. Introducendo il fattore giromagnetico, 2, dell’elettro-
ne, e misurando i momenti angolari in unità di~, chiamandoI lo spin nucleare

V = A

{
8π

3
ISδ

(3)(r)− (I ·S−3(I · r̂)r̂ ·S)
1
r3 +

(
1
r3 I ·L

)}
(10.121)

Dove abbiamo definito:

A =− e~
2mc

µpggN ≡ |µB|µpggN > 0 `̀̀ = ~L s = ~S sN = ~I

cioèI è lo spin nucleare in unità di~. Poichème/mp∼ 1/2000 il fattore magnetico nucleare
è dell’ordine di 10−3 quello elettronico.

Come ordine di grandezza gli elementi di matrice diV su stati atomici, con lunghezza
caratteristicaa∼ aB = ~2/me2, sono dati da

A
a3

B

=
me

mp
α

2 e2

aB
α ≡ e2

~c
∼ 1

137
(costante di struttura fine) (10.122)

Quindi sono circa 10−7 volte più piccole di una tipica energia atomica e 10−3 volte più
piccoli di una tipica interazione di struttura fine. Malgrado ciò l’interazione (10.121) è
molto importante, da una parte perchè è la prima interazione a livello atomico che coinvol-
ga la struttura nucleare, dall’altra perchè transizioni fra livelli energetici determinati dalla
(10.121) avranno lunghezze d’onda dell’ordine 103Å · 106− 107 ∼ 10− 100cm cioè nel
campo della radiofrequenza, un campo molto sfruttato in diverse tecnologie.

Studieremo solo il caso di un singolo elettrone, quindi la struttura iperfina di atomi
idrogenoidi o quella di atomi alcalini, in cui ci si può limitare a considerare l’interazione
del solo elettrone periferico.

Notiamo innanzitutto che nella (10.121) solo il primo termine contribuisce all’ener-
gia per le ondes. Infatti l’ultimo è proporzionale al momento angolare, il secondo è
proporzionale al tensore a traccia nulla

δi j −3
xix j

r2

Un tensore di questo tipo ha le proprietà di trasformazione di un momento angolare 2 quindi
per le regole di transizione del momento angolare non può avere elementi di matrice fra due
stati conL = 0.

Come vedremo il contributo più importante alla struttura iperfina viene proprio dalle
ondeS, quindi concentriamo la nostra attenzione sul primo termine della (10.121):

V(S) = A
8π

3
ISδ

(3)(r) (10.123)
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L’analisi di questa interazione è simile a quella che abbiamo fatto per l’interazioneLS.
Consideriamo un dato livello elettronicosdell’Hamiltoniana imperturbataH0, ad esem-

pio un livello nsdell’atomo di idrogeno. Il sistema elettrone nucleo haL = 0 per tutti gli
stati di questo livello. Il livello ha una degenerazione(2S+1) dovuta allo spin elettronico
ed una degenrazione(2I +1) dovuta allo spin nucleare. Una base sul sottospazio di Hilbert
determinato dall’autovalore scelto diH0, cioè dal livello, è fornita da

|α〉|S,Sz〉|I , Iz〉 (10.124)

α è l’insieme dei restanti numeri quantici dell’elettrone, tipicamente la funzione d’onda
radiale. SiccomeI edSsono fissati, possiamo includerli inα o semplicemente non scriverli.

Gli elementi di matrice diV su questo sottospazio hanno la forma

〈α|〈S′z, I ′z|V|α〉|S′z, I ′z〉= A
8π

3
〈α|δ 3(r)|α〉〈I ′z,S′z|I ·S|Sz, Iz〉

= A
8π

3
|ψ(0)|2〈I ′z,S′z|I ·S|Sz, Iz〉 (10.125)

Quindi il problema è semplicemente diagonalizzare nel sottospazio(2I + 1)(2S+ 1) la
matrice (10.125).

Lo spin elettronico e lo spin nucleare non commutano separatamente con la (10.123).
Il momento angolare totale commuta, essendo l’Hamiltoniana invariante per rotazioni, in
ondas L = 0, quindi il momento angolare totale coincide con lo spin totale del sistema
nucleo - eletrone, indichiamo il momento angolare totale conF, quindi in ondas:

F = I +S

I valori possibili di F si determinano secondo le solite regole di addizione del momento
angolare, seI ≥ S, F assumerà tutti i valori possibili fraI −S e I + S, cioè 2S+ 1 valori,
altrimenti, perS< I , S− I ≤ F ≤ S+ I per un totale di 2I = 1 valori.

In termini diF si ha

I ·S=
1
2

[
F2−S2− I2]=

1
2

[F(F +1)−S(S+1)− I(I +1)] (10.126)

Quindi l’Hamiltoniana è diagonale nella base|F,Fz〉 e, prendendo l’elemento di matrice su
uno stato elettronico i suoi autovalori sono:

EF = A
8π

3
|ψ(0)|2 1

2
[F(F +1)−S(S+1)− I(I +1)] (10.127)

Atomo di idrogeno.

In questo casoS= 1/2, I = 1/2 eF può assumere i valori 0,1. Sostituendo il valore della
funzione d’onda nell’origine,|ψ(0)|2 = 1/πn3a3 si ottiene

EF =
1
n3

2
3

A
a3

{
1 F = 1

−3 F = 0
=

2
3n3 ggN

µp|µB|
a3

{
1 F = 1

−3 F = 0
(10.128)

Consideriamo il livello 1s. Per la separazione di struttura fine si ha

∆E = E1−E0 =
8
3

ggN
µp|µB|

a3

Ricordando chea è espresso tramite la massa ridotta e la definizione di unità atomica:

a = (1+
me

mp
)aB

e2

aB
= 1a.u.= 2Ry
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∆E =
g
2

gN
me

mp

(
1+

me

mp

)−3 4
3

α
2a.u.=

g
2

gN
me

mp

(
1+

me

mp

)−3 8
3

α
2Ry (10.129)

Per il protone si ha, approssimativamentegN = 5.5857 e sostituendo gli altri valori noti si
ottiene, in frequenza

f =
∆E
h
' 1425.13MHz λ =

c
f

= 21.0605cm (10.130)

Riportiamo il numero sperimentale, uno dei valori più precisi in assoluto in fisica:

1420405751.768±0.001Hz (10.131)

Ci limitiamo a dire che la discrepanza è dell’ordine di 10−4 ∼ α2, in accordo col fatto cha
abbiamo trascurato le correzioni relativistiche5.

L’estensione della procedura seguita ad onde diverse dall’ondasè un utile esercizio sul
teorema di Wigner-Eckart, il lettore interessato la può trovare nel complemento 10.F. Il
risultato, vedi eq.(10.378), è che lo spostamento dei livelli energetici è dato da

δEF = A〈 1
r3 〉

L(L+1)
J(J+1)

F(F +1)−J(J+1)− I(I +1)
2

(10.132)

Per l’atomo di idrogeno, usando l’espressione

〈nl| 1
r3 |nl〉=

1
n3a3

1

`(`+ 1
2)(`+1)

|ψ(0)|2 =
1

πn3a3

la (10.132) e la (10.127) danno, per gli statis, p

δEns1/2
= A

4π

3

[
F(F +1)− 3

2

]
|ψ(0)|2 =

1
n3a3 A

4
3

[
F(F +1)− 3

2

]
(10.133)

δEnp1/2
= A

4
3

[
F(F +1)− 3

2

]
〈 1
r3 〉=

1
n3a3 A

4
9

[
F(F +1)− 3

2

]
(10.134)

δEnp3/2
= A

4
15

[
F(F +1)− 9

2

]
〈 1
r3 〉=

1
n3a3 A

4
45

[
F(F +1)− 9

2

]
(10.135)

Nei primi due casiF = 0,1, nel terzoF = 1,2. La differenza fra i due livelli di struttura
iperfina è perciò, nei vari casi:

fns1/2
=

8A
3n3a3 fnp1/2

=
1
3
· 8A
3n3a3 fnp3/2

=
2
15
· 8A
3n3a3 (10.136)

Il contributo più rilevante, come ci si attendeva, è per l’ondas.

10.11 Effetto Zeeman.

In questo paragrafo vogliamo studiare l’effetto di un campo magnetico sui livelli energetici
di un atomo. Cominciamo col richiamare la teoria classica, dovuta a Lorentz. Classi-
camente ad una riga spettrale di frequenzaω0 è associata l’oscillazione di un elettrone,
l’introduzione di un campo magnetico porta alle equazioni del moto

mẍ =−mω
2
0x+

e
c

v∧B≡−mω
2
0x− |e|

c
v∧B (10.137)

Scegliamo il sistema di riferimento in modo cheB sia diretto lungo l’assez. Il sistema
(10.137) descrive due oscillatori perpendicolari al campo, nel pianox,y ed uno parallelo,

5C’è una correzione di ordineα in realtà perchèg− 2∼ α/π, questo valore è stato messo in conto nella
(10.130)
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quello lungo l’assez. Per capire intuitivamente l’influenza diB sul moto, ricordiamo che
le equazioni del moto in un sistema di riferimento ruotante con velocià angolare uniforme
ΩΩΩ si scrivono

mv̇ = F+2mv∧ΩΩΩ+mΩΩΩ∧ (x∧ΩΩΩ) (10.138)

il secondo termine nella (10.138) è la forza di Coriolis. Per piccoli campi magnetici quindi
un oscillatore in campo magnetico è equivalente ad un oscillatore visto in un sistema di
riferimento ruotante con velocità angolare

ΩΩΩ =−ωLẑ ωL =
|e|B
2mc

(10.139)

al primo ordine nella velocità angolare. Questa affermazione ovviamente si estende a qua-
lunque sistema, non solo agli oscillatori ed è nota cometeorema di Larmor.La velocità
angolareωL è chiamatafrequenza di Larmor. Sottolineiamo che la rotazione è risultata
oraria perchè la carica dell’elettrone è negativa.

Un moto circolare antiorario (+) o orario (-) è descritto nel pianox,y dai vettori posi-
zione

x+ = A(cosω0t,sinω0t) x− = A(cosω0t,−sinω0t) (10.140)

quindi un’oscillazione lineare, ad esempio quella lungo l’assex può sempre essere vista
come la sovrapposizione di due moti circolari:

A(cosω0t,0) =
1
2
(x+ +x−)

Se passiamo ad un sistema di coordinate rotante con velocità angolareωL in senso orario
è chiaro che il moto antiorario, rispetto all’asse fissato daB, ha una velocità angolare di
ω0 + ωL mentre quello orario ha una velocità angolare diω0−ωL. Quindi l’effetto del
campo è quello di separare i tre modi di vibrazione in tre frequenze distinte:ω0,ω0±ωL.

Un modo analitico per verificare la stessa cosa è il seguente. Le equazioni del moto nel pianox,y si
scrivono

ẍ =−ω
2
0x+2ωLẏ ÿ =−ω

2
0y−2ωLẋ

Scrivendoξ = x+ iy si ottiene perξ l’equazione

ξ̈ =−ω
2
0ξ −2iωLξ̇

Ponendoξ = eiαt si ricava l’equazione caratteristica perα

−α
2 =−ω

2
0 +2ωLα

che ha soluzioni
α =−ωL±

√
ω2

0 +ω2
L

corrispondenti a frequenze di oscilazione

ω+ =
√

ω2
0 +ω2

L +ωL ' ω0 +ωL (10.141a)

ω− =
√

ω2
0 +ω2

L −ωL ' ω0−ωL (10.141b)

Quindi classicamente ogni riga spettrale in campo magnetico dovrebbe separarsi in tre
componenti, la separazione fra le righe è fissata daωL = |e|B/2mc.

Si ha un’altra conseguenza importante. Classicamente l’intensità dell’emissione di luce
è proporzionale al quadrato dell’accelerazione della carica nella direzione trasversa a quella
di osservazione. In un oscillatore l’accelerazione è proporzionale al dipolo del sistema:
ea = d̈ =−ω2d.
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Quindi osservando la luce lungo l’assez il dipolo oscillante lungo quest’asse non contri-
buisce all’emissione e si osservano solo due righe, a frequenzeω0±ωL, con polarizzazioni
circolari, essendo il dipolo sul pianoxy rotante. Per l’esattezza il dipolo antiorario ha fre-
quenzaω0 + ωL, quello orarioω0−ωL, quindi la luce con polarizzazione sinistra (+) ha
frequenza più alta.

Viceversa osservando lo spettro indirezione ortogonale al campo, in direzionex dicia-
mo, si vedono solo gli effetti delle componenti del dipolo lungoz e y, quindi una riga con
luce polarizzata linearmente lungoz a frequenzaω0 e due linee a frequenzeω0±ωL po-
larizzate linearmente lungoy, dovute alle componenti di Fourier dei due moti nel piano.
In direzione generica, come il lettore può facilemente verificare, si osserva una linea con
polarizzazione rettilinea lungo l’assez e due linee con polarizzazione ellittica a frequenza
ω0±ωL. La fenomenologia descritta finora prende il nome dieffetto Zeeman normale.

In meccanica quantistica l’effetto di un campo magnetico è di aggiungere all’Hamilto-
niana imperturbata il termine

HB =− e
2mc

(`̀̀ +gs) ·B (10.142)

g è il fattore giromagnetico dell’elettrone, ed assumiamo direttamenteg = 2. Chiamando
z la direzione del campo magnetico e misurando i momenti angolari in unità di~, `̀̀ = ~L
etc., la (10.142) si scrive:

|e|B~
2mc

(Lz+2Sz)≡ ~ωL (Lz+2Sz) (10.143)

vediamo quindi che ricompare la frequenza di Larmor che può anche essere scritta in
termini del magnetone di Bohr:

~ωL = |µB|B (10.144)

La (10.143) vale per un qualunque numero di elettroni, perchè ovviamente il campoB
agisce su tutti gli elettroni del sistema:L ,S rappresentano l’operatore momento angolare
totale e l’operatore di spin totale del sistema.

In generaleL eSnon sono separatamente conservati, come abbiamo visto, a causa delle
interazioniL ·S, e questo implica che gli effetti del campo magnetico dipendono in qualche
modo dalla struttura fine del sistema. Per capire le energie in gioco notiamo che

|µB| ' 5.788381749·10−5 eV T−1 ∼ 5.8·10−5 eV T−1 (10.145)

Il Tesla, (T), cioè 104 gauss in unità CGS, è l’unità di misura del campo magnetico. L’or-
dine di grandezza della struttura fina èα2a.u.∼ 10−4−10−5eV, quindi per piccoli campi,
molto più piccoli di un Tesla, la separazione di struttura fine non è trascurabile mentre per
campi grandi possiamo trascurarla, il discrimine è fornito dal rapporto fra la frequenza di
LarmorωL e la separazione di struttura fineωFS. Talvolta per campi piccoli,ωL � ωFS si
usa il nome di effetto Zeeman, mentre per campi intermedi,ωL ∼ωFS, o grandi,ωL �ωFS
di effetto Paschen-Back.

Cominciamo dal caso semplice in cui non c’è lo spin, cioè consideriamo stati conS= 0.
Questo naturalmente non è il caso dell’idrogeno o dello spettro dei metalli alcalini, ma
illustra bene la connessione fra caso classico e quantistico. Fra l’altro in questo caso si
deve riottenere proprio il limite di grandi campi magnetici, in cui si trascura la struttura
fine e quindi lo spin.

Per capire bene quanto segue occorre anticipare un aspetto della radiazione che svilup-
peremo nel capitolo 16. Le righe spettrali più intense in uno spettro sono quelle dovute a
transizioni di dipolo elettrico, esattamente come nel caso classico:

〈 f |d|i〉 transizione i → f (10.146)

Se consideriamo l’assez come asse di quantizzazione del momento angolare possiamo
scrivere le tre componenti indipendenti del dipolo nella forma

dz d+ = dx + idy d− = dx− idy (10.147)
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esattamente come si fa per il momento angolare.d si comporta come un vettore per rotazio-
ni spaziali quindi le regole di selezione perL nella (10.146) sono∆L = 0,±1, la transizione
∆L = 0 è proibita nel caso di un singolo elettrone per ragioni di parità, lo stato ha parità
(−1)L solo nel caso di un singolo elettrone. La transizione 0→ 0 è proibita. Per quanto
riguarda le singole componenti,in emissione:

dz luce polarizzata rettilineamente lungo z (10.148a)

d− luce polarizzata circolarmente + (10.148b)

d+ luce polarizzata circolarmente - (10.148c)

Le regole precedenti sono semplici da capire: un fotone polarizzato circolarmente sinistro
emesso lungo l’assezha un’unità di momento angolare+~ lungo l’assez, questa è “portata
via” all’atomo attaverso un elemento di matriced− che abbassa di 1 la componenteLz del
sistema atomico. In assorbimento i ruoli did+,d− nelle (10.148b),(10.148c) si invertono.

In assenza di spin l’Hamiltoniana (10.143) è immediatamente diagonalizzabile

HB = ~ωL Lz (10.149)

quindi si ha una serie di livelliequispaziati, l’intervallo di energia fra due livelli consecutivi
è ~ωL, ed il numero di livelli 2L + 1, il numero di possibili valori diLz. Notiamo che
la separazione è simmetrica attorno al livello imperturbato originario, che corrisponde a
Lz = 0.

Consideriamo ora transizione una fra due livelli atomici,i, f . Sia~ω0 = Ei −Ef la fre-
quenza della riga associata alla transizione in assenza di campo magnetico. Se il livelloi ha
spin 0, anche il livelof ha spin 0 perchè le transizioni di dipolo elettrico non influenzano lo
spin. Quindi la separazione in campo magnetico nei due livelli è la stessa, data sempre dal-
l’espressione (10.149). Se riportiamo accanto lo schema dei due livelli, facendo coincidere
il baricentro conLz = 0, abbiamo la figura 10.4, fatta nel casoLi = 2,L f = 1. Le transizioni
possono avvenire, in virtù delle regole di selezione sud, solo fra livelli adiacenti, cioè con
lo stessoLz, o fra livelli che differiscono di un posto.

Come si vede bene dalla figura le transizioni possibili avvengono nel modo seguente

∆Lz = 0 operatore: dz → pol. rettilinea freq. ~ω = Ei −Ef ≡ ~ω0

∆Lz = +1 operatore: d+ → pol.− freq. ~ω = ~(ω0−ωL)
∆Lz = +1 operatore: d− → pol.+ freq. ~ω = ~(ω0 +ωL)

Questa è esattamente la situazione classica: si ha una separazione in tre righe e la frequenza
di separazione è proprio la frequenza di Larmor. Le proprietà di polarizzazione dei fotoni
sono in accordo con le aspettative classiche.

Supponiamo ora che i due stati abbiano spin ma il campo magnetico sia molto grande,
in modo da poter trascurare la struttura fine, siamo nel caso limite dell’effetto Paschen-
Back. I livelli iniziali hanno una generazione(2L + 1)(2S+ 1), e sono degeneri appunto
perchè trascuriamo la struttura fine. In questo caso possiamo prendere come base di stati
|L.Lz,S,Sz〉 che naturalmente è una base completa nel sottospazio dell’Hamiltoniana re-
lativo al livello considerato: mancando l’interazioneLS, Lz ed Sz continuano ad essere
buoni numeri quantici. L’Hamiltoniana (10.149) è di nuovo diagonale in questa base con
autovalori:

~ωL(Lz+2Sz) (10.150)

Questo spettro è praticamente identico a quello di prima: livelli equispaziati di~ωL. Lz+
2Sz varia fra−(L+2S) eL+2S) per un totale di

# livelli = 2(L+2S)+1 (10.151)

Il baricentro dello spettro è ancora l’energia imperturbataE0 perchè∑Lz = 0 = ∑Sz. Esso
coincide o no con un livello a seconda cheS sia intero o semintero, Ad esempio perL =
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Figura 10.4: Effetto Zeeman normale.

0,S= 1/2 i due liveli sono~ωL = ±~ωL/2, il centro è zero ma nessuno dei due livelli
coincide col centro.

PoichèLz può variar di una unità e 2Sz an-
che, i livelli sono distanziati fra loro sempre
della stessa quantità,~ωL: qui è essenziale
l’uguaglianzag = 2, naturalmente. La cosa
che cambia rispetto al casoS= 0 è sempli-
cemente il numero e la molteplicità dei sin-
goli livelli. Gli autovalori (10.150) vanno da
−L−2SaL+2S, distanziati di uno. La mol-
teplicità è data da quanti modi si può fare un
numero in questo intervallo sommandoLz ed
Sz. Per contare la degenerazione si può ad
esempio partire da un datoLz ed aggiungere
o sottrarre 2Sz per i variSz e contare in quanti
modi si arriva ad un dato numero. La situa-
zione è semplificata nella figura accanto per
L = 2,S= 1/2.

    

deg. 1

deg. 1

deg. 2

deg. 2

deg. 2

deg. 1

deg. 1

Lz

  2

  1

  0

- 1

- 2

In una transizione di dipolo elettrico lo spin non cambia, quindi la situazione per il livello
energetico finale è identica a quella vista in precedenza: nel caso limite di un forte campo
magnetico si ha l’effetto Zeeman normale, anche in presenza di spin.

Passiamo ora al caso di campi piccoli rispetto alla struttura fine, cioè~ωL � EFS. In-
nanzitutto quanto visto finora ci dice che per campi piccoli ma ancora grandi rispetto alla
struttura iperfina, che ricordiamo è dell’ordine di 10−3EFS, possiamo trascurare gli effetti
del nucleo. Questa situazione quindi è quella tipica per campi fra 1 Tesla, che corrispon-
dono ad un’energia magnetica di circa 5.8 · 10−5eV e 10−3T ∼ 10gauss regime in cui
eventualmente possono intevenire effetti legati al nucleo atomico.

Supponiamo per fissare le ideeL ≥ S. Sappiamo allora che un dato livello si separa in
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virtù dell’interazione spin orbita in 2S+1 livelli con J variabile daL−SaL+S.
Supponendo come già detto~ωL � EFS possiamo applicare la teoria delle perturba-

zioni degenere ad ogni livello di struttura fine, questo significa appunto trascurare termini
dell’ordine µBB/EFS� 1. chiamandoα l’insieme dei numeri quantici che individuano il
livello, una base per i 2J+1 stati in questione è naturalemente

|α,J,Jz〉 (10.152)

L’Hamiltoniana
HB = ~ωL(Lz+2Sz) (10.153)

è invariante per rotazioni attorno all’assez, quindi commuta conJz ed è diagonale nella base
(10.152). Si tratta quindi di calcolare gli elementi di matrice diagonali〈α,J,Jz|Lz|α,J,Jz〉
e gli analoghi perSz.

Il teorema di Wigner-Eckart ci assicura che all’interno di un singolo multipletto tutti i
vettori hanno elementi di matrice proporzionali, quindi in particolare sono proporzionali a
J. Gli elementi di matrice dell’HamiltonianaHB hanno perciò la forma

HB = ~ωLgJJz (10.154)

il fattoregJ viene chiamatofattore di Landé.
Il calcolo di gJ è una semplice applicazione del teorema di Wigner-Eckart: all’interno

del multipletto gli elementi di matrici di qualunque vettore sono proporzionali agli elementi
di matrice diJ, quindi come matrici(2J+ 1)× (2J+ 1), cioèsolo all’interno di questo
multipletto :

L = cJ (10.155)

moltiplicando perJ si ha
cJ2 = (L ·J) (10.156)

poichè
J−L = S ⇒ J2 +L2−2J ·L = S2

si ha

J ·L =
1
2

(
J2 +L2−S2)=

1
2

[J(J+1)+L(L+1)−S(S+1)] (10.157)

ed infine dalla (10.155) e dalla (10.156), a livello di elementi di matrice

L =
J(J+1)+L(L+1)−S(S+1)

2J(J+1)
J (10.158)

Per gli elementi di matrice diS basta scambiare il ruolo diL eS nelle righe precedenti:

S=
J(J+1)−L(L+1)+S(S+1)

2J(J+1)
J (10.159)

mettendo assieme la (10.158) e la (10.159) otteniamo, per gli elementi diagonali diHB:

~ωLJz

[
J(J+1)+L(L+1)−S(S+1)

2J(J+1)
+2

J(J+1)−L(L+1)+S(S+1)
2J(J+1)

]
= ~ωLJz

[
1+

J(J+1)−L(L+1)+S(S+1)
2J(J+1)

]
Quindi il fattore di Landé vale

gJ = 1+
J(J+1)−L(L+1)+S(S+1)

2J(J+1)
(10.160)
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Se il fattore giromagnetico dell’elettrone non è 2, dalla (10.159) si ha:

gJ = 1+(1+(g−2))
J(J+1)−L(L+1)+S(S+1)

2J(J+1)
(10.161)

Per gJ = 1 la separazione dei livelli energetici indicata nella (10.154) è quella classica.
Vediamo che perS= 0, ad esempio,gJ = 1, la cosa è consistente con quanto aspettato
perché in questo caso non c’è separazione di struttura fine.

PergJ 6= 1 i livelli continuano ad essere equispaziati ma con intervallo~ωLgJ. Già
questo è in contrasto con una interpretazione “semiclassica” dell’effetto, in cui per il teo-
rema di Larmor, cioè il ragionamento fatto all’inizio del paragrafo, dovremmo avere delle
separazioni~ωL.

L’effetto più evidente comunque si ha sul numero di righe: nella transizione fra due
livelli in generale il fattoregJ cambia, quindi la spaziatura fra i due livelli è differente e con
riferimento alla situazione riportata in figura 10.4 la frequenza dipende da quale particolare
sottolivello si considera. Prendiamo ad esempio una transizione da uno uno stato con un
momentoJi ad uno stato con momentoJ f < Ji . Le transizioni indotte dadz, con∆Jz = 0
hanno frequenza:

~ω = (Ei −Ef )+~ωL(giJ
i
z−gf J

f
z ) = ~ω0 +~ωLJi

z(gi −gf ) (10.162)

chedipendedaJz. Allo stesso modo una transizione indotta dad−, che, ricordiamo è quella
che dà luogo alla luce polarizzata sinistra, comportaJi

z = J f
z +1 e quindi ha frequenza

~ω = (Ei −Ef )+~ωL(giJ
i
z−gf J

f
z ) = ~ω0 +~ωL

[
J f

z (gi −gf )+gi

]
(10.163)

Anche qui si hanno frequenze diverse al variare del sottolivello Zeeman. In conclusione
si hanno più di tre righe, l’effetto Zeeman viene dettoeffetto Zeeman anomalo. Notiamo
che in realtà l’effetto Zeeman anomalo è la norma, in pratica a campi magnetici ragionevoli
l’unico caso in cui si ha effetto Zeeman normale è il caso in cuiS= 0 o in generale i fattori
di Landé dei due livelli sono uguali.

È facile convincersi che per una transizionei → f in emissione, conJi > Jf gli sposta-
menti in frequenza, il numero di righe e la polarizzazione sono dati da

dz~ωL(Jz(gi −gf ) #righe:(2Jf +1) (10.164)

d−~ωL(Jz(gi −gf )+gi #righe:(2Jf +1) [Jz≤ Jf −1#= 2Jf ]

d+~ωL(Jz(gi −gf )−gi #righe:(2Jf +1) [Jz≥−Jf +1#= 2Jf ]

DoveJz varia da−Jf ≤ Jz≤ Jf . L’ultima colonna si riferisce al caso in cuiJi = Jf . Lascia-
mo al lettore l’esercizio di scrivere l’analoga tabella nel caso in cui lo stato iniziale abbia
momento angolare più piccolo.

Come esempio concreto consideriamo la riga gialla del sodio. Il sodio è un metallo
alcalino con un elettrone periferico in uno stato 3s, per usare la terminologia vista nell’a-
tomo di idrogeno. La riga gialla in assorbimento corrisponde alla transizione 3s→ 3p,
in emissione ovviamente alla transizione 3p→ 3s. Gli altri elettroni fanno da spettatori
e costituicono un insieme chiuso conL = 0,S= 0, quindi i numeri quantici dell’atomo
dipendono solo dall’elettrone periferico.

Lo stato 3p haL = 1 eS= 1/2 quindi ha una struttura fine, con due livelli aJ = 1/2 e
J = 3/2. In effetti la riga gialla è costituita da due righe distinte con lunghezze d’onda

3p1/2 → 3s1/2 : 5895.924 Å 3p3/2 → 3s1/2 : 5889.950 Å (10.165)

La prima riga ha lunghezza d’onda più grande (frequenza più piccola) in accordo col fatto
già rilevato che il coefficienteA nell’hamiltoniana di struttura fineA` ·sè positivo per il caso
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di singolo elettrone (come nell’idrogeno). Si stima immediatamente che la separazione di
struttura fine rispetto alla frequenza di riga è

∆E
E
∼ ∆λ

λ
∼ 10−3

Come valore dell’energia, dalla (10.165) si ha

E3/2−E1/2 ' 2.1·10−3eV (10.166)

in perfetto accordo con quanto aspettato per una tipica interazioneLS. Dalla (10.145)
discende che per campi fino a qualche centinaio di gauss siamo in regime di campo debole.

I fattori di Landé dei vari livelli si ricavano dalla (10.160):

g(3s1/2) = 2 g(3p1/2) =
2
3

g(3p3/2) =
4
3

e danno luogo, v.(10.154) agli spostamenti di energia:

δE(3s1/2) =±~ωL δE(3p1/2) =±1
3

~ωL δE(3p3/2) =
(
±2

3
,2

)
~ωL (10.167)

Uno schema delle transizioni è riportato in figura 10.5.
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Figura 10.5: Effetto Zeeman anomalo per il sodio.

Dalla figura si ricavano direttamente gli spostamenti in frequenza

3p1/2 → 3s1/2 dz : (
2
3
,−2

3
)~ωL d− :

4
3

~ωL d+ :−4
3

~ωL

3p3/2 → 3s1/2 dz : (
1
3
,−1

3
)~ωL d− : (

5
3
,1)~ωL d+ :−(

5
3
,1)~ωL

in accordo con la (10.164). La prima riga si divide in 4 righe e la seconda in 6.

10.11.1 Effetto Pashen-Back: Idrogeno.

Per campi magnetici intermedi l’energia tipica di interazione magneticaµBB è dello stesso
ordine di grandezza degli elementi di matrice dell’interazione e quindi le matriciHB eHFS,
Hamiltoniana di struttura fine, vanno diagonalizzate simultaneamente.

Per chiarire formalmente la procedura i passi logici sono:

1) Si considera l’effetto dell’interazioneHB +HFS su un livello degenere dell’Hamilto-
niana imperturbataH0. SeL,Ssono buoni numeri quantici una base di autostati diH0
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è |α,L.Lz,S,Sz〉 doveα genericamente indica l’insieme dei numeri quantici esclusi
L,S, ad esempio il numero quantico principale per l’atomo di idrogeno. Un dato li-
vello corrisponde ad unα fissato. Il sottospazio di Hilbert relativo a questo livello
ha una degenerazione(2L+1)(2S+1). Esssendo fissato d’ora in poi sarà sottinteso.

2) In questo sottospazio possiamo scegliere, invece della base precedente, una base
|α,J,Jz〉, doveJ può assumere tutti i valori fra|L−S| e |L+S|, seL≥S. Il vantaggio
è che in questo modo automaticamenteHFS è diagonale, in quanto l’operatoreL ·S
è diagonale in questa base. La scelta non è obbligatoria ma può essere conveniente.

3) In questa base, costituita sempre da un totale di(2L + 1)(2S+ 1) elementi, occorre
scrivereHB e diagonalizzare la matrice totaleHFS+HB.

PoniamoΩL = ~ωL per snellire le formule che seguono. L’Hamiltoniana

HB = ΩL(Lz+2Sz)

è invariante sotto rotazioni attorno all’assez, quindi commuta conJz ed ha elementi di
matrice solo fra stati con lo stessoJz. Il numero di stati conJz fissato è al massimo uno
per ogni livello di struttura fine, cioè per ogni valore possibile diJ, ad esempio perL ≥ S
si hanno 2S+ 1 livelli, quindi la matrice totale in realtà è fatta a blocchi e i blocchi di
grandezza massima sono matrici(2S+1)× (2S+1), per spin 1/2 matrici 2×2.

Il calcolo degli elementi di matrice è anche molto semplice. Dal teorema di composi-
zione del momento angolare sappiamo come si fanno a scrivere esplicitamente gli autostati
di J,Jz in termini di autostati diL.Lz,S,Sz:

|J,Jz〉= ∑〈L,Lz,S,Sz|J,Jz〉 |L,Lz〉 |S,Sz〉 (10.168)

I coefficienti che compaiono nella (10.168) sono i coefficienti di Clebsh-Gordan. La parte
dello stato che non dipende dai numeri quantici di momento angolare non viene toccata dal-
l’interazione ed è la stessa per tutti gli stati, quindi non contribuisce agli elementi matrice.
Esplicitamente ogni stato nel sottospazio considerato è della forma

|α〉|J,Jz〉

dove|α〉 è la parte che descive il resto dei numeri quantici, ad esempio la parte radiale della
funzione d’onda per un atomo di idrogeno. Per gli elementi di matrice diHB si ha:(

〈α|〈J′,J′z|
)

HB (|α〉|J,Jz〉) = 〈α|α〉〈J′,J′z|HB|J,Jz〉= 〈J′,J′z|HB|J,Jz〉

Consideriamo come esempio esplicito il caso del livellon = 2 dell’atomo di idrogeno.
Dovrebbe essere chiaro che la procedura sarà valida per un qualunque atomo conS= 1/2 e
L = 1. Innanzitutto l’HamiltonianaHB è invariante sotto parità quindi gli stati 2s e gli stati
2p hanno storie separate.

Per gli stati 2s, L = 0,S= 1/2,J = S= 1/2, il fattore di Landé, (10.160) vale 2 e le
energie degli stati sono

E(2s,Jz) = E2s+2JzΩL (10.169)

E2s è l’energia del livello in presenza di interazione di struttura fine. Il valore esplicito è
calcolato nel complemento 10.E, ma qui non gioca alcun ruolo. si hanno quindi due livelli
con separazione±ΩL rispetto al livello di base.

Passiamo al livello 2p, sianoE1/2,E3/2 le energie dei due livelli di strutttura fine. un
valore approssimato per la differenzaE3/2−E1/2 è stato dato nel paragrafo 10.9, un valore
più preciso si trova nel complemento 10.E. In totale si hanno 2×3= 6 stati, corrispondenti
ai valoriL = 1,S= 1/2.
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La decomposizione degli stati è:

|3
2
,
3
2
〉= |1〉 |1

2
〉 |3

2
,−3

2
〉= |−1〉 |−1

2
〉 (10.170)

|3
2
,
1
2
〉=

√
1
3
|1〉 |−1

2
〉+
√

2
3
|0〉 |1

2
〉 |1

2
,
1
2
〉=

√
2
3
|1〉 |−1

2
〉−
√

1
3
|0〉|1

2
〉

|3
2
,−1

2
〉=

√
2
3
|0〉 |−1

2
〉+
√

1
3
|−1〉 |1

2
〉 |1

2
,−1

2
〉=

√
1
3
|0〉 |−1

2
〉−
√

2
3
|−1〉 |1

2
〉

Gli stati conJz =±3/2 sono già diagonali perHB, perchè non mischiano con nessun altro
stato. Poichè

(Lz+2Sz)|
3
2
,±3

2
〉= (Lz+2Sz)|±1〉 |±1

2
〉=±2|1〉 |1

2
〉

si hanno immediatamente, su questi due stati, gli autovalori dell’Hamiltoniana:

E3/2±2ΩL (10.171)

Per gli stati conJz =±1
2 si ha, dalle decomposizioni (10.170)

(Lz+2Sz)|
3
2
,
1
2
〉=

√
2
3
|0〉 |1

2
〉 (Lz+2Sz)|

1
2
,
1
2
〉=−

√
1
3
|0〉 |1

2
〉

(Lz+2Sz)|
3
2
,−1

2
〉=−

√
2
3
|0〉 |−1

2
〉 (Lz+2Sz)|

1
2
,−1

2
〉=−

√
1
3
|0〉 |−1

2
〉

E quindi le Hamiltoniane in questi due sottospazi hanno la seguente forma

Jz =
1
2

: E1/2 + ·




|32, 1

2〉 |12, 1
2〉

|32, 1
2〉 ∆FS+

2
3

ΩL −
√

2
3

ΩL

|12, 1
2〉 −

√
2

3
ΩL

1
3

ΩL




(10.172a)

Jz =−1
2

: E1/2 + ·




|32,−1

2〉 |12,−1
2〉

|32,−1
2〉 ∆FS−

2
3

ΩL −
√

2
3

ΩL

|12,−1
2〉 −

√
2

3
ΩL −1

3
ΩL




(10.172b)

Nelle (10.172) abbiamo indicato esplicitamente gli stati su cui sono calcolate le matrici e
abbiamo indicato con∆FS la separazione di struttura fine:

∆FS =
(

E3/2−E1/2

)
(10.173)

Gli autovalori delle matrici 2×2 nelle (10.172) si calcolano facilmente. È più chiaro espri-
mere tutto attraverso il rapportox = ΩL/∆FS che è il parametro adimensionale importante.
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Omettendo la costante additivaE1/2:

Jz =
1
2

: ∆FS·



3+3x−
√

9+6x+9x2

6
−→

{
1
3ΩL perB→ 0
1
3∆FS perB→ ∞

(10.174a)

3+3x+
√

9+6x+9x2

6
−→

{
∆FS+ 2

3ΩL perB→ 0

ΩL perB→ ∞

Jz =−1
2

: ∆FS·



3−3x−
√

9−6x+9x2

6
−→

{
−1

3ΩL perB→ 0

−ΩL perB→ ∞

(10.174b)

3−3x+
√

9−6x+9x2

6
−→

{
∆FS−

2
3ΩL perB→ 0

1
3∆FS perB→ ∞

Dalle (10.174) e dalle (10.171) si riconosce che per piccoli campi si recupera l’effetto Zee-
man anomalo: la prima e la quinta equazione delle (10.171) danno uno shift in frequenza
±1

3ΩL per lo stato 2p1/2. Per lo stato 2p3/2 la terza e la settima equazione forniscono uno

spostamento±2
3ΩL, le (10.171) uo spostamento±2ΩL, esattamente la stessa situazione

del sodio, vedi figura 10.5 ed eq.(10.167), che aveva gli stessi numeri quantici di momento
angolare.

PerB→∞ i termini lineari inB nelle (10.174) sono(0,±ΩL), nelle (10.171)±2ΩL, in
totale 5 livelli, che vanno da−L−2SaL+2Scon separazione classica:ΩL, si ritorna cioè
all’effetto Zeeman normale.

Un punto interessante è il seguente. Come si vede dal limiteB→ 0 nelle (10.174) il
primo ed il terzo autovalore sono quelli che in assenza di campo concidono con il livello
2p. Il primo autovalore cresce col campo. Come è ampiamente discusso nel complemento
10.E il livello 2s subisce, in forza di correzioni quantistiche, un innalzamento, detto Lamb
shift, rispetto al livello 2p1/2 e la separazione in frequenza fra i due è di circa 1GHz.
In un campo magnetico le energie degli stati 2s subiscono uno spostamento 2JzΩL, vedi
eq.(10.169), quindi l’energia dello stato consz = −1/2 diminuisce e va a coincidere con
l’energia dello stato 2p1/2. le due quantità da confrontare sono

E2s−ΩL E1/2 +∆FS
3+3x−

√
9+6x+9x2

6
Ovvero, sottrandoE1/2 a entrambe le quantità, chiamandoF il Lamb-shift:

Q1 = F−ΩL Q2 = ∆FS
3+3x−

√
9+6x+9x2

6
(10.175)

Numericamente
1
~

F ' 1058MHz
1
~

∆FS' 10969MHz
1
~

ΩL = 1.3996×B(gauss)MHz (10.176)

La situazione in funzione diB è mostrata in figura 10.6. Quando due livelli energetici si
incrociano si parla dilevel crossing. Il level crossing fra questi due stati avviene per un
campo magnetico di circa 600 gauss. Tutti i fenomeni di mescolamento fra lo stato 2s e
lo stato 2p, un esempio è l’effetto Stark lineare, dipendono dalla differeza di energia fra
i livelli, il fatto di poter variare questa differenza, e quindi le modalità di mescolamento,
variando il campo magnetico offre uno strumento di indagine importante.
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Figura 10.6: Level crossing fra i livelli 2s1/2 e 2p1/2 dell’idrogeno.

10.11.2 Effetto Pashen-Back: Doppietto.

Vediamoin generale come si effettua il calcolo per l’effetto Pashen-Back per un doppietto
conL qualsiasi. In questo caso, per far vedere unaltro punto di vista al lettore, usiamo la
base costituita dagli autostati diLz eSz, come nel paragrafo 10.9.1.

Riscriviamo l’Hamiltoniana nella forma, scivendoΩL = ~ωL per brevità:

V = ΩL(Lz+2Sz)+AL ·S= ΩL(Lz+2Sz)+A

[
LzSz+

1
2

(
L+S−+L−S+

)]
(10.177)

Jz è conservato anche in presenza di campo magnetico. Indichiamo conM l’autovalore di
Lz e conMJ quello diJz. Gli stati conMJ = L+1/2 eMJ =−L−1/2

|L〉|1
2
〉 |−L〉|−1

2
〉

sono autostati diV con autovalori:

ΩL

(
L+2

1
2

)
+

A
2

L −ΩL

(
L+2

1
2

)
+

A
2

L (10.178)

Per le restanti 2L coppie di stati, conM < L,

|M〉|1
2
〉 ≡ |MJ−

1
2
〉|1

2
〉 |M +1〉|−1

2
〉 ≡ |MJ +

1
2
〉|−1

2
〉 (10.179)

possiamo scrivere la matrice Hamiltoniana usando le formule (10.114):


|M〉|12〉 |M +1〉|−1

2〉

|M〉|12〉 AM
2 +ΩL(M +1) A

2

√
(L+M +1)(L−M)

|M +1〉|−1
2〉

A
2

√
(L+M +1)(L−M) −AM+1

2 +ΩL(M)

 (10.180)
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Gli autovalori di questa matrice 2×2 sono

λ1 =−A
4

+
ΩL

2
(2M +1)− 1

2

√
Ω2

L +A2(L+
1
2
)2 +AΩL(2M +1) (10.181a)

λ2 =−A
4

+
ΩL

2
(2M +1)+

1
2

√
Ω2

L +A2(L+
1
2
)2 +AΩL(2M +1) (10.181b)

Il lettore può verificre che questi autovalori, perL = 1,M = 0,−1, danno il risultato (10.174).
In questo caso∆FS = 2A/3, vedi eq.(10.118).

Per come abbiamo scelto gli stati, (10.179) possiamo anche scrivereM = MJ−/12, al
variare diM, MJ acquista tutti i valori eccetto|MJ|= L+ 1

2, e si ha

λ1 =−A
4

+ΩLMJ−
1
2

√
Ω2

L +A2(L+
1
2
)2 +2AΩLMJ (10.182a)

λ2 =−A
4

+ΩLMJ +
1
2

√
Ω2

L +A2(L+
1
2
)2 +2AΩLMJ (10.182b)

10.12 Paramagnetismo e diamagnetismo atomico.

Lo studio del paramagnetismo e del diamagnetismo in meccanica quantistica ha un’im-
portanza sia pratica che concettuale. In mecanica classica infatti il paramagnetismo può
solo essere descritto supponendo che gli atomi abbiano un momento magnetico intrinseco,
non quello dovuto al moto orbitale degli elettroni, mentre il diamagnetismo non è proprio
spiegabile, nel senso che rigorosamente non c’è effetto diamagnetico in fisica classica. Il
motivo è semplice. L’unica influenza di campo magnetico sul moto orbitale degli elettroni,
o di cariche in generale, è la sostituzione

p→ p− e
c

A (10.183)

nell’Hamiltoniana. Se imponiamo che le osservabili siano invarianti di gauge,tutte le os-
servabili fisiche subiscono la stessa sostituzione, cioè l’impulso può comparire solo nella
combinazione (10.183).

Il valor medio statistico di una quantità è determinato, classicamente, dalla funzione di
partizione

Z =
∫

dpdqexp(−H(p,q)/kT (10.184)

p.q sono le coordinate canoniche del sistema. Se è presente un campo magnetico avremo

Z =
∫

dpdqexp(−H(p− e
c

A,q)/kT (10.185)

Sottolineiamo il fatto che le coordinatep e q sono coordinateindipendentiche descrivono
lo spazio delle fasi del sistema, in particolare le variabilip variano nell’intervallo−∞ <
pi < +∞. Possiamo allora effettuare nell’integrale (10.185) il cambiamento di variabili
(una traslazione nellep):

ΠΠΠ = p− e
c

A

lo Jacobiano della trasformazione è 1, ed i limiti di integrazione non vengono cambiati
perchè le variabilip non sono vincolate. Si ha allora

Z =
∫

dΠΠΠdqexp(−H(Π,q))/kT (10.186)

che coincide con la (10.184), quindi l’effetto del campo magnetico sul moto orbitale è
nullo! Il discorso resta immutato per il valor medio di qualunque quantità fisica gauge
invariante.
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Il punto cruciale in meccanica quantistica è che la funzione di partizionenonsi scrive
come un integrale su variabili non vincolate ma come

Z = ∑
n

e−En/kT

doveEn sono le energie degli stati.

10.12.1 Paramagnetismo atomico.

Consideriamo un gas perfetto, quindi un sistema termodinamico in cui le singole com-
ponenti possono essere considerate statisticamente indipendenti, per concretezza parliamo
di atomi. Se introduciamo un campo magnetico si avrà per ogni atomo una Hamiltoniana
H(B), con autostati|n〉 e autovaloriEn(B). Secondo la formula generale (10.24) è possibile
definire un valor medio quantistico di dipolo magnetico per ogni stato:

〈n|m|n〉=− ∂

∂B
En(B) (10.187)

Macroscopicamente questo darà origine ad una magnetizzazione per unità di volume

M = Nm m = ∑
n

pn〈n|m|n〉 (10.188)

DoveN è il numero di atomi per unità di volume epn la probabilità di equilibrio dello stato,
a temperaturaT:

pn =
1
Z

exp(−En(B)
kT

) Z = ∑
n

e−
En(B)

kT (10.189)

Usando la (10.187):

m =
1
Z ∑

n

(
− ∂

∂B
En(B)

)
e−

En(B)
kT = kT

1
Z

∂

∂B
Z = kT

∂

∂B
logZ (10.190)

Nota. Per i lettori che hanno una certa familiarità con la meccanica statistica è opportuno dimo-
strare la connessione fra la definizione (10.190) della magnetizzazione e la definizione macroscopica
della stessa quantità. Consideriamo un sistema omogeneo all’equilibrio termico a temperaturaT,
immerso in un campo magnetico, uniforme,B. Se si varia in modoisotermoil campo si ha una
variazione dell’energia libera del sistema:

δF =−MMM δB (10.191)

e la (10.191) è la definizione macroscopica di magnetizzazione. L’energia libera è connessa alla
funzione di partizione da

Z = exp(−F/kT) F =−kT logZ (10.192)

Mantenendo costante la temperatura, dalla (10.191) e dalla (10.192) segue

MMM = kT
∂

∂B
logZ (10.193)

Se il sistema è composto da parti statisticamente indipendenti l’energia libera totale è la somma delle
energie libere delle parti, ovvero la funzione di partizione è il prodotto delle singole funzioni di
partizione, quindi

MMM = NM1 (10.194)

dove M1 indica la magnetizzazione del singolo sistema (atomo). Per sistemi omogenei e campo
magnetico costante l’energia libera è proporzionale al volume del corpo, e costante macroscopica-
mente sul campione, quindi anche la magnetizzazione totale è omogenea e proporzionale al volume,
MMM = VM . Dividendo per il volume la (10.194) riotteniamo la (10.190) e la (10.188).
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Numericamente si ha

µBB∼ 6× 10−9 ×B(gauss) eV

quindi per campi minori di circa 1 Tesla possiamo applicare la teoria perturbativa per cal-
colare gli autovaloriEn(B), usando come stati imperturbati del sistema quelli di struttura
fine.

L’Hamiltoniana di interazione è

V =−µµµB+
e2

8mc2 ∑
a

(B∧ ra)2 (10.195)

µµµ ≡ e
2mc∑

a
(la +2sa) =−µB(L +2S)

Le somme nella (10.195) sono estese a tutti gli elettroni atomici. Abbiamo introdotto le
usuali notazioni:

µB =
|e|

2mc
~L = ∑

a
`̀̀a ~S= ∑

a
sa

ChiamandoEn le energie imperturbate del sistema, si ha, usando la teoria delle perturba-
zioni al secondo ordine e ponendoB lungo l’assez:

En(B) = En−FnB− 1
2

GnB2 (10.196a)

Fn = 〈n|(µµµz))|n〉 Gn = 2∑′

s

|〈s|µz|n〉|2

Es−En
− e2

4mc2 ∑
a
〈n|(x2

a +y2
a)|n〉 (10.196b)

Nella definizione diGn abbiamo fattorizzato un segno−, la si confronti con la (10.15).
Sempre inGn la somma è, come al solito, estesa a tutti gli stati con energia diversa dallo
stato|n〉.

Per temperature non troppo basse si ha sicuramente

En(B)−En ∼ µBB� kT (10.197)

possiamo allora sviluppare in serie la funzione di partizione e scrivere

Z = ∑
n

e−
En
kT

[
1+

Fn

kT
B+

1
2

B2
(

1
(kT)2 F2

n +
1

kT
Gn

)]
(10.198)

Moltiplicando e dividendo per la funzione di partizione in assenza di campo:

Z0 = ∑
n

e−
En
kT

Z =
[
1+

1
kT

FnB+
1
2

B2
(

1
(kT)2 F2

n +
1

kT
Gn

)]
Z0 (10.199)

Dove ora le medie sono fatte rispetto al sistemaimperturbato, cioè in assenza di campo. Se
il sistema è isotropo, cioè invariante sotto rotazioni, come supporremo,

Fn = 0 (10.200)

Infatti se il sistema è invariante sotto rotazioni i livelli sono degeneri sul numero quantico
MJ, autovalore diJz, quindi tutti questi stati sono equiprobabili e, per ogni livello:

µz = ∑
MJ

〈MJ|µz|MJ〉= 0
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Segue

Z =
[
1+

1
2

B2
(

1
(kT)2 F2

n +
1

kT
Gn

)]
Z0 (10.201)

Dalla (10.190) si ha allora, al primo ordine inB:

m= (
1

kT
F2

n +Gn)B χ = (
1

kT
F2

n +Gn) (10.202)

La quantitàχ, che esprime la proporzionalità fra campo magnetico e momento magnetico,
si chiamasuscettività magnetica.La caratteristica dipendenza 1/T della suscettività ma-
gnetica è dettaLegge di Curie, e naturalmente vale solo seF2

n 6= 0. Come si vede dalla
(10.202) esiste una suscettività residua perT → ∞ data dal termineGn.

Le sostanze conχ > 0 sono detteparamagnetiche, quelle conχ < 0 diamagnetiche.
Stimiamo i vari contributi. Innanzitutto|Fn| ≥ 0 quindi gli eventuali contributi di tipo

diamagnetico provengono solo dal termineGn. Sullo stato fondamentale il primo addendo
di Gn è positivo, il secondo negativo, quindi per lo stato fondamentale di un gas l’unico pos-
sibile contributo diamagnetico deriva dal secondo addendo diGn. Stimiamo separatamente
i vari contributi.

1) Per quanto riguarda|Fn|2, se non è nullo, ha come ordine di grandezza

1
kT
|Fn|2 ∼

µ2
B

kT
(10.203)

2) Consideriamo il secondo addendo diGn. Usando l’invarianza sotto rotazioni

x2
a = y2

a =
1
3

r2
a

usando come distanza tipica il raggio di BohraB = ~2/me2 si può stimare

e2

mc2 r2 ∼ e2

mc2 a2
B ∼ µ

2
B

aB

e2 ∼
µ2

B

E0
(10.204)

dove E0 è una tipica energia elettronica, dell’ordine di qualche eV, quindi que-
sto fattore è depresso rispetto al termine precedente per un fattorekT/E0 che per
temperature normali è molto piccolo.

3) Per quanto riguarda il primo addendo diGn notiamo che l’operatoreµµµz, agendo solo
sulle variabili angolari e di spin, non influenza gli altri numeri quantici, ad esempio
il numero quantico radiale per un sistema idrogenoide. Se l’atomo possiede una
struttra fine i termini dominanti nella somma (10.196b) provengono dai livelli di
struttura fine e quindi il contributo è dell’ordine di

µ2
B

∆EFS
∼ µ2

B

α2E0
(10.205)

e quindi circa 104 volte più grande del termine (10.204). Se invece non ci sono
sottolivelli di struttura fine, da una parte il denominatore con le differenze di energia
è dell’ordine diE0, dall’altra l’operatoreµz ha elementi di matrice nulli, al primo
ordine nell’interazioneLS, fra stati appartenenti a diversi multipletti di struttura fine.
In effetti gli stati|n〉 sono, usando la teoria perturbativa per l’accoppiamentoL ·S:

|n〉= |α,J,MJ〉+ ∑′

β

c
β
|β ,J,MJ〉

con

c
β
∼

HLS

E0
∼ α

2
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l’operatoreµz, non potendo intervenire sui numeri quantici principali, ha elementi
di matrice solo sulle correzioni agli stati, quindi è dell’ordine diµBα4 e perciò, in
assenza di struttura fine, il primo addendo diGn ha come ordine di grandezza

G(1) ∼ µB
α4

E0
(10.206)

trascurabile in confronto all’ultimo addendo diGn.

10.12.2 Calcolo della suscettività magnetica.

Vediamo in qualche caso particolare come si calcola la sucettività magneticaχ.

Bassa temperatura

Supponiamo che la temperatura sia sufficientemente bassa in modo che nella distribuzione
di Boltzmann sia rilevante solo lo stato fondamentale. Distinguiamo i vari casi.

1) L = 0,S= 0. Non c’è struttura fine. La richiesta sulla temperatura è

kT� E1−E0

doveE1−E0 ∼ eV è la separazione in energia dal primo livello elettronico eccitato,
una condizione quasi sempre verificata. PerL = 0,S= 0

〈n|µz|n〉= 0

quindi l’unico contributo rilevante alla magnetizzazione, vedi eq.(10.206), è dato dal
secondo termine inGn. Poichè lo stato è invariante sotto rotazioni:

χ =−1
6

e2

mc2 〈0|∑
a

r2
a|0〉 (10.207)

Abbiamo indicato con|0〉 lo stato fondamentale. L’atomo dunque èdiamagnetico.
Questo tipo di situazione si presenta, ad esempio, nei gas nobili.

2) J 6= 0. Anche qui se non c’è struttura fine, ad esempioS= 0, la richiesta sulla
temperatura è quasi sempre verificata, se c’è struttura fine si intende chekT sia più
piccolo degli intervalli di struttura fine:

kT� ∆FS

In questo caso lo stato fondamentale ha degenerazione 2J + 1 e tutti gli stati sono
equiprobabili, avendo la stessa energia, quindi fare la media statistica equivale a
mediare suMJ. L’elemento di matrice diµz è quello calcolato per l’effetto Zeeman:

〈MJ|µz|MJ〉=−gJµBMJ (10.208)

dovegJ è il fattore di Landè, eq.(10.160). Si ha perciò

F2
n =

1
2J+1 ∑

MJ

g2
Jµ

2
BM2

J =
1
3

g2
Jµ

2
BJ(J+1) (10.209)

ed il corrispondente contributo alla suscettività è

χ =
1

kT
1
3

g2
Jµ

2
BJ(J+1) (10.210)

Come abbiamo precedentemente spiegato le correzioni dovute al termine inGn alla
(10.210) sono completamente trascurabili. Infatti anche il termine dovuto al secondo
ordine in teoria delle perturbazioni è dell’ordine diµ2

B/∆FS, trascurabile in confronto
alla (10.210) per basse temperature, sekT� ∆FS.
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3) J = 0,L,S 6= 0. In questo caso il contributo precedente è nullo, e quello principa-
le è dovuto alla correzione perturbativa al secondo ordine inGn, vedi eq.(10.205).
L’intervallo di temperature è sempre limitato dakT� ∆FS.

Il calcolo può ad esempio essere fatto per un atomo conL = 1,S= 1 e lo lasciamo
come esercizio al lettore. Il punto importante è che questo contributo:

χ = 2∑′

s

|〈s|µz|n〉|2

Es−En
(10.211)

è positivo, quindi il sistema è ancora paramagnetico, ma, nei limiti di temperatura
indicati, la suscettività è indipendente daT.

Alta temperatura Se si ha una struttura fine l’energia termicakT può facilmente essere
dello stesso ordine, e spesso molto più grande, degli intervalli di strutura fine, ricordiamo
che a temperatura ambientekT ∼ 1

40 eV. Nel limite kT � ∆FS la situazione si semplifica.
Nel seguito trascuriamo il termine diamagnetico dell’Hamiltoniana, che non gioca alcun
ruolo.

PerkT� ∆FS tutti gli stati corrispondenti allo stesso multipletto di struttura fine hanno
lo stesso peso statistico, quindi si può pensare di ottenere la suscettività semplicemente
“dimenticando” la struttura fine. Operiamo per il momento in questo modo, faremo poi
vedere che il risultato è effettivamente corretto.

Se si trascura l’interazioneL ·S l’Hamiltoniana di interazione

V =−µzB (10.212)

è diagonale su tutto lo spazio di Hilbert, in altri termini tutto il suo contributo ai livelli
energetici è

∆En =−〈n|µz|n〉B (10.213)

senza correzioni al secondo ordine, come il primo termine del fattoreGn. Quindi la
suscettività è

χ =
1

kT
|µz|2 (10.214)

Poichè gli stati sono degeneri, la media equivale a fare la somma sugli stati e dividere per la
degenerazione del livello, cioè(2L+1)(2S+1). Essendoµz diagonale possiamo scrivere

∑
n
|〈n|µz|n〉|2 = ∑

n
〈n|µz|n〉〈n|µz|n〉= ∑

n,k

〈n|µz|k〉〈k|µz|n〉= ∑
n
〈n|µ2

z |n〉 ≡ Tr(µ
2
z )

La traccia è invariante per cambiamenti di base, possiamo quindi scegliere la base|Lz〉|Sz〉
e si ha allora

χ =
g2

B

kT
L2

z +4S2
z +2LzSz+2SzLz

Sulla base scelta gli operatoriLz edSz sono indipendenti e si ha

LzSz = LzSz = 0

L2
z =

1
2L+1 ∑

ML

M2
L =

1
3

L(L+1) S2
z =

1
2S+1 ∑

MS

M2
S =

1
3

S(S+1)

e quindi

χ =
1

kT
g2

B
1
3

[L(L+1)+4S(S+1)] (10.215)
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NOTA: Non è obbligatorio scegliere la base|Lz〉|Sz〉, allo stesso modo si sarebbe potuta scegliere
l’usuale base|J,MJ〉 usata per diagonalizzare l’interazioneLS, ma sarebbe statosbagliato usare la
(10.208) per calcolare gli elementi di matrice diµz in questa base: nelll’espressione (10.208) si è
usato il teorema di Wigner-Eckart che lega gli elementi di matrice diLz,Sz a quelli di Jz ma solo
all’interno della stessa rappresentazione irriducibile, cioè aJ fissato. Se si considerano tutti i valori
di J contemporaneamente non si possono trascuraare gli elementi di matrice diLz,Sz fuori diagonale.

La derivazione proposta della (10.215) da un lato sembra ragionevole dall’altro incom-
prensibile: la separazione fra primo e secondo ordine perturbativo nelle (10.196) dipende
dal rapportoµBB/∆FS non dalla temperatura. Se si considera piccola la separazione di
struttura fine la correzione al second’ordine

2∑′

s

|〈s|µz|n〉|2

Es−En

sembra diventare dominante e questo dipende da∆FS e dà un contributoindipendentedalla
temperatura alla suscettività, esattamente il contrario di quello che che c’è scritto nella
(10.215). Se supponiamo che in ogni caso, come effettivamente è,µBB� ∆FS il secondo
ordine deve essere trascurabile ma il primo ordine sembrerebbe dare un contributo che è la
somma dei contributi (10.209) portando ad una suscettività

χ =
1
3

µ
2
B

1
(2L+1)(2S+1) ∑

J
g2

JJ(J+1)(2J+1) (10.216)

Questa somma non ha niente a che fare con l’espressione (10.215).
Per spiegare tutti questi punti partiamo dalla media esatta su tutti gli stati di struttura fi-

ne, eq.(10.202). Cominciamo a contare le energie a partire dallo stato fondamentale, quindi
temperatura alta rispetto alla separazione di struttura fine significheràEn � kT. |n〉 indica
uno stato di struttura fine, la media statistica perχ su questi stati si scrive, trascurando il
termine diamagnetico,

χ =
1
Z ∑

n
e−

En
kT

[
1

kT
|〈n|µz|n〉|2 +2∑′

s

〈n|µz|s〉〈s|µz|n〉
Es−En

]
(10.217)

A denominatore, supponendoEn/kT� 1 si ha semplicemente la degenerazione dello stato

Z = ∑
n

1 = (2L+1)(2S+1)

L’ordine 0 in 1/T del numeratore è

2∑
n

∑′

s

〈n|µz|s〉〈s|µz|n〉
Es−En

≡ 2∑
n6=s

|〈n|µz|s〉|2

Es−En
= 0 (10.218)

Questa espressione si annulla perchè il denominatore è antisimmetrico nello scambios↔ n,
mentre il numeratore è simmetrico. Questo è il motivo per cui non c’è un termine indipen-
dente daT ad alta temperatura. Questo è in accordo con la (10.215) e non contraddice la
(10.211) che si riferiva a temperature inferiori a∆FS/k.

Al termine di ordine 1/T contribuiscono il primo termine della (10.217) ed il termine
che deriva dal secondo sviluppando l’esponenziale:

1
kT ∑

n

[
|〈n|µz|n〉|2−2∑

n6=s

En
〈n|µz|s〉〈s|µz|n〉

Es−En

]
(10.219)

Sfruttando sempre l’antisimmetria possiamo scrivere il secondo di questi termini nella
forma

−2∑
n6=s

En
|〈n|µz|s〉|2

Es−En
= ∑

n6=s

(Es−En)
|〈n|µz|s〉|2

Es−En
= ∑

n6=s

〈n|µz|s〉〈s|µz|n〉 (10.220)
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Ricordiamo ora che gli stati|n〉 sono un insiemecompletoper l’insieme dei livelli consi-
derati, in pratica sono della forma|α,J,MJ〉 quindi sono semplicemente una base per una
rappresentazione (riducibile) del gruppo delle rotazioni. Sommando la (10.220) al primo
termine della (10.219) si ha quindi

1
kT

{
∑
n
〈n|µz|n〉〈n|µz|n〉+ ∑

n6=s

〈n|µz|s〉〈s|µz|n〉=

}
=

1
kT ∑

n
〈n|µ2

z |n〉

ed infine per la suscettività

χ =
1

kT
1

(2L+1)(2S+1) ∑
n
〈n|µ2

z |n〉 (10.221)

Questa è esattamente la media (10.214) che abbiamo calcolato precedentemente, quindi
riotteniamo il risultato (10.215).

Abbiamo presentato in dettaglio questo calcolo per il suo significato metodologico: fa
vedere in dettaglio in che senso dei livelli energetici appaiono degeneri se le differenze di
energie sono piccole in confronto akT. La cosa interessante appunto è che se si trascurano
termini dell’ordine di∆FS/kT questo non solo dice che possiamo considerare degenere il
sistema, dal punto di vista termodinamico, per le variabili come l’energia, e questo è ovvio,
ma anche per variabili come la suscettività che regolano la “risposta” del sistema a campi,
statici, esterni. In altre parole se si misura la suscettività con precisione∆FS/kT non ci si
accorge della struttura fine di un livello, a maggior ragione, ad esempio, non ci si accorge
della possibile struttura iperfina.

10.12.3 Saturazione e limite classico.

Come abbiamo visto il contributoo all’energia magnetica del sistema è proporzionale a
(µBB)2

kT per il paramagnetismo mentre a
(µBB)2

E0
per il diamagnetismo. C’è quindi un am-

pio intervallo di temperature in cui il paramagnetismo è dominante. Supponiamo quindi
di trascurare completamente il termine diamagnetico. Il parametro interessante è allora il
rapportoµBB/kT. Fino a questo punto ci siamo limitati allo studio di piccoli campi, vedia-
mo ora cosa succede per campi (relativamente) grandi. Ci limiteremo al caso di un singolo
livello di struttura fine, ad esempio un livello conS= 0. Sapendo che per campi grandi
l’effetto Pashen-Back implica semplicemente che possiamo dimenticarci della struttura fi-
ne potremmo anche considerare il caso di più livelli ma la trattazione si complicherebbe
senza aggiungere nulla di qualitativamente nuovo.

In assenza di diamagnetismo e di struttura fine l’Hamiltoniana di perturbazione

−µµµ ·B

è diagonale, siamo cioè nella situazione del paragrafo precedente. Il contributo alla funzio-
ne di partizione dovuto al campo magnetico può essere calcolato esattamente, senza fare
sviluppi in serie. Usando la (10.208) si ha, indicando cong il fattore giromagnetico:

Z = ∑
MJ

e
1

kT (µBgMJB) (10.222)

da cui possiamo calcolarci la magnetizzazione tramite la (10.190)

m = kT
∂

∂B
logZ

Il caso più semplice si ha perJ = 1/2:

Z = 2cosh

(
µBgB
2kT

)
m=

µBgJ

2
tanh

(
µBgB
2kT

)
(10.223)
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In particolare per alte temperature:

m−−−→
T→∞

(
µBg
2

)2 1
kT

B

e si riconosce ancora la legge di Curieχ ∼ 1/T e l’accordo con la (10.210) perJ = 1
2.

Per momento angolare generico, usando l’identità:

n

∑
k=−n

xk = x−n
2n

∑
k=0

xk =
1
xn

1−x2n+1

1−x
=

xn+ 1
2 −x−n− 1

2

x
1
2 −x−

1
2

la funzione di partizioneZ si scrive

Z = sinh

(
gJµBB(J+

1
2
)
)/

sinh

(
gJµBB(

1
2
)
)

e

m= gµBJ LJ

(
gJµBJB

kT

)
(10.224)

Abbiamo introdotto le funzioni di Langevin
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Figura 10.7: Funzioni di Langevin per diversi valori diJ.

LJ(x) =
d
dx

log

{
sinh

(
2J+1

2J
x

)/
sinh

( x
2J

)}
=

=
2J+1

2J
coth

(
2J+1

2J
x

)
− 1

2J
coth

( x
2J

)
(10.225)

Le funzioni di Langevin mostrano chiaramente il limite classico. Per momento angolare
J, classicamente il momento magnetico èµ0 = µBgJJ. Questo fattore è proporzionale
all’argomentox delle funzioni di Langevin. Tenendo fissa questa quantità e facendo il
limite J→ ∞ si ha

lim
J→∞

LJ(x) = L∞(x) = coth(x)− 1
x

lim
J→∞

m= µ0L∞

(
µ0B

kT

)
(10.226)
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Questo è esattamente il valor medio classico per un’interazione−µµµ0 ·B. Chiamandoθ
l’angolo fraµµµ0 eB, classicamente si ha:

mcl =
(∫

dΩµ0cosθe
µ0Bcosθ

kT

)/(∫
dΩe

µ0Bcosθ

kT

)
= nµ0

[
coth

(
µB
kT

)
− kT

µB

]
che è proprio la relazione (10.226).

Per grandi valori dell’argomento

lim
x→∞

LJ(x) = 1

e la (10.224) dà:
m−−−→

B→∞
gµBJ = µ0 (10.227)

che ha un significato intuitivo: per grandi valori del campo il momento magnetico atomico
si allinea completamente al campo esterno, si ha cioè una saturazione. Il valore limite di
questo momento magnetico è proprio il valore classico. Questo effetto, ed il limite classico,
sono chiari se si fa un grafico delle funzioni di Langevin, come in figura 10.7

10.13 Interazione di quadrupolo.

Consideriamo come nel paragrafo 10.6 l’interazione di un sistema di cariche in campo
esterno, diciamo per brevità un atomo:

V = ∑eaΦ(qa) (10.228)

Con le stesse notazioni di quel paragrafo, ponendo

qa = R+xa

e sviluppando in serie il potenziale fino al secondo ordine inx, cioè fino al secondo ordine
rispetto alle lunghezze caratteristiche del sistema

V = ∑eaΦ(R)+∑
a

ea(xa)i
∂Φ(R)

∂Ri
+

1
2 ∑

a
ea(xa)i(xa) j

∂ 2Φ(R)
∂RiRj

Il fattore
Xi j = ∑

a
ea(xa)i(xa) j

è un tensore simmetrico e possiamo decomporlo in una parte a traccia nulla ed in una
proporzionale all’identità

Xi j =
1
3

δi j Xkk+(Xi j −
1
3

Xkkδi j )

Il potenziale esternoΦ soddisfa l’equazione di Laplace nella zona dell’atomo quindi il
termine inδi j non contribuisce all’interazione (10.228). Raccogliendo per comodità un
fattore 1/3 abbiamo:

V = ∑eaΦ(R)+∑
a

ea(xa)i
∂Φ(R)

∂Ri
+

1
6 ∑

a
ea(3xa)i(xa) j − (x2

a)δi j )
∂ 2Φ(R)
∂RiRj

(10.229)

Consideriamo un sistema neutro,∑aea = 0. Il primo termine (10.229) si annulla, il secondo
costituisce la già nota interazione di dipolo, l’ultima si chiama interazione diquadrupolo
ed il tensore

Qi j = ∑
a

ea(3xa)i(xa) j − (x2
a)δi j ) (10.230)
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prende il nome di quadrupolo del sistema.
Come già detto nel paragrafo 10.6 il termine di dipolo non dipende dall’origine delle

coordinate se la carica totale è nulla. Lo stesso si può dire del tensore di quadrupolo se
si annullano sia la carica che il dipolo, come si verifica immediatamente con la sostitu-
zionex → x + a. Per sistemi atomici siamo in effetti in questa situazione, nel senso che
come abbiamo visto〈d〉 = 0 sugli stati stazionari, quindi il momento di quadrupolo ha
un significato intrinseco. Esattamente come nel paragrafo 10.6 le coordinatexa saranno
allora le coordinate degli elettroni rispetto al nucleo e la somma andrà fatta sulle cariche
elettroniche.

Il termine di interazione di quadrupolo si scrive perciò (sottindendiamo l’indicea che
distingue gli elettroni):

HQ =
1
6

Qi j ∂i∂ jΦ Qi j = ∑e(3xix j − r2
δi j ) (10.231)

Le derivate si intendono calcolate sulla posizione del nucleo.
Per calcolare l’effetto sui livelli energetici dell’HamiltonianaHQ occorre calcolare gli

elementi di matrice del tensoreQi j sugli autostati dell’Hamiltoniana imperturbata. Comin-
ciamo col notare che per uno stato conJ = 0,J = 1/2,

〈n,J = 0|Qi j |n,J = 0〉 ≡ 0 (10.232)

Infatti Qi j si trasforma come un momento angolare 2 e l’elemento di matrice (10.232) è
nullo per le regole di selezione sul momento angolare: la somma di un momento angolare
2 (il quadrupolo) e di un momento angolareJ = 0,1/2 (lo stato) ha come risultato un
momento angolare 2, o 2± 1/2 che non ha quindi proiezione sul sotttospazio degli stati
a momento angolare 0 e 1/2. Quindi solo gli stati con momento angolareJ ≥ 1 possono
avere un mometo di quadrupolo.

PerJ > 1/2 si può ottenere una certa semplificazione utilizzando il teorema di Wigner-
Eckart. La media del tensore a traccia nullaQi j deve essere proporzionale, su un multipletto
a J fissato, al tensore simmetrico a traccia nulla costruito conJ. Quindi per uno stato
|ψ〉= |n,J,Jz〉, n indica i numeri quantici aggiuntivi rispetto aJ,Jz,

〈ψ|Qi j |ψ〉=
3QJ

2J(2J−1)
〈ψ|
(

JiJj +JjJi −
2
3

J2
δi j

)
|ψ〉 (10.233)

La normalizzazione nella (10.233) è stata scelta in modo cheQJ coincida con il valor medio
di Qzzsullo stato con il massimo valore diJz nel multipletto, cioèJz = J, come è immediato
verificare. Per brevità la (10.233) sarà scritta nella forma

Qi j =
3QJ

2J(2J−1)

(
JiJj +JjJi −

2
3

J2
δi j

)
(10.234)

eQJ è detto direttamentemomento di quadrupolodello stato.
Notiamo cheQi j , al contrario del dipolo, è pari sotto inversione spaziale, quindi la

simmetria sotto parità impone che siano nulli elementi di parità diversa, e non impone
vincoli per il valor medio su uno stato.

Come esempio pratico consideriamo un campo esterno a simmetria assiale, chiamiamo
z l’asse di simmetria. Poichè deve valere l’equazione di Laplace perΦ e poichè stiamo
assumendo simmetria assiale si deve avere

∂
2
x Φ = ∂

2
y Φ = A ∂

2
z Φ =−2A

tutte le altre derivate seconde sono zero perchè non sono invarianti per rotazioni attorno
all’assez.

L’Hamiltoniana di interazione si riduce perciò a

HQ =
1
6
(Qxx+Qyy−2Qzz)A =−1

2
QzzA
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nell’ultimo passaggio abbiamo usato il fatto cheQi j è a traccia nulla. Utilizzando la
(10.233) si ha

δE =
QJ

2J(2 j−1)
(
J(J+1)−3M2) (10.235)

doveM è l’autovalore diJz.
Come è sottinteso dalla notazione il numeroQJ dipende daJ, cioè dal momento angola-

re totale. D’altronde l’operatoreQi j è composto da sole variabili orbitali. Se la separazione
di struttura fine è maggiore dell’energia di interzione di quadrupolo, cosa che senz’altro
suporremo,L,Ssono buoni numeri quantici quindi deve essere possibile esprimereQJ in-
termini di sole variabili orbitali, ovvero, scrivendo il teorema di Wigner-Eckart per la sola
parte orbitale:

Qi j =
3QL

2L(2L−1)

(
LiL j +L jLi −

2
3

L2
δi j

)
(10.236)

La (10.236) è intesa come valor medio sulle sole funzioni d’onda orbitali, trascurando le
variabili di spin.

La relazione fraQJ eQL dipende solo dal teorema di Wigner-Eckart, non dal particolare
tensore considerato. Nel complemento 10.G è affrontato esattamente questo problema per
il tensorer̂ i r̂ j −

1
3δi j ed è dimostrato che il rapporto dei coefficienti nelle espressioni in

termini diJ e diL è determinato dalla relazione

3QJ

2J(2J+1)
=

3QL

2L(2L−1)
·d(J,L,S) (10.237)

doved è una costante, scritta nella equazione (10.399a). Nel caso particolare di spin 1/2, il
più semplice dopo lo spin 0, la costante vale, vedi (10.400)

d =


2L−1
2L+1

J = L+ 1
2

2L+3
2L+1

J = L− 1
2

e la (10.237) si semplifica in

QJ = QL (J = L+
1
2
) QJ =

(L−1)(2L+3)
L(2L+1)

QL (J = L− 1
2
) (10.238)

Come esempio calcoliamo i momenti di quadrupolo per l’atomo di idrogeno nello stato
2p. Dalla definizione diQL si ha:

QL = 〈2p,Lz = +1|(3z2− r2)|2p,Lz = +1〉 (10.239)

Usando le armoniche sferiche

Y1,±1 =∓
√

3
4π

sinθ√
2

ei±ϕ (10.240)

possiamo separare la parte angolare dalla parte radiale e scrivere

QL = 〈r2〉
∫

dΩ
3

8π
sin2

θ(3cos2 θ −1) =−4
5
〈r2〉 (10.241)

Usando〈r2〉= a2
B

n2

2 (5n2 +1−3L(L+1)) si ricava, per lo stato 2p

QL =−4
5
·30a2

B = 24a2
B (10.242)
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Effettuando direttamente il calcolo diQJ dobbiamo distinguere fra lo stato 2p3/2 e lo stato
2p1/2. Al solito il valore diQJ è quello calcolato sulla componente più alta del multipletto.
Nel primo caso, separando la parte di spin dalla parte orbitale

|2p,
3
2
,+

3
2
〉= |+1〉|+1

2
〉

e quindi banalmente

QJ = 〈+1|(3z2− r2)|+1〉〈+1
2
|+1

2
〉= 〈+1|(3z2− r2)|+1〉= QL

in accordo con la (10.238).
Nel secondo caso dobbiamo trovare zero, avendosiJ = 1/2. Il termine più alto del

multipletto haJz = 1/2 ed usando i coefficienti di Clebsh-Gordan:

|1
2
,
1
2
〉=

√
2
3
|1〉 |−1

2
〉−
√

1
3
|0〉|1

2
〉

Poichè l’operatore non coinvolge lo spin, o anche perchè ha(3z2−r2) ha regola di selezione
∆Lz = 0

QJ = 〈r2〉
∫

dΩ(3cos2 θ −1)
(

2
3

∣∣Y11

∣∣2 ++
1
3

∣∣Y10

∣∣2)
usandoY10 =

√
3/4π cosθ assieme alle (10.240) si ottieneQJ = 0, come aspettato.

10.14 Cambiamenti delle condizioni al bordo.

Alcuni problemi in Meccanica Quantistica possono essere schematizzati come il moto di
una particella all’interno di una regione delimitata da una certa superficie

S0(x) = 0 (10.243)

Nel caso dell’equazione di Schrödinger il tipico problema agli autovalori è nella forma6:

Hψ = Eψ ψ|S0
= 0 (10.244)

Supponiamo di saper risolvere il problema (10.244), cosa succede se si cambia di poco il
bordo? cioè se la superficie è delimitata da

S(x) = 0 (10.245)

Una strategia possibile è cercare un cambiamento di variabili in modo tale che

x = f (ξξξ ) : S(x(ξ )) = S0(ξξξ ) (10.246)

cioè esprimendo la nuova superficie tramite il cambiamento di variabile si ritorna alla vec-
chia superficieS0 e quindi alla nota condizione al contorno. Per quanto riguarda l’Ha-
miltoniana, questa dipende dax, scriviamoH(x) per chiarezza. Possiamo ora scrivere
l’identità

H(x) = H(ξ )+(H(x)−H(ξ ))≡ H(ξ )+V (10.247)

Il problema in termini della variabileξ è quello noto, essendo la superficie in questa va-
riabile nella formaS0(ξξξ ) = 0, e per piccoli cambiamenti di supeficie la variazione dell’Ha-
miltoniana può essere trattata perturbativamente. La variazione di energia dei livelli sarà
perciò

δE = 〈ψ|H(x(ξ ))−H(ξ )|ψ〉 (10.248)

dove|ψ〉 è l’autostato dell’hamiltoniana di partenza. Consideriamo alcuni esempi prima di
discutere alcune proprietà della (10.248).

6Tutto quello che diremo vale senza cambiamenti per condizioni più generali del tipoαψ + β∂nψ = 0, dove
∂n è la derivata normale alla superficie.
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Particella in un parallelepipedo.

Per controllare la (10.248) consideriamo un caso esattamente risolubile. una particella
libera di massam confinata in un parallelepipedo di lati(a,b,c). Come è noto i livelli di
energia sono dati da

H =− ~2

2m
∆ E =

~2π2

2m

(
n2

1

a2 +
n2

2

b2 +
n2

3

c2

)
(10.249)

Quindi una variazione del tipo

a→ a(1+δa) b→ b(1+δb) c→ c(1+δc) (10.250)

conδa,δb,δc � 1, produce una variazione di energia

δE =−2
~2π2

2m

[
δa

n2
1

a2 +δb
n2

2

b2 +δc
n2

3

c2

]
(10.251)

Il cambiamento di variabili per annullare la funzione d’onda sul parallelepipedo modificato
è naturalmente (la scriviamo per variazioni arbitrarie):

x = (1+δx)ξ1 y = (1+δy)ξ2 z= (1+δz)ξ3 (10.252)

in questo modo quando(ξ1,ξ2,ξ3) = (a,b,c) le coordinate originali giacciono sulla fron-
tiera modificata. La perturbazioneV della (10.247) è allora, per piccole variazioni, ribat-
tezzando di nuovo(ξ1,ξ2,ξ3) con(x,y,z):

V =
(
−2δx

∂ 2

∂x2 −2δy
∂ 2

∂y2 −2δz
∂ 2

∂z2

)
[− ~2

2m
] (10.253)

Notiamo che la (10.253) vale, come trasformazione di scala delle coordinate, perqualun-
que geometria, il modello particolare, il parallelepipedo in questo caso, interviene quando
si effettua il valor medio diV sullo stato. Siccome in un parallelepipedo l’Hamiltoniana è
separabile nelle tre variabili cartesiane si ha, con(δx,δy,δz) = (δa,δb,δc)

δE =
~2

2m

[
−2δa

n2
1π2

a2 −2δb
n2

2π2

b2 −2δc
n2

3π2

c2

]
(10.254)

in accordo con la (10.251). Notiamo che nella trasformazione di scala (10.251) si ha una
trasformazione di volumeδV = 3(δa +δb +δc)V. Per deformazioni uguali,δa = δb = δc,
δV = 3δaV e la (10.253) implica

∂ 〈E〉
∂V

=−2
3
〈E〉
V

(10.255)

Questa è l’analogo dell’equazione di stato di un gas perfetto, o meglio è, come vedremo,
una espressione del teorema del viriale. Alla (10.255) ci si può arrivare, per una particella
libera, considerando una geometria qualunque. In una trasformazione di scala cambiano
solo le distanze, mentre gli angoli rimangono invariati, questo corrisponde ad una trasfor-
mazioner → (1+λ )r. Per ridursi al caso non riscalato occorre perciò la trasformazione di
variabili

r = (1+λ )ρ

Poichè il laplaciano, cioè l’energia, è una funzione omogenea di grado−2 in r,

∆r =
1

(1+λ )2 ∆ρ ' (1−2λ )∆ρ (10.256)
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come si verifica immediatamente in coordinate polari. Nella trasformazione il volume, che
è una grandezza omogenea di grado 3 cambia conδV = 3λV. Dalle equazioni (10.247),
(10.256) segue allora

δE =−2λ 〈E〉=−2
3

δV
V
〈E〉 (10.257)

che è la (10.255) per una geometria generica. Siccome abbiamo visto che la variazione di
scala è universale, cioè vale per qualunque geometria, interessiamoci ora ai cambiamenti di
forma, cioè a fisso volume. Consideriamo il caso di una sfera, leggermente più complicato
del parallelepipedo.

Particella in una buca sferica.

Un modello di nucleo ultrasemplificato consiste nel considerare i nucleoni come particelle
libere in una buca di potenziale sferica, di raggioR, nel limite di buca molto profonda il
confinamento diventa geometrico, cioè la funzione d’onda ha supporto solo all’interno della
sfera. Ricordiamo che gli autostati sono descritti da funzioni d’onda di particella libera e
gli autovalori sono determinati imponendo che la funzione d’onda si annulli sulla sfera:

E =
~2k2

2m
; ψ = Rk`Ỳ ,m(θ ,ϕ) ; R

′′
kl +

2
r

R
′
k` +

[
k2− `(`+1)

r2

]
Rk` = 0 (10.258)

Supponiamo che il nucleo subisca una deformazione che lo porti ad assumere una forma di
ellissoide di rotazione allungato

S(x) =
x2

b2 +
y2

b2 +
z2

a2 −1 = 0 (10.259)

Per piccole deformazioni

a = R(1+δa) b = R(1−δb)

Il volume di un ellissoide è 4π/3ab2 quindi se imponiamo che non cambi, cioè se ci inte-
ressiamo solo alla variazione di forma, otteniamoδa = 2δb. la trasformazione di variabili
che riporta l’ellissoide alla sfera è ancora la (10.252) e la perturbazione sempra la (10.253),
in cui imponendo il vincolo di volume,δx = δy =−δb e δz = 2δb:

V = 2δb

[
∂ 2

∂x2 +
∂ 2

∂y2 −2
∂ 2

∂z2

]
[− ~2

2m
] = 2δb

[
∆−3

∂ 2

∂z2

]
[− ~2

2m
] (10.260)

Nella (10.260) si riconosce proprio la componentezz di un operatore tipo quadrupolo,
3∂i∂ j − δi j ∆, cioè un tensore simmetrico a traccia nulla, quindi dalla (10.234) abbiamo,
su uno stato conL,M fissati,M è l’autovalore diLz:

δE =
3Q

L(2L−1)

[
M2− 1

3
L(L+1)

]
(10.261)

doveQ indica il valor medio dell’operatore sul termine più alto del multipletto, conM = L.
Il calcolo esplicito è fatto in fondo al paragrafo e risulta

Q = 2δb[−
~2

2m
]
[
−k2 2L

2L+3

]
= 2δbE

2L
2L+3

e quindi

δE = (3δb)E
4

(2L+3)(2L−1)

[
M2− 1

3
L(L+1)

]
(10.262)

Se si vuole tener conto dell’interazione spin-orbita occorre sostituireQ conQJ secondo la
procedura sviluppata nello studio egli elementi di matrice del quadrupolo.
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Deformazione generica.

Uno dei vantaggi nella formulazione (10.248) è che si ha completa libertà nella scelta della
trasformazione, purchè si abbia corrispondenza fra la superficie “semplice”,S0 e quella da
studiare,S. Sfruttiamo questo fatto per capire la variazione dei livelli in una buca sferica
per unaarbitraria variazione della superficie. Ci limiteremo a variazioni a simetria assiale,
cioè non dipendenti dall’angoloϕ per non complicare troppo l’esposizione ma sarà chiaro
come il metodo si possa estendere anche al caso generale.

La più generale forma di una superficie “quasi sferica” è

r = R(1+ f (θ)) (10.263)

f , da intendersi a quadrato trascurabile, è sviluppabile in serie di armoniche sfreriche:

f = ∑̀anỲ 0 (10.264)

Se si impone che il volume sia costante non c’è il termine proporzionale aY00, infatti il
volume contenuto dalla superficie è

V =
∫

r2drdΩ∼
∫

dΩ
1
3

R3(1+3 f )

e l’unico termine della (10.264) che può dare un contributo non nullo è appuntoa0Y00. Vo-
lendo studiare le sole variazioni di forma, quelle di volume già sappiamo come funzionano,
poniamoa0 = 0.

Come esempio, la (10.259) si può riscrivere nella forma

x2(1+2δb)+y2(1+2δb)+z2(1−2δa) = R2 (10.265a)

r2(1−2δb(3cos2 θ −1)) = R2 ⇒ r ∼ R(1+δb(3cos2 θ −1)) (10.265b)

Compare solo il termine coǹ= 2, come prevedibile, essendo il risultato precedente espri-
mibile tramite un tensore di quadrupolo. La superficie (10.263) può essere ricondotta alla
sfera di raggioR tramite il cambiamento di variabili:

r = ρ(1+ f (θ)) ρ ∼ r(1− f ) θ
′ = θ ϕ

′ = ϕ (10.266)

In questa trasformazione di variabili si avrà una variazione in forma dell’operatore di
Laplace e lo spostamento in energia dei livelli sarà dato da

δE = [− ~2

2m
]〈δ [∆]〉 (10.267)

In coordinate polari

∆ =
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
+

1
r2

[
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2
θ

∂ 2

∂ϕ2

]
(10.268)

=
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
+

1
r2

[
∂ 2

∂θ 2 +
cosθ

sinθ

∂

∂θ
+

1

sin2
θ

∂ 2

∂ϕ2

]
(10.269)

Scriviamo allora, al primo ordine inf i termini che contribuiscono aδ [∆] utilizzando
il cambiamento di variabili (10.266). Occorre fare attenzione alla trasformazione della
variabileθ :

∂

∂ r
' ∂ρ

∂ r
∂

∂ρ
= (1− f )

∂

∂ρ
⇒ ∂ 2

∂ r2 '
∂ρ

∂ r
∂

∂ρ
= (1−2 f )

∂ 2

∂ρ2

∂

∂θ
=

∂θ ′

∂θ

∂

∂θ ′
+

∂ρ

∂θ

∂

∂ρ
' ∂

∂θ ′
− f ′r

∂

∂ρ
' ∂

∂θ ′
− f ′ρ

∂

∂ρ

∂ 2

∂θ 2 '
(

∂

∂θ ′
− f ′ρ

∂

∂ρ

)(
∂

∂θ ′
− f ′ρ

∂

∂ρ

)
' ∂ 2

∂θ ′2
−2 f ′ρ

∂

∂ρ

∂

∂θ ′
− f

′′
ρ

∂

∂ρ

cosθ

sinθ

∂

∂θ
' cosθ ′

sinθ ′

(
∂

∂θ ′
− f ′ρ

∂

∂ρ

)
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Quindi, al primo ordine inf . riscrivendor,θ ,ϕ per le variabili:

δ [∆] =−2 f ∆−2
1
r

f ′
∂

∂ r
∂

∂θ
− 1

r
f
′′ ∂

∂ r
− cosθ

sinθ

1
r

f ′
∂

∂ r
(10.270)

L’integrale inθ annulla gli ultimi tre termini, infatti nel valor medio su uno stato, integrando
per parti: ∫

sinθdθ

[
−2 f ′Y∗

∂Y
∂θ

− f ′′|Y|2− f ′
cosθ

sinθ
|Y|2

]
=

=
∫

dθ

[
−sinθ f ′

d|Y|2

dθ
− f ′′ sinθ |Y|2− f ′ cosθ |Y|2

]
= 0

Quindi il risultato generale è

〈δ [∆]〉=−2 f ∆ δE =−2〈 f 〉E (10.271)

e l’ultima media è solo un integrale angolare, in pratica un coefficiente di Clebsh-Gordan.
Il risultato (10.271) ha una interpretazione fisica interessante: l’energia scala come 1/r2

in questo problema, una variazione percentualeλ del raggio provoca perciò un cambiamen-
to δE =−2λE. La (10.271) dice che questa affermazione è vera in generale, come media
sullo stato, qualunque sia il tipo di deformazione, quindi anche se dipende daθ .

Come controllo del risultato riconsideriamo il caso precedente dovef = 3δb(cos2 θ −
1
3), v. eq.(10.265b). L’integrale angolare è, vedi eq.(10.294b)

∫
dΩ|YLM|

2(cos2 θ − 1
3
) =−2

3
· 3M2−L(L+1)
(2L−1)(2L+3)

dando così il risultato

δE = 12δb ·
M2− 1

3L(L+1)
(2L−1)(2L+3)

in accordo con la (10.262).

Influenza delle condizioni al contorno.

Il risultato (10.248) che qui riportiamo per comodità

δE = 〈ψ|H(x(ξ ))−H(ξ )|ψ〉 (10.272)

presenta, nella sua semplictà, alcune sottigliezze sulla definizione degli operatori e dell’Ha-
miltoniana che meritano di essere messe in luce.

Poniamo il problema sotto forma di domande

1) L’equazione di Schrödinger è un’equazione differenziale: è perfettamente legittimo
fare i cambiamenti di variabile, ed il risultato chiaramente non dipende dai “nomi”
che si assegnano alle variabili. Quindi se partiamo da una soluzione dell’equazione
di Schrödinger con autovaloreE0

H(x)ψ0(x) = E0ψ0(x) ψ0(x) = 0 x∈ S0 (10.273)

si può benissimo fare il cambiamento di variabile dell’equazione (10.246) e scrivere

H(x(ξ ))ψ0(x(ξ )) = E0ψ0(x(ξ )) (10.274)

Come fanno gli autovalori diH(x(ξ )) e H(ξ ) ad essere diversi e dare un risultato
non nullo nella (10.272)?.
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2) Si può anche decidere di fare una trasformazione di variabili chenon cambiil bordo,
oppure, il bordo può essere all’infinito e quindi non cambiare. Non può essere che
in questo caso si abbia un risultato non nullo, questodeve essereun semplice cam-
biamento di variabili. D’altronde questo non è così ovvio dalla equazione (10.272):
dove compare il bordo in questa equazione?

Cominciamo dal primo punto. è vero che effettuando le derivate necessarieψ0(x(ξ )) sod-
disfa l’equazione (10.274) manon soddisfa, al bordo diξ alla corretta condizione al con-
torno. Infatti la trasformazionef : ξ → x(ξ ) è fatta apposta per effettuare la corrispondenza

f (S0) = S1

quindi al bordo diξ la funzioneψ0(x(ξ ))
∣∣
ξ∈S0

= ψ0(S1) 6= 0. ChiamiamoV0 il volume

delimitato daS0 e V1 il volume delimitato daS1. Potrebbe venire l’idea di restringere la
funzioneψ0 in un opportuno sottinsieme diV0, diciamoVα in modo che sul bordo diVα

la funzioni si annulli. Questo non si può fare: se immagianiamof vicina all’identità e
quindi localmente invertibile,f (Sα) 6= S1, e quindi la condizione al contorno non sarebbe
verificata suS1.

Notiamo che se il bordo non cambia, cioè seS0 = S1 allora ψ0(x(ξ )) è una soluzio-
ne con le corrette condizioni al bordo, quindi l’autovalore non deve cambiare, e questo
ci tranquillizza almeno sul fatto ovvio che si possa cambiare variabile in un’equazione
differenziale.

Resta comunque il problema di capire dovè che c’è scritto che gli autovalori delle
Hamiltoniane sono diversi e dove c’entra il bordo.

La (10.274) benchè non dia l’autostato cercato è un’equazione differenziale soddisfatta
daψ0(x(ξ )). Integriamola perξ ∈V0 dopo aver moltplicato perψ0, che supporremo reale
per semplicità:∫

dξJ(ξ )ψ0(x(ξ ))H(x(ξ ))ψ0(x(ξ )) = E0

∫
dξJ(ξ )ψ0(x(ξ ))ψ0(x(ξ )) (10.275)

Abbiamo introdotto per completezza anche lo Jacobiano della trasformazione di variabili
ξ → x, anche se non gioca alcun ruolo nel seguito.

L’integrale a destra nella (10.275) non è uno, perchè al variare diξ in V0 l’immaginex
non copre necessariamenteV0. Comunque per piccole trasformazioni possiamo scrivere

J = 1+δJ H(x(ξ )) = H(ξ )+δH ψ0(x(ξ )) = ψ0 +δψ0 (10.276)

Ad esempio sexi = ξ i + f i(ξ ), con f piccola,

ψ0(x(ξ )) = ψ0(ξ )+ f i
∂iψ0 (10.277)

All’ordine 0 ricordiamo cheψ0 è normalizzata ed autostato diH(ξ ) quindi la (10.275) è
un’identità. Uguagliando il primo ordine nelle variazioni si ha∫

ξ

(
δJψ

2
0 +δψ0H(ξ )ψ0 +ψ0H(ξ )δψ0 +ψ0δHψ0

)
=E0

∫
ξ

(
δJψ

2
0 +2ψ0δψ0

)
(10.278)

δJ si semplifica in ogni caso, quindi come anticipato non entra nell’argomento. Nella
(10.278) compare esattamente l’elemento di matrice diδH che stima l’incremento degli
autovalori. Portando a destra tutto il resto∫

ξ

ψ0 δH ψ0 =
∫

ξ

[
δψ0(E0−H(ξ ))ψ0 +ψ0(E0−H(ξ ))δψ0

]
(10.279)

Quindi se H è autoaggiunto otteniamo〈δH〉 = 0. Il punto è cheH è autoaggiuntosolo
sulle funzioni che si annullano sul bordoS0, eδψ0 non appartiene a questo spazio, o come
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si dice tecnicamente non appartiene al dominio di hermiticità diH(ξ ). Lo si vede bene
nell’espressione (10.277):

δψ0(S0) = f i(S0)∂iψ0(S0) 6= 0

Usando la forma−~2/2m∆ per l’Hamiltoniana, integriamo allora per parti la (10.279)
tenendo conto dei termini al bordo e usando il teorema di Stokes:∫

ξ

ψ0∆δψ0 =
∫

ξ

∇∇∇(ψ0∇∇∇δψ0)−
∫

∇∇∇ψ0∇∇∇δψ0 =

=
∫

S0

n(ψ0∇∇∇δψ0)−
∫

n(δψ0∇∇∇ψ0)+
∫

∆ψ0δψ0 (10.280)

n è la normale alla superficieS0. Il terzo termine nella (10.280) è quello solito e va a
cancellareE0 nella (10.279). Il primo è nullo perchèψ0(S0) = 0, resta il secondo:

〈ψ0|δH|ψ0〉=− ~2

2m

∫
S0

n(δψ0∇∇∇ψ0) =− ~2

2m

∫
S0

ni( f k
∂kψ0)∂iψ0 (10.281)

Nella (10.281) è esplicitamente evidente chetutto il contributo proviene dal bordo, e che
se la deformazione lascia invariante il bordo, cioèf i(S0) = 0 l’autovalore non cambia.
Vediamo che il valore dif i all’interno del dominio non gioca alcun ruolo, è questo il
motivo per cui l’espressione diδE è la stessa qualunque sia la trasformazione scelta.

Solo la combinazione simmetrica del tensoreni f k contribuisce alla (10.281), possia-
mo come al solito decomporre questo tensore in una parte a traccia nulla ed in una parte
proporzionale all’identità:

(ni f k)symm=
1
2
(ni f k +nk f i − 2

3
δikn · f)+

1
3

δikn · f

Lasciamo al lettore il compito di interpretare la (10.281) come “tensore degli sforzi” della
trasformazione.

Come controllo riconsideriamo il caso del parallelepipedo. Poniamo l’origine delle
coordinate in un vertice del solido. Consideriamo una deformazione alla volta, ad esempio
quella relativa alla coordinatax: f ha solo la prima componente e vale

f = δax · (1,0,0) (10.282)

Le autofunzioni del problema sono date da

ψn1,n2.n3
=

√
2
a

sin
n1πx

a

√
2
b

sin
n2πy

b

√
2
c

sin
n3πz

c
≡ ϕn1

(x,a)ϕn2
(y,b)ϕn3

(z,c)

ed il contributo delle sei facce all’integrale (10.281) è, a parte il fattore−~2/2m:

I1 =
∫

dydz
[

∂xψ∂xψ f1
∣∣
x=a− ∂xψ∂xψ f1

∣∣
x=0

]
I2 =

∫
dzdx

[
∂yψ∂xψ f1

∣∣
y=b− ∂yψ∂xψ f1

∣∣
y=0

]
I3 =

∫
dxdy

[
∂zψ∂xψ f1

∣∣
z=c− ∂zψ∂xψ f1

∣∣
z=0

]
PerI1:

I1=
∫ b

0
dy
∫ c

0
dz|ϕn2

(y,b)|2|ϕn3
(z,c)|2(aδa)

[
2
a

][
n2

1π2

a2

]
cos2

n1πx

a

∣∣∣
x=a

= 2δa

[
n2

1π2

a2

]
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I2 e I3 sono nulli, infatti consideriamo ad esempio la parte dipendente day in I2. Ci sono due
fattori, uno per ogni funzioneψ. Nella parte∂xψ la componente iny non viene modificata,
e la funzione si annulla sul bordo, quindi:

ϕ(y)∂yϕ(y)
∣∣
y=b = 0

la stessa cosa vale per gli altri termini. Quindi il contributo di questa deformazione alla
variazione di energia è

δE =− ~2

2m
I1 =− ~2

2m
2δa

[
n2

1π2

a2

]
(10.283)

in accordo con la (10.251).
L’ultimo dubbio potrebbe sorgere sulla correttezza della derivazione fatta all’inizio del

capitolo per la variazione degli autovalori, visto che in questo caso i domini diH eH +δH
sono diversi. Vediamo che non è così .

Siaψ(x) l’autovalore diH(x) nel dominioV1 eE1 l’autovalore corrispondente

H(x)ψ(x) = E1ψ(x) (10.284)

In assenza di deformazione i domini coincidono e anche gli autovalori. Poniamo allora,
passando alle variabiliξ :

ψ(x(ξ )) = ψ0(ξ )+δψ

∫
V0

ψ0δψ = 0 (10.285)

La condizione di ortogonalità nella (10.285) è corretta perchèδψ è assunto essere al primo
ordine nella perturbazione, quindi tutte le altre quantità, compreso il dominio di integra-
zione, possono essere considerate all’ordine 0. Sviluppiamo la (10.284) al primo ordine e
integriamo dopo aver moltilicato perψ0(ξ ):∫

V0

ψ0(ξ )
[
(H(ξ )+δH)(ψ0 +δψ)

]
= E1

∫
V0

(ψ2
0 +ψ0δψ) (10.286)

A destra il primo integrale è 1 perchèψ0(ξ ) è normalzzata proprio sul volumeV0, il
secondo integrale è nullo per la (10.285). Si ha allora, usando cheH(ξ )ψ0(ξ ) = E0ψ0(ξ ):

E0 +
∫

V0

[
ψ0δHψ0 +ψ0H(ξ )δψ

]
= E1 (10.287)

Il punto cruciale ora è cheψ(S1) = 0 i punti suS1 sono l’immagine diS0 quindi, per come
abbiamo definitoδψ:

0 = ψ(S1) = ψ(ξ ∈ S0)+δψ(S1)

il primo termine è nullo per la condizione al contorno diψ0, il secondo, essendo del primo
ordine, può essere calcolato anche inS0, quindi, a meno di termini del secondo ordine
δψ(S0) = 0. Quindi nella (10.287)H può essere integrto per parti ed agendo a sinistra dà

E0

∫
V0

ψ0δψ = 0

Risulta allora

E1 = E0 + 〈ψ0|δH|ψ0〉

che è il risultato aspettato.
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Calcolo elemento di matrice.

L’elemendo di matrice da calcolare è

M =
∫

d3xψ
∗(∆−3

∂

∂z2 )ψ =−k2−3M1

M1 =
∫

d3xψ
∗ ∂

∂z2 ψ =−
∫

d3x
∂ψ∗

∂z
∂ψ

∂z2 (10.288)

La funzione d’onda conM = L ha la forma

ψ = R·C
(

x+ iy
r

)L

(10.289)

doveC è la costante di normalizzazione per l’armonica sfericaYLL. Quindi la derivata
rispetto az agisce solo sul fattoreR/rL dando

∂zψ =
z
r

[
R′

rL −L
R

rL+1

]
C(x+ iy)L = cosθ

[
R′−L

R
r

]
YLL (10.290)

L’elemento di matrice (10.288) ha quindi la forma

M1 =−
∫

d3xcos2 θ

[
R′−L

R
r

]2

|YLL|
2 (10.291)

L’integrale radiale, integrando per parti, si scrive

FR =
∫

r2dr

[
R′2−2L

RR′

r
+

R2

r2 L2
]

=
∫

dr
{

r2R′2−2rLRR′+L2R2
}

=∫
dr
(

r2R′2 +L(L+1)R2
)

(10.292)

Nel primo termine si può di nuovo integrare per parti ed usare le equazioni del moto
(10.258)

F(1)
R

=
∫

drr2R′2 =−
∫

dr
d
dr

(r2R′)R=
∫

dr (−2rR′R− r2R′′R) =∫
dr

[
−2rRR′− r2R

(
−2

r
R′−k2R+

L(L+1)
r2 R

)]
=∫

dr
[
k2r2R2−R2L(L+1)

]
Sostituendo nella (10.292) il termine dipendente aL si cancella, e l’altro è semplicemente
la norma della funzione radiale, quindi:

FR = k2 (10.293)

Per quanto riguarda la parte angolare nell’integrale (10.291) scriviamo

cos2 θ = (cos2 θ − 1
3
)+

1
3

=
1
3

√
16π

5
Y20+

1
3

L’integrale sulle armoniche sferiche è sostanzialmente un coefficiente di Clebsh-Gordan e
vale∫

dΩ|YLM|
2Y20

∣∣∣∣
L=M

=−
√

5
4π

3M2−L(L+1)
(2L−1)(2L+3)

∣∣∣∣
L=M

=−
√

5
4π

L
(2L+3)

(10.294a)∫
dΩ|YLM|

2(cos2 θ − 1
3
) =−2

3
· 3M2−L(L+1)
(2L−1)(2L+3)

(10.294b)
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e quindi

M1 =−
[
−2

3
FR

L
2L+3

+
1
3

FR

]
=−1

3
k2
[
1− 2L

2L+3

]
(10.295)

M =−k2−3M1 =−k2 2L
2L+3

(10.296)
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Appendici e Complementi

10.A Richiamo sulle trasformate di Fourier.

Riportiamo alcune proprietà di base delle trasformate di Fourier. Data una funzionef (x)
definiamo la sua trasformata di Fourierf̃ tramite la formula

f̃ (k) =
∫

d3x e−ikx f (x)≡F ( f ) (10.297)

Si può dimostrare che l’operatoreF è una trasformazione invertibile inL2. L’inversa7

della (10.297) è

f (x) =
∫

d3k
(2π)3 eikx f̃ (k) (10.298)

Le formule precedenti possono essere estese a trattare distribuzioni, in particolare per laδ

di Dirac si ha immediatamente:

F (δ ) =
∫

d3x e−ikx
δ (x) = 1 (10.299)

Utilizzando la (10.299) è facile dimostrare le identità∫
d3x f (x)g(x) =

∫
d3k

(2π)3 f̃ ∗(k)g̃(k) (10.300a)

δ
3(x) =

∫
d3k

(2π)3 eikx (10.300b)

Un’importante proprietà delle trasformate di Fourier è che trasformano il prodotto di convo-
luzione delle funzioni in prodotto delle trasformate. Si definisce prodotto di convoluzione,
e si denota conf ∗g, l’espressione

h(x) = ( f ∗g)(x) =
∫

d3y f (x−y)g(y) (10.301)

Inserendo le trasformate di Fourier si ricava, usando la rappresentazione dellaδ :

F

[∫
d3y f (x−y)g(y)

]
= f (k)g(k) (10.302)

L’altra proprietà importante è che gli operatori differenziali si trasformano in moltiplica-
zioni sulle trasformate:

F [∂i f ] = iki f (k) (10.303)

in pratica è la rappresentazione di Schrödinger per l’operatore impulso. Vediamo alcuni
casi particolari che useremo nel seguito.

7I fattori (2π) in queste formule sono le normalizzazioni normalmente utilizzate in fisica, spesso nella
letteratura matematica il fattore di normalizzazione è(2π)−3/2 in modo da rendere le formule più simetriche.

67
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1. Funzione1/r

Consideriamo la trasformata di Fourier dell’equazione di Poisson:

∆
1
r

=−4πδ
3(x)

Usando la (10.301) si ha

−k2F
1
r

=−4π ⇒ F
1
r

=
4π

k2 (10.304)

2. Potenziale di Yukawae−µr/r.

Perr 6= 0

∆
e−µr

r
=

1
r

d2

dr2

(
r · e−µr

r

)
= µ

2 e−µr

r

Tenendo conto della singolarità inr = 0:

(−∆+ µ
2)

e−µr

r
= 4πδ

3(r) (10.305)

quindi

F

[
e−µr

r

]
=

4π

k2 + µ2 (10.306)

3. Esponenzialee−µr .

F [e−µr ] =− d
dµ

F

[
e−µr

r

]
=

8πµ

(k2 + µ2)2 (10.307)

Esempio.

Come esempio di applicazione delle formule precedenti calcoliamo tramite trasformata di
Fourier la correzione perturbativa del livello fondamentale dell’elio dato dall’equazione
(10.94) che riportiamo qui per comodità

∆E = 〈ψ0|V|ψ0〉=
1

(4π)2

Z
2

∫
d3x1d3x2 e−|x1|e−|x2|

1
|x1−x2|

Utiizzando la (10.300a)

∆E =
1

(4π)2

Z
2

∫
d3k

(2π)3 F (e−|x1|)F
[∫

x2

e−|x2| ∗ 1
|x1−x2|

]
Scrivendo la trasformata della convoluzione utilizzando la (10.302) ed utilizzando le for-
mule trovate precedentemente per l’esponenziale ed il potenziale Coulombiano:

∆E =
1

(4π)2

Z
2

∫
d3k

(2π)3

8π

(k2 +1)2

4π

k2

8π

(k2 +1)2 =
210π4Z
28π5

∫ ∞

0
dk

1
(k2 +1)4 =

=
4Z
π

∫ ∞

0
dk

1
(k2 +1)4

L’integrale, ad esempio, si può fare col metodo dei residui:

J(α) =
∫ ∞

0
dk

1
(k2 +α)4 =−1

6
d3

dα3

∫ ∞

0
dk

1
(k2 +α)

=− 1
12

d3

dα3

∫ ∞

−∞
dk

1
(k2 +α)∫ ∞

−∞
dk

1
(k2 +α)

=
2π i

2i
√

α
= πα

−1/2

J(α) =− 1
12

d3

dα3 πα
−1/2 =

5
32

α
−7/2
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quindi

〈ψ0|V|ψ0〉=
4Z
π

J(1) =
5
8

Z (10.308)

che coincide con il risultato (10.95) ottenuto nel testo.

10.B Forza di Van der Waals.

Ricordiamo che l’espressione del potenziale elettrostatico e del campo elettrico di un dipolo
è:

V =
dr
r3 E =− 1

r3 (d−3(nd)n) (10.309)

Consideriamo due atomi, entrambi nello stato fondamentale. In prima approssiamzione,
vedremo dopo in che senso, possiamo considerare i nuclei fissi e gli elettroni nel poten-
ziale dei singoli nuclei. Nei prossimi capitoli vedremo che se gli atomi sono abbastanza
vicini nascono altri tipi di effetti dovuti al fatto che gli elettroni possono “saltare” da un
atomo all’altro. Questi effetti, che sono alla base del legame chimico, decrescono esponen-
zialmente con la distanza, stiamo supponendo che i due atomi siano a distanza di qualche
raggio atomico, in modo da poter trascurare questo tipo di legame.

In questa approssimazione l’Hamiltoniana del sistema si compone di 3 termini

H = H1 +H2 +H12

H1,H2 sono le Hamiltoniane dei singoli atomi,H12 l’energia di interazione elettrostatica.
Essendo gli atomi neutri l’unica interazione possibile è quella dipolo-dipolo:

H12 =−d2 ·E1 =
1
R3 [d1d2−3(d1 ·n)(d2 ·n)]≡ e2

R3 A

doveR è la distanza relativa, en il versore che va dall’atomo 1 all’atomo 2. Abbiamo
fattorizzato le costantie2 e 1/R. L’operatoreA ha le dimensioni di una lunghezza al
quadrato.

Per concretezza supponiamo di considerare l’atomo di idrogeno e l’assez sia diretto
lungo la congiungente degli atomi. L’Hamiltoniana di interazione è allora

H12 =
e2

R3 (r1 · r2−3z1z2) =
e2

R3 (x1x2 +y1y2−2z1z2) (10.310)

Per sistemi indipendenti la funzione d’onda si può considerare fattorizzata

|ψ〉 ' |ψ1〉|ψ2〉

Se il sistema non ha momento di dipolo intrinseco si ha come correzione al primo ordine
degli autovalori diH

〈ψ|H12|ψ〉= 0

quindi la prima correzione è al secondo ordine

U =
e4

R6 ∑′
n〈ψ|A|n〉

1
E0−En

〈n|A|ψ〉 (10.311)

Alcune osservazioni.

• Per lo stato fondamentale, come al solito, la correzione è negativa, il che significa
che l’energia diminuisce, e questo corrisponde ad una forzaattrattiva.

• U ∼ 1/R6 quindiF ∼ 1/R7, è la forza di Van der Waals.
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• Nel modello presentato ci sono delle approssimazioni: per grandi distanze la forza
non è “istantanea” e le correzioni dovute al ritardo portano aU ∼ 1/R7. Se∆ω è
la tipica frequenza di transizione questi effetti compaiono a distanze dell’ordine di
c/∆ω.

Esercizio. Cosa succede se si hanno due atomi di idrogeno, uno nello stato 1s e l’altro
nello stato 2p? Il sistema è degenere?

10.C Formulazione tramite trasformazioni canoniche.

Il metodo esposto in questo paragrafo è il metodo più diretto per generare una serie pertur-
bativa ed è stato il primo ad essere formulato[1].

Trovare gli autovalori e gli autostati dell’HamiltonianaH = H0 +λV, significa geome-
tricamente trovare una trasformazione unitariaS tale cheSHS† assuma una forma diago-
nale. Assumendo cheH0 sia già diagonale, possiamo pensare di sviluppareS in serie di
potenze inλ :

S= 1+λS1 +λ
2S2 + . . . (10.312)

L’unitarietà diS impone i vincoli:

1 = SS† = 1+λ (S1 +S†
1)+λ

2(S2 +S†
2 +S1S†

1)+ . . . (10.313)

Indicando conD la matrice diagonalizzata, che ha cioè sulla diagonale principale gli auto-
valori di H

Di j = Eiδi j Ei = E(0)
i

+λE(1)
i

+λ
2E(2)

i
+ . . .

il problema è trovareS tale che:

S(H0 +λV)S† = D (10.314)

Gli autostati saranno dati da

|Φ(i)〉= S−1
ki |k〉 ⇒ |Φ(i)〉= ∑

k

〈k|S−1|i〉 · |k〉= S−1|i〉 (10.315)

Infatti

H|Φ(i)〉= S−1
ki H|k〉= S−1

ki Hsk|s〉= (HS−1)si|s〉= (S−1D)si|s〉= (S−1)siEi |s〉

nell’ultima espressionenon c’è sommasu i.
Al primo ordine inλ l’unitarietà di S, (10.313), impone cheS1 è un operatore anti-

hermitianoS†
1 = −S1, ed in particolare quindiSkk = 0. La (10.314) dà, usando questa

informazione
S1H0−H0S1 +V = D(1) (10.316)

La parte diagonale dell’equazione fornisce la prima correzione all’autovalore dell’energia

Vii = 〈i|V|i〉= E(1)
i

mentre gli elementi di matrice fuori diagonalei, j danno (non c’è somma su gli indici):

0 = Vi j + 〈i|(S1H0−H0S1)| j〉= Vi j +(S1)i j (E
(0)
j
−E(0)

i
) (S1)i j = Vi j

1

E(0)
i
−E(0)

j

Sostituendo nella (10.315) si ritrova il risultato noto (10.12). Allo stesso modo si possono
ottenere le correzioni di ordine superiore inλ .

La trasformazione unitariaS fornisce automaticamente degli stati normalizzati, è utile
pensare adS come una “rotazione” nello spazio di Hilbert, eq.(10.315). Come in tutte
le rotazioni la variazione infinitesima di un vettore è ortogonale al vettore di partenza, e
questo è il motivo geometrico per cui al primo ordine la correzione all’autostatoi−esimo,
|Φ(1)

(i)
〉 è ortogonale all’autostato imperturbato|i〉, la cosa è espressa in questo contesto dalla

relazione〈i|S1|i〉= 0.
Questo metodo è molto simile alla procedura utilizzata in meccanica classica.
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10.D Metodo di Dalgarno-Lewis.

In molti problemi la correzione al primo ordine ai livelli energetici, (10.10), dà informazioni
significative, in altri è necessario ricorrere all’approssimazione successiva, ad esempio se,
per motivi di simmetria ad esempio, la correzione al primo ordine è nulla. In questo caso
occorre valutare una somma in generale infinita di termini, come ad esempio nella (10.15).
La relazione ricorsiva (10.13) insegna che il vero problema risiede, all’ordinen, nel calcolo
dell’autovettore all’ordinen−1, |ψn−1〉. Per essere concreti pensiamo alla correzione del
secondo ordine. Per calcolareε2 è necesario|ψ1〉 che si ottiene dalla risoluzione della
(10.8b). In questa equazione possiamo pensare di aver già calcolatoε1. Supponiamo nel
seguito di dover risolvere un problema in rappresentazione di Schrödinger per una singola
particella. L’HamiltonianaH0 è della forma

H0 =− ~2

2m
∆+U (10.317)

e supponiamo che il potenziale sia una certa funzioneV(x). Includiamo il parametroλ
nella definizione diV. La soluzione cercata perψ1 è allora la soluzione di un’equazione
differenziale non omogenea:

(H0−E0)ψ1 +(V− ε1)ψ0 = 0 (10.318)

Supponiamo che questa equazione ammetta una soluzione regolare,ϕ(x). Il nucleo del-
l’equazioneH0−E0 è non nullo, è generato per autovalori non degeneri dalla funzione
ψ0. Quindi seϕ è una soluzione, allora ancheϕ + cψ0 è una soluzione. Imponendo la
condizione di ortogonalità (10.6) si può determinarec:

c =−
∫

ψ
∗
0ϕ

e quindi determinare univocamente la soluzione cercata,ψ1 = ϕ +cψ0. Nel caso, comune
in questa situazione, in cui la perturbazione al primo ordine è nulla, per il calcolo diε2
non è nemmeno necessario calcolare il coefficientec, infatti il contributo di questo termine
sarebbec〈ψ0|V|ψ0〉= cε1 = 0. La situazione si può ulteriormente semplificare tramite un
cambiamento di variabili. Se cerchiamo la funzionef nella formaϕ = F(x)ψ0(x), vediamo
che, essendo(H0−E0)ψ0 = 0, F soddisfa all’equazione

− ~2

2m

[
ψ0∆F +2∇∇∇F∇∇∇ψ0

]
+(V− ε1)ψ0 = 0 (10.319)

in cui non compare più esplicitamente il potenzialeU . In questo modo possiamo trovareF
e calcolareε2 calcolando un semplice elemento di matrice, abbiamo cioè ridotto il calcolo
della serie (10.15) a quello della soluzione di un’equazione differenziale, questo compito
è di solito più semplice sia dal punto di vista analitico che da quello numerico. La base
di questo metodo è stata sviluppata nella referenza[4]. Può essere data una trattazione più
formale in termini di operatori, scrivendo cioè la relazione|ψ1〉 = F |ψ0〉 in termini ope-
ratoriali, come ad esempio in ref.[5], ma nel seguito adotteremo lo schema qui delineato.
Come applicazione calcoliamo l’effetto Stark sul livello fondamentale di un sistema a sim-
metria sferica, ad esempio l’atomo di idrogeno. Scegliendo il campo elettrico lunfo l’asse
z la perturbazione si scriveV = −ezE . Poichèψ0 è pari: 〈ψ0|z|ψ0〉 = 0, quindi non c’è
effetto al primo ordine. Al secondo ordine

ε2 =−eE 〈ψ0|z|ψ1〉=−1
2

αE 2 (10.320)

|ψ1〉 soddisfa all’equazione (ricordando cheε1 = 0):

(− ~2

2m
∆+U(r))ψ1 = ezE ψ0 (10.321)
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Usiamo d’ora in avanti unità atomiche, in cui~,e,m vengono posti 1. Il secondo membro
della (10.321) si trasforma come l’armonica sfericaY10 sotto rotazioni, cerchiamo quindi
la soluzione nella forma

ψ1 = E zF(r)ψ0(r) (10.322)

Indicando con un apice le derivate rispetto alla variabile radialer si ha che

∂iψ0 =
xi

r
ψ
′
0 ∂i(zF) = δi3F +z

xi

r
F ′ ∂iψ0∂i(zF) = ψ

′
0(

z
r
F +zF′)

∂i∂i(zF) = δi3
xi

r
F ′+δi3

xi

r
F ′+z(

3
r
−

xixi

r3 )F ′+z
xi

r

xi

r
F ′′ =

4z
r

F ′+zF′′

sostiuendo nella (10.322) e usando il fatto cheψ0 soddisfa all’equazione di Schrödinger
imperturbata si ottiene:

ψ0

[
2z
r

F ′+
z
2

F ′′
]
+ψ

′
0

[z
r
F +zF′

]
=−zψ0

cioè (
2
r

F ′+
1
2

F ′′
)

+
ψ ′

0

ψ0

(
F
r

+F ′
)

=−1 (10.323)

Questa equazione è valida per un qualunque potenziale centrale. Vediamo alcuni esempi
espliciti

10.D.1 Polarizzabilità dell’atomo di idrogeno.

In questo caso

ψ0 =
1√
π

e−r ψ ′
0

ψ0
=−1

e la (10.323) diventa
r
2

F ′′+F ′(2− r)−F =−r (10.324)

La soluzione regolare di questa equazione è semplicementeF(r) = 1+ r
2 quindi la corre-

zione del primo ordine allo stato è

ψ1 = E z
(

1+
r
2

)
ψ0 (10.325)

Notiamo cheψ1 è dispari, quindi automaticamente è ortogonale aψ0. Si ha infine

ε2 =−E 2
∫

d3xψ
2
0z2
(

1+
r
2

)
=− 1

π
·4π3

∫
r2dr · r2e−2r

(
1+

r
2

)
=−9

4
E 2

Da cui la polarizzabilità:

α =
9
2

[ u.a.]=
9
2

a3
B (10.326)

Notiamo che la correzione al terzo ordineε3 è nulla, come si verifica immediatamente
dalla (10.21). In generale sono presenti solo le correzioni di ordine pari, in effetti l’Hamil-
toniana è invariante formalmente per la sostituzionez→−z, E →−E . Gli autovalori, fun-
zioni di E , devono allora essere funzioni pari. Questa conclusione si applica solo allo stato
fondamentale dell’atomo, a cui si possono applicare le formule della teoria perturbativa su
stati non degeneri.

Esercizio 5. Applicare lo stesso metodo per calcolareψ2(x). Si trova

ψ2 = E 2
[
c+

7r2

16
+

r3

24
+

z2

8

(
5
2

+5r + r2
)]

ψ0

Fissarec dalla condizione di ortogonalità aψ0. Il risultato èc = −81/16. Usare laψ2
trovata per calcolare la correzione al quarto ordine per l’energia dello stato fondamentale.
Si trova:

ε4 =−E 〈ψ1|z|ψ2〉− ε2〈ψ1|ψ1〉=−3555
64

E 4
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Discussione numerica.

Consideriamo l’espressione della polarizzabilità per lo stato fondamentale 1sdell’atomo di
idrogeno sotto forma di serie

α = 2∑′
n

|〈1s|z|n〉|2

En−E0
(10.327)

Alla somma contribuiscono solo gli stati discreti del tipo|n, ` = 1, `z = 0〉, cioè li statip, e
gli stati del continuo. Siccome tutti gli addendi nella (10.327) sono positivi si può dare un
limite superiore semplice alla polarizzabilità usando la completezza degli stati:

α < 2
1

E2p−E2s
∑′

n |〈1s|z|n〉|2 = 2
1

E2p−E2s
〈1s|z2|1s〉=

2
3
8

=
16
3

avendo usato

〈1s|z2|1s〉=
1
3
|〈1s|r2|1s〉= 1

Ed in effetti 9/2 < 16/3. Una stima per difetto può essere fatta tenendo conto solo del
primo stato: lo stato 2p. Utilizzando la funzione d’onda

ψ2p =
z

4
√

2π
e−r/2

si ha

〈1s|z|2p〉= 4
√

2

(
2
3

)5

da cui

α > 2
|〈1s|z|2p〉|2

E2p−E2s
=

219

311 = 2.95<
9
2

= 4.5

Usando le espressioni degli statip, |np, ` = 1, `z = 0〉 si può ottenere, vedi es.[2]

|〈1s|z|np〉|2 =
1
3

28n7(n−1)2n−5

(n+1)2n+5

quindi il contributo alla polarizzazione degli stati discreti vale

αdiscr. = 2 ∑
n

1
1
2−

1
2n2

1
3

28n7(n−1)2n−5

(n+1)2n+5 ' 3.6629

αcont. = α−αdiscr. = 0.837

Dalle stime precedenti si deduce che circa il 65% alla polarizzazione è dovuto allo stato
2p, circa il 16% proviene dagli statinp,n > 2 ed il resto dal continuo.

È istruttivo dare una stima del contributo del continuo. Approssimando le funzioni del
continuo con onde piane, l’elemento di matrice da considerare è

Zk =
∫

d3xeikxzψ0 =
1
i

∂

∂kz

∫
d3xeikx

ψ0

Utilizzando la trasformata di Fourier di un esponenziale:

F [e−µr ] =− d
dµ

F

[
e−µr

r

]
=

8πµ

(k2 + µ2)2

si ha

Zk = i
32
√

πkz

(k2 +1)3
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da cui

αc ' 2
∫

d3k
(2π)3

|Zk|
2

1
2 + k2

2

=
29

π3

4π

3
π

∫ ∞

0
dk

k4

(1+k2)7 =
211

3π

7π

211 =
7
3

Quindi la stima tramite onde piane è una stima in eccesso. Uno dei motivi è il seguente.
Sappiamo che

∑′
n |〈1s|z|n〉|2 = 〈1s|z2|1s〉= 1

Una stima del contributo dello spettro continuo fatto con onde piane di questa regola di
somma è ∫

d3k
(2π)3 |Zk|

2 =
27

π3

4π

3
π

∫ ∞

0
dk

k4

(1+k2)6 = 1

chiaramente in eccesso. Questo risultato è aspettato a priori, perchè le onde piane formano
da sole un insieme completo, quindi la somma precedente deve necessariamente dare〈z2〉=
1.

10.E Struttura fine dell’atomo di Idrogeno.

Nel capitolo 9 abbiamo ricavato la hamiltoniana effettiva che descrive le interazioni di un
elettrone in campo elettromagnetico esterno(Φ,A) all’ordinev2/c2:

H =
1

2m

(
p− e

c
A
)2
− p4

8m3c2 +eΦ− e~
2mc

σσσ ·B− ie~2

8m2c2σσσ ·∇∇∇∧E

− e~
4m2c2σσσ · (E∧p)− e~2

8m2c2∇∇∇ ·E (10.328)

Nel caso dell’atomo idrogenoide si ha a che fare con un elettrone di massam e spin 1/2,
che interagisce con un nucleo di massaM � m e caricaZ|e|. In prima approssimazione
possiamo considerare il nucleo puntiforme e quindi caratterizzato dalla sua carica e dal suo
spin. Nel limite di massa infinita del nucleo questo si comporta come un campo esterno
coulombiano e quindi possiamo applicare la (10.328) conB = 0,E = Z|e|/r3r . La (10.328)
si semplifica allora nella forma (e=−|e|):

H =
p2

2m
− p4

8m3c2 −
Ze2

r
+

Ze2~
4m2c2

1
r3σσσ ·L +

Ze2~2

8m2c2 4πδ
(3)(r) (10.329)

Dal principio di indeterminazione e dal teorema del viriale, chiamandoa il raggio caratte-
ristico del sistema

p∼ ~
a

p2

m
∼ Ze2

a
⇒ a∼ 1

Z
aB =

1
Z

~2

me2

Ricaviamo allora per il parametro di sviluppo relativisticov/c:

v
c
∼ Zα α =

e2

~c
∼ 1

137
(10.330)

la costante adimensionaleα prende il nome dicostante di struttura fine.È facile stimare
l’importanza dei vari termini nella (10.329) e quindi l’energia caratteristicaEFS della strut-
tura fine. Indicando conE l’energia caratteristica del sistema, cioè dell’ordine dip2/m o
Ze2/a:

p4

8m3c2 ∼ E Z2
α

2 Ze2~
4m2c2

1
r3σσσ ·L ∼ Ze2~

4m2c2

~
a3 ∼ E Z2

α
2

Ze2~2

8m2c2 4πδ
(3)(r)∼ πZe2~2

2m2c2

1
a3 ∼ E Z2

α
2
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Il parametro di sviluppo è quindi(Zα)2. Per l’atomo di idrogeno o per l’elio ionizzato tale
parametro è dell’ordine di 10−4. L’energia caratteristica della struttura fine è quindi, per
atomi leggeri,EFS∼ (Zα)2E ∼ 10−4Ry.

Poichè le correzioni relativistiche si comportano come potenze pari div/c se non ci
fossero altri termini nell’interazione elettrone-protone dovremmo aspettarci una precisione
dell’ordine di v4/c4 ∼ 10−8 per i livelli energetici calcolati con l’Hamiltoniana (10.329).
Ci sono almeno altre due correzioni a quanto detto:

1) Il nucleo non ha massa infinita. In approssimazione non relativistica l’intero effetto
è riassorbito, in un sistema a due corpi, dal considerare la massa ridotta

m→ µ =
mM

m+M
(10.331)

Il fatto che sia riassorbito a tutti gli ordini significa che una volta adottatoµ come
parametro di massa non ci sono correzioni del tipo(m/M)k. Il moto relativistico
può introdurre delle correzioni a questo processo, le prime correzioni saranno allora
dell’ordine(m/M)(v2/c2)∼ 10−7−10−8.

2) Il nucleo può avere uno spin, è il caso dell’idrogeno, ed un momento magnetico, del-
l’ordine di e~/Mc. Questo momento magnetico interagirà col momento magnetico
dell’elettrone e l’interazione di due dipoli magnetici è dell’ordine

µ1µ2
1
r3 ∼

e2~2

mMc2

1
a3 ∼ EZ2

α
2 m
M

Quindi anche questa interazione è “tracurabile”, ma ha una particolarità: non è in-
variante per rotazione delle sole coordinate elettroniche, ma solo per rotazione delle
coordinate nucleari ed elettroniche. In altre parole il momento angolare totalej del
solo elettrone non è conservato, questo induce in generale una rimozione di degene-
razione che è osservabile e caratteristica di questo termine. Questo tipo di interazione
viene chiamatainterazione iperfinae verrà trattata in un altro paragrafo.

3) Nella Hamiltoniana (10.329) il campo elettromagnetico svolge un ruolo “classico”
nel senso che non è trattato come un sistema quantistico. La quantizzazione dell’inte-
razione provoca uno contributo aggiuntivo all’energia dei livelli: è il cosiddettoLamb
shift. La scoperta sperimentale e la spiegazione teorica di questo effetto sono stati una
delle più importanti conquiste nella comprensione dell’interazione elettromagnetica.

Passiamo ora all’analisi dei vari contributi. Ci limiteremo per semplicità ai livelli più bassi
dello spettro, quelli con numero quantico principalen = 1,2. Nel seguito useremo unità di
misura atomiche e porremoZ = 1. I risultati saranno scritti nella formaE = E0(1+cα2).
Se si vuole considerare uno ione conZ 6= 1 basta moltiplicareE0 perZ2 ed il fattore cor-
rettivo c perZ2, come si dimostra immediatamente effettuando la trasformazione canonica
x→ 1

Zx , p→ Zp nella (10.329). In unità atomiche la (10.329) ha la forma

H =
p2

2
− 1

r
− α2

8
p4 +

α2

2
1
r3 `̀̀ ·s+

πα2

2
δ

(3)(r) (10.332)

10.E.1 Calcolo della struttura fine.

Il termine di accoppiamentoLS si può trattare secondo lo schema generale delineato nel
paragrafo 10.9.̀̀̀ e s non commutano con l’Hamiltoniana maj = `̀̀ +s naturalmente si. In
assenza di questa interazione i livelli avevano, a parte la degenerazione accidentale propria
del campo coulombiano, una molteplicità(2`+1)(2s+1) = 2(2`+1) ed il sottospazio di
Hilbert relativo ad un dato livello era generato dai ket|`,`z,s,sz〉. Scrivendo

`̀̀ ·s=
1
2

[
j2− `̀̀2−s2] (10.333)
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vediamo che possiamo assumere come nuovi ket di base che diagonalizzano la perturbazio-
ne| j, jz, `,s〉. In altre parolè , scontinuano ad essere buoni numeri quantici, la scelta degli
autostati di j, jz diagonalizza l’Hamiltoniana di perturbazione e si possono direttamente
applicare le formule della teoria delle perturbazioni non degenere. Le stesse considerazioni
valgono per il terzo ed il quinto termine nella (10.332).

Utilizzando il fatto che i ket|n, j, jz〉 sono autostati dell’hamiltoniana imperturbata
possiamo utilizzare l’equazione di Schrödinger per scrivere

〈n`|p
4

8
|n`〉=

1
2
〈n`|

(
(En +

1
r

)2

|n`〉

e possiamo immediatamente scrivere il contributo al primo ordine ai livelli energetici uti-
lizzando la (10.332) e la (10.333)

∆E(n; j, `,s) =− α2

2

(
E2

n +2En〈nl|1
r
|nl〉+ 〈nl| 1

r2 |nl〉
)

(10.334)

+
α2

4

(
j( j +1)− `(`+1)− 3

4

)
〈nl| 1

r3 |nl〉+ πα2

2
|ψn`(0)|2

L’ultimo termine evidentemente contribuisce solo agli statis mentre il penultimo è zero
sugli statis. Dall’espressione nota delle autofunzioni dell’atomo di idrogeno si ha:

〈nl|1
r
|nl〉=

1
n2 〈nl| 1

r2 |nl〉=
1
n3

1

(`+ 1
2)

〈nl| 1
r3 |nl〉=

1
n3

1

`(`+ 1
2)(`+1)

|ψn`(0)|2 =
1

πn3 ` = 0 (10.335)

Per` = 0, j = 1/2 si ha, in unità atomiche:

∆E(n; j,0,s) =−α2

2

(
− 3

4n4 +
2
n3

)
+

α2

2
1
n3 =− α2

2n3

(
1− 3

4n

)
a.u. (10.336)

Per`≥ 1 si ha j = `±1/2 e conviene riscrivere i vari contributi in termini dij, con un pò
di pazienza si ha:

〈nl| 1
r2 |nl〉=

1
n3

{
1/( j +1) ` = j +1/2

1/ j ` = j−1/2

j( j +1)− `(`+1)−3/4 =

{
−( j +3/2) ` = j +1/2

j−1/2 ` = j−1/2

〈nl| 1
r3 |nl〉=

1
n3

{
[( j +1/2)( j +3/2)( j +1)]−1 ` = j +1/2

[( j−1/2)( j +1/2) j]−1 ` = j−1/2

Sommando i vari contributi nei due casi:

∆E(n; j, `,s) =− α2

2

(
− 3

4n4

)
− α2

2n3

{
1/( j +1)

1/ j

}
+

α2

4n3

{
−1/( j +1)( j +1/2)

1/ j( j +1/2)

}
=− α2

2

(
− 3

4n4

)
− α2

2n3

{
1/( j +1/2)
1/( j +1/2)

}
quindi tutti i contributi hanno la stessa forma e questi coincidono con il caso particolare
` = 0 della (10.336):

∆E(n; j, `,s) =− α2

2n3

[
1

j +1/2
− 3

4n

]
a.u. (10.337)
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Dalla (10.337) segue che le correzioni di struttura fine dipendono solo daj, cioò implica
che la degenerazione coulombiana è solo parzialmente rimossa: per daton, stati con`
diverso maj uguale hanno la stessa energia. Così ad esempio la (10.337) predice che gli
stati 2s1/2 e 2p1/2 debbano essere degeneri.

Per scrivere esplicitamente le energie degli stati ricordiamo che le correzionim/M sono
state riassorbite usando la massa ridotta, in questo senso i livelli idrogenoidi, senza tener
conto della struttura fine, sono dati da

En =− 1
n2 Z2RA RA = Z2 1

n2 R· m
m+M

(10.338)

Rè la costante di Rydberg, riferita ad un nucleo di massa infinita:

R=
1
2

me4

~2 ≡ 1
2

e2

aB
≡ 1

2
a.u. (10.339)

In letteratura si trova spesso la notazioneR∞ o Ry per la costante (10.339). Dalla (10.338)
e dalla (10.337) segue:

E(n, j) =−RA
Z2

n2

(
1+

(Zα)2

n

[
1

j +1/2
− 3

4n

])
+O(

m
M

α
2,α3) (10.340)

Il termine correttivo andrebbe moltiplicato perR, non perRA, ma a quest’ordine la correzio-
ne è irrilevante, in realtà nel capitolo precedente abbiamo dimostrato che tale sostituzione
è corretta a meno di un termine indipendente dallo spin.

È istruttivo confrontare queste previsioni con i valori sperimentali8

H eq.(10.340) He∗ eq.(10.340)
1s1/2 -0.999466509 -0.999468985 -3.999631998 -3.999664828

2s1/2 -0.249867761 -0.249868078 -0.999925149 -0.999929518

2p1/2 -0.249868082 -0.249868078 -0.999929417 -0.999929518

2p3/2 -0.249864748 -0.249864751 -0.999876044 -0.999876274

3s1/2 -0.111052015 -0.111052109 -0.444405774 -0.444407203

3p1/2 -0.111052111 -0.111052109 -0.444407046 -0.444407203

3p3/2 -0.111051123 -0.111051124 -0.444391231 -0.444391427

3d3/2 -0.111051124 -0.111051124 -0.444391257 -0.444391427

3d5/2 -0.111050795 -0.111050795 -0.444385986 -0.444386168

Tabella 10.1: Energie dei livelli perH,He ionizzato. I valori sono in Rydberg.

Come si vede l’accordo è ragionevolmente buono e migliora al crescere din. Occorre
però notare che la correzione più grande rispetto al valoreE(0)

n = −Z2 ·R/n2 è puramente
cinematica e deriva dal sostituireRconRA.

Per concentrare la nostra attenzione sulla struttura fine riportiamo nella tabella 10.2,
espresse in fequenze, le differenze di energia a parità di numeri quanticin, `. Il fattore di
conversione è

Ry = 3289841.9580 GHz (10.341)

Notiamo che la discrepanza più grande fra dati e teoria per l’Idrogeno è 1 GHz. Misu-
rare questa differenza su frequenze di riga dell’ordine di 106 GHz significa una precisione
di una parte su 106.9

8I dati seguenti sono a disposizione in rete, il lettore li può trovare al sito
http://physics.nist.gov/PhysRefData/Handbook.

9I primi a osservare la struttura fine sull’atomo di idrogeno furono Michelson-Morley nel 1887.



78 CAPITOLO 10. TEORIA DELLE PERTURBAZIONI.

H eq.(10.337) He∗ eq.(10.337)
2s1/2−2p1/2 1.058 0.000 14.041 0.000

2p3/2−2p1/2 10.969 10.943 175.589 175.165

3s1/2−3p1/2 0.315 0.000 4.185 0.000

3p3/2−3p1/2 3.250 3.242 52.029 51.901

3p3/2−2d3/2 0.003 0.000 0.086 0.000

3d5/2−3d3/2 1.082 1.081 17.341 17.300

Tabella 10.2: Differenze di energia espresse in GHz perH eHe ionizzato.

Dalla tabella appare che l’accordo, per gli standard attuali, è semiquantitativo: in parti-
colare la (10.337) prevede una degenerazione fra i livelli 2s1/2 e 2p1/2 che non è confortata
dai dati. D’altra parte la non degenerazione è “piccola”. Dal punto di vista delle righe spet-
trali l’effetto più marcato è che, ad esempio, una riga della serie di Balmer è un realtà sdop-
piata, ad esempio quella per la transizione 2p→ 3s. Predire correttamente l’ammontare
dello sdoppiamento è un notevole miglioramento rispetto alla teoria di Bohr10.

La prima misura sperimentale della differenza 2s1/2−2p1/2 è dovuta a Lamb e Rether-
ford nel 1947. A conferma di quanto detto sulla difficoltà di ottenere questo tipo di dati la
misura ha richiesto l’uso di tecniche a radiofrequenza che semplicemente non esistevano
prima della seconda guerra mondiale.

Cerchiamo di capire perchè questo risultato è così importante. Come si vede dalla
tabella 10.2 lo spostamento

F = E(2s1/2)−E(2p1/2)' 1.059GHz (10.342)

dettoLamb shift, è dell’ordine di 1/10 della separazione di struttura fine fra i livellip, quin-
di la discrepanza è dell’ordine di 1/10EFS. Abbiamo già discusso che qualunque correzio-
ne a questo risultato nell’ambito delle ipotesi fatte è al massimo dell’ordine di 10−3EFS
quindi la misura del Lamb shift indica in modo inequivocabile che abbiamo dimenticato
qualche interazione. In realtà l’equazione di Dirac prevede una degenerazione esatta dei
livelli, quindi la situazione è anche peggiore.

10.E.2 Interpretazione semiclassica del Lamb shift.

Supponiamo di trattare quantisticamente il campo elettromagnetico, la procedura esplicita
sarà vista più avanti, ora vogliamo solo dare un’idea della fisica in gioco.

Supponiamo di considerare il nostro sistema come immerso in una scatola cubica di
lato L molto grande, alla fine dei calcoli faremo il limiteL → ∞. Per semplicità poniamo
condizioni periodiche al contorno, in modo che ogni quantità sia periodica sulla lunghezza
L della scatola, luungo i tre assi coordinati,

Un campo elettromagnetico contenuto in una scatola di questo tipo ha un comporta-
mento ben noto: sono ammesse tutte le vibrazioni con numero d’onda multiplo di 2π/L.
Ognuno di questi modi di vibrazione può essere pensato come un oscillatore armonico.
Considerare il campo elettromagnetico quantizzato significa sempicemente dire che que-
sti oscillatori sono quantistici e non classici: non sono altro che gli oscillatori di Planck
nella versione elaborata da Einstein. Come vedremo gli stati eccitati di questi oscillatori
rappresentano i fotoni, in assenza di fotoni ogni oscillatore è nello stato fondamentale che
corrisponderà ad una sorta di campo quantisticoEq. Per lo stato di vuoto, assenza di fotoni,

10Il primo a fare una predizione teorica dello spettro di struttura fine è stato Sommerfeld nell’ambito di una
estensione relativistica della teoria di Bohr. Per certi aspetti l’accordo è fortuito, nella teoria mancava anche lo
spin. La prima predizione in meccanica quantistica è stata fatta con l’equazione di Dirac.
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naturalmente il valor medio di questo campo sarà nullo:

〈Eq〉γ = 0 (10.343)

Il suffissoγ indicherà che effettuiamo la media sulla funzione d’onda del campo quantisti-
co.

Un campo classico, ad esempio il campo coulombiano del nucleo, è una configurazione
classica sovraimposta allo stato fondamentale del campo quantistico. In questa situazione
il campo elettrico“vero” sentito dall’elettrone saràEcl +Eq.

Il campo avrà delle fluttuazioni attorno al valor medio nullo, ed in pratica in ogni punto
dello spazio possiamo immaginare sia presente un piccolo campo fluttuante, a media nulla.
Sotto l’influenza di questo campo l’elettrone subirà una forza e fluttuerà anch’esso con
un’ampiezzaξξξ determinata da:

mξ̈ξξ = eE (10.344)

Le coordinate elettroniche agiscono sulla funzione d’onda elettronica e quindi non dipen-
dono dalle variabili del campo, ma l’equazione (10.344) fa dipendere la fluttuazioni di
queste coordinate dal campo quantistico, in questo modo, indirettamente, il campo elettro-
magnetico agisce sulle variabili elettroniche. in altre parole se scriviamo per la coordinata
xe dell’elettronexe = x+ξξξ , la parteξξξ dipende dal campo quantistico.

In virtù di queste fluttuazioni l’energia elettrostatica dell’elettrone acquista un valore
aggiuntivo:

〈U(xe)〉γ = U(x)+ 〈ξi〉∂iU(x)+
1
2

ξiξ j〉∂i∂ jU(x) = U(x)+
1
6
〈ξξξ 2〉∇2U

Abbiamo assunto isotropia per le fluttuazioni. Poichè per un campo coulombiano∇2U =
Ze24πδ (3)(r) si ha un contributo ai livelli energetici del tipo

∆En` = 〈ξξξ 2〉〈ψ|Ze24π

6
δ

(3)(r)|ψ〉= Ze2 2π

3
|ψ(0)|2〈ξξξ 2〉= Z4e2 2

3a3
B

1
n3 〈ξξξ

2〉δ`,0 (10.345)

Per valutareξξξ consideriamo l’equazione del moto per una componente di frequenzaω

del campo, si ha

ξξξ ω =− e
mω2 Eω ⇒ 〈ξξξ 2〉=

∫
dω 〈ξξξ 2

ω〉=
e2

m2

∫
dω

1
ω4 E2

ω (10.346)

Il quadrato del campoE2
ω è chiaramente connesso con l’energia del campo elettromagneti-

co. Abbiamo detto che nello stato fondamentale del campo elettromagnetico, cioè in assen-
za di fotoni, tutti gli oscillatori della cavità sono nello stato fondamentale, quindi ognuno
di essi ha un’energia minima di~ω/2. Possiamo allora esprimere l’energia come la somma
delle energie di punto zero degli oscillatori, ricordando che la luce ha due polarizzazioni
ogni modo di vibrazione va contato 2 volte:

1
8π

∫
d3x
(
E2 +B2)=

1
4π

∫
d3xE2 = 2∑

osc.

~ωk

2
(10.347)

doveωk è la frequenza di oscillazione del modok. Quindi

〈E2〉=
∫

dω E2
ω =

1
L3

∫
d3xE2 =

4π

L3 ∑
osc

~ωk = 4π

∫
d3k

(2π)3 ~ω

Abbiamo usato l’usuale formula per la somma sui modi di una cavità, trasformando la
somma in un integrale sul numero d’onda. Ponendok = ω/c ed effettuando l’integrazione
angolare: ∫

dω E2
ω =

2
π

~
c3

∫
dω ω

3 (10.348)
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quindi la densità spettrale del campo è

E2
ω =

2
π

~
c3 ω

3 (10.349)

e sostituendo nella (10.346)

〈ξξξ 2〉=
2
π

e2

m2

~
c3

∫
dω

1
ω

(10.350)

Questa espressione diverge, dobbiamo introdurre una qualche sorta di cutoff. Per alte fre-
quenze è ragionevole dire che la massima frequenza èωmax∼mc2/~, sia perchè abbiamo
fatto un modello non relativistico sia perchè ad altissime frequenza ci aspettiamo che l’e-
nergia “inerziale” dell’elettrone,mc2 non possa più seguire le rapide oscillazioni del cam-
po. Per basse frequenze il taglio naturale è fissato dall’energia tipica dei livelli, in questo
regime la parte “classica” del campo deve intervenire nelle equazioni del moto dell’elettro-
ne, è proprio questa interazione che determina gli stati legati del sistema, quindi poniamo
~ωmin' Z2e2/aB. Otteniamo allora

〈ξξξ 2〉=
2
π

e2

m2

~
c3 log

ωmax

ωmin
≡ 2

π
αr2

e log
ωmax

ωmin
(10.351)

Nella (10.351) abbiamo messo in evidenza il raggio Compton dell’elettronere = ~/mc.
Notiamo chere/aB = α e ωmax/ωmin = 1/(Zα)2 Sostituendo nella (10.345) si ha, per gli
statis:

∆En0 =
1
n3

4
3π

Z4 e2

aB
α

r2
e

a2
B

log
ωmax

ωmin
= Ry · 1

n3

8
3π

Z4
α

3 log

(
1

Z2α2

)
(10.352)

Numericamente per il livello 2s dell’idrogeno si ricava:

∆E2s' 1.33GHz (10.353)

che in accordo qualitativo con il risultato sperimentale (10.342).
Dal punto di vista numerico il punto rilevante è che la correzione è del tipo

E0 ·α
3 logα ∼ EFSα logα

quindi maggiore di tutte quelle prese in considerazione precedentemente.
Logicamente il calcolo può essere fatto in modo sistematico. Una idea della procedura

sarà esposta nel capitolo 16.
Riportiamo comunque qui per referenza il risultato del calcolo per un livello con nume-

ro quantico principalen e momento angolare orbitale`.

∆E(n,0) =
8Z4

n3

α3

3π
·R·
[
2log

1
Zα

+ log
1

K(n,0)
+

19
30

]
` = 0 (10.354a)

e per` > 0 :

∆E(n, `) =
8Z4

n3

α3

3π
·R·
[
log

1
K(n, `)

+
3
8

j( j +1)− `(`+1)−3/4
`(`+1)(2`+1)

]
(10.354b)

R è al solito la costante di Rydberg. I coefficienti adimensionaliK(n, `) sono definiti
dall’uguaglianza

log(Kn`)∑
s

pn0spsn0
(Es−En0

) = ∑
s

pnspsn(Es−En) log

∣∣∣∣Es−En

Z2R

∣∣∣∣ (10.355)
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Lo staton0 che compare a sinistra nella (10.355) è uno statoscon lo stesso numero quantico
principale din, cioè lo statons. I coefficientiK(n`) possono essere valutati numericamente
e i primi valori sono

K(1,0)' 19.8 K(2,0)' 16.6398 K(2,1)' 0.970430

I coefficientiKn` come si vede sono una media pesata dei logaritmi delle energie di ecci-
tazione del sistema, e sostituiscono il log(ω) che compariva nella trattazione semplificata
data prima.

L’effetto più rilevante si ha per gli statis che vengonoinnalzati dal Lamb shift. Ag-
giungendo questo effetto ai livelli calcolati di struttura fine, la tabella 10.2 diventa

H FS,L He∗ FS,L
2s1/2−2p1/2 1.058 1.052 14.041 13.826

2p3/2−2p1/2 10.969 10.969 175.589 175.571

3s1/2−3p1/2 0.315 0.313 4.185 4.118

3p3/2−3p1/2 3.250 3.250 52.029 52.021

3p3/2−2d3/2 0.003 0.004 0.086 0.064

3d5/2−3d3/2 1.082 1.083 17.341 17.340

Tabella 10.3: Previsioni per le differenze di energia tenendo conto del Lamb shift.

L’accordo è eccellente e può essere migliorato calcolando gli ordini successivi in teoria
delle perturbazioni.

La differenzaE(2s1/2)−E(2p1/2) è molto studiata sperimentalmente e teoricamen-
te perchè è un test molto significativo per la correttezza dell’attuale comprensione dei
fenomeni elettromagnetici.

Il raffronto fra i dati sperimentali e quelli teorici è

∆Eexp= 1057.839(12)MHz ∆Eteo = 1057.838(6)MHz (10.356)

L’incertezza teorica è principalmente dovuta ad effeti non legati all’elettrodinamica: il pro-
tone non è puntiforme, il suo raggio è circaR= 0.85·10−13cm. Dall’esercizio alla fine del
paragrafo 10.2 una stima del contributo di questo effetto al Lamb shift è

δE ' 1
20

R2

a2
B

Ry' 0.043MHz

Quindi la struttura interna del protone gioca un ruolo nella determinazione più precisa
dell’effetto.

Il confronto fra teoria ed esperimento può essere spinto più a fondo in casi in cui la
sorgente del campo coulombiano non ha interazioni nucleari, come ad esempio i mesoniµ,
o nel positronio.

Nota1.
Il secondo contributo nella (10.354b) è

α

π
〈(Z4

α
2)Ry · j( j +1)− `(`+1)−3/4

`(`+1)(2`+1)

confrontando con il contributo alla struttuta fine dell’accoppiamento`̀̀s, eq.(10.334) (perg = 2)

(g−1)〈(Z4
α

2)Ry · j( j +1)− `(`+1)−3/4
`(`+1)(2`+1)
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vediamo che questo contributo è dovuto al fatto che

g−1 = 1+
α

π
g−2 =

α

π
(10.357)

Un calcolo analogo a quello del Lamb shift dimostra che effettivamente in virtù delle fluttuazioni
del campo elettromagnetico quantistico il momento magnetico anomalo dell’elettrone subisce una
modifica, data proprio dalla (10.357).

Nota2.

Siamo fiduciosi sul fatto che almeno qualche lettore si sia posta la leggittima domanda: perchè
si è considerato il contributo delle fluttuazioni all’energia poteziale dell’elettrone e non all’ener-
gia cinetica? Se seguiamo lo stesso procedimento per il terminep2/2m otteniamo, usando che
approssimativamentėxe = ẋ+ξ̇ξξ , per la singola frequenza di Fourier una variazione di energia cinetica

(δE)ω =
1

2m
〈ξ̇ξξ 2

ω 〉γ =
m
2

ω
2〈ξξξ 2

ω 〉=
e2

mω2 E2
ω

Sommando sui modi della cavità e usando la (10.349)

∆E =
2
π

e2~
mc3

∫
dω

1
ω2 ω

3

L’integrale al solito diverge, introducendo una frequenza di taglio sotto forma di una scala di energia
ωmax= Λ/~ si ha

∆E =
α

π

Λ2

mc2
(10.358)

Questo risultato sembra assolutamente catastrofico. Innanzitutto come minimoΛ ∼ mc2 e quindi il
contributo all’energia è, almeno, milioni di volte il valore imperturbato, in secondo luogo la dipen-
denza daΛ ora è quadratica, non logaritmica, il che significa che anche un piccolo errore sulla stima
di Λ può portare a risultati molto diversi.

In realtà la situazione non è così drammatica. Il valore trovato (10.358) non ha niente che fare con
l’interazione elettrone - nucleo, in altre parole avremmo trovato lo stesso valore anche per una par-
ticella libera. Non dipende neanche dall’impulso della particella libera, è una costante, ma siccome
ciò che si misura sono sempredifferenzedi energie, il valore di questa costante, benchè formalmente
infinita, non è osservabile, cioè non ha alcuna conseguenza sui livelli dell’atomo di idrogeno: ricor-
diamo che lo zero convenzionale dell’energia è assunto come il valore dell’energia per una particella
libera ferma, cioè la quantità misurata è

E−E(p = 0)

Se scriviamo l’energia di una particella libera dobbiamo ricordarci del termine di massa:

E = mc2 +
p2

2m

a quest’ordine perturbativo il risultato (10.358) significa che ciò che misuriamo come massa dell’e-
lettrone è

moss= m+
α

π

Λ2

mc4

Nello spirito di un’espansione perturbativa possiamo allora invertire la relazione e scrivere

m= moss−
α

π

Λ2

mossc4 (10.359)

Siccome stiamo calcolando un effetto all’ordine perturbativo più basso inα, in tutti i nostri risutati
possiamo sostituiremoss al posto dim e quindi ritorniamo al calcolo fatto in questo paragrafo. Un
notevole risultato teorico ottenuto pressocchè in coincidenza con la determinazione sperimentale del
Lamb shift, è la dimostrazione che questa procedura si può usare in modo consistente a qualsiasi
ordine della teoria delle perturbazioni e tutti i cutoff tipoΛ spariscono: è quella che si chiamateoria
della rinormalizzazione.

Un punto interessante su cui non possiamo soffermarci è che nella teoria relativistica per parti-
celle di spin 1/2 in realtà la dipendenza dim daΛ è di tipo logΛ, non quadratica.
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Esercizio 6. Supponiamo che il campo coulombiano decresca come 1/r1+ε con |ε| �
1. Trattando la differenza col caso coulombiano come una perturbazione ricavare per gli
spostamenti dei livelli dell’atomo di idrogeno (in unità atomiche):

∆E(1s) = 1− 1
2ε

Γ(2− ε)

∆E(2s) =
1
4
− 1

2
Γ(2− ε)+

1
2

Γ(3− ε)− 1
8

Γ(4− ε)

∆E(2p) =
1
4
− 1

24
Γ(4− ε)

Dimostrare che per piccoliε

∆E(2s)−∆E(2p) =− ε

12
a.u. =−ε

6
Ry

L’accordo fra teoria ed esperimento del Lamb shift impone

|ε|< 6·10kHz/Ry∼ 2·10−11

Commenti sul confronto con i dati.

Nel paragrafo precedente abbiamo confrontato le previsioni teoriche con le separazioni di
struttura fine, mentre avremmo potuto fare un confronto diretto con i livelli energetici, per
come avevamo presentato i dati in tabella (10.1). Il motivo è duplice: da un lato volevamo
effettivamente studiare la struttura fine dall’altro occorre dire che sperimentalmente non si
misura l’energia di un livello ma sempre una differenza di energia, cioè delle righe spet-
trali. Lo “zero” dell’energia viene fissato dal limite asintotico in frequenza dello spettro,
in pratica l’energia di ionizzazione per l’atomo o lo ione. Questo già di per se dice che i
numeri presentati in tabella (10.1) sono in realtà il risultato di una rielaborazione dei dati.
L’aspetto più delicato è però il seguente: le righe misurate non sono ovviamente mono-
cromatiche ma hanno una larghezza, dovuta a vari effetti che discuteremo nel capitolo 16.
Inoltre come già detto nel testo ogni riga ha una sua struttura iperfina che per l’idrogeno,
ad esempio, è dello stesso ordine del Lamb shift. I numeri in tabella (10.1) sono estrat-
ti dai dati sperimentali utilizzando la teoria della struttura iperfina ed analizzando la sua
influenza sulla forma delle righe, in altre parole sono il frutto di un’analisi piuttosto so-
fisticata. Logicamente su alcune transizioni o su alcuni livelli energetici la precisione è
molto spinta perchè sono stati progettati degli esperimenti “dedicati” a questa misura co-
me ad esempio l’esperimento di Lamb e Retherford, o esperimenti più recenti molto più
precisi. Le possibili fonti di errore sui dati sono quindi molteplici e in questo testo non
è il caso di addentrarci sulla significatività dei numeri presentati. Riportando la fonte:
http://physics.nist.gov/PhysRefData/Handbook i numeri per l’idrogeno in tabel-
la (10.1) hanno un errore limitato all’ultima cifra che abbiamo riportato, quindi precisi in
qualche parte su 109. Tipicamente gli errori per le separazioni indotte dal Lamb shift so-
no piccoli perchè questo tipo di effetto è stato molto analizzato sia sperimentalmente che
teoricamente. Ad esempio il numero riportato nelle (10.356) è tre ordini di grandezza più
preciso di quello ricavabile dalla tabella 10.1.

Fatta questa premessa riportiamo comunque il confronto con i valori delle energie dei
singoli livelli. La maggior parte dell’energia è determinata dal valore della teoria di Bohr,
E(0)

n =−Z2/n2RyA, dove la costante di Rydberg è calcolata in terminini della massa ridotta
del sistema

RyA =
M

me+M
Ry

M è la massa dell’atomo. È chiaro che gli spettri calcolati con la costante a massa infi-
nita, Ry, avrebbero una grosso errore, dell’ordine di 10−3. Per apprezzare la precisione
delle previsioni rispetto ai dati sottraiamo questo contributo dai datie dai valori teorici e
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riportiamo, in Rydberg, la quantità 104(E−EBohr) per i vari livelli, in pratica isoliamo
direttamente sui livelli energetici gli effetti delle interazioni di struttura fine. Il risutato è
riportato in tabella 10.4

Come si vede l’accordo è buono, al solito resta nelle previsioni teoriche il residuo della

Livello H eq.(10.340) He∗ eq.(10.340)
1s1/2 -0.10829 -0.13306 -1.80146 -2.12976

2s1/2 -0.03841 -0.04158 -0.62186 -0.66555

2p1/2 -0.04162 -0.04158 -0.66454 -0.66555

2p3/2 -0.00828 -0.00832 -0.13081 -0.13311

3s1/2 -0.01384 -0.01478 -0.22235 -0.23664

3p1/2 -0.01479 -0.01478 -0.23507 -0.23664

3p3/2 -0.00492 -0.00493 -0.07692 -0.07888

3d3/2 -0.00493 -0.00493 -0.07718 -0.07888

3d5/2 -0.00164 -0.00164 -0.02447 -0.02629

Tabella 10.4: 104(E−EBohr). I valori sono in Rydberg

degenerazione coulombiana vista in precedenza. Aggiungendo il contributo del Lamb shift
si ha il confronto riportato in tabella 10.5

Livello H FS + LS He∗ FS + LS
1s1/2 -0.10829 -0.10836 -1.80146 -1.80773

2s1/2 -0.03841 -0.03842 -0.62186 -0.62415

2p1/2 -0.04162 -0.04162 -0.66454 -0.66618

2p3/2 -0.00828 -0.00828 -0.13081 -0.13250

3s1/2 -0.01384 -0.01384 -0.22235 -0.22430

3p1/2 -0.01479 -0.01479 -0.23507 -0.23681

3p3/2 -0.00492 -0.00492 -0.07692 -0.07869

3d3/2 -0.00493 -0.00493 -0.07718 -0.07888

3d5/2 -0.00164 -0.00164 -0.02447 -0.02617

Tabella 10.5: 104(E−EBohr). I valori sono in Rydberg

Come si vede l’accordo è pressocchè perfetto nei limiti degli errori sperimentali. Per
l’elio l’errore sulla differenza di energia fra i multipletti eccitati ed il fondamentale è stima-
to a circa 0.002cm−1 ' 2 ·10−8Ry, cioè un 2 sulla penultima cifra nella tabella. Siccome
tutte le energie sono estratte per differenza dal fondamentale quest è una stima dell’errore
dei dati.

Per completezza indichiamo le correzioni principali ai risultati fin qui presentati. Nel
capitolo precedente abbiamo calcolato l’Hamiltoniana effettiva per descrivere le correzioni
m/M. Abbiamo visto che usando la massa ridotta i termini correttivi non dipendono dallo
spin e quindi non influenzano la struttura fine. Il lettore interessato può trovare nel prossimo
paragrafo il semplice calcolo dell’effetto rimanente, il risultato è

∆En` =− 1
4n2

m
M

(Zα)2 · (Z
2R)
n2 (10.360)
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In aggiunta ci sono naturalmente le correzioni al calcolo teorico del Lamb shift. Il termine
più importante di queste correzioni riguarda i livellis e vale

∆En0 =
1
n3 8Z5

α
4 · (1+

11
128

− 1
2

log(2)+
5

192
) ·Ry (10.361)

La lista dei contributi non è esaustiva ma abbiamo elencato i più importanti.
Con l’aggiunta di queste piccole correzioni la tabella precedente diventa la tabella 10.6,

mentre le separazioni di struttura fine sono date nella tabella 10.7.

Livello H FS,LS,corr He∗ FS,LS,corr
1s1/2 -0.10829 -0.10826 -1.80146 -1.80247

2s1/2 -0.03841 -0.03840 -0.62186 -0.62347

2p1/2 -0.04162 -0.04162 -0.66454 -0.66620

2p3/2 -0.00828 -0.00828 -0.13081 -0.13252

3s1/2 -0.01384 -0.01384 -0.22235 -0.22409

3p1/2 -0.01479 -0.01480 -0.23507 -0.23682

3p3/2 -0.00492 -0.00492 -0.07692 -0.07869

3d3/2 -0.00493 -0.00493 -0.07718 -0.07889

3d5/2 -0.00164 -0.00164 -0.02447 -0.02618

Tabella 10.6: 104(E−EBohr). I valori sono in Rydberg

H FS,LS,corr He∗ FS,LS,corr
2s1/2−2p1/2 1.058 1.059 14.041 14.055

2p3/2−2p1/2 10.969 10.969 175.589 175.571

3s1/2−3p1/2 0.315 0.315 4.185 4.186

3p3/2−3p1/2 3.250 3.250 52.029 52.021

3p3/2−2d3/2 0.003 0.004 0.086 0.064

3d5/2−3d3/2 1.082 1.083 17.341 17.340

Tabella 10.7: Separazioni di struttura fine, in GHz.

Possiamo ritenere soddisfacente l’accordo nei limiti delle approssimazioni fatte. Il fatto
che alcuni livelli, come i livellid, coincidano con i valori teorici nella tabella 10.6 mentre
sembrano differire nella tabella 10.7 è solo un effetto dell’arrotondamento nella scrittura
dei risultati.

10.E.3 Correzioni di massa.

Abbiamo visto nel capitolo precedente che le correzionim/M sono inglobate nella Hamil-
toniana:

HM =
1

Mc2

[
3p4

8m2 −
Ze2~2π

m
δ

(3)(r)− Ze2

2mr

(
p2 + r̂(r̂ ·p)p

)]
(10.362)
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Questi termini non dipendono dallo spin quindi il loro contributo dipende solo dai numeri
quanticin, `. In unità atomiche, ponendo ancheZ = 1:

HM =
1
M

[
3p4

8
−πδ

(3)(r)− 1
2r

(
p2 + r̂(r̂ ·p)p

)]
(10.363)

Usando come nel paragrafo 10.E.1 l’equazione di Schrödinger ed indicando per brevità
con una barra il valor medio sugli stati:

p4

4
=
(

En` +
1
r

)2

δ (3)(r) = |ψnl(0)|2

Allo stesso modo
1
2r

p2 =
1
r
(En` +

1
r
)

Per l’operatore rimanente notiamo che in coordinate radiali i versori ˆr i =
xi
r non dipendono

dar e possiamo scrivere

r̂(r̂ ·p)p =−
xi

r

x j

r
∂ j∂i =−

xi

r
∂

∂ r
∂i =− ∂ 2

∂ r2

Usando l’equazione di Schrödinger in coordinate polari:

1
2

(
−∂ 2ψ

∂ r2 −
2
r

∂ψ

∂ r
+

L2ψ

r2

)
= (Enl +

1
r
)ψ

abbiamo, sulle autofunzioni dell’Hamiltoniana idrogenoide:

1
2

r̂(r̂ ·p)pψ =
1
r

∂ψ

∂ r
− `(`+1)

2
1
r2 ψ +(Enl +

1
r
)ψ

Per il valor medio del termine che compare nel’Hamiltoniana:

1
r

1
2

r̂(r̂ ·p)p =−`(`+1)
2

1
r3 +

1
r
(Enl +

1
r
)+

∫
d3r ψ

∗ 1
r2

∂ψ

∂ r

Le autofunzioniψ sono della formaRn`(r)Ỳ m, conRn` reale e l’integrale si calcola imme-
diatamente in coordinate polari:∫

dΩr2dr
1

2r2

∂ |ψ|2

∂ r
=

4π

2

∫ ∞

0
dr

∂ |ψ|2

∂ r
=−2π|ψn`(0)|2

Sommando i vari termini

HM =
1
M

[
3
2

(
En` +

1
r

)2

−π|ψnl(0)|2−

− 1
r
(En` +

1
r
)+

`(`+1)
2

1
r3 −

1
r
(Enl +

1
r
)+2π|ψn`(0)|2

]
=

=
1
M

[
3
2

E2
n` +En`

1
r
− 1

2
1
r2 +

`(`+1)
2

1
r3 +π|ψn`(0)|2

]
Notiamo che il termine iǹ(`+1) va considerato solo sugli stati con` 6= 0 mentre l’ultimo
termine è non nullo solo sugli statis. Utilizzando le espressioni note per i valori medi, vedi
eq.(10.335), si ottiene

HM =− 1
M

1
8n4 a.u.

cioè il risultato dipende dipende solo dal numero quantico principale. Introducendo le unità
di misura normali

HM =− Z2

4n4

m
M

(Zα)2 · Ry (10.364)
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10.F Struttura iperfina per L > 0.

Nel paragrafo 10.10 abbiamo scritto la Hamiltoniana di interazione iperfina nella forma

V = A

{
8π

3
ISδ

(3)(r)− (I ·S−3(I · r̂)r̂ ·S)
1
r3 +

(
1
r3 I ·L

)}
≡VS+VL (10.365)

ed abbiamo visto che in ondas solo il primo termine, indicato conVS, dà un contributo
non nullo. Viceversa gli altri due termini,VL, sono i soli che danno un contributo perL 6=
0. Consideriamo uno livello con numeri quantici elettroniciJ,L,S fissati, tipicamente un
livello di struttura fine. Per le sole variabili elettroniche questo livello ha una degenerazione
(2J+1). La variabile di spin nucleare porta la degenerazione a(2J+1)× (2I +1) e questa
degenerazione è rotta dalla Hamiltoniana (10.365). A causa dell’interazione (10.372) solo
il momento angolare totale del sistema

F = J+ I (10.366)

è conservato: si avrà una separazione in(2I + 1) o (2J+ 1) livelli a seconda cheJ ≥ I o
I ≥ J. Il secondo termine nella (10.365) ha la forma

1
r3 IiSj

(
3r̂ i r̂ j −δi j

)
(10.367)

La parte orbitale è un tensore simmetrico a traccia nulla quindi il teorema di Wigner-Eckart
ci dice che deve essere esprimibile tramite un tensore a traccia nulla costruito conLi .
Poniamo allora, sempre in senso matriciale all’interno del multipletto:

3r̂ i r̂ j −δi j = cQ

(
3LiL j +3L jLi −2L2

δi j

)
(10.368)

Il fatto che gli operatoriLi non commutino fra loro ha imposto di scrivere esplicitamente la
simmetrizzazione. Il momento angolare, anche come operatore, soddisfa alla relazione

r̂ iLi =
xi

r
εi jkx j pk = 0

Moltiplicando a sinistra e a destra la (10.368) rispetivamente perLi eL j

−L2 = cQ

[
3L2L2 +3LiL jLiL j −2L2L2

]
= cQ

[
L2L2 +3LiL jLiL j

]
(10.369)

Usando le regole di commutazione del momento angolare

LiL jLiL j = L2L2 + iεi jkLkLiL j = L2L2 +
i
2

εi jkLk[LiL j ]

= L2L2 +
i
2

εi jkεi jmLkLm = L2L2−L2

Si è usata l’identitàεi jkεi jm = 2δkm. Sostituendo nella (10.369) si ricava percQ:

cQ =− 1
4L(L+1)−3

=− 1
(2L−1)(2L+3)

(10.370)

Il termineVL della (10.365) si riscrive allora

VL =
A
r3

[
2L2I ·S−3(I ·L)(S·L)−3(S·L)(I ·L)

(2L−1)(2L+3)
+ I ·L

]
(10.371)

Operando come nel paragrafo 10.11 il teorema di Wigner-Eckart impone, in senso matri-
ciale all’interno degli stati in questione:

L = cLJ S= cSJ (10.372)
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Moltiplicando le uguaglianze precedenti perJ si ricava immediatamente, vedi anche equa-
zioni (10.158) (10.159)

cL =
J(J+1)+L(L+1)−S(S+1)

2J(J+1)
(10.373a)

cS =
J(J+1)−L(L+1)+S(S+1)

2J(J+1)
(10.373b)

Possiamo anche usare la relazione

cLS≡ S·L =
J(J+1)−S(S+1)−L(L+1)

2
(10.374)

e scrivere

VL =
A
r3 I ·J

[
2L(L+1)cS−6cLScL

(2L−1)(2L+3)
+cL

]
(10.375)

Usando

I ·J =
F(F +1)−J(J+1)− I(I +1)

2
(10.376)

dalla (10.375) si possono calcolare gli autovalori diVL sui vari membri del multipletto.
Nel caso particolare in cuiS= 1/2 le formule precedenti si possono semplificare in

cL =
1

2J(J+1)
·

{
L(2L+3) J = L+ 1

2

(L+1)(2L−1) J = L− 1
2

(10.377a)

cS =
1

2J(J+1)
·

{
(2L+3)

2 J = L+ 1
2

− (2L−1)
2 J = L− 1

2

(10.377b)

cLS =
1
2
·

{
L J = L+ 1

2

−(L+1) J = L− 1
2

(10.377c)

Raccogliendo un fattore comune12J(J + 1) il termine in parentesi quadra nella (10.375)
diventa, nei due casi:

J = L+
1
2

:
L(L+1)(2L+3)−3L2(2L+3)

(2L−1)(2L+3)
+L(2L+3) = 2L(L+1)

J = L− 1
2

:
−L(L+1)(2L−1)+3(L+1)2(2L−1)

(2L−1)(2L+3)
+(L+1)(2L−1) = 2L(L+1)

cioè lo stesso in entrambi i casi, e si può allora scrivere

VL =
A
r3

L(L+1)
J(J+1)

I ·J =
A
r3

L(L+1)
J(J+1)

F(F +1)−J(J+1)− I(I +1)
2

(10.378)

Per calcolare i valori medi di questo operatore occorrerà prendere il valor medio dir−3

sullo stato.

10.G Un’applicazione del teorema di Wigner-Eckart.

Consideriamo una rappresentazione irriducibile del gruppo delle rotazioni con momento
angolareL. Un esempio esplicito è, ad esempio, un livello atomico, in assenza di spin e in
assenza di degenerazioni accidentali: se l’HamiltonianaH commuta con le rotazioni spa-
ziali, H, L edLz possono essere diagonalizzati simultaneamente e ad ogni autovalore del-
l’Hamiltoniana, in assenza di degenerazioni accidentali, è associata un momento angolare
definito, cioè una rappresentazione irriducibile del gruppo delle rotazioniSO(3).
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Il teorema di Wigner-Eckart asserisce che gli elementi di matrice che all’interno di
questa rappresentazione irriducibile tutti i tensori che trasformano a loro volta come rap-
presentazioni irriducibili, hanno elementi di matrice proporzionali, il che significa che sono
multipli dello stesso oggetto. I tensori più semplici che si possono considerare sono proprio
quelli costruiti a partire dalle componenti diL .

Un momento angolare 1 significa un vettore, quindi il teorema di Wigner-Eckart affer-
ma che,all’interno di una data rappresentazione:

〈α|Vi |β 〉= cV〈α|Li |β 〉 (10.379)

cioè tutti i vettori hanno elementi di matrice proporzionali a quelli del momento angolare.
Una rappresentazione conL = 2 significa un tensore simetrico a traccia nulla, e di nuovo

il teorema di Wigner-Eckart afferma che,all’interno di una data rappresentazione:

〈α|Si j |β 〉= cL〈α|
(

LiL j +L jLi −
2
3

L2
δi j

)
|β 〉 (10.380)

doveSè il tensore in questione. Il termine a destra nella (10.380) è il tensore simmetrico
a traccia nulla costruito conLi . Notiamo che la non commutatività delle componenti diL
costringe a scrivere separatamenteLiL j e L jLi . La costante di proporzionalitàcL dipende
dall’operatore, abbiamo posto l’indiceL per ricordare che siamo in una rappresentazione
irriducibile del momento angolare orbitale.

In molti problemi, ad esempio nel calcolo del quadrupolo, nel calcolo della struttura
iperfina, etc., occorre calcolare gli elementi di matrice del tensore costruito tramite i versori
delle coordinate

Si j = r̂ i r̂ j −
1
3

δi j (10.381)

dove r̂ i ≡ xi/r. Il fatto è abbastanza naturale perchè è chiaro che qualunque tensore di
rango 2 costruito con le variabili orbitali di una particella è del tipof (r)Si j .

La formula (10.380) ci dice allora che all’interno del multipletto

r̂ i r̂ j −
1
3

δi j = cL

(
LiL j +L jLi −

2
3

L2
δi j

)
(10.382)

Abbiamo scritto la (10.382) come uguaglianza di operatori perchè la (10.380) vale per tutti
gli elementi di matrice. A costo di apparire pedanti insistiamo sul fatto che ci limitiamo
agli elementi di matrice all’interno della stessa rappresentazione. Sull’intero spazio di
Hilbert la (10.382) è banalmente falsa: l’operatore a sinistra ha elementi di matrice fra
rappresentazioni diverse diSO(3), quello a destra no.

Per calcolare la costantecL notiamo che vale l’identità

r̂ iLi =
1
r

xiLi =
1
r

xiεi jkx j pk ≡ 0 (10.383)

Classicamente la (10.383) è ovvia:r ∧p è ortogonale ar . La (10.383) vale anche a livello
quantistico perchè come si vede non dipende dal fatto chexi e p j non commutano. Il lettore
può anche facilmente dimostrare che essendo[xi , p j ] = i~δi j simetrico negli indicii, j, vale
anche la relazioneLixi = 0, anche se non servirà esplicitamente nel seguito.

Moltiplicando dunque la (10.382) a sinistra perLi e a destra perL j otteniamo

−L2 = cL

(
3L2 +3LiL jLiL j −2(L2)2

)
(10.384)

LiL jLiL j = (L2)2 + iεi jkLkLiL j = (L2)2 +
i
2

εi jkLk[LiL j ]

= (L2)2 +
i2

2
εi jkεi jmLkLm = (L2)2−L2 (10.385)
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Abbiamo usato l’identità11

εi jkεi jm = 2δkm (10.386)

Sostituendo nella (10.384) si ha

−1 = cL(4L2−3) ⇒ cL =− 1
4L(L+1)−3

=− 1
(2L+3)(2L−1)

(10.387)

e quindi

r̂ i r̂ j −
1
3

δi j =− 1
(2L+3)(2L−1)

(
LiL j +L jLi −

2
3

L2
δi j

)
(10.388)

Aggiunta dello spin.

In presenza dello spin il teorema di Wigner-Eckart asserisce che al posto diL nella (10.382)
dovremmo usareJ.

r̂ i r̂ j −
1
3

δi j = cJ

(
JiJj +JjJi −

2
3

J2
δi j

)
(10.389)

Abbiamo usato appositamente un nome diverso per la costante di proporzionalità,cJ, ap-
punto perchè siamo ora in rappresentazioni irriducibili diJ, ad esempio in livelli di una
struttura fine.

In generale
J = L +S (10.390)

e gli autostati diJ,Jz sono espressi tramite quelli diL,Lz,S,Sz tramite:

|L,S,J,Jz〉= ∑
Lz,Sz

〈L,Lz,S,Sz|J,Jz〉 · |L,Lz,S,Sz〉 (10.391)

i coefficienti〈L,Lz,S,Sz||J,Jz〉 sono i coefficienti di Clebsh-Gordan. Abbiamo scritto espli-
citamente a sinistraL,S per indicare cheJ è costruito a partire da un datoL ed un dato
S.

Qui c’è un punto un pò delicato a cui fare attezione. La formula (10.391) è senz’altro
vera, esprime solo una proprietà della composizione del momento angolare, ma per spe-
cificare gli autostati di una Hamiltoniana, in generale, occorrono altri numeri quantici12.
Questo significa che in termini di autostati dell’Hamiltoniana la (10.391) dice solo che

|α,J,Jz〉= ∑
Lz,Sz

〈L,Lz,S,Sz|J,Jz〉 ·∑
s

cs|s,L,Lz,S,Sz〉 (10.392)

e non è neanche detto che gli stati|s,L,Lz,S,Sz〉 siano autostati diH.
In questo caso non ci sono semplificazioni particolari che si possono fare alla (10.389).

Può però accadere cheL, S siano, almeno in una certa approssimazione, buoni numeri
quantici, cioè l’insiemeα dei numeri quantici che definisce gli stati contieneL,S. In questo
caso il ket rappresentativo dello stato ha la forma

|n〉|L,S,J,Jz〉 (10.393)

e si può effettivamente scrivere

|n〉|L,S,J,Jz〉= |n〉 ∑
Lz,Sz

〈L,Lz,S,Sz|J,Jz〉 · |L,Lz,S,Sz〉 (10.394)

11Notiamo che questa identità algebrica immediatamente verificabile è anche un modo di scrivereL2 = L(L+1)
in rappresentazione aggiunta del gruppoSO(3), incui i generatori appunto sonoiεi jk .

12Dal punto di vista matematico lo spazio di Hilbert è decomponibile in una somma di rappresentazioni irridu-
cibili del gruppo delle rotazioni, ma ogni rappresentazione può comparire più di una volta, ad esempio ci possono
essere tanti statis, tanti statip etc. Glialtri numeri quantici distinguono appunto una rappresentazione dall’altra.
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Questo per fortuna è il caso più comune e si presenta quando l’interazione tipoL ·Sè la per-
turbazione più importante ad una Hamiltoniana in cuiL,Ssono buoni numeri quantici. Ad
esempio è il caso dell’atomo di idrogeno o il caso di atomi più complicati in cui, in prima
approssimazione, il moto degli elettroni può essere visto come un moto in campo centrale
(il nucleo e la distribuzione media di carica degli altri elettroni) e l’interazioneL ·Sè la più
importante perturbazione. Se invece la perturbazione più importante fra due elettroni,i, j,
è del tipoL (i) ·S( j)+L ( j) ·S(i) si vede facilmente che questo operatore non commuta con

L2 e conS2, cioèL,Snon sono buoni numeri quantici, e la decomposizione (10.394) non è
più valida. Un caso simile si presenta per atomi pesanti, in cui l’interazione dominante non
è piùL ·S. Qui però tratteremo solo il caso “semplice” in cui la deomposizione (10.394) è
valida.

In questo caso è possibile collegare la costantecJ alla costantecL. Infatti come abbia-
mo detto la (10.382) è un’identità operatoriale all’interno di uno stesso multipletto conL
definito, e nella (10.394) compare un soloL, quindi si può ancora scrivere:

r̂ i r̂ j −
1
3

δi j =− 1
(2L+3)(2L−1)

(
LiL j +L jLi −

2
3

L2
)

(10.395)

Bisognerà ora scrivere il tensore a destra della (10.395) in termini diJi . Ormai la tecnica
dovrebbe essere chiara, il teorema di Wigner-Eckart dice(

LiL j +L jLi −
2
3

L2
δi j

)
= d ·

(
JiJj +JjJi −

2
3

J2
δi j

)
(10.396)

Moltiplicando a sinistra perJi e a destra perJj

(JL)2 +JiL jLiJj −
2
3

L2J2 = d

[
(J2)2 +JiJjJiJj −

2
3
(J2)2

]
(10.397)

Notiamo che, usandoJ−L = S e facendo il quadrato, si ha

J ·L =
J(J+1)+L(L+1)−S(S+1)

2
(10.398)

all’interno del multipletto, quindiJ · L commuta con tutti gli operatori. Utilizzando le
regole di commutazione del momento angolare e la (10.398)

JiJjJiJj = (J2)2−J2 come perLi

JiL jLiJj = L j(JL)Jj + iεi jkJkLiJj = (JL)2 +
i
2

εki j [Jk,Li ]Jj =

= (JL)2 +
i2

2
εki jεkisLsJj = (JL)2− (JL)

Sostituendo nella (10.397)

2(JL)2− (JL)− 2
3

L2J2 = d

[
4
3
(J2)2−−J2

]
3(JL)(2(JL)−1)−L(L+1)J(J+1) = d J(J+1)(2J−1)(2J+3)

e quindi

d =
3(JL)(2(JL)−1)−2L(L+1)J(J+1)

J(J+1)(2J−1)(2J+3)
(10.399a)

cJ = cL ·d =− 1
(2L−1)(2L+3)

·d (10.399b)
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Nel caso particolare diS= 1/2 le formule precedenti si semplificano notelvomente. Usan-
do la (10.398) si ha

d =


2L−1
2L+1

J = L+ 1
2

2L+3
2L+1

J = L− 1
2

(10.400a)

cJ =


− 1

(2L+1)(2L+3)
≡−1

4
1

J(J+1)
J = L+ 1

2

− 1
(2L−1)(2L+1)

≡−1
4

1
J(J+1)

J = L− 1
2

(10.400b)

Nel paragrafo10.F viene in pratica eseguito lo stesso calcolo in un ordine diverso.
Il calcolo di questa sezione ha una chiara interpretazione semiclassica. Trascurando le

interazioni di spin il versorêr precede attorno al vettore conservatoL . Il coefficientecL
esprime la media sul moto elettronico. L’introduzione dell’accoppiamentoL ·S fa precede-
re lentamente il vettoreL attorno al vettore conservatoJ, e questo corrisponde al passaggio
dal coefficientecL a quellocJ.

10.H Effetto Stark e struttura fine.

Nel paragrafo (10.7) abbiamo discusso l’effetto Stark per il livellon = 2 dell’atomo di
idrogeno, tracurando la struttura fine del sistema. MisurandoE in V/cm

eaBE ∼ 0.5·10−8E eV

PoichèE2p3/2
−E2p1/2

∼ 4.510−5eV, vedi eq.(10.108), l’approssimazione è ragionevole

per campi superiori a qualche migliaio di V/cm, per campi inferiori occorre tener conto
dell’interazioneL ·S.

Sia H0 l’Hamiltoniana non perturbata, cioè con la sola interazione coulombiana. Il
livello n = 2, tenendo conto dello spin ha una degenerazione 2+ 2× 3 = 8, dovuta agli
orbitali 2s e 2p idrogenoidi. La teoria delle perturbazioni degenere su questo livello si
ottiene diagonalizzando l’Hamitoniana

VLS+VStark

Come abbiamo visto in diverse occasioni conviene cominciare a diagonalizzare uno dei
due termini dell’Hamiltoniana e scrivere l’altra interazione in termini degli elementi di
matrice sulla base di autovettori della prima. In questo caso sappiamo che la base|J,Jz〉
diagonalizza l’interazioneLS, quindi scriveremo in questa base gli elementi di matrice di
VStark. Anche l’altra alternativa è possibile, e la analizzeremo alla fine del paragrafo. Non
c’è bisogno di scrivere una matrice 8×8 se si tiene conto delle simmetrie. Ponendo l’asse
z nella direzione del vettoreE

VStark=−eE z (10.401)

1) Questa Hamiltoniana è invariante per rotazioni attorno all’assez, quindi commuta
conJz ed ha elementi di matrice solo fra stati con lo stessoJz.

2) È dispari sotto parità quindi ha elementi di matrice solo fra stati a parità diversa, cioè
s e p nel nostro caso.

3) Per riflessione in un piano contenente l’assez, ad esempioxz, l’Hamiltoniana è inva-
riante, in questa operazione, che è una riflessione, il momento angolare lungo l’asse
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z cambia segno (è un vettore assiale), quindi gli stati con momento angolareJz si
trasformano negli stati con momento angolare−Jz. Poichè l’Hamiltoniana commu-
ta con questa operazione, gli stati conJz positivo sono degeneri con quelli conJz

negativo, in pratica basta limitarsi a studiareJz≥ 0.

Notazioni

Per cercare di non appesantire troppo la notazione ma nello stesso tempo non ingenerare
confusione indicheremo gli stati in cui abbiamo diagonalizzatoJ,Jz con

|J,Jz〉p |J,Jz〉s (10.402)

mentre quelli originali, in cui era diagonaleLz eSz, nella forma

|p;Lz,Sz〉 |s;Lz,Sz〉 (10.403)

Gli stati si distinguono anche perchè nella prima formaJ è semintero, mentre nella seconda
Lz è intero.

Secondo i punti esposti sopra lo stato|32, 3
2〉p non è toccato dall’effetto Starck, lo stesso

vale per lo stato|32,−3
2〉p. La loro energia resta invariata:Ep

3/2
. I sei stati rimanenti si

possono dividere in quelli conJz positivo e quelli conJz negativo, la situazione fra i due
è simmetrica. Si tratta quindi di studiare la perturbazione sul sottospazio generato dai tre
stati

|3
2
,
1
2
〉p |1

2
,
1
2
〉p |1

2
,
1
2
〉s (10.404)

Nel calcolo semplificato nel paragrafo (10.7) abbiamo già calcolato gli elementi di matrice
di z sulla parte orbitale di questi stati.

〈2s|z|2p〉= 3a (10.405)

a è il raggio di Bohr.
Per completezza scriviamo il risultato per un qualsiasi livellons. Poichèz= r cosθ eY00 =

√
1

4π
, Y10 =

√
3

4π
cosθ l’elemento di

matrice angolare è ∫
dΩ
√

3
1

4π
cos2 θ =

1√
3

(10.406)

L’integrale sulle funzioni d’onda radiali è

〈n,s|r|np〉=
3
2

n
√

n2−1 (10.407)

La (10.405) si può dimostrare utilizzando la forma esplicita delle funzionid’onda radiali, ma non insisteremo su questo punto.
Quindi dalla (10.406) e dalla (10.407) segue

〈ns|z|np〉=
√

3
2

n
√

n2−1 (10.408)

che coincide con il risultato (10.405) pern = 2.

La decomposizione in stati|L,Lz〉|S,Sz〉 degli stati|J,Jz〉, perL = 1,S= 1/2 è data dai
coefficienti di Clebsh-Gordan:

|3
2
,
1
2
〉p =

√
1
3
|p,1,−1

2
〉+
√

2
3
|p,0,

1
2
〉 (10.409a)

|1
2
,
1
2
〉p =

√
2
3
|p,1,−1

2
〉−
√

1
3
|p,0,

1
2
〉 (10.409b)

Gli elementi di matrice si calcolano ora facilmente usando l’espressione (10.405). Ad
esempio:

s〈
1
2
,
1
2
|z|3

2
,
1
2
〉p =

√
2
3
〈s;0,

1
2
|z|p;0,

1
2
〉=

√
6a
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e l’hamiltoniana si scrive
E2p3

2

0 −
√

6eE a

0 E2p1
2

√
3eE a

−
√

6eE a
√

3eE a E2s1
2

= E2p1
2

+

 ∆F 0 −
√

2x
0 0 x

−
√

2x x ∆L

 (10.410)

Nella seconda forma abbiamo introdotto le differenze∆F = E2p3
2

−E2p1
2

e ∆L = E2s1
2

−

E2p1
2

(Lamb shift). Abbiamo inoltre posto
√

3eE a = x per semplificare la discussione

seguente.
Perx� ∆F > ∆L l’equazione agli autovalori per la matrice precedente si scrive

det

 −λ 0 −
√

2x
0 −λ x

−
√

2x x −λ

=−λ
3 +3x3

λ = 0 (10.411)

che ha radiciλ = (0,±
√

3x) = (0,±3E a), si riottiene cioè il risultato del paragrafo (10.7):
per campi elettrici grandi rispetto alla struttura fine l’effetto Stark è lineare.

Perx� ∆L < ∆F gli autovalori della matrice possono essere utilmente calcolati appli-
cando il metodo generale della teoria delle perturbazioni. Il ruolo diH0 è svolto dalla parte
diagonale della matrice, la parte fuori diagonale, proporzionale adx, è la perturbazione.

Al primo ordine inx non si hanno termini diagonali, quindi l’effetto è nullo, al secondo
ordine la variazione di energia è data dalla (10.15). Ad esempio per il primo autovalore,
che è∆F all’ordine 0, chiamando 1,2,3 i tre stati di base della matrice:

δE1 = |〈1|V|3〉|2 1
∆F −∆L

=
2x2

∆F −∆L

analogamente per gli altri autovalori si trova

δE2 =− x2

∆L
δE3 = x2

(
1

∆L
− 2

∆F −∆L

)
Un caso interessante come esercizio è considerare la situazione∆L � x� ∆F . Il caso

non è realistico perchè per l’idrogeno, come discusso nel paragrafo (10.E)∆L ∼ 0.1∆F ma
può servire per capire come funziona la teoria perturbativa.

Trascurando∆L la matrice da diagonalizzare diventa ∆F 0 −
√

2x
0 0 x

−
√

2x x 0


Il sottospazio generato dai vettori 2,3 è degenere, qui si può diagonalizzare passando alla
base

|+〉=
(|2〉+ |3〉)√

2
, autovalorex; |−〉=

(|2〉− |3〉)√
2

, autovalore−x (10.412)

Si possono calcolare facilmente gli elementi di matrice del tipo〈1|H|+〉 e scrivere la
matrice nella nuova base: ∆F −x x

−x x 0
x 0 −x


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Applicando ancora la (10.15) per il calcolo del primo autovalore si ha

E1 ∼ ∆F +2
x2

∆F

Quindi in questa situazione ipotetica due livelli avrebbero un effetto Stark lineare, cioè
quelli corrispondenti agli stati 2s1/2,2p1/2 che sarebbero degeneri in assenza di Lamb shift,
mentre l’altro stato, 2p3/2, avrebbe un effetto Stark quadratico.

Scelta alternativa della base.

Torniamo alla diagonalizzazione della matrice (10.410) nel caso di grande campo elettri-
co, cioè per la matrice (10.411). Abbiamo visto che gli autovalori sono 0,±

√
3x. Gli

autovettori sono

λ = 0 V1 =

(√
1
3
,

√
2
3
,0

)
≡ |p;1,−1

2
〉 (10.413a)

λ =−
√

3x V2 =

(√
1
3
,−
√

1
6
,

√
1
2

)
≡ 1√

2

[
|p;0,

1
2
〉+ |s;0,

1
2
〉
]

(10.413b)

λ =
√

3x V3 =

(
−
√

1
3
,

√
1
6
,

√
1
2

)
≡ 1√

2

[
−|p;0,

1
2
〉+ |s;0,

1
2
〉
]

(10.413c)

cioè abbiamo ottenuto, come dovevamo, la base che diagonalizza l’effetto Stark lineare,
con esplicitata la dipendenza dallo spin. In questa base è facile trattare la struttura fine
come una perturbazione all’effetto Stark. Trascurando∆L la matrice di interazione fine
nella baseJ,Jz aveva come unico elemento non nulloV11, cioè il termine∆F nella (10.410).
Nella base (10.413) allora:

〈V1|VLS|V
1〉= ∆FV1

1 V1
1 =

∆F

3
〈V1|VLS|V

2〉= ∆FV1
1 V2

1 =
∆F

3

〈V1|VLS|V
3〉= ∆FV1

1 V3
1 =−

∆F

3
〈V2|VLS|V

3〉= ∆FV2
1 V3

1 =−
∆F

3

e così via. Quindi l’Hamiltoniana, in questa base è

H =


∆F
3

∆F
3 −∆F

3
∆F
3 −

√
3x+ ∆F

3 −∆F
3

−∆F
3 −∆F

3

√
3x+ ∆F

3

 (10.414)

vediamo perciò che la struttura fine, vista come perturbazione all’effetto Stark, al primo
ordine ha l’effetto di innalzare i livelli tutti della stessa quantità. Al secondo ordine si
ricava immediatamente

δλ1 =
1

0− (−
√

3x)
∆2

F

9
+

1

0−
√

3x

∆2
F

9
= 0

δλ2 =
1

−
√

3x

∆2
F

9
+

1

−2
√

3x

∆2
F

9
=− ∆2

F

6
√

3x

δλ3 =
1√
3x

∆2
F

9
+

1

2
√

3x

∆2
F

9
=

∆2
F

6
√

3x

Quindi l’energia dei livelli fino al secondo ordine è;

∆F

3
+
(

0,−
√

3x− ∆2
F

6
√

3x
,
√

3x+
∆2

F

6
√

3x

)
(10.415)
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Figura 10.8: Livelli Stark sul livello n=2 dell’Idrogeno.

In figura 10.8 sono riportati i livelli calcolati numericamente, in unità di∆F e le stime
perturbative (10.415). Nei livelli numerici si è tenuto conto anche del Lamb shift, altrimenti
le curve perturbative sarebbero state indistinguibili da quelle numeriche su questa scala,
dalla figura si ha dunque un’idea dell’ordine di grandezza dell’errore che si fa nel trascurare
il Lamb shift nel caso dell’effetto Stark. Si noti la forma quadratica dei livelli a piccolo
campo, in accordo con quanto visto prima.

10.I Discussione sui dipoli permanenti.

Nel testo abbiamo più volte insistito sul fatto che in generale in Meccanica Quantistica il
valor medio del dipolo elettrico su stati stazionari è nullo. Abbiamo anche visto come la
presenza di stati quasi degeneri possa, ad esempio nell’effetto Stark, simulare la presenza
di un dipolo permanente. In questo breve paragrafo vogliamo presentare un altro tipo di
situazioni in cui si verifica lo stesso fenomeno.

La quantità macroscopica direttamente connessa ai dipoli atomici ( o melecolari) è la
costante dielettrica. Il vettore di polarizzazioneP che compare nella definizione di campo
di induzione elettrica

D = EEE +4πP

è il valor medio per un’unità di volume del momento di dipolo del sistema.P a sua volta è
proporzionale al campo elettrico.

Nel caso di un gas perfetto, in cui le molecole sono statisticamente indipendenti,

P = Nd (10.416)

N è il numero di molecole per unità di volume.
In generale

d = α̃EEE (10.417)



10.I. DISCUSSIONE SUI DIPOLI PERMANENTI. 97

e questo, usando la definizione di costante dielettrica, valida per mezzi isotropi come un
gas,D = εEEE , porta a

ε = 1+4πNα̃ (10.418)

Classicamente possiamo immaginare che una molecola, o un atomo, abbia un dipolo
intrinsecod0 e acquisti, in presenza di campo esterno, un dipolo indotto:

d = d0 +αEEE (10.419)

α è la polarizzabilità molecolare.
L’energia di interazione fra dipolo e campo è

E =−d0EEE −
1
2

αEEE 2 (10.420)

e questo riflette la definizione stessa di dipolo a livello microscopico:

d =− ∂E
∂EEE

(10.421)

Supponiamo di porre l’assez lungo la direzione diEEE . Per simmetria è ovvio chedx = dy = 0
mentre, all’equilibrio termico

dz =
1
Z

∫
dΩ(d0cosθ +αE )e

1
kT (d0E cosθ+ 1

2αE 2) Z =
∫

dΩe−
E
kT (10.422)

Z è la funzione di partizione, relativa a questo grado di libertà,Ω l’angolo solido, eθ

l’angolo fra il dipolo elementare ed il campo.
Svilupando in serie diE si ricava, usandocos2 θ = 1/3

dz =
[

1
3

d2
0

kT
+α

]
E ≡ α̃E (10.423)

Questo è esattamente l’analogo elettrico di quanto abbiamo visto per il caso magnetico nel
paragrafo 10.12: la suscettività elettrica,α̃ ha un contributo proporzionale a 1/T (legge di
Curie) determinato dal dipolo “intrinseco”, ed un termine indipendente daT determinato
dalla polarizzabilità molecolare. Le molecole cond0 6= 0 sono dettemolecole polari.

La (10.423) è, approssimativamente verificata ad alte temperature, si pone quindi il
problema di capire in che senso dalla meccanica quantistica viene prodotto un risultato co-
me la (10.423), visto che abbiamo insistito sul fatto che non esistono dipoli intrinseci. Il
meccanismo, come discusso nello studio dell’effetto Stark, è basato sull’esistenza di stati
quasi degeneri, per illustrarlo prenderemo come esempio il modello di molecola di ammo-
niaca,NH3, presentato nel paragrafo 10.6.1. Prima rivediamo in generale l’espressione del
dipolo medio in meccanica quantistica, analoga a quella di dipolo magnetico medio nel
paragrafo 10.12. Per ogni autostato dell’Hamiltoniana il dipolo medio è definito da

〈n|d|n〉=− ∂

∂EEE
En(E ) (10.424)

La distribuzione di probabilità è quella di Boltzmann:

pn =
1
Z

e−
En
kT Z = ∑

n
e−

En
kT (10.425)

Si ha allora per il valor medio (qui si intende media statistica):

d = ∑
n

pn〈n|d|n〉=
1
Z ∑

n

[
− ∂

∂EEE
En

]
e−

En
kT =

kT
Z

∂Z
∂EEE

= kT
∂ log(Z)

∂EEE
(10.426)
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Torniamo ora al modello per l’ammoniaca. Il sistema è composto da due stati, corri-
spondenti alle configurazioni dell’azoto sopra e sotto il piano dei tre atomi di idrogeno.
L’Hamiltoniana di interazione in presenza di campo elettrico è data dalla eq.(10.80):

H =
(

E0−dE −∆
−∆ E0 +dE

)
(10.427)

±d è l’elemento di matrice del dipolo elettrico nei due stati. Gli autovalori di questa
Hamiltoniana sono:

E = E0∓
√

∆2 +(dE )2 (10.428)

In assenza di campo elettrico la separazione dei livelli è 2∆. Nel seguito la costante
E0 non gioca alcun ruolo e quindi la ignoreremo. La funzione di partizione si scrive
immediatamente:

Z = exp(

√
∆2 +(dE )2

kT
)+exp(−

√
∆2 +(dE )2

kT
) = 2cosh

(√
∆2 +(dE )2

kT

)
(10.429)

e dalla (10.426) segue per il dipolo medio, sviluppando al primo ordine inE :

d =
d2√

∆2 +(dE )2
E tanh

(√
∆2 +(dE )2

kT

)
' d2

|∆|
tanh

(
|∆|
kT

)
E (10.430)

Quindi la suscettività, in questo modello è

α̃ =
d2

|∆|
tanh

(
|∆|
kT

)
(10.431)

Abbiamo i due limiti

α̃ −−−→
T→∞

d2

kT
α̃ −−−→

T→0

d2

∆
(10.432)

Quindi il sistema si comporta come un dipolo permanente ad alte temperature, come un
sistema polarizzabile con dipolo intrinseco nullo a basse temperature. Notiamo che la
mancanza del fattore 1/3 nella (10.432) rispetto alla (10.423) è dovuto semplicemente al
fatto che abbiamo usato un modello molto semplificato, unidimensionale, erdendo così la
media angolarecos2 θ = 1/3 per l’angolo fra il campo elettrico a l’asse molecolare.

La polarizzazione molecolared2/∆ nella (10.432) è esattamente quella calcolata dal-
l’effetto Stark per lo stato fondamentale del sistema, vedi eq.(10.85). Ad alte temperature
non è presente una polarizzabilità residua perchè in questo modello le polarizzabilità dei
due stati hanno segno opposto e quindi si cancellano ad alte temperature, vedi eq.(10.85).

Intuitivamente possiamo dire che l’energia termicakT descrive la indeterminazione
nella misura dell’energia del sistema: sekT è grande rispetto alla separazione∆ i due stati
sono praticamente degeneri e si ha un dipolo intrinseco, cioè si mette in moto il meccanismo
dell’effetto Stark lineare, se invecekT è piccolo rispetto a∆, solo lo stato fondamentale ha
un peso statistico rilevante e, su questo unico stato, non si ha effetto Stark lineare, e non si
vede dipolo intrinseco nella misura macroscopica.

Questo tipo di meccanismo è quello all’opera in tutti i casi in cui si osserva una mole-
cola polare.

10.J Oscillatore anarmonico e serie perturbativa.

Vogliamo studiare in un caso pratico l’andamento ad alti ordini della serie perturbati-
va. Consideriamo a tale scopo l’Hamiltoniana di un oscillatore anarmonico, dove per
semplicità poniamom= 1,ω = 1 per la massa e la frequenza della parte armonica.

H =
1
2

p2 +
1
2

x2 +gx4
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Lo svilupo perturbativo dell’energia dello stato fondamentale ha la forma

E =
1
2

+gn∑En

Procedura

La funzione d’onda dello stato fondamentale è della formaψ0 = exp(−x2/2). Ad ogni
ordine perturbativo gli elementi di matrice della perturbazionex4 possono al massimo me-
scolare fra loro stati che differiscono di 4 per i numero quanticon. Le funzioni d’onda
relative allo stato|n〉 imperturbato sono polinomi di gradon moltiplicati ψ0. È allora
naturale cercare la soluzione dell’equazione di Schrödinger (poniamo~ = 1):

−1
2

d2

dx2 ψ +
1
2

x2
ψ +gx4

ψ = Eψ (10.433)

nella forma

ψ = B(x)e−
x2
2 (10.434)

dove B è un polinomio. Sostituendo l’ansatz(10.434) nella (10.433) si ottiene perB
l’equazione

d2B
dx2 −2x

dB
dx
−2gx4B+(2E)B = 0 (10.435)

Sviluppiamo in serie dig e per l’ordinek−esimo consideriamo un polinomio di grado
4k. Questo è consistente, come già detto, col fatto che alk−esimo ordine compaiono al
massimo 4k operatori di creazione, o al massimo una potenzax4k in rappresentazione di
Schrödinger. poniamo perciò:

B(x) =
∞

∑
k=0

gkBk(x)

Bk(x) =
2k

∑
j=0

Ak, jx
2 j Ak,0 = 1

2E =
∞

∑
k=0

εkg
k

ε0 = 1

le funzioni d’onda sono state normalizzate scegliendoBk(0) = 1. Sostituendo nell’equa-
zione di Schrödinger ed uguagliando a zero, ordine per ordine, le varie potenze dix2 j si
ha

(2 j +2)(2 j +1)Ak, j+1−4 jAk, j −2Ak−1, j−2−Ak, j +
k

∑
s=0

εsAk−s, j = 0

Il termine cons= 0 nella somma, usandoε0 = 1 cancella il termine−Ak, j :

(2 j +2)(2 j +1)Ak, j+1−4 jAk, j −2Ak−1, j−2 +
k

∑
s=1

εsAk−s, j = 0 (10.436)

Il termine cons= k nella somma ha come coefficienteA0, j che è non nullo solo perj = 0,
ed in questo caso vale 1. Quindi il termine conj = 0 impone

εk =−2Ak,1−
k−1

∑
s=1

εs (10.437)

che fornisce una relazione di ricorrenza perεk una volta calcolatoAk,1. I termini con j 6= 0
si determinano quindi da

(2 j +2)(2 j +1)Ak, j+1−4 jAk, j −2Ak−1, j−2 +
k−1

∑
s=1

εsAk−s, j (10.438)
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Notiamo che in questa espressione non compare piùεk. Si parte daj = 2k, il primo termine
è nullo: Ak,2k+1 = 0, questo permette di determinareAk, j ricorsivamente:

Ak, j =
1
4 j

(
(2 j +2)(2 j +1)Ak, j+1−2Ak−1, j−2 +

k−1

∑
s=1

εsAk−s, j

)
(10.439)

con la sequenzaj = 2k,2k−1,2k−2. . .1. TrovatoAk,1 si calcolaεk. Come si vede dalla
tabella e dalla figura seguenti la serie è a segni alterni e cresce molto velocemente. Nella
figura sono riportati i primi 50 valori in scala logaritmica.

10 20 30 40 50

50

100

150

200 log|En|

Figura 10.9: log(|En|) in funzione din, i segni sono alternati.

E1 = +
3
4

E2 =− 21
8

E3 = +
333
16

E4 =− 30885
128

E5 = +
916731

256
E6 =− 65518401

1024

E7 = +
2723294673

2048
E8 =− 1030495099053

32768

E9 = +
54626982511455

65536
E10 =− 6417007431590595

262144

E11 = +
413837985580636167

524288
E12 =− 116344863173284543665

4194304

E13 = +
8855406003085477228503

8388608
E14 =− 1451836748576538293163705

33554432

E15 = +
127561682802713500067360049

67108864
E16 =− 191385927852560927887828084605

2147483648

E17 = +
19080610783320698048964226601511

4294967296
E18 =− 4031194983593309788607032686292335

1717986918

E19 = +
449820604540765836160529697491458635

34359738368
E20 =− 211491057584560795425148309663914344715

274877906944

I calcoli precedenti possono essere eseguiti facilmente con un qualunque programma di
manipolazione algebrica. Ad esempio un programma, piuttosto inefficiente, in Mathemati-
ca può essere quello riportato di seguito.
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norder = 60; kshift =3; jshift =3;

maxordinestampato = 20;

A =

Table[0,{k,1,norder + 2 + kshift},{j,1,2*norder+3+jshift}];

ene = Table[0,{k,1,norder}];

Do[A[[k+kshift,jshift]] = 1,{k,0,norder}];

Do[

(

A[[k+kshift,j+jshift]] = 1/(4*j)*(

(2 j + 2) (2 j + 1) A[[k + kshift, j + 1 + jshift]] -

2 A[[k + kshift -1 , j + jshift -2 ]] +

Sum[ene[[s]] * A[[ k-s+kshift, j + jshift]],{s,1,k-1}]);

ene[[k]] = - 2 * A[[k + kshift, 1 + jshift]] -

Sum[ene[[s]],{s,1,k-1}]),

{k,1,norder},{j,2*k,1,-1}]

Do[Print["Ek"," = ",InputForm[ene[[k]]/2]],{k,1,norder}]

Come si vede dalla figura 10.9 il comportamento asintotico è del tipo

En ∼ n!

questo indica una non convergenza della serie perturbativa e pone il problema del signifi-
cato della stessa. Nel prossimo paragrafo analizzeremo questo punto.

10.K Divergenze nella serie perturbativa.

In questo paragrafo discuteremo in modo quanto più possibile elementare le ragioni della
divergenza della serie perturbativa ed il significato della serie stessa13. Prenderemo come
esempio concreto il caso dell’oscillatore anarmonico, analizzato nel paragrafo precedente.
Alcune delle considerazioni che seguono fanno uso del concetto di tunneling e del calcolo
della probabilità di attraversamento di una barriera di potenziale: il lettore può trovare una
discussione di questi argomenti nel capitolo dedicato allo sviluppo semiclassico.

Cominciamo presentando un argomento dovuto a F.Dyson che, benchè non completa-
mente rigoroso, coglie bene il motivo delle divergenze.

Argomento di Dyson

Supponiamo di voler calcolare l’energia dello stato fondamentale per il sistema

H =
1
2

p2 +
1
2

x2 +gx4 (10.440)

L’operatoreH non ha patologie particolari, è un operatore autoaggiunto, l’energia è limi-
tata inferiormente ed il valore corrispondente allo stato fondamentale,E(g), è facilmente
calcolabile numericamente per ogni valore della costanteg14.

L’espansione perturbativa consiste nello sviluppo in serie di potenze

E(g) = E0 + ∑
n=1

Engn (10.441)

Se tronchiamo l’espansione (10.441) ad un ordine finito, questa dà un’approssimazione
molto buona del risultatoE(g), in un senso che specificheremo meglio in seguito, cionon-
dimeno la serie (10.441) è divergente, abbiamo visto nel paragrafo precedente cheEn∼ n!.

13Notiamo che la divergenza delle procedure perturbative di calcolo non è una patologia della Meccanica
Quantistica: lo stesso problema si presenta in Meccanica Classica ed è stato ampiamente discusso da Poincarè.

14In uno dei prossimi capitoli presenteremo dei metodi estremamente efficienti per tale calcolo numerico.
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L’evidenza numerica del paragrafo precedente può essere anche dimostrata analiticamente.
Questo significa che la serie (10.441)non è analticain g = 0.

L’argomento di Dyson per spiegare questa non analiticità è il seguente. Supponiamo
che la serie sia analitica, con un certo raggio di convergenzaR, allora per|g|< Rdovrebbe
riprodurre il valore dell’energia dello stato fondamentale; ma perg < 0 l’Hamiltoniana
non è limitata inferiormente, cioè lo stato fondamentale non esiste, quindi la serie non può
essere analitica.

L’argomento può essere raffinato per fornire una spiegazione “dinamica” del fenomeno.
Perg < 0 il potenzialeV(x) = x2/2+ gx4 ha la forma riportata in fig.10.10 Una particel-

-4 -3 -2 -1 0 1 2 3 4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

V
(x

)

x2/2

Figura 10.10:V(x) perg =−0.05. Per comodità è riportato il poteziale imperturbatox2/2
ed il valore dell’energia per lo stato fondamentale dell’oscillatore armonico.

la nello stato fondamentale imperturbato può passare attraverso la barriera di potenziale
illustrata in figura, lo stato è, quindi, metastabile. Questa proprietà non è chiaramente ot-
tenibile a nessun ordine perturbativo, essendo ordine per ordine uno stato descritto da una
funzione inL2. Quindi questo effetto tunnel, responsabile della metastabilità degli stati,
deve essere all’origine della non analiticità della funzioneE(g).

10.K.1 Il problema dei domini.

Dal punto di vista matematico la ragione della mancanza di analiticità può essere capita nel
modo seguente. Consideriamo una Hamiltoniana imperturbataH0. A questa è associato
un dominioD(H0), sottinsieme diL2, costituito da tutte le funzioni per cui appuntoH0 è
autoaggiunta. Ad esempio per funzioni di questo dominio∫

dx|ψ(x)|2x2 < ∞

esiste cioè il valor medio dell’energia potenziale. Consideriamo in particolare una funzione
che si comporti comeψ0 ∼ 1/x2 all’infinito. Per questa si ha∫

dx|ψ0(x)|
2x2 < ∞

∫
dx|ψ0(x)|

2x4 ∼
∫

dx
1
x4 ·x

4 → ∞
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Quindiψ0 non appartiene al dominio di H(g), essendo il valor medio dell’energia su questo
stato infinito. In altre parole esistono stati perfettamente legittimi dal punto di vista diH0
per cui la perturbazione è infinitamente grande, quindi per nessun valore dig l’operatore
gx4 può essere considerato come una piccola perturbazione aH0.

L’argomento può essere formalizzato in un teorema, il teorema di Kato-Rellich:

Teorema. SiaH(g) una famiglia di operatori, cong∈S⊂C. Se valgono le seguenti ipotesi

a) D(H(g)), il dominio di H(g) è indipendente dag.

b) ∀ψ ∈ D(H(g)), 〈ψ|H(g)|ψ〉 è una funzione analitica dig in S.

alora
∀g0∈Se per ogni autovaloreE(g0), isolato non degenere diH(g0) esiste un intornoVg0

tale
cheH(g) ha un solo autovaloreE(g) in un intorno diE(g0). La funzioneE(g) è analitica
nell’intorno diVg0

ed esiste una funzioneψg analitica ing tale che

H(g)ψg = E(g)ψg

Inoltre la serie di Taylor diE(g) coincide con l’usuale serie perturbativa perH(g).

In altre parole se valgono le ipotesi a),b) del teorema la situazione è perfettamente sotto
controllo, la serie perturbativa dà il risultato esatto.

Una condizionesufficienteper la validità delle ipotesi è data dal criterio di Kato:

Teorema. Se esitono due numeria,b tali che per ogniψ ∈ D(H0),ψD(V), valga la disu-
guaglianza in norma

||Vψ|| ≤ a||H0ψ||+b||ψ||
allora valgono le ipotesi a,b del teorema precedente.

Come abbiamo visto nel caso dell’oscillatore anarmonico il dominio diH è strettamente
contenuto nel dominio diH0 quindi cade l’ipotesi a) del teorema di Kato-Rellich e la serie
perturbativa non è analitica.

È chiaro dall’enunciato del teorema che gli autovaloriE(g) per l’oscillatore anarmonico
sono sviluppabili in serie intorno a qualunque valore positivo dig ma non intorno ag = 0.
In altre parole man mano che ci si avvicina all’origine il dominio di analiticitàVg a cui si
riferisce il teorema decresce, fino ad annullarsi ing = 0.

Nel caso dell’oscillatore armonico molte delle proprietà di analiticità degli autovalori
possono essere studiate sfruttando un semplice argomento di scala, dovuto a K.Symanzik.
Consideriamo la trasformazione di scala

U(λ ) = λ
1/2

ψ(λx) (10.442)

È immediato verificare che la trasformazione (10.442) è una trasformazione unitaria e che
per un’Hamiltoniana del tipo

H(α,g) =
1
2

p2 +
1
2

αx2 +gx4

si ha
U(λ )H(α,g)U(λ−1) = λ

−2H(αλ
4,gλ

6) (10.443)

Poichè gli autovalori restano immutati per una trasformazione unitaria, segue, ponendo
λ = g−1/6

En(1,g) = g1/3En(g−2/3,1) (10.444)

Dalla (10.444) si può dedurre che il puntog = 0 deve avere una singolarità di tipo “radice
cubica”, inoltre utilizzando il criterio di Kato, è possibile dimostrare che la serie di “strong
coupling”

En(g) = ∑
k

akg
1−2k/3
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è convergente ed in particolare che il comportamento asintotico degli autovalori è

En(g)−→
g→∞

g1/3

Si può dimostrare che la superficie di Riemann relativa alla funzioneE(g) ha tre fogli con
una biforcazione ag = 0, come suggerito dalla (10.444). In particolare si può dimostrare
(Loeffl e Martin) che nel primo foglio, corrispondente a|arg(g)| < π, la funzioneE(g) è
analitica.

Per lo studio dettagliato di questi aspetti rimandiamo alla letteratura citata nelle refe-
renze.

10.K.2 Serie asintotiche.

Abbiamo finora illustrato vari motivi per cui la serie perturbativa non è convergente ma
ancora non abbiamo una risposta al problema fondamentale: cosa ha a che vedere la serie
perturbativa con la soluzione esatta?

La risposta è simile, ancora una volta, all’analoga questione in Meccanica Classica:
la serie perturbativa, per l’oscillatore anarmonico e casi simili, non è convergente ma è
asintotica.

Definizioni.

Consideriamo un dominioD del piano complesso della forma

D : |argz| ≤ α

2
|z| ≤ R (10.445)

ed una funzione analitica inD, cioè nell’interno del dominio. La serie∑ fkz
k si dice

asintoticaalla funzionef (z) in D se è divergente e

| f (z)−
N

∑
k=0

fkz
k| ≤CN+1|z|

N+1 ∀N (10.446)

In pratica la (10.446) asserisce che una serie è asintotica se comunque si sceglieN è pos-
sibile trovare un intorno dell’origine abbastanza piccolo in modo che la differenza fra il
valore della funzione e la somma parzialeN-esima della serie siaO(zN+1).

Il punto caratteristico delle serie asintotiche è che la loro somma può essere stimata so-
lo con un ordine finito di approssimazione. Infatti la serie è divergente, quindi i coefficienti
CN nella (10.446) crescono rapidamente. Fissata una certa precisioneε se|z| è abbastan-
za piccolo per i primi ordini si ha che lo scartoCN|z|N è minore diε ma al crescere di
N, comunque piccolo sia|z| lo scarto supereràε. Consideriamo come esempio concreto
una forma che comparirà nel seguitoCk ∼ AB−kk!. Al variare di k, per grandi valori di
k, il minimo scarto si trova minimizzando l’espressioneδ (k) = B−kk!zk. Utilizzando lo
sviluppo

k! ∼ kke−k
√

2πk

si ha

log(δ )∼ k log(k)−k+ log(
B
z
)

che ha un estremo in̄k = B/z e δ (k̄) ∼ exp(−B/z): per piccoliz, andare oltre l’ordinēk
peggiora l’approssimazione.

In mancanza di informazioni aggiuntive la serie asintotica non determina univocamente
la funzione f (z). Consideriamo infatti la funzioneg(z) = exp(−a/z). L’espansione di
Taylor di questa funzione attorno all’origine è identicamente nulla perchè

dn

dzn g(z)
∣∣∣∣
z=0

= 0
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quindi f (z) e f (z)+g(z) hanno la stessa serie asintotica.
Un risultato importante si ha se il dominio di analiticità della funzionef (z) è abbastanza

ampio: una conseguenza di un teorema di Watson sulle funzioni analitiche asserisce che:

Teorema. Se la funzionef (z) è analitica in un dominio|argz| ≤ α/2 conα > π, cioè
in una zona più estesa del semipiano destro diC, allora la serie asintotica determina
univocamente la funzione, esiste cioè un’unicaf (z) che ha come serie asintotica∑k fkz

k.

Nel caso di problemi semplici di Meccanica Quantistica, come l’oscillatore anarmoni-
co, la situazione è esattamente quella configurata da questo teorema:

• Gli autovaloriE(g) sono funzioni analitiche nel piano complessog tagliato lungo
l’asse negativo.

• La serie perturbativa standard, detta serie di Raleigh-Schrödinger, è una serie asinto-
tica.

La dimostrazione del secondo punto è abbastanza agevole e si riconduce essenzialmente ad
un conteggio dei termini possibili nello sviluppo perturbativo, la dimostrazione del primo
punto è più delicata, ne daremo una ragione intuitiva nel capitolo dedicato all’espansione
semiclassica.

In situazioni più complicate, come sistemi a infiniti gradi di libertà, solo in pochi casi
si hanno informazioni così dettagliate.

Quindi la situazione è la seguente: la serie perturbativa, benchè divergente, individua
univocamente la soluzione esatta del problema. Resta un aspetto “pratico”: è possibile
avere una stima numerica della soluzione conoscendo i coefficienti perturbativi? O, in altre
parole, come si fa a ricostruire la funzioneE(g) a partire dalla serie perturbativa? Esistono
diverse tecniche adatte allo scopo.

Trasformata di Borel.

Nelle ipotesi del teorema precedente si dimostra che è possibile definire una serie conver-
gente:

Bf = ∑
k

fk
k!

zk (10.447)

dettatrasformata di Boreldella funzionef . Come appare dalla (10.447) i coefficienti della
serie sono depressi per un fattorek! rispetto alla serie originale. La trasformazione (10.447)
è invertibile

f (z) =
∫ ∞

0
e−tB(zt)dt (10.448)

Sostituendo la (10.447) nella (10.448) si riottiene in effetti la serie asintotica di partenza.
Un caso particolarmente importante è quello in cui

fk ∼Ckb(−A)−kk! A > 0 (10.449)

La serie asintotica è a segni alterni, esattamente come nel caso dell’oscillatore anarmonico.
La trasformata di Borel ha la forma

Bf = C∑
k

kb
(
− z

A

)k

questa funzione ha una singolarità perz= −A < 0. La posizione della singolarità implica
che l’integrale (10.448) è finito. Se la serie non fosse stata a segni alterni la singolarità
sarebbe comparsa sull’asse positivo e la serie non sarebbe stata Borel-sommabile.

Una possibilità quindi è di calcolare i primi coefficienti perturbativi, diciamoN. Co-
struire in modo approssimato, troncando la serie all’N-esimo ordine, la funzioneB(z) tra-
mite la (10.447), fare l’estensione analitica diB(z) e con questa calcolare la funzionef (z),
tramite la (10.449).
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Approssimanti di Padè.

Un metodo standard per ricostruire una funzione analtica è quello di approssimarla tramite
rapporti di polinomi, cioè con funzioni razionali. Si chiama approssimanteP[N,M] il rap-
porto fra un polinomio di gradoN ed uno di gradoM. Limitiamoci per semplicità agli
approssimanti diagonali,P[N,N]. Per fissare questo approssimante occorre assegnare il va-
lore dei 2N+1) coefficienti dei polinomi. Se la serie parte dall’ordineg, cioè l’ordine zero
è noto, i coefficienti sono 2N. Considerando l’espansione perturbativa all’ordine 2N ed
uguagliando i relativi sviluppi di Taylor diP[N,N] questi coefficienti possono essere fissati.

Ad esempio nel programma in Mathematica fornito nel capitolo precedente per il cal-
colo dei coefficienti perturbativi dello stato fondamentale, basta aggiungere le righe:

ene = 1/2 ene;

f[z_]:= Sum[ene[[i]]*z^i/i!,{i,1,norder}]

� Calculus`Pade`;

hBP[t_]:=Evaluate[Pade[f[t],{t,0,norder/2,norder/2}]];

somma[z_]:= 1/5*(1/2 + 1/z*NIntegrate[Exp[-u/z]*h[u]

,{u,0,Infinity}])

La prima istruzione è dovuta al fatto che il programma calcolava il doppio dell’energia.
Possiamo confrontare il risultato con quello “esatto” che ricaveremo risolvendo numerica-
mente l’equazione differenziale in un prossimo capitolo. Dalla tabella 10.8 si vede un buon
accordo, con 100 termini perturbativi si ha una discrepanza di circa 3·10−10.

Ordine perturbativo Padé Risommazione perturbativa
20 [10,10] 0.244 712 561 179
40 [20,20] 0.244 910 058 398
60 [30,30] 0.244 917 070 948
80 [40,40] 0.244 917 393 021

100 [50,50] 0.244 917 406 958

Risultato “esatto” 0.244 917 407 212

Tabella 10.8: Risommazione della serie perturbativa per l’oscilatore anarmonico, è
riportato il valore diE0/5 perg = 5.

Riassumendo quanto visto finora:

a) Per sistemi stabili, tipo l’oscillatore anarmonico, gli autovaloriE(g) sono funzioni
analitiche nel piano complesso con un taglio lungo l’asse negativo.

b) In questi casi la determinazione della serie asintotica determina univocamente la
funzioneE(g).

In questo paragrafo vedremo come si mettono assieme le varie informazioni, come si cal-
colano i valori asintotici dei coefficienti perturbativi e verificheremo il tipo di singolarità
presente nella trasformata di Borel delle funzioniE(g).

10.K.3 Relazioni di dispersione.

Consideriamo una funzione analitica nel piano complessoC tagliato lungo l’asse negativo.
Possiamo applicare il teorema di Cauchy al cammino indicato in figura 10.11

f (z) =
1

2π i

∮
C

dz′
f (z′)
z′−z

(10.450)
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z

C+
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Figura 10.11: Integrale di Cauchy.

L’integrale lungo il cerchio di raggioR tende a zero, perR→∞, assumendo che la funzione
all’infinito si annulli abbastanza rapidamente. Se schiacciamo i camminiC+,C− sull’asse
negativo, le due determinazioni della funzione sono, perε → 0

f (x+ iε) suC+ f (x− iε) suC− x∈ [−∞,0]

L’integrale (10.450) si scrive perciò

f (z) = lim
ε→0

1
2π i

∫ 0

−∞
dx

f (x+ iε)− f (x− iε)
x′−z

≡ 1
2π

∫ 0

−∞
dx

Im f (x)
x−z

(10.451)

Una relazione come la (10.451) si chiamarelazione di dispersione. La funzione è determi-
nata dalla sua discontinuità sul taglio. Supponiamo ora di considerare la serie asintotica

f = ∑
k

fkz
k

Sviluppando la serie geometrica nella (10.451) otteniamo

fk =
1

2π

∫ 0

−∞
dx

Im f (x)
xk+1 (10.452)

Quindi dalla conoscenza della discontinuità è possibile calcolare i valori dei coefficienti
peturbativi. Un punto rilevante è che perk→∞ l’integrale (10.452) deve avere il contributo
dominante per piccoli valori dix, e quindi ottenibili se si conosce il comportamente a
piccoli x della teoria.

Supponiamo ad esempio che Imf (z)∼ z−bea/z. Si ha

fk =
1

2π

∫ 0

−∞
dx

x−bea/x

xk+1 =
1

2π
(−1)k+b

∫ ∞

0
e−attb+k−1dt =

=
1

2π
Γ(k+b)(−a)−b−k (10.453)

quindi un andamento comek! dei coefficienti.
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Applicando le relazioni precedenti alla funzioneE(g) otteniamo

Ek =
1

2π

∫ 0

−∞
dx

ImE(x)
xk+1 (10.454)

Questa relazione è esattamente in linea con l’argomento intuitivo di Dyson. Consideriamo
infatti per g < 0 un sistema tipo l’oscillatore anarmonico. Si è già visto che in questo
regime gli stati devono essere metastabili. Come discuteremo molto più dettagliatamente
in seguito, per uno stato metastabileE(g) ha una parte immaginaria, negativa. Scriviamo
infatti

E(g) = ER− i
Γ
2

L’evoluzione temporale dello stato è del tipo

ψ ∼ e−iEt = e−iERte−Γt/2 |ψ|2 ∼ e−Γt

quindiΓ rappresenta la probabilità di decadimento per unità di tempo. Viceversa calcolando
Γ possiamo conoscere ImE(g).

Esempio analitico.

Per illustrare i vari punti visti finora consideriamo la funzione

F(g) =
1√
2π

∫ ∞

−∞
dx e−

x2
2 −gx4

(10.455)

Questa funzione è evidentemente singolare perg reale e negativo. Notiamo cheF(g) è una
funzione perfettamente definita perg≥ 0. Se sviluppiamo in serie attorno al puntog = 0

F(g) = ∑
k

Fkg
k =

1√
2π

∫ ∞

−∞
dx

1
k!

e−
x2
2 (−x4)k

L’integrale può essere svolto analiticamente, è una funzioneΓ, ma è più istruttivo stimarlo
col metodo del punto sella per grandi valori dik.

Ricordiamo l’idea del metodo applicata a integrali di questo tipo. Se si deve calcolare
l’integrale di exp(− f (x)) si trova il punto stazionario,x0 per cui f ′(x0) = 0, sviluppando
fino al second’ordine

1√
2π

∫
e− f (x) ∼ e− f (x0) 1√

2π

∫
e−

1
2 f ′′(x0)(x−x0)2

=
1√

f ′′(x0)
e− f (x0) (10.456)

Nel caso in esamef (x) = x2

2 − 4k log(x), i punti sella sonox0 = ±
√

4k ed usando lo
sviluppo di Stirling per il fattoriale si trova

fk ∼ (−1)k16kk! (10.457)

Stimiamo ora la parte immaginaria diF(g) perg < 0, sempre col metodo del punto sella.
In questo caso la parte esponenziale dell’integrale è

f (x) =
x2

2
+ |g|x4

Il punto sella non banale è inx0 =±1/
√
−4|g|. Per questo valore

f (x0) =
1

16g
f ′′(x0) = 1+12|g|x2

0 =−2 < 0

Quindi
ImF(g)∼ e−1/16|g| = e1/16g

Usando la (10.453) si riottiene il risultato (10.457).
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Applicazione all’oscillatore anarmonico.

Applichiamo la teoria esposta nei precedenti paragrafi al caso dell’oscillatore anarmonico.
Per valori piccoli e negativi dig l’Hamiltoniana (usiamom= 1,ω = 1) è:

H =
p2

2
+

1
x2 −|g|x

4 (10.458)

è instabile, vedi fig.10.10. Il calcolo della probabilità di attraversamento della barriera sarà
trattato nello studio dell’approssimazione semiclassica, il risultato, a meno di un fattore, è

Γ ∝ exp−2
∫ b

a

√
2m|E−V(x)|dx (10.459)

dovea,b sono gli zeri della funzioneE−V(x), V(x) è il potenziale. L’integrale è calcolato
nella zona classicamente inaccessibile,E < V(x).

Per piccoli valori di|g| “l’area” sottesa dalla barriera è grande quindiΓ è una quantità
molto piccola. In prima approssimazione possiamo allora considerareE come il valore
imperturbato dell’energia, che nello stato fondamentale per il nostro problema vale 1/2.
Il primo punto di inversione,a, corrisponde al punto di inversione classico,x∼ 1. Il se-
condo zero della funzione si trova a distanzex2 ∼ 1/|g|. In questa regione il termineE è
trascurabile ed approssimativamente

|E−V(x)| ∼ x2

2
−|g|x4 = |g|x2(

1
2|g|

−x2)

Ai fini dell’integrale perciò

a∼ 0 b =
√

1
2g

(10.460)

Quindi

− log(Γ)∼ 2
√

2
∫ 1/

√
2g

0
dx x

√
1

2|g|
−x2 =

1
|g|

∫ 1

0
dy
√

1−y2 =
1

3|g|

e
Γ∼ e−

1
3|g| = e

1
3g ImE(g)∼ e

1
3g (10.461)

Ricordando la (10.453) si ha immediatamente15

Ek ∼ (−3)kk! (10.462)

Quindi effettivamente la serie è a segni alterni ed è divergente, ma asintotica e Borel som-
mabile. Per avere una predizione quantitativa sui coefficienti occorre determinare il fat-
tore pre-esponenziale nella (10.461). Usando sempre l’approssimazione semiclassica un
calcolo piuttosto lungo, vedi ref.[6], fornisce

ImE(g) =

√
2
π

e1/3g

√
−g

(1+O(g)) g→ 0− (10.463)

e da questo risultato, utilizzando le relazioni di dispersione

Ek = (−1)k+1
(

6
π3

)1/2

3kΓ(k+
1
2
)
[
1+O(

1
k
)
]

(10.464)

Nella figura seguente sono riportati rispettivamente i valori dei coefficientiEk come cal-
colati nel paragrafo10.J e la stima asintotica (10.464), l’altra figura riporta la differenza.
Come si vede l’accordo è eccellente:

15Per essere pignoli la relazione di dispersione va scritta per[E(g)−E(0)]/g per avere una buona convergenza
all’infinito, ma la sostanza non cambia.
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Figura 10.12: CoefficientiEk analitici e asintotici sovrapposti. Nella seconda figura è
riportata la diffrenzaE(as)

k
−Ek.

Risommazione di Borel.

Il comportamento (10.462) o (10.464) dei coefficienti perturbativi implica che la trasfor-
mata di Borel della serie ha una singolarità, approssimativamente, inz = −1/3, quindi
correttamete sull’asse negativo. La conoscenza della posizione, approssimata, della singo-
larità della trasformata di Borel permette di provare altri metodi di continuazione analitica,
in alternativa o in concomitanza con gli approssimanti di Padé. L’idea schematicamente è
la seguente:

1) La definizione di trasformata di Borel permette la conoscenza del suo sviluppo in
serie

E(z) = ∑
k

Ekz
k ⇒ B(z) = ∑

k

Ckz
k Ck =

1
k!

Ek (10.465)

Se la singolarità della serie diB è inz=−a la convergenza della serie inBk ha raggio
|z| = a. Per effettuare l’antitrasformata occorre conoscereB(z) su tutto l’asse reale
positivo, col metodo di Padé si effettua estensione analitica della serie troncata, cioè
calcolata fino ad un dato ordine, tramite funzioni meromorfe. Un’altra possibilità è
di effettuare una trasformazione conforme del piano complesso che manda il piano
tagliato lungo l’asse negativo nel cerchio unitario, ad esempio:

z=
4au

(1−u)2 (10.466)

2) Sostituendo la (10.466) nella (10.465) si ottiene uno sviluppo in serie diB in funzione
di u:

B(z(u)) = ∑
k

Bku
k (10.467)

al solito considerato troncato all’ordineN del calcolo perturbativa che stiamo con-
siderando. Assumendo, cosa che faremo, che i coefficientiBk così ottenuti non cre-
scano troppo velocemente conk, la serie (10.467) converge nel cerchio unitario, che
ricordiamo è l’immagine della supposta zona di analiticità nel pianoz.

3) A questo punto possiamo applicare la trasformata inversa di Borel usando, per scri-
verez l’inversa della trasformazione (10.466):

u = u(z) =
√

z+a−
√

a√
z+a+

√
a

(10.468)

e l’antitrasformata è

E(z) =
∫ ∞

0
e−tB(u(zt))dt (10.469)
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Questo metodo funziona bene perg piccolo, può essere migliorato, ad esempio nel punto 2)
possiamo effettuare un’estensione di Padé della serie otttenuta. Rimandiamo alla letteratura
per l’analisi della ragione di convergenza della serie e del miglioramento del metodo.

Riportiamo a titolo di esempio l’applicazione all’oscillatore anarmonico, per un valore
non piccolo dig, g= 5 nella tabella 10.9 ed i risultati analoghi perg= 1 nella tabella 10.10.
Ripetiamo che il metodo si può raffinare, comunque l’accordo con il risultato esatto è sod-
disfacente. Nella versione qui proposta ilmetodo sviluppa delle instabilità per ordini molto
alti ag = 5.

In fondo al paragrafo viene riportato il programma in Mathematica che implementa il
calcolo.

Ordine Padé Risomm. Borel[cf] Padè + Borel[cf]
20 [10,10] 0.244 712 561 179 0.241 570 249 478 0.244 907 856 917
40 [20,20] 0.244 910 058 398 0.243 676 850 222 0.244 917 158 641
60 [30,30] 0.244 917 070 948 0.241 985 604 061 0.244 917 406 784
80 [40,40] 0.244 917 393 021 0.242 962 107 516 0.244 917 498 892

“esatto” 0.244 917 407 212

Tabella 10.9: Risommazione della serie perturbativa per l’oscilatore anarmonico, è
riportato il valore diE0/5 perg = 5.

Ordine Padé Risomm. Borel[cf] Padè + Borel[cf]
20 [10,10] 0.160 753 948 765 0.160 746 830 927 0.160 754 120 530
40 [20,20] 0.160 754 129 626 0.160 754 083 952 0.160 754 130 149
60 [30,30] 0.160 754 130 244 0.160 754 123 486 0.160 754 130 248
80 [40,40] 0.160 754 130 247 0.160 754 130 027 0.160 754 130 903

“esatto” 0.160 754 130 247

Tabella 10.10: Risommazione della serie perturbativa per l’oscilatore anarmonico, è
riportato il valore diE0/5 perg = 1.
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ü Calcolo di E_k per il potenziale x^2 / 2 + g x^4

gValue = 1; H* per la stampa *L
norder = 80; kshift = 3; jshift = 3;
maxordinestampato = 20;
A = Table@0, 8k, 1, norder + 2 + kshift<, 8j, 1, 2 * norder + 3 + jshift<D;
ene = Table@0, 8k, 1, norder<D;
Do@A@@k + kshift, jshiftDD = 1, 8k, 0, norder<D;
Do@H

A@@k + kshift, j + jshiftDD = 1 ê H4* jL * HH2 j + 2L H2 j + 1L A@@k + kshift , j + 1 + jshiftDD -
2 A@@k + kshift - 1, j + jshift - 2DD +
Sum@ene@@sDD * A@@k - s + kshift, j + jshiftDD, 8s, 1, k - 1<DL;

ene@@kDD = - 2 * A@@k + kshift, 1 + jshiftDD - Sum@ene@@sDD, 8s, 1, k - 1<DL,8k, 1, norder<, 8j, 2 * k, 1, -1<D;
ü Risommazione della serie con Borel-Pade'

ene = 1ê 2 * ene; H* i coeff. sono 2*E *L
f@z_D := Sum@ene@@iDD *z^iê i!, 8i, 1, norder<D; H* Serie di Borel troncata *L
<< Calculus`Pade`;
hBP@t_D := Evaluate@Pade@f@tD, 8t, 0, norderê 2, norderê 2<DD;
somma@z_D := 1 ê5 * H0.5 + 1 ê z * NIntegrate@Exp@-u êzD *hBP@uD, 8u, 0, Infinity<DL;H* Energia *L

ü Trasformazione di Borel e rappresentazione conforme

a = 1 ê 3; H* -a = posizione prima sing. della trasf. di Borel *LH* Calcolo dell' estensione analitica via mapping conforme *L
trasfdiretta = 8z Ø 4 * a * u ê H1 - uL^2<;
serieB@u_D := Evaluate@ Normal@ Series@Hf@zD êê. trasfdirettaL, 8u, 0, norder<DDD;
trasfinversa = 8u Ø HSqrt@t + aD - Sqrt@aDL ê HSqrt@t + aD + Sqrt@aDL<;
fB@t_D := serieB@uD êê. trasfinversa
cftBorel@z_D := 1 ê5 * H0.5 + 1ê z * NIntegrate@Exp@-t êzD *fB@tD, 8t, 0, Infinity<DL;H* ant. Borel *L
hBPcft@u_D := Evaluate@Pade@serieB@uD, 8u, 0, norderê 2, norderê 2<DD;H* Pade + Borel *L
fBpade@t_D := hBPcft@uD êê. trasfinversa;
cftBorelPade@z_D :=
1 ê 5* H0.5 + 1 êz * NIntegrate@Exp@-t ê zD *fBpade@tD, 8t, 0, Infinity<DL
Print@"Pade = ", somma@gValueD, " conform. =",
cftBorel@gValueD, " Pad-Bor = ", cftBorelPade@gValueDD

stampax4pade.nb 1

Figura 10.13: Programma in Mathematica per la risommazione della serie perturbativa.
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