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Capitolo 11

Metodi Variazionali.

11.1 Principio Variazionale.

Uno dei problemi principali in Meccanica Quantistica & quello di trovare gli autovalori e
gli autostati corrispondenti alle soluzioni stazionarie dell’equazione di Schrédinger

Hy = Ei (11.1)

E possibile formulare il problema in termini di un principio variazionale e questo permette
di ottenere delle tecniche di soluzione molto efficienti.

Il problema (11.1) & un problema lineare agli autovalori in uno spazio di Hilbert infinito
dimensionale, per capire da dove ha origine il principio variazionale facciamo I'esempio di
un problema agli autovalori in uno spazio finito-dimensionale:

dove A & una matrice hermitiana x n.
Ad ogni matrice hermitiana € associata una forma quadratica
Qx) = Ajjzix;

ed e immediato verificare che I'autovalore piu piccolo della matd@®rrisponde al mini-
mo assunto dalla forma quadrati@asulla sfera unitaria, cioé sui vettori di norma uno. In
effetti siaX un vettore, unitario, con componefti, . .., x,,) € Siae; la base di autovettori,
normalizzati e ortogonali, dell’operatore Dal teorema spettrale

= €; ) A (€4 1 < 2§ n .
A A A< A A (11.3)
i=1

si ha:
Q(X) = (XJAIX) =D [(X[e)PAi = M D [(Xe)|* = M(X[X) =X (11.4)
i=1 =1

Il vettore unitario] X') corrispondente al minimo & proprie, ). Per trovare\s cerchiamo il
minimo della forma quadratica tra i vettdri perpendicolari al primo autovettore trovato,
e1. Siha, usando chg,|Y) =0

QYY) = (YIAY) = > [(Y]es)|*Xi = A (11.5)
=2

il minimo valore viene assunto pgr’) = |e3) e cosi via.

3



4 CAPITOLO 11. METODI VARIAZIONALL

NOTA. Percercareil minimo della forma quadratic® corrispondente all'autovalofe—esimo dob-
biamo restringerci al sottospazio perpendicolare alla vavigta generata dai prin — 1 autovettori,
ma una volta trovato il punto stazionario, cioé l'autovalagee I'autovettoreles) il valore di @ in
guesto punto é stazionario pgualunquevariazione, anche comprendente i pritni- 1 autovettori.
In altre parole

SQ()1py=jery = 0 (11.6)

Infatti, una qualungue variaziorg:)) & della forma
69) = cklex)  exinfinitesimi
k

quindi

(0% « A
Q) jpy=ery = <61k|f<§j§:lec:\:;> b~ (ex]Q Y calea) = Ailen] D calea) =0

Nell'ultimo passaggio si & sfruttato il fatto che,) € un autostato di.

In uno spazio di Hilbert infinito dimensionale, se I'operatdieé autoaggiunto ed
ammette una decomposizione spettrale

H =" |e;)Eieil (11.7)

il risultato é identico.

Mostriamo ora il viceversa, cioe che il minimo della forma quadratica costruita tramite
I'Hamiltoniana corrisponde ad una soluzione dell’equazione di Schrédingefs)Biano
stato qualunque, il valor medio dell’energia su questo stato &

WlH)
QW)= "y

Il minimo di @ & il minimo di H sulla sfera unitaria nello spazio di Hilbert. Sia)
I'autovettore corrispondente al minimo @ie chiamiama¥ il valore del minimo:
o (H|Y)
E=Q)) = ‘Y= (11.8)
(¥l)
Il minimo di Q € un punto stazionario, cia® non deve cambiare, al primo ordine, per
trasformazionjy) — [¢) + |61). Quindi:

OYlH[p) — ([H]Y) (0¢]9) 1 . -
0Q = =t = etk = —— [(§Y[H|Y) — E(6 =0
V=W G @) - iy (P~ B
poiché questa uguaglianza deve valere per trasformazioni arbitrarie, il mjgindeve
soddisfare a

H|p) = El)) (11.9)

cioé proprio I'equazione di Schrédinger. Il valore del mininif,e proprio I'autovalore.

Una formulazione equivalente di questo procedimento & la seguente. E noto che un mi-
nimo soggetto ad un vincolo pud essere trovato introducendo un moltiplicatore di Lagrange
per il vincolo, in questo caso il principio variazionale si scrive:

min Q' () = [([H ) — Mwwp — 1)] (11.10)

La variazione di)’ deve annullarsi per variazioni di e di A

0pQ = (OVI(H = N) =0 6\Q" =AWy —1) =0
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la seconda relazione esprime appunto il vincolo, la prima, dovendo essere valida per varia-
zioni arbitrarie, impone
Hyp =\ (11.12)

che é appunto I'equazione di Schrédinger. Moltiplicando fgrla (11.11) si ottiene |l
valore del moltiplicatoreA = (¢|H |v), cioé proprio I'energia dello stato fondamentale.
Trovato il primo autostatoly,), si trova il minimo di@ sullo spazio perpendicolare a
|1)1) e sitrova il primo livello eccitato, e cosi di seguito, esattamente come nel caso finito
dimensionale.

La formulazioni (11.8) e (11.10) sono quindi equivalenti ma nella prima il significato
fisico & piu diretto: si minimizza il valore dell’energia.

Vediamo ora perche questa formulazione variazionale fornisce un pratico strumento per
lo studio dell’equazione di Schrédinger. Consideriamo una funzione, uno stato in generale,
dipendente da un certo insieme di parametri|®(«)), che supponiamo per semplicita
normalizzato. Se calcoliamo il valor medio dell’Hamiltoniana su questo stato otterremo
una funzione div:

E(a) = (®(a)| H|P(a)) (11.12)
Il principio variazionale ci assicura che comunque scegliamo lo stato e comunque sceglia-
mo i parametri avrem& («) > E;. Ma allora minimizzando la funzionE(«) rispetto ai
parametri otterremo una stima per eccesso dell’energia dello stato fondamentale

minE(«) > Ey (11.13)

Il punto & che la minimizzazione della funzioB¥«) & un problemalgebricq si tratta di
risolvere il sistema di equazioni
OF
60ti
abbiamo cosi approssimato un problema differenziale con un problema algebrico, normal-
mente piu semplice. Se avremo cura, o fortuna, nello scegliere il tipo di|$tattterremo
non solo una maggiorazione #j ma anche una stima attendibile.

Supponiamo di avere trovato la soluzione del problema algebrico (11.14), cioé di aver
trovato i valoria; che soddisfano le equazioni (11.14), in corrispondenza avremo uno stato
|®) = |®(a)) che & la nostra approssimazione allo stato fondamentale.

Questa procedura ha un “bonus” che rende il metodo molto efficace soprattutto per il
calcolo dei livelli energetici. Normalmente, a meno di casi fortunati, lo stato trovato non
coincidera esattamente con lo stato fondamentale yrd, del problema:

|®) = [¢h1) + |6¢1)

se I'approssimazione & buomn&),) sara “piccolo. Ma [+), benché incognito, & uno
stato stazionario dif, quindi

=0 (11.14)

(Y1|H|091) =0
percio:
E(@) = (B||H|®) = Ey + 201 |H|5v1) + (51 |[H|6tb1) = By + (51 |H|52b1) (11.15)

quindi I'errore commesso sugli autovalori € quadratico, ci si aspetta percio che il risultato
sia molto buono.

Il problema fondamentale a questo punto € la scelta dello $t&da scelta dei para-
metri. Non ci sono ricette universali valide per ogni problema, occorre caso per caso farsi
guidare dalla fisica del problema e, cosa non secondaria, dalla fattibilita della soluzione del
problema algebrico (11.14). Le linee guida generali possono essere dettate dal rispetto delle
simmetrie del problema originario, dall'introduzione di parametri che possano descrivere
le diverse scale presenti, dalla possibilita di valutare in modo efficiente il valdtécdi al
variare dei parametri.

1Ad esempio nel senso di?
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11.1.1 Limiti inferiori.

Il metodo variazionale fornisce dei limiti superiori agli autovalBridell’Hamiltoniana, ma
e possibile formulare anche delle stime inferiori che permettono di stimare la precisione dei
risultati.

Un metodo, che qui presentiamo in forma molto semplice, € stato sviluppato da Wien-
stein e MacDonald, [Weinstein, MacDonald]. Consideriamo lo scarto quadratico medio
del’Hamiltoniana su uno stato:

o = (HY|Hy) — (Y|H[$)* = Dy — €] (11.16)

Sihac > 0. Infatti chiamandd?;, gli autovalori esatti dell’Hamiltonianl e sviluppando
lo stato generico in autostati ortonormalifi

wzzak|€k> H|ek>:Ek|€k> k=0,1...
k

segue
Ey =Y Bl  Dy=) |wlEL ) |uf =1 (11.17a)
k k k
o= Z lan|* B} — QEZEk\akP + &2 Z lar)? = Z lan|? (B — E)? >0
’ ’ ’ ’ (11.17b)
Fra i vari valori diE, sia E; quello piu vicino adS,, per cui cioé
(Ej — &) < (B — &y)° Yk
Segue:
0> (B — &)Y lan|* = (Bj — £y)° (11.18)
k

Considerando separatamente le due possildilita< E;, &, > E; si ricava immediata-
mente
Epy —\Vo < E; <& ++\o (11.19)

Quindi una volta calcolatd,, si trova almeno un autovalore nell'intervallo (11.19). La
(11.19) é naturalmente ovvia se si intepretano i fatt@fi> come una distribuzione di
probabilitd per i valoriE,: nella (11.19) c’é scritto che all'interno dello scarto quadratico
medio cade almeno un elemento dell'insieme di cui si fa la media. Se la stima & accurata
possiamo avere una identificazione fra il valore stimégoe I'autovalore cercato, e quindi
o € una stima dell’errore.

Un metodo spesso piu efficienteé dovuto a Temple[Temple]. Consideriamo per sempli-
cita i limiti all'energia dello stato fondamentale del sistema. SiBgoF, .. . gli autovalori
esatti di{. Si ha la relazione

(H = Eo)y|(H - Ey)y) >0 Vo (11.20)

Infatti sviluppandoy sull'insieme completo di autostati dell’Hamiltonianag), |e1) .. .,
|’(/)> = Ek ak|ek> siha

((H = Eo)p|(H — B )p) = | > ai(Bx — Bo){ex| | | Y a;(Bj — Er)le) | =

k0 j#1

= |ak|*(Ex — Eo)(Ey, — E1) > 0
k>2
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Usando la notazione (11.17a), dalla (11.20) discende, per stati normalizzati:

g

B o

(11.21)

Per usare la relazion®7?) occorre avere una stima di;, che pud essere ottenuta dallo
stesso metodo variazionale. Intal caso il secondo termine nella (11.21) pud essere assunto
come stima dell’errore. La stima & poco efficacdse~ Ey.

La trattazione puo essere estesa a tutti gli stati ottenendo, vedi ad esempio ref.[Delves]:

E, > € 7 (11.22)
TEW T Ein - &y '

che, al solito, & utilizzabile per stime abbastanza accurate.

Il problema pratico nell’'uso delle stime (11.19), (11.22) € il calcol®dche di solito &
molto pitl complicato del calcolo dii. Comunque 'uso di queste stime permette di fornire
una stima a priori dell'errore che si compie con la procedura variazionale. Alcuni esempi
saranno dati nel seguito. Procedure piu accurate, ad esempio applicate al calcolo dello stato
fondamentale dell’Elio, si possono trovare nelle referenze [Kinoshita, Pekeris].

11.2 Parametrizzazioni lineatui.

Nella pratica il metodo variazionale viene usato scegliendo un insieme di base di funzioni
dipendenti eventualmente da uno o pit parametri di scala. |l procedimento di minimizza-
zione fissera questi parametri e nello stesso tempo i coefficienti delle combinazioni lineari
delle funzioni di base che concorrono a fare gli autostati. In questo paragrafo ci occuperemo
solo del secondo di questi problemi, quello lineare.

L'insieme delle funzioni scelte, linearmente indipendenti, forma evidentemente uno
spazio lineare che puod essere visto come un sottinsieme dell'intero spazio di Hilbert. Quin-
di dal punto di vista algebrico considerare un insieme tlinzioni significa “troncare” lo
spazio di Hilbert e considerare al suo posto un sottospazio finito dimensionale, 'equazione
di Schrodinger diventa allora un’equazione matriciale.

Per essere concreti supponiamo di voler risolvere un’equazione di Schrédinger del tipo

R d?
 2mdz?

b+ Ua)b(x) = By(a) (11.23)

Tutto quello che diremo vale praticamente senza cambiamenti in un caso generico.
Scegliamo un qualunque set di funzioni linearmente indipendert), : = 1...n,

non necessariamente ortogonali. Scegliamo ora il nostro stato come combinazione lineare

delle funzioni scelte:

o = cipi(x) (11.24)

1

n
1=

| parametri variazionali sono in questo caso proprio i coefficientiLenergia calcolata

sullo stato® &
(@[H|P)

(®[®)
e la condizione di stazionarieta porta, come gia visto, all'equazione di Schrodinger

Qlc) = (11.25)

(0|H|®)  (D|H[P) (6D|)

0=00= g[8y~ (o) (2])

H|®) = E|®) E=Q(®) (11.26)

Posto
Hij; = (@il H|p;) Nij = (@ile;)



8 CAPITOLO 11. METODI VARIAZIONALL

moltiplicando la (11.26) pefy;| si ottiene
Hijcj = ENijCj (1127)

Se la base scelta € ortonormale siNg = J;; ma possiamo considerare il caso ge-
nerico senza difficolta aggiuntive. La (11.27) € esattamente I'equazione di Schrédinger
“proiettata” sul sottospazio lineare generato dalla base scelta.

Nota. Per essere precisi la forma quadratigéd) € un funzionale did e ®*. Nell'effettuare le
variazioni si possono prendere come variabili indipendenti la parte reale e la parte immaginaria di
®, oppure® e @*. Nel derivare la (11.26) noi abbiamo usato la variazion@ i infatti abbiamo
scritto (6®| che in rappresentazine di Schrodinger & appdrtd. Lasciamo al lettore verificare che
effettuando la variazione rispettofasi ottiene il complesso coniugato dell’equazione (11.26).

Possiamo risolvere il problema lineare (11.27) e trovare l'autovalore piu bégso,
che rappresentera appunto la stima variazionale dell’autovalore eSgtidel problema
originario, per essere esatti una stima per eccesso.

Avremo in generale: autovaloriE; e corrispondentementeautovettori|zZJi>:

|thi) = Zci%‘ H|;) = Eq|i;) (11.28)

| vettori \1@»} essendo autostati appartenenti ad autovalori diversi, in generale, sono ortogo-
nali fra loro, questo indipendentemente dalla ortogonalita della base.

Una cosa a priori non ovvia € che, ad esempio, il secondo autovalore fornira anch’esso
una stima in eccesso pés e cosi viat

Consideriamo in effetti un qualunque statmrtogonale allo stato fondamentale vero,
l11). @ si pud sviluppare in termini degli autostatj coni > 2. Si ha quindi

(DI H|D) = 3" E@|w)* > &3 [(@[i)]* = & (11.29)
=2 =2

Consideriamo ora una combinazione lineare dei primi due autostati approgsimalti’, )
|B) = @[¢1) + o)

Possiamo sempre scegliere i due parametyiin modo che questi siano ortogonalia ):
se imponiamo la norma unitarig @) abbiamo due equazioni per le nostre due incognite:

(W] @) = z(1|n) + y(ifin) =0 2*+y* =1
Quindi possiamo usare le equazioni (11.28) e (11.29) per scrivere
(BIH|®) = Brya® + Eyy> = By —a*(Ey —E1) 2 & = Ey>6&

L'ultima disuguaglianza discende dal fatto che — F; > 0. Allo stesso modo, sempre
per la parte discreta dello spettro, si pud procedere per gli altri livelli.
Alcune osservazioni:

e E sempre possibile allargare la base di funzioni (11.24), e poiché possiamo sempre
completare una base in uno spazio di Hilbert possiamo, puicki@a abbastanza
grande, approssimare di principio con precisione arbitraria la soluzione del problema.
Pern finito avremo in ogni caso una stima per eccesso del risultato, quanto questa
stima sia buona dipende molto dalla scelta della base. Uno dei criteri che si possono
usare é verificare che, entro la precisione desiderata, I'allargamento della base non
migliora il risultato.

2Qui stiamo considerando lo spettro discretoHj in presenza di uno spettro continuo evidentemente il
discorso cessa di valere.
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e Larapidita della convergenza del metodo puo essere spesso migliorata da una scelta
oculata dei vettori di base;(z), dettata da motivi di simmetria o dalla fisica del
problema.

Un utile esempio di questo modo di procedere € la costruzione del metodaoddtdie
renze finite Il lettore interessato puod trovare una breve discussione dell’argomento nel
complemento 11.B.

11.3 Esempi elementari.

11.3.1 Oscillatore armonico.

Consideriamo un oscillatore armonico in diverse approssimazioni. L'Hamiltoniana & (po-
niamoh = 1,m = 1):

H=——-—+ -w’zx (11.30)

1 w 1/4 —lwz
Ey = 5w 1/,0:(*) e~ 3w’ (11.31)

Oscillatore armonico: 1

Supponiamo di essere “fortunati” e di provare una soluzione del tipo

o= (3) v e~ 50w (11.32)

s

Il coefficiente davanti all'esponenziale € scelto in modo da avere una funzione normalizza-
ta. Il parametro variazionale Il valor medio diH sullo stato (11.32) e

Bla)= 2+ (11.33)

Per ottenere questo risultato si possono effettuare le integrazioni del caso o osservare che la (11.32)
é la funzione d’'onda fondamentale per un oscillatore armonico di frequenda un oscillatore
armonico la media dell’energia cinetica e potenziale sono uguali su uno stato stazionario (e valgono
la meta dell’energia), quindi

>a:7

Il minimo in « della stimaF («) si ottiene effettuando la derivata rispettoaad

dE 2
@ _o o 1-Y 0 sa=u
da a?

e sostituendo nella espressiond-i
1
B@)gy =5 +7 =72 (11.34)

che ¢ il risultatcesatto.
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Oscillatore armonico: 2

Supponiamo ora di non essere cosi fortunati e di considerare una funzione di prova del tipo

© = Vae ol (11.35)

Sfruttando la parita della funzione possiamo scrivere

> o d g 1 1
E(a) = 2/0 O Hp = 04/0 dx { <dxe°‘“"> +w2x262w} ot (a2 + 2(.024a2>

E(c) ha un minimo pen? = w/+/2 e per tale valore

Eppin = —= ~ 0.707w > g

w
V2
come si vede in questo caso I'errore € di circéi.

Oscillatore armonico: 3
Proviamo a migliorare la stima precedente con

o = (1+ Ba?)eole!
Poniamaw = 1 per semplificare le espressioni. Si ha

(plH|p) 2 (a*+208) —4a? (=3+a) B+ (45+20at) B2

{(ole) 8ab +8atf+ 1202 2

In questo caso il minimo pud essere trovato in forma numerica, risulta
a=-0.0523 3=0.73 E,in = 0.64

che e un miglioramento rispetto alla stima precedente.

Notiamo che le funzioni (11.35) hanno derivata seconda discontinua: la forma utilizzata
per il calcolo diE(«) & quella corretta. Sarebbe sbagliato usare la simmetria del problema
e scrivere per la parte cinetica un’espressione del tipo

o0 d2
/0 14 @‘P
Integrando per parti ci si convince facilmente che questa espressione da origine a dei ter-
mini di bordo aggiuntivi rispetto & («). In altre parole I'Hamiltoniana non & autoaggiunta

nella base (11.35), ma la minimizzazione della forma quadratica approssima lo stesso, in
L2, la soluzione del problema.

11.3.2 Elio: trattazione elementare.

Abbiamo gia trattato dal punto di vista perturbativo il livello fondamentale dell’elio. In
unita atomiche

K2 me?
I’'Hamiloniana a data da
1 1 Z Z 1
H:H1+H2+H12:—7A1—7A2—.——— (11.36)

2 2 1 T2 |’I‘1 — T'2|
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La funzione d’onda idrogenoide che abbiamo usato nel calcolo perturbativo era

1
VY1s = —=23/2e 27 (11.37)
™
ed avevamo ottenuto 5
Epert = 7% — gZ (11.38)

Se vogliamo usare la tecnica variazionale dobbiamo scegliere una base di funzioni.

Una prima idea puo derivare dalla fisica del problema. In prima approssimazione pos-
siamo pensare che ogni elettrone veda la carica nucl&angarzialmente schermata dal-
I'altro elettrone, € quindi naturale pensare di usare come funzioni variazionali delle funzio-
ni tipo idrogenoide ma con una carica effettivg, arbitraria e usare questa proprio come
parametro variazionale. Usiamo quindi come funzione di prova:

P(@1, @) = p(n)p(rs)  (r) = %zﬁ/%—w (11.39)

Il calcolo del valor medio dH su questa funzione & molto semplice: & la funzione d’'onda
idrogenoide di un atomo con cariéa, ora ricordiamo che in un atomo idrogenoide vale
la seguente relazione fra energia cinetic& potenziald/:

(K) = f%<U> —_E (11.40)
Quindi

2 2

Py _ 2L
oy=Z (11.41a)

2

<_%> _ _2% - <_§> — 27, (11.41b)

2
(H) = % 77 = (Hi+H)=7>—227 (11.41c)

Il calcolo del termine di repulsione coulombiana fra i due elettroni € identico a quello
effettuato nella teoria perturbativa, pur di sostitufeon Z:

5
<H12> = ng
Quindi

(HY=E(Z,) =7} —27Z7, + gzl =77 27, (Z - 156> (11.42)

troviamo il minimo diE(Z;) al variare diZ; e la corrispondente stima per I'energia dello
stato fondamentale: il minimo della (11.42) si ha ger= Z —5/16 e sostituendo si ricava

dE 5 5
— =0 = Z1=7Z-— H)pin = —(Z — —)? 11.43
7 1 o Hin= (2 - ) (11.43)
Sperimentalmente il dato direttamente accessibile € I'energia di ionizzazione: una volta
estratto un elettrone quello restante ha enelgia= —~Z2/2 e I'energia di ionizazione &
appunto
J(Z)=Ey—E (11.44)

3E un caso particolare del teorema del viriale che verra trattato fra poco, ad ogni modo & una relazione nota
dallo studio dell'atomo di idrogeno.
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Per la stima perturbativa e quella variazionale si ha rispettivamente

72 5 , b
Ipert(Z) = (7 - §Z) au.= (2" - EZ) Ry (11.45)
) 72 zZ? 5 25 5 25
war(Z)=(Z - =) - = =(%F-Z+-)au=(Z"--Z+ )R
Toar(2) = ( 16) 2 (2 8 +256)au ( 4 + 128) y

Abbiamo riportato il valore in Ry, ricordando che 1 a.u. =2 Ry. Riportiamo nella tabel-
la 11.1 i risultati ottenuti confrontati con quelli sperimentali Come si vede c’é un discreto

H- He Lit | Bett
Joere | 025 | 15 | 525 | 11
Jvar | -0.055 | 1.695| 5.445| 11.195
Jexp | ¥0.055| 1.807 | 5.560| 11.312

Tabella 11.1: Valori approssimati, in Rydberg di alcuni potenziali di ionizzazione.

miglioramento rispetto al calcolo perturbativo. E da notare come la differénga- Jyar
sia praticamente costante #. Sia I'approccio perturbativo che quello variazionale, a
guest’ordine, non rendono conto dell’esistenza di uno inestabile.

Discussione

Il risultato ottenuto con la semplice tecnica variazionale precedente ha una interessante
interpretazione fisica.

Le funzioni che abbiamo usato sono autofunzioni di un sistema idrogenoide con carica
Z1, cioe sono le autofunzioni dell’lHamiltoniana separabile:

1 Zy 1 7

Hy —-p2_ 214 2 21 11.46

Z1 2]71 e 2172 ro ( )
Quando si fa teoria perturbativa c'é una certa arbitrarieta nel dividere I'Hamiltoniana

in Hamiltoniana imperturbatél, e perturbazionéi;, I'unico vero requisito & chél, sia

esattamente risolubile, altrimenti & impossibile effettuare i calcoli.

Ora immaginiamo di riscrivere I'Hamiltoniana del sistema aggiungendo e sottraendo
I'interazione fittizia di caricaZ;
RS 5 21
221

1
H=|-p?-=2 42
2p1 1 + 2p )

1 Zv—Z Z—Z
] + { + 2 + 2 =Hy +Vyz (11.47)
T12 T1 2

Per oraZ; & arbitrario. Se facessimo teoria peturbativa al primo ordine con questa Hamil-
toniana, avremmo per I'energia dello stato fondamentale

E(Zy) = (Y|Hz, [$) + ¢V, [¥) (11.48)

|1} & lo stato di due elettroni idrogenoidi in un nucleo di cata
Nel nostro caso dal principio variazionale abbiamo ottenuto un valore ottimalg, per

71 = Z—5/16 ed il corrispondente valore per I'energia, v. eq.(11.48)7,) = 77? ma
guestc proprio I'autovalore dell’Hamiltoniang11.46) quindi confrontando con la teoria
perturbativa, eq.(11.46), segue che per questo particolare valgidaicorrezione pertur-
bativa deve essere nulla. In altre parole fra tutte le possibili decomposizioni per la teoria
perturbativa il metodo variazionale “sceglie” quella per cui la correzione al primo ordine
per l'autovalore & nulla. Quest’affermazione sara generalizzata nel prossimo paragrafo a
tutti i potenziali omogenaeielle coordinate.
E facile verificare esplicitamente quanto affermato. Se usiamo le formule (11.41) otteniamo

5 5

WIVailY) = 52+ 2+ (2 = )y = 240(Z1 = Z + )
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che si annulla appunto pet = Z — 5/16.

Dal punto di vista fisico il risultato ottenuto puo essere letto in due modi diversi
1) Ogni elettrone “vede” una carica effettiva schermata,

2) Lascala caratteristica delle funzioni d’'onda cambia. Ricordiamo che in un problema
idrogenoide il raggio caratteristico&s;/Z quindi cambiare carica € lo stesso che
cambiare scala. In effetti &€ proprio questa formahe la carica effettiva interviene.

Un esponenziale

wls ~ E_ZlT
indica appunto che la scale caratteristicy/ &, , lasciare libero di variar&; si pud
utilmente interpretare come lasciare al problema decidere, tramite il principio va-
riazionale, qual’é la scala ottimale. Il vantaggio di questa interpretazione e che &
facilmente generalizzabile ad altri problemi. La cattiva notizia & che in un problema
con molte scale presenti contemporaneamente ci si aspetta che il metodo variazionale
richieda molti parametri.

Se il lettore riconsidera il caso dell'oscillatore armonico si accorgera che trovare il parame-
tro o in una funzione di prova—°*’/2 corrispondeva appunto a trovare la scala ottimale
del problema.

Il problema del calcolo dell'energia di ionizzazione dell’elio verra trattato nel seguito
in modo molto piu dettagliato. Nell'appendice 11.A é riportato come esempio il calcolo
del limite inferiore all’energia dell’elio ricavabile usando la tecnica variazionale di questo
paragrafo.

11.4 Teorema del viriale.

Il teorema del viriale stabilisce una relazione fra il valor medio dell’energia cinetica e quel-
lo dell'energia potenziale su statiazionarj per potenziali omogenei, ed € un’estensione
alla meccanica quantistica dell’'analoga affermazione in meccanica classica, in cui il valor
medio nel tempo fa le veci del valor medio sullo stato stazionario.

Ci sono molte dimostrazioni di questo teorema, e ne vedremo alcune nel seguito: una
dimostrazione istruttiva usa il principio variazionale.

Un potenziale € omogeneo di gradseV (kz) = k¥V (x). Abbiamo indicato con:
l'insieme di tutte le variabili posizione del problema.

Consideriamo un qualunque stato descritto da una funzione dipfidaavremo:

N = /dego*(x)cp(x) (11.49a)
wlTle) = 3 [ a0 @) [ o] oto) (11.49b)
@Vl =5 [ Pap' @V @)ela) (11.490)

Consideriamo ora un altro statp,(z) ottenuto dal precedente riscalando di un fattore
le variabili z:

pr(x) = p(kx)
calcolando i valori medi precedenti su questo stato tramite un cambiamento di variabile
x = 2’ [k si ha immediatamente

Tk =K {(@|Tle) (Vi =k~ (e|V]e) (11.50)



14 CAPITOLO 11. METODI VARIAZIONALL

Questo implica che il valor medio del’Hamiltoniana sullo statéx) vale
E(k) = E*(@|T|e) + k= (¢|V]p) (11.51)

Supponiamo ora che(z) sia proprio la funzione d’onda di uno stato stazionario. Sap-
piamo cheH deve essere stazionaria su questo stato, qyiHdlideve avere variazione
nulla al primo ordine per qualunque variazione della funzione d’onda, in particolare per
una variazione: — kx, in altre parole deve essere

d
%E(k) T 0
cioé
2(¢|T[p) = v{p|V]p) (11.52)

Considerando le variazioni nel sottospazio ortogonale allo stato fondamentale il teorema si
estende a qualunque stato stazionario.
La formula (11.52) é iteorema del virialeUsando(H) = (T') 4+ (V') si ha anche

14

(@lT|p) = mE (plVip) =

E (11.53)
v+2
Queste formule possono in particolare essere applicate ai potenziali Coulombiani, in cui
v = —1 ed all'oscillatore armonicay = 2.
Lasciamo al lettore la semplice generalizzazione dei risultati ad un potefzsadavi-
bile come somma di potenziali omogenei di grago

2(0|TI@) = > vil|Vile) (11.54)
k

Nota. Dimostriamo quanto visto nel paragrafo precedenteV Seomogeneo significa, ad esempio,
che in una dimensione ¢ della formd. |l fattore che determina la scala del problema & appunto la
costante davanti &, in generale il coefficiente moltiplicativo di. Possiamo separare dauna
parte che associamo all’energia cinetic@er costruire un’Hamiltoniana risolubile:

Voku+2 + V _ ‘/Oku+2

questo corrisponde nel caso Coulombiano=f —1) ad un potenziale proporzionaleZ, per un
oscillatore armonico ad un termide.”z?, dove/w € il parametro che determina la scala. etc. In
uno stato con scalascelto fra gli autostati dHy, di scalak appunto,

E(k) = K*(T) + k™ *(V)
e si ha un minimo per

v+2 v <V>
T = 30T (11.55)

dove i valori medi indicano gli elementi di matrice sugli stati con séata 1. Nella separazione fra
Hamiltoniana di base ed interazione si ha

H= [T+ Vok""?] + [V — Vok"*?]
Il valor medio della parte perturbativa, sul minimo, vale, essendo aViglma funzione omogenea
di gradov ed usando la (11.55):

—v —v v V
OByere = k™ (V) = (" = k™ (V) = (Vo o
ma nella teoria con scala 1 possiamo applicare il teorema del viriale alla $fgsgeer cui, dalla
(11.53)
2
(Vo) = ~(T)

per cuid Epert = 0.
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11.5 Oscillatore anarmonico.

Il punto che vogliamo studiare con I'esempio esplicito dell’oscillatore anarmonico & I'unio-
ne fra la parametrizzazione lineare studiata nei paragrafi precedenti e la scelta della scala
del problema.

L'Hamiltoniana del problema, in unith= 1, &

2
g 4
H=-—-—+%224+<2 11.56
5dez g T ( )

Accanto all’'operatore (11.56) possiamo considerare

1 d ,u2 2 9. 4
H_— — < T a - = -~ .
S da? 5 7+ 256’ (11 57)

Il potenziale corrispondente a questo operatore ha due minimi; pee-x/+/2 quindi la
situazione di minima energia nel caso classico corrisponde ad una situazione non simme-
trica rispetto all’operazione di inversione — —z. In Meccanica Quantistica sappiamo
che I'Hamiltoniana (11.57) commuta con la parita, quindi lo stato fondamentale deve avere
parita definita, non potendo avere nodi si tratta di uno stato simmetrico, quindi quantistica-
mente deve essefe) = 0. Come vedremo in dettaglio nel prossimo capitolo la possibilita
guantistica di attraversare la barriera che separa i due minimi classici permette questa si-
tuazione. Questa hamiltoniana pud essere presa come modello per lo studio di sistemi in
cui sono possibili due stati stabili classici, come ad esempio succede nella mdledgla
Questa molecola ha la forma di un tretraedro. I'atomo di azoto puo passare da una parte
all'altra rispetto al piano formato dai tre atomi di idrogeno e le due configurazioni sono
classicamente distinte. Cominciamo dal case’.

Secondo le idee sviluppate nei paragrafi precedenti prendiamo come funzioni di base le
stesse funzioni di un oscillatore armonico ma riscalate per un faitore

a
V/m2mn!

H,, sono i polinomi di Hermite. Le funzioni (11.58) sono un insieme ortonormale, in
pratica le autofunzioni di un oscillatore di frequenza Supponiamo di considerare una
base finita composta dai primii elementi: tenendo conto della parita i prifdiinteri pari

per gli stati pari ed i primiV interi dispari per gli stati dispari.

Gli elementi di matrice non nulli degli operatori che compongono I'Hamiltoniana sono
facili da calcolare, sono quelli gia visti nel calcolo della teoria delle perturbazioni dello
stesso sistema e possono, ad esempio essere calcolari, su un oscillatore di fre§uenza
tramite la decomposizione in operatori di creazione e distruzione

1/2
on(r) = { } Hn(oz:c)e_‘XZ’L'Z/2 (11.58)

(1) = go(2n +1) ()i = —50*/ I+ D +2)

()un = 55 (204 1) ()ninsz = 5V T D0+ 2)

(o = g 420 41) @iz = 7y (44 6V F D+ 2)
(s = g VO F 0T 200+ B+ D) (11.59)

4Effettuando il cambiamento di variabili = A&, A = |u|~1/2, il lettore puo facilemente convincersi che il
problema si riduce a quello cqn= 1 e pe rgli autovalori si ha

E(p,g) = nE(1,gpn™?)

quindi ci si potrebbe limitare a stidiare il cage| = 1. Preferiamo usare la forma risondante (11.56) per non
creare confusioni.
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Gli altri elementi di matrice non nulli(p?),,+2 1, (#*)nt2.n, (@) ns2.m, (T*)ntan Si Ot
tengono dai precedenti prendendo il complesso coniugato.

Una stima degli autovalori del sistema (11.56) si ottiene allora dal sistema liNeare
N

Hijcj = ECj (1160)

Esistono in ogni linguaggio di programmazione delle routines molto efficienti per trovare
autovettori ed autovalori, nel paragrafo 11.C e fornito un esempio scritto in MatLab. Qui
ci concentreremo sui risultati e sulla fisica del problema, rimandando al paragrfo 11.C una
breve discussione di alcuni aspetti numerici. Il punto fondamenta&oéne scegliere la
scalaa ?

La prima osservazione che possiamo fare € che, essendo peroo le (11.58) un
insieme completo, qualunque scelta dovrebbe andare bene.

Scegliamo ad esempio = 1. Postou? = 1, la risoluzione numerica dell’equazione
(11.60) da, al variare del numero di elementi di base:

Vo= I1X12 xM2) + 10%(1/2 x"4)
2*E_0/10 2*E_20/1000 2*E_38/1000 base
0.245355528977 N= 10 alpha= 1.000 n_min= 0
0.244918685281 2.195371047917  43.840863925327 N= 20 alpha= 1.000 n_min= 0
0.244917407253 0.565782255693 6.303156501515 N= 40 alpha= 1.000 n_min= 0
0.244917407212 0.316259331069 2.723821857284 N= 60 alpha= 1.000 n_min= 0
0.244917407209 0.267450378105 1.576240610010 N= 80 alpha= 1.000 n_min= 0
0.244917407208 0.266495202786 1.074357868341 N= 100 alpha= 1.000 n_min= 0
0.244917407215 0.266487457903 0.821590674698 N= 120 alpha= 1.000 n_min= 0
0.244917407216 0.266487427950 0.689072848803 N= 140 alpha= 1.000 n_min= 0

Come si vede la convergenza é ragionevole per lo stato fondamentale ma non ottimale per
gli stati eccitati. Che la situazione non sia ottimale lo possiamo verificare anche in questo
modo: sugli stati stazionadeve valere il teorema del virialguindi gli stati ottenuti sono
ragionevoli se & verificata la relazione (11.54) che in questo caso si scrive:
0= Kuir = 2(p|p? ) — (2(pln®2”|0) + 4{plgz’|¢)) (11.61)

La situazione € riportata in fig.11.1. Per i primi 20 livelli circa la situazione & soddisfacen-
te ma per i livelli alti il coefficientek,;, raggiunge valori di circd0® (notare la legenda
riportata in figura), situazione chiaramente inaccettabile. Si nota che in pratica i primi 20
livelli hanno un viriale accettabile, dopo di che si ha un brusco decadimento dell’accuratez-
za del risultato. La scala = 1 sembra “ragionevole” per i primi livelli ma irragionevole
per quelli alti: bisogna ottimizzare il valore dise si vuole avere una stima dello spettro. Il
valore per lo stato fondamentale sembra abbastanza stabile, comunque provando un valore
non molto ragionevole come = 0.1, si troverebbeF,/5 ~ 1.091, cioe anche il valore
dell’energia dello stato fondamentale dipendexda

Per capire il problema notiamo che, come conseguenza della forma a potenza delle
ineterazioni, se chiamiam®, V5, V, le matrici (11.59) per = 1, la dipendenza da &
facilmente isolabile nella matrice Hamiltoniana:

) 1 1
H=a"T+ ?‘é + Jv‘l (11.62)

Poiché la matrice dipende dagli autostati,|®,(«)) dipendono dax. Per eseguire una
procedura variazionale sudovremmo calcolare I'energia sullo stato:

Ei(a) = (| H|Pk) (11.63)

Il problema & che le funzior;,, sono diverse sui vari stati, quindi, la procedura variaziona-

le pud essere applicata ad uno stato alla volta: se ad esempio ci interessa il fondamentale,
minimizziamo la (11.63) per questo stato, disinteressandoci del valore assunto dagli altri
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0.5

10 *Viriale a=1

2 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

livello

i 104*Viriale 1

25 I I I I
0 5 10 15 20 25

livello
Figura 11.1: Viriale petx = 1, fissato.

autovalori. Ripetiamo poi il procedimento pEi e via di seguito. Questa non € una proce-
dura molto pratica, anche se sara proprio quello che faremo per I'elio, in cui perd saremo
esplicitamente interessati alla sola energia dello stato fondamentale. Nel caso generale non
ci sono alternative ovvie a questa situazione.

Nel caso relativamente semplice che stiamo studiando si pud proporre una soluzione
piu efficiente. Gli stati di prova che stiamo usando sono gli autostati di una Hamiltoniana
H,, I'Hamiltoniana dell’oscillatore armonico con frequenzd. Scegliere un “buon
significa scegliere degli stati che gia all’ordine 0 siano delle ragionevoli approssimazioni
degli stati esatti, come si farebbe in teoria perturbativa. Se uno stato di grpi@)) é
approssimativamente stazionario deve soddisfare il teorema del viriale, o, il che €& lo stesso,
il valor medio dell’Hamiltoniana deve essere stazionario per cambiamenti da prima
opzione é dunque di sceglietiein modo che, a seconda della parita dello stato,

d d
£<<P0(01)|H|900(04)> =0 %«Pl(a)uﬂ@l(a» =0 (11.64)
ottimizzando cioe sullo stato fondamentale del sistema imperturbato, o sul primo eccitato
per gli stati dispari.

Una giustificazione semi-intuitiva per questa scelta & la seguente: Nektasad, per
ogni stato di proval(n, a)), si ha, come si verifica facilmente

(n+1|Hn+1) > (n|H|n)
cioe si ha uno stretto ordinamento degli elementi di matrice diagonali del’Hamiltoniana.
E naturale cercare di minimizzare il pitl piccolo fra questi valori. Copiando gli elementi di
matrice (11.59) i vincoli (11.64) si scrivono, nei due casi:
ab —p2a? —3g=0 ab — 2 —59=0 (11.65)
Sono delle equazioni cubiche pef, possiamo trovarne una radice reale positiva, che

esiste sempre per> 0, e prenderne la radice quadrata. | risultati migliorano visibilmente,
presentiamo un esempio per gli stati pari:
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Vo= 1512 x"2) + 10%(L/2 x74)

2*E_0/10 2*E_20/1000 2*E_38/1000 base

0.244917414796 = 10 alpha= 1.793 n_min= 0
0.244917407212 0.299163077637 4.275220568944 = 20 alpha= 1.793 n_min= 0
0.244917407212 0.266487428904 0.775211251430 N= 40 alpha= 1.793 n_min= 0
0.244917407212 0.266487427865 0.615623574398 = 60 alpha= 1.793 n_min= 0
0.244917407211 0.266487427865 0.615577264638 = 80 alpha= 1.793 n_min= 0
0.244917407213 0.266487427865 0.615577264599 N= 100 alpha= 1.793 n_min= 0
0.244917407214 0.266487427865 0.615577264599 N= 120 alpha= 1.793 n_min= 0
0.244917407214 0.266487427865 0.615577264599 N= 140 alpha= 1.793 n_min= 0

0.5

10°*Viriale o = 1.7929

-15 -

2 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

livello

10'%virial

0 5 10 15 20 25 30 35 40 45 50
livello

Figura 11.2: Viriale petv calcolato sullo stato fondamentale.

Dalla figura 11.2 appare che ora il risultato € molto buono per i primi 50 livelli, questo
corrisponde a 25 elementi della base scelta (i livelli in gioco sono quelli pari, quindi con
una base di 140 elementi si arriva al livello 280).

La situazione cambia se il termine quadratico nel’Hamiltoniana ha segno negativo: in
guesto caso i valori medi dif sugli stati di prova non sono piu ordinati, ma c’é una can-
cellazione fra il termine cinetico e quello potenziale. Una strada possibile & quella di con-
siderare lo stesso numero dello stato di prova come elemento da ottimizzare, e considerare
cioé le equazioni

0 )

2 =54 2 (0 1) <o

0 w?. 3¢
a—<n|H|n>:(2n+1)( a3) (Qn +2n+1)

eliminandon
9
al? — p2a® + 39= 0 (11.66)

In questo caso la situazione ritorna stabile e si ha un comportamento simile a quelo gia
visto, lasciamo al lettore I'esercizio di verificare questa affermazione.

Vogliamo invece seguire un’altra strada: i problemi chiaramente vengono dai termini
con granden, quindi la cosa ragionevole é trovare I'equazione @eattimizzando sullo
stato conn piu grande a disposizione. Pergualunque la (11.65) diventa, a seconda del
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segno del termine quadratico:

s 39 o 2
(2n+1)(aq:$) - 5(27@ +2n+1)=0 (11.67)

Pera scegliamo la soluzione di questa equazione per lo stato piu alto a disposizione.
In questo modo la stabiltd migliora drasticamente:
Vo= IML2 xM2) + 10412 xM)

2*E_0/10 2*E_20/1000 2*E_38/1000 base

0.244917407215 = 10 alpha= 2.923 n_min= 20
0.244917407212 0.266487438975 0.716038982773 = 20 alpha= 3.271 n_min= 40
0.244917407212 0.266487427865 0.615577264599 N= 40 alpha= 3.666 n_min= 80
0.244917407212 0.266487427865 0.615577264599 N= 60 alpha= 3.920 n_min= 120
0.244917407212 0.266487427865 0.615577264599 N= 80 alpha= 4.112 n_min= 160
0.244917407212 0.266487427865 0.615577264599 N= 100 alpha= 4.267 n_min= 200
0.244917407212 0.266487427865 0.615577264599 N= 120 alpha= 4.398 n_min= 240
0.244917407212 0.266487427865 0.615577264599 N= 140 alpha= 4.512 n_min= 280

25

151 q

os- 10% *Viriale o =4.5118 1

05 I I I I I
0 50 100 150 200 250 300

livello

10

10*%Viriale

5 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

livello

Figura 11.3: Viriale petv calcolato sullo stato di energia piu alta.

Si ha cioé praticamente tutto lo spettro, esclusi naturalmente i livelli che corrispondono
a elementi di matrice “sul bordo” della matriéé. Nel caso in esame i livelli fino circa 200
sono completamente stabili. La situazione & analoga nel caso di potenziaté.

11.5.1 Stima dell’errore.

Ina conferma dei risultati si ha valutando I'errore con il metodo di Temple, vedi eq.(11.22).
In questo caso il calcolo dello scarto quadratico dell’lHamiltoniana € abbastanza semplice.
Infatti sulla base scelta gli elementi di matricefdial massimo cambiano di 4 il numero
di occupazione, quindi, a parita definita, si ha al massimo un cambiamento di 2 sull’'ordine
dello stato di base. Supponiamo di avere calcolato le matrici, gli autovalori e gli autostati
per N elementi di base (cioé fino al livelN). Un dato autostato sara rapresentato da un
vettoreY a N componenti.

Allarghiamo la base & + 2 possiamo ricalcolare la matridé, che ora € una matrice
(N +2) x (N +2), e costruire il vettor&” = (Y,0,0), aggiungendo 2 zeri nelle ultime
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componenti: questo vettore coincide comel sottospazidv x N. Si ha ora:

N+2
(HY|HY) =Y (HJYJ) (Hl-kffk)

Questa espressione € esatta perché a partire dal VEteéV componenti possono essere
coinvolti nel prodotto solo gli stati cop < N + 2, compresi nella somma precedente.

Il risultato per I'erroreassolutosugli autovalori € riportato in figura 11.4 nel caso in
cui la scalax sia determinata dal valore piu altodj come discusso nelparagrafo prece-
dente. Come si vede I'errore sul risultato € minore@i'® sulla gran parte dello spettro,
confermando la stabilita delle tabelle precedenti.

0.3

102 * gE

0.4 1 1 1 1 1
0 50 100 150 200 250 300

livello

Figura 11.4: Viriale petv calcolato sullo stato di energia piu alta.

11.5.2 Limite semiclassico.

La “filosofia” dietro all'approccio precedentemente sviluppato € che per ogni stato se si
vuole trovare I'Hamiltoniana di oscillatore armonico che meglio approssima il sistema la
scelta conveniente € minimizzare il valor medio dell’Hamiltoniana sullo stato, consideran-
do la frequenza dell’'oscillatore come parametro da ottimizzare.

Proviamo ad applicare questo criterio a stati eorn>> 1. Dagli elementi di matrice
(11.59) si ha, per un oscillatore di prova con frequenza

_ _2n+1 pr\ 3 1,
E.(w) = {(n|H|n) = 1 (w + w) + 39 ﬁ(2n +2n+1) (11.68)
La frequenza ottimale si ottiene annullando la derivata rispetto didF,, (w) e questo da
'equazione
p2w(1+2n) — w3(1 4 2n) + 3g(1 + 2n + 2n?) = 0 (11.69)
Se siamo interessati a stati con> 1, vediamo che la cancellazione del terminefmella
(11.69) implica chev deve crescere cam, quindi, tenendo solo il termine dominante nella
(11.69)
2w +6gn° =0 =w~ (Sgn)l/3 (12.70)
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Sostituendo questo valore nella (11.68), e conservando solo i termini dominamti in
troviamo come stima peft,:

(39)/3n*3 ~ 1.08 g*/3n*/? (11.71)

3
= —Wwn =

N 3
4 4

3 n2 n
E,~w|-9g—

v [49 W? 2}
All'espressione (11.71) hanno contribuito il termine cinetico ed il terming idell’Hamil-
toniana, questo corrisponde al fatto intuitivo che per stati a grande energia, classicamente,
il termine inz* & dominante.

Secondo la vecchia teoria dei quanti la regola di quantizzazione di Bohr Sommerfeld

per questo sistema dovrebbe dare per i livelli di energia:

2/ dx\/2F — 2% — ga* = 21n (11.72)

—a

+a sono i punti di inversione classica, in cui si annulla I'espressione sotto radice, cioé
l'impulso del sistema. Se prevalgono i grandi valoricdpossiamo trascurare il termine in

22 e i punti di inversione sono
9\ /4
“= :l: <>
g

Scrivendar = az, I'integrale (11.72) si riscrive

2B\ V4 1
2mn = 2 <) \/ZE/ dz\/1— 24 =274~ VAp3/4
g -1

dove Ja
T[(1/4)
K=Y_12 1748
4T(7/4)
E~ 2—7/3(2%)4/391/%4/3 ~ 1.09 g/3n*/3 (11.73)

Se confrontiamo la (11.73) con la (11.71) possiamo verificare che la procedura usata
non solo da il corretto andameRtoon n, g ma anche una stima ragionevole del fatto-
re numerico: in altre parole uno stato con grandé ben approssimato da un oscilatore
armonico.

Il fatto che la stima (11.71) sia, leggermente, inferiore al valore “esatto” (11.73) non de-
ve preoccupare: la (11.71) non & una stima variazionale, ricordiamo che per farlo avremmo
bisogno di almeno tutti i livelli fino al’ennesimo. Nel caso variazionale la stima avrebbe
dovuto essere per eccesso.

11.6 Stato fondamentale dell’elio.

Il calcolo dell’energia dello stato fondamentale dell’elio ha avuto storicamente una certa
importanza. E un sistema che non & completamente integrabile: non esistono cioé a livel-
lo classico coordinate canoniche globali del tipo azione-angolo, questo rende impossibile
trattare il sistema tramite le regole di quantizzazione alla Bohr-Sommerfeld, a meno di non
ricorrere alla teoria perturbati¥a
| tentativi di usare metodi perturbativi all'interno della vecchia teoria dei quanti per

risolvere il problema non avevano portato ad una spiegazione dello spettro ed erano in
disaccordo con i dati sperimentali. La non separabilita classica si riflette nel fatto che

5Corretto nel senso che dimostreremo nel prossimo capitolo che perso I'approssimazione semiclassica
€ corretta
8Discuteremo questo problema nel capitolo dedicato al’approssimazione semiclassica.
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'equazione di Schrédinger non & a variabili separabili, ma € pur sempre un’equazione
differenziale che puo essere trattata con metodi numerici e in particolare variazionali.

In questo paragrafo illustreremo la procedura seguita nello studio di questo problema.
Nel testo cercheremo di concentrare i risultati e le idee principali rimandando alcuni calcoli
espliciti ed un concreto esempio di programma numerico in fondo al paragrafo. La presen-
tazione di questo problema ha lo scopo diillustrare in un esempio realistico la profondita e
la precisione dei metodi normalmente usati in Meccanica Quantistica. Normalmente questo
tipo di trattazione non trova spazio in un testo elementare ma pensiamo che oggi, avendo
gli studenti a disposizione diversi strumenti di calcolo, sia opportuno trasmettere 'idea che
la Meccanica Quantistica &€ un potente strumento per capire la realta.

L'idea di base di questo approccio risale agli articoli di Hylleras e ai lavori di Bethe
citati in bibliografia. Lo studente che voglia approfondire I'argomento trovera in questi la-
vori un’ampia bibliografia ed una esposizione chiara e sotto molti aspetti illuminante delle
varie questioni trattate. Il motivo per cui trattiamo in dettaglio il problema invece di riman-
dare semplicemente agli articoli originali & quello di fornire allo studente alle prime armi
degli esempi espliciti di calcolo di alcune quantita ed un semplice programma numerico
che possa implementare il metodo variazionale.

Dati sperimentali.

| valori sperimentali del potenziale di ionizzazione (I'energia necessaria per estrarre uno
dei due elettroni dallo stato fondamentale) sono riportati in tabella 11.2. Le unita di misura
sono cnT!, come normalmente fatto in misure spettroscopiche, il fattore di conversione &

1
E(em™)= —FE
(em™) e
In particolare
1em™t = 1.23984244(15) - 10~ * eV

1Ry = 109737.3156cm™!  la.u.= 2Ry = 219474.6313cm !

H~ He Li* Bet T
6100 £100 | 198310.82 £0.15 | 610079 £ 25 | 1241225 4 100

Tabella 11.2: Potenziali di ionizzazione per I'elio ed alcuni ioni. Le quantita sono espresse
i —1
incm™1.

Hamiltoniana.
L’'Hamiltoniana del sistema, in unita atomiche &

1 1 zZ zZ 1
H:—ivf—fvg————ﬁ—

2 re T2 Ti2

(11.74)

r1, 79 indicano le distanze degli elettroni dal nucleg; la loro distanza relativa. Gli au-
tostati di questo sistema sono descritti da funzioni d’onda orhit@h , 2 ) a cui bisogna
associare delle variabili di spin. Come vedremo nello studio del principio di Pauli il fatto
che i due elettroni siano particelle identiche si traduce in un requisito di simmetria per le
funzionit: a seconda che lo spin totale sia 0 o 1, la funzione d’'onda orbitale deve essere
simmetrica o antisimmetrica. Noi ci limiteremo allo studio dello stato simmetrico orbitale,
che corrisponde effettivamente allo stato fondamentale del sistema, $h=euj, il cosid-
dettoparaelio. Le configurazioni antisimmetriche orbitali, corrispondenti a spin totale 1,
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sono dette dortoelio. Il significato e le implicazioni di questa suddivisione saranno am-
piamente discusse in un capitolo successivo. Per i nostri scopi immediati tutto cio si riduce
a dire che stiamo cercando le soluzioni al problema di Schrodsigenetrichenelle due
variabili:

11)(171,232) :¢(ZE27171) (1175)

E naturale cercare la soluzione relativa allo stato fondamentale come una soluzione con
momento angolare totale nullo, e questo coincide con I'osservazione sperimentale che non
c’é degenerazione sul livello fondamentale.

Il metodo variazionale applicato a questo problema significa cercare il punto stazionario
del funzionale

) 1 1 zZ 7 1
Q= /da:ld:c2 {2 (V1v)” + 3 (Vau)? + (7"1 h + m)] (11.76)
sulla sfera unitara nello spazio di Hilbert:
(¥1QY)
0————-=0 11.77
wi) (L7

Possiamo sempre scegliere le fasi in modo che lo stato fondamentale sia descritto da una
funzione d’onda reale, quindi ci limitiamo a scrivere la (11.76) per funzioni reali.

La funzioney nella (11.76) & una funzione di 6 variabili, vediamo ora come la scelta
di uno stato a simmetria sferica riduce a 3 il numero di variabili indipendenti.

Consideriamo un triangolo che ha come vertici i due elettroni ed il nucleo. Un triango-
lo & fissato una volta noti i 3 lati, in questo casors, r12. La funzione d’onda dipendera
quindi da queste tre variabili e da quelle angolari necessarie a determinare l'orientazione
di questo triangolo nello spazio, ma se studiamo il problema a simmetria sfeticada
deve dipendere dall'orientazione del triangolo quindi deve essetey(rq, r2,712). Ri-
cordiamo che una rotazione globale del triangolo equivale ad una rotazione del sistema di
riferimento, se la funzione d’onda & a simmetria sferica deve essere invariante sotto questa
rotazione: € questo il contenuto del discorso appena fatto.

Dal punto di vista analitico possiamo pensare di passare dalle coordinatg alle
nuove variabili in questo modo: consideriamo un sistema di riferimento con origine nel
nucleo, usiamo due angoli, ad esempio I'angolo polare I'angolo azimutaleps del
secondo elettrone per fissare I'ass#el nostro sistema di riferimento. Usiamo poi I'angolo
azimutualep; del primo elettrone in questo sistema di riferimento in modo che il piano
contenga i due elettroni.

Come variabili indipendenti usiamo delle combinazioni simmetriche e antisimmetriche
delle variabilirl, 79,712

§=T1+ T2 t=r1—r12 U =172 (11.78)

Le variabili s,u sono simmetriche per scambio, daantisimmetrica. Scambiando i due
elettroni la funzione d’onda deve essere simmetrica, quindi deve essere una fyraione
di ¢. In tutti gli integrali potremo percio limitarci alla regiorte> 0 pur di moltiplicare per
2 il risultato.

I limiti di variabilita di s, ¢, u, cosi ristretti, discendono immediatamente dalla disugua-
glianza triangolare sui lati di un triangolo:

0<t<u<s< o (11.79)
Si tratta ora di effettuare esplicitamente il cambiamento di variabili ed esprimere |l

nostro funzional&) in termini dis, ¢, u. Bisogna scrivere lo Jacobiano delle trasformazione
ed esprimere i prodotti di gradiente in queste variabili.
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Il calcolo & piuttosto noioso, benché elementare, ed é riportato in appendice, il risultato
e, sottintendendo di integrare sulle variabili da cui non dipefdgoé gli angoli:

dxydxs = 21°u(s? — t*)dsdtdu (11.80)
2
(YIQlY) = / ds/du/dt{ u(s® — t2) K&/)) ( w) +(gf> +
+ 22—1/)[ (u? — tQ)Z—f +t(s? — u%%ﬂ - {4Zsu —s? —l—tﬂqﬁ} (11.81)

W) = / (s — 22

Procedura variazionale.

Il criterio per scegliere le funzioni di prova € guidato dalle considerazioni esposte nei
paragrafi precedenti. Supponiamo di avere scelto un certo insieme di funzioni di ba-
sey;(s,t,u), converra avere a disposizione un parametro che permetta di ottimizzare la
“scala” del problema, quindi considerare un insieme del tipo

@i = kGSOi(kS7 kt? ku)

il coefficientekS & del tutto arbitrario ed & stato inserito per rendere pill trasparente un
cambiamento di variabili che effettueremo in seguito. Poniamo quindi

= cipi(ks, kt, kt)

Se sostituiamo questa espressione nella (11.81) e cambiamo vatiabiles, t’ = kt, v’ =
ku otteniamo

WIQW) =M —kL (W) =N (11.82)

dove abbiamo posto, per brevita di notazione

[ofeo=
s () () (3

¥p 72880 272390
+2au{(u t)aert(s u®) }

L= /4Zsu—s +t%] N = / u(s? —t2) (11.83)

Nelle (11.83) abbiamo di nuovo chiamato le variabili riscalate u; le funzioniy dipende
da queste variabili ed il parametkcé stato fattorizzato come appare nella (11.82):

o= cipils,t,u) (11.84)

Le forme quadratiché.£, N sulla base (11.84) assumono la forma di matrici simmetri-
che
M = M;jcic; L = Lijcc; N = Njjcicj

dove, ad esempio
1
Lij = / [4Zsu —s2 4+ t2] 5(901-4,0]- + ©;pi)
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Nota Abbiamo scritto la formula precedente esplicitamente simmetrizzata, anche se non
ce n’era bisogno in questo caso, per sottolineare il fatto che le forme quadratiche determi-
nano delle matrici simmetrich&/, L.N. Nel caso il lettore volesse ripetere i calcoli che
seguono, tenga conto di questo fatto.

La richiesta di stazionarieta rispett@;ae k& implicano rispettivamente

KM kL

k*M;jc; — kLijc; = ENjjc;  E % (11.85)
L

) L= = 11.

FM—=L=0  k=g5m (11.86)

Come si vede gli autovalof della (11.85) ed il valore di nella (11.86) non dipendono
dalla normalizzazione assoluta dello stataome deve essere. Notiamo che gli autovalori
E della (11.85) dipendono dache a sua volta e fissato, noti i coefficientidalla (11.86).

Il modo piu semplice per risolvere il sistema (11.85),(11.86) & quello iterativo:

1) Sisceglie unvalore iniziale p&r ad esempio quello suggerito dal calcolo elementare
fatto nei paragrafi precedenti.

2) Per questo valore disi trovano gli autovalor¥ nella (11.85).

3) Sifa variarek, k — k + dk e si vede se I'energia corrispondente al nuovo valore
cresce o diminuisce, nel secondo caso si accetta il nuovo valére gi ricomincia,
altrimenti si prova a far variaré in un intervallo piu piccolo. se ad ogni passo
dimezziamalk e chiaro che abbiamo una convergenza piuttosto rapida.

Sottolineiamo che la scelta di introdurre il parameéire puramente strumentale: si vuole
ottenere una convergenza con un numero relativamente piccolo di fupzioni

Funzioni di prova.

Abbiamo visto nei paragrafi precedenti che un risultato non disprezzabile si ottiene da

funzioni del tipo
’L/J o e—Z1(T1+T2)

€ abbastanza naturale allora provare con variazioni sul tema, cioé
@ = P(ks, kt,ku)e */? s=r1+719 P = polinomio

Il fattore 1/2 nell’esponente € stato introdotto per effettuare piu facilmente gli integrali che
definiscono le matriciV/, L, N. Come abbiamo visto il parametfoviene riassorbito da
un cambiamento di variabili, quindi ci basta definire una base di funzioni non riscalata.
Prendiamo come base

Qijr(s,t,u) = s't¥uke 2 (11.87)

La simmetria rispetto & — —t (scambio dei due elettroni) impone che solo le potenze pari
di t possano comparire.

Scegliamo la maniera pit semplice di far variare le potenzediu: prendiamo tutte
le potenze possibili al di sotto di un certo grado fissato a priori. Siadg, md;, md,,
i massimi esponenti che vogliamo far comparire nella base (11.87), avremo im tetto
(mds + 1)(md; + 1)(md,, + 1) monomi indipendenti. -1 deriva dal fatto che anch#,
ad esempio, va contato.

Se il lettore & confuso dalla presenza di un indice triplo nella (11.87) puo, ad esempio,
codificare i vari monomi attraverso

I=i+(mds+1)-j+ (mds+1)- (mdy+1) - k+1

al variare dii, j, k nell'intervallo prescritto, I'indicel varia da 1 ach, avremo cosi delle
normali matricin x n.
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L'ultima cosa che resta da fare e calcolare gli elementi di mafvigg L;;, N;;. Lin-
tegrale piu generale che compare in questo calcolo, vista la forma delle funzioni di base

e
Ala, 8,7) / ds/du/ dts®tPu e~ (11.88)

cona, 3,y humeri interi. Si ha facilmente

2+a+8+7)
(1+8)2+8+7)

Si tratta ora solo di mettere assieme i vari pezzi di informazione e ricostruire le matri-
ci M.L.N. La forma di queste matrici non & particolarmente interessante, i risultati del
calcolo sono riportati in appendice. |l lettore che lo voglia rifare pud utiimente utilizzare
gualche software di manipolazione algebrica.

Ao, B,7) =

Esempi con piccole basi.

Prima di presentare i risultati proponiamo al lettore un paio di esempi analitici che permet-
tono di seguire la logica del calcolo.

Cominciamo dal caso piu semplice, prendiamo un solo polinomio, costante, che corri-
sponde and, = md; = md, = 0. Dovremmo riottenere il risultato gia noto in termini di
un singolo esponenziale. Per una base unidimensionale le forme quadratiche e le matrici
coincidono, cioéM = M etc. Postap = e~*/2 si ha:

M= /ds/du/dtu (a¢> —8
s
Ez/ ds/du/dt [4Z5u752+t2]<p2:32Z710
0 0 0
Nz/ ds/du/dtu(sQ—tZ)goQ:?)Q
0 0 0

L'energia ed il fattore: sono dati allora da

L 10 5

k_imiﬂZ—Ig_ﬂZ—Ia (11.89)
K2M — kL 1 £2 52

N N 4aM ( 16) (11.90)

che coincide con il risultato (11.43).

In realta il risultato (11.43) ha validita un po piu generale. Consideriamo una funzione che dipende
solo das, le forme quadratiché1, £, A si scrivono immediatamente

ai _ > i 5/ 1\2

M= / ds/ du/ dt u(s” — (83) —/0 ds 58 (¢") (11.91)

L :/ ds/ du/ dt [4Zsu — §? +t2] ©? :/ dss* {i + éZ} I (11.92)
0 0 0 0 12 3

Nf/@/mﬁﬁm@—ﬂ&:/dﬁﬁwf (11.93)
0 0 0 0 15

Se effettuiamo una variazione, integrando per parti per fattorizZzase ha
5M———/d56¢ j(scp)
4[5 4
= . - -7
oL /ds op - s [ 2 + 3 } [0

N = /ds&p —s ©
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La solita condizione di stazionarietd impone I'equazione agli autovalori

4 d 5, a0 4 _ -4 5
“i5as 0 ¥) {12+3Z}W’E158‘0

cioé
5 5 251
"+ +|E+=-Z-"==)p=0
s S 16 s

Per sostituzione si verifica che la soluzione precedente,exp(—(Z — 5/16)s) & un autostato con
autovalore dato dalla (11.90). Questo autostato non ha nodi quindi I'autovalore trovato € il piu basso.
Questo dimostra che la soluzione descritta dalle (11.89),(11.90) € la migliore possibile fra tutte le
fuzioni che dipendono solo da= r1 + r».

Vediamo ora in dettaglio cosa succede nel caso immediatamente piu complicato, per fun-
zioni di prova, ad esempio, del tipo

Y; = {e_s/z,ue_s/z} (11.94)
Anche qui il calcolo delle maric x 2 & abbastanza semplice e si ottiene, fiet 2
8 25 54 208 32 140
M= (25 128) L= (208 1012> N= (140 768)
Per determinare gli autovalori del sistema lineare (11.86) basta imporre
det (K*’M — kL — EN) =0

che é un’equazione di secondo graddimron soluzione minore:

o —1952k + 405 k2 — 2/6 k /11245 — 6168 k + 1664 k2
- 1244

(11.95)

per determinare la soluzione occorre trovare il minimd idi questa espressione, e, con
guesto valore, considerare autovalori ed autovettori. Numericamente si trova

Kmin = 3.69937  E(kpmin) = —2.89112  J =.8911 = 1.782 Ry
¥ = (1 +0.0989 ku)e /2

Il valore di E e J sono da confrontare con(Z —5/16)% = —2.84766, J = 0.8477. Come
si vede si € avuto un certo miglioramento, circa% per il potenziale di ionizzazione e
I'accordo con il dato sperimentale, vedi Tab. 11.2 comincia a diventare ragionevole.

E inutile provare polinomi di grado 1 is, gia sappiamo che la pura funzione esponen-
ziale é la migliore possibile, comunque il lettore puo verificare la cosa considerando la base
Y = {6*8/2, se*S/Q}. Trovera che l'autostato coincide con il primo elemento della base.
Lasciamo come esercizio per il lettore il caso di un polinomio di gradoti.in

Citiamo ancora un risultato che pud essere usato per avere un'idea analitica delle cose.
Si puod provare una base a 3 parametri, con un polinomio lineareén, si ottiene dal
formalismo precedente considerandd, = 0, md; = 1, md, = 1 e considerando solo le
sottomatrici3 x 3 che coinvolgono i polinomi lineari. Lequazione caratteristica pesra
e di terzo grado. La soluzione numerica del problema di minimo fornisce

k=3.63 E = -2.9024 J =1.8048 Ry

come si vede il potenziale di ionizzazione e gia preciso all'uno per mille. L'autostato
risultante, non normalizzato, &

¥ = (14 0.0099 - k%t 4 0.08 - ku)e*5/2 (11.96)
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Risultati.

Le espressioni riportate in appendice per gli elementi di mafvigg L;;, N;; permettono
di scrivere facilmente un programma numerico che calcoli I'energia dello stato fondamen-
tale e la funzione d’onda.

In appendice € riportato come esempio un programma scritto in MatLab, ma il lettore
puo facilmente scriverne uno equivalente in un qualunque linguaggio di programmazione.
Il programma non € assolutamente ottimizzato e non é fatto alcun controllo sull’accuratezza
numerica, e scritto solo a scopo illustrativo.

| risultati, ad esempio per una base di 120 elementi, sono riprodotti di seguito. Vediamo
come il fattore di scal “evolva” dal valore iniziale, che & il valore gia visto= 2(Z —

5/16). Vediamo che per cambiamenti ~ 103 I'autovalore dell’energia cambia meno
di 1075 e un riflesso della stazionarieta del minimo, come gia visto.

Il risultato per il potenziale di ionizzazione &
J = 1.807448Ry (11.97)

coincidente con quello noto dalla letteratura sull’argomento in una parte su un milione.
Il risultato € in buon accordo col valore sperimentale, buono ma non a sufficienza.

Z = 2 Livello: 1 1s”2
deg(s) = 3 deg(t) = 4 deg(u) = 5 DIM = 120
num_max_iterazioni = 50 toll. dE = 1.0e-10 dk = 1.0e-06
k in = 33750 dk = 0.6750 E_in = -2.9037230 a.u.

LOOP per k
E = -2903724 k = 4.05 iter = 5
E = -2903724 k = 4.047363  iter = 10
Ris.. E = -2.903724 a.u. J= 1.807448 Ry = 198344.51 cm”-1
k = 4.047363
ord. 0: E0O = -2.847656 a.u. JO= 1.695312 Ry = 186039.04 cm”"-1

Correz. non radiative: dJ _massa = -27.18 ; dJ Pol = -4.78
JNR =J + dJ massa + dJ Pol = 198312.55

Correzioni radiative: dJ rad = -1.90

J calc = JNR + dJ rad = 198310.64 J exp = 198310.67

Trasformando per comodita di confronto le energie misurate da Ry it cdividendo
percio perhc, si ha, per I'elio:

J =198344.51 cm™! Jexp = 198310.67 (11.98)

Lerrore sperimentale, non riportato, € mend i3 cm—'. Come si vede il risultato otte-

nuto non & compatibile con quello sperimentale. Non solo, il metodo variazionale fornisce
un limite superiore all'energia di legame e quindi un limitéeriore per il potenziale di
ionizzazione, anche questo in contraddizione con il risultato (11.98). La differenza fra va-
lore teorico e sperimentale & dell’ordinedli//J ~ 10~4, significa che a quest'odine di
precisione dobbiamo tenere conto di qualche altro effetto che abbiamo trascurato. il piu
importante € di natura puramente cinematica ed & dovuto alla massa finita del nucleo.
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Correzioni di massa.

Il risultato che abbiamo ottenuto € il valore approssimato per lo stato fondamentale di due
elettroni che si muovono in interazione elettrostatica nel campo di un nucleo fisso.

Ricordiamo brevemente come questo risultato vada corretto per la massa finita del
nucleo. Nel sistema del centro di massa dell’atomo

Z
Py+Y p,=0 (11.99)

i=1

quindi I'energia cinetica del sistema si scrive, indicando 86ma massa del nucleo e con
m la massa degli elettroni:

1 1 & 1 (& 0 1 & 1

2 1 2 1 = 2_ L 2, L .

2M'pN+2m;pl 20 (;;;) +2m;pl 2ugpl+M;p’pﬂ
(11.100)

Dove M
m

— 11.101
H m+ M ( )

€ la massa ridotta elettrone nucleo. Il lettore puo trovare una dimostrazione tramite trasfor-
mazioni canoniche della (11.100) nel capitolo 8, nell’appendice 11.D una terza dimostra-
zione basata direttamente su un cambio di variabili per 'equazione di Schrodinger.

Nel caso di un sistema di due elettroni quindi, I'Hamiltoniana effettiva del sistema ha
la forma:

1 1
H = ﬂ(zﬁ +p3)+V+ 7P P2 (11.102)

Rispetto al caso di un centro fisso ci sono due correzioni

e La massa ridotta ha preso il posto della massa dell’elettrone. Abbiamo fatto tutti i
calcoli precedenti in unita atomiche, la massa interveniva appunto nella definizione di
unita atomica, essenda.u. o m. Quindi per tener conto di questa correzione basta
semplicemente moltiplicare il risultato precedente gerAnche I'energia dello stato
fondamentale dell’elio ionizzato va calcolata in termini della massa ridotta, & proprio
il caso di un atomo idrogenoide, quindi entrambi i termini che vanno a comporre il
potenziale diionizzazione hanno la stessa correzione, che si puo scrivere nella forma:

AL Ey = (% - 1) By A= (% - 1) J (11.103)

notiamo cheu/m — 1 ~ —m/M < 0 quindi la correzione tende ad abbassare il
potenziale di ionizzazione, cioe va nella direzione giusta.

e La seconda correzione prende il nomepdiarizzazione di massaE una piccola
correzione, essendo proporzionale:@M, quindi possiamo trattarla in teoria delle
perturbazioni ed il suo contributo

m 1 1 1
AsyEy = M W( Y| —=p1pa|th) = M NIC (11.104)

abbiamo fattorizzato un termine adimensionale, quindi il valor medio pu0 essere nelle usua-
li unita atomiche, la correzione di massa su questo termine sarebbe al secondo ordine in
1/M e la possiamo trascurare.

La polarizzazione di massa non darebbe contributo in caso di funzioni fattorizzate, del
tipo f(r1) f(r2): 'elemento di matrice di ogni impulso sarebbe fattorizzato e quindi nullo,
ad esempio per parita.
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Il contributo di polarizzazione di massa, integrando per parti, si scrive

m 1
= (v v/ 11.105

MN (V1) - Vo ( )
dove V' e la forma quadratica gia definita e relativa alla norma dello stato. Anche que-
sta nuova forma quadratica puo essere espressa intermini delle coosdinatediamo il
risultato

K(p) = /0 “ds /0 du /O “at
oo (8] (3)

209109 2y PPy
20u {ass(u t%) + att(s u”)

| corrispondenti elementi di matrick;; sono riportati in appendice. | risultati delle corre-
zioni appena discusse sono riportati in fondo alla precedente stampa dei risultati:

AyJ=-2718cm™ " AyJ =-478cm!
gueste correzioni, aggiunte al risultato precedente portano il totale a
J = J+ AT+ AyJ =198312.55cm ™! Jexp = 198310.67

Come si vede sussiste ancora una piccola discrepanzal ~ 10~%, main un certo senso
I'approssimazione é fin troppo buona. Infatti nel calcolo abbiamo trascurato le correzioni
relativistiche, analoghe alle correzioni di struttura fine dell’atomo di idrogeno. A priori ci
si aspettano delle correzioni percentuali per I'energia dell’ordifeZdi)> ~ 10~*, invece
il risultato sembra essere corretto fino a una partedsu

In effetti quello che succede €& che per lo stato fondamentale le correzioni di struttura
fine si cancellano quasi esattamente fra loro, dando un contributo di un ordine di grandezza
pit piccolo di quello aspettato. Il contributo dominante per la correzione di energia é
guello dovuto al Lamb shift. Il calcolo, piuttosto complesso, dei due contributi porta ad
uno spostamento aggiuntivo €il.90 cm ! sul potenziale di ionizzazione.

Con questa correzione

J =J+ AT+ Ay + Ape = 198310.65cm ™ Jexp = 198310.67

e I'accordo € eccellente. Lo studente puo verificare che I'accordo € stabile prendendo una
base piu ampia di stati.

Il programma presentato in appendice funzionapeyualunque, ma i confronti spe-
rimentali sono inseriti solo peX < 4, in caso si vogliano i risultati pe¥ > 4 occorre
cambiare le opportune istruzioni.

| risultati, fino al Be ™ sono, inserendo la piccola correzione relativisticalicata:

H- He Li* Bett
Jexp | 6100£100 | 198310.669-0.001 | 6100791 | 124124245
J 6082.99 198310.65 610076.03| 1241247.06
0 el -0.31 -1.90 8.86 75.00

“La correzione per iBett & solo una stima, lo studente pud trovare in letteratura il valore esatto.
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11.6.1 Stati eccitati.

Dovrebbe essere chiaro al lettore che I'insieme di funzioni di base scelto, (11.87), & poco
adatto a studiare gli stati eccitati. Ci si aspetta, ad esempio, che per una coppia di elettroni
nella configurazionés2s, cioé un elettrone in uno stato idrogenoidee I'altro nello stato

2s, 'andamento esponenziale della funzione d’onda sia diverso, cioé d@l tipo

(I)(’l“]_”r‘Q) ~ [e—kam—k’brz _’_e—k,brl_k,aw}

E vero che scrivendé, ;, = k; £ 0k, queste funzioni possono essere generate come svi-
luppi in serie di un singolo esponenziale e polinomirjre quindi, in linea di principio,
approssimabili con funzioni del tipo (11.87), ma, essehgdd:;, legati alle scale caratteri-
stiche dell’atomo, cisi aspetta chgr ~ 1 e quindi occorrerebbero molti termini per avere
una approssimazione ragionevole.

Comunque fatta questa premessa possiamo sempre controllare quanto gli autovalori,
successivi al fondamentale, delle forme quadratiche generate nel paragrafo precedente,
approssimano i valori delle energie delgi atati eccitati.

Come ampiamente spiegato nei paragrafi precedenti si pone di nuovo il problema della
scelta della scala. Abbbiamo due possibilita:

1) Calcoliamo nel modo spiegato I'energia del fondamentale, ottimizzando percio il
valore dik per ottenere proprio questo livello. L'Hamiltoniana effettivax n ha
comunque altri autovalori e possiamo confrontarli con le energie degli stati eccitati.

2) Possiamo, per ogni livello, ottimizzarefilper ottenere quel particolare livello. Ad
esempio per il primo stato eccitato possiamo trovaf@cendo in modo che fecon-
do autovalore della matrice sia minimo. In questo caso otterremb dimerso dal
precedente e energie corrispondentemente diverse.

Come esempio usando la solita ottimizzazione sullo stato fondamentale dell’elio si otten-
gono le differenze di energie riportate nella prima colonna della tabella 11.6.1. Per i primi
livelli 'accordo con i dati non & pessimo, ma migliora se si adotta la seconda procedura,
cioe per ogni livello si trova il valore di dettato dal principio variazionale per quel livello.

| risultati sono riportati nell’'ultima colonna: I'accordo & migliorato. tenendo conto che non
si & considerata la struttura fine sui livelli eccitati I'accordo puo ritenersi soddisfacente.
Ripetiamo: ogni numero riportato nella terza colonna € il risultato di un diverso “run” del
programma. La mancanza del risultato pe ril livélloé dovuta ad una instablitd numeri-

AFE k - fond. dati sper. | k diversoV stato
1s2s — 1s% | 166417.98| 166277.54 166279.9
1s3s — 152 | 186777.82| 184864.93 185034.3
1s4s — 15 | 205186.81| 190940.33 193669.47
1sbs — 1s? | 233674.63| 193663.61 *

ca del programma: per I'elio se il numero di vettori di base supera circa 150, I'algoritmo
per trovare gli autovalori diventa instabile. Anche questa instabilita € dovuta alla “cattiva
scelta” delle funzioni d’onda.

Infine una annotazione sulle dimensioni della base di funzioni. Uno stato di4ipo
fattorizzato ha uno zero di ordinesulla parte radiale della funzione d’onda di uno dei due
elettroni, e ci si aspetta una struttura analoga per gli stati non fattorizzati. Nelle funzioni di
prova gli zeri sono dovuti alla parte polinomiale, e, per coprire almeno il caso fattorizzato,
ognuna delle due variabiti, ro, deve poter comparire fino alla potenzaquindi generi-
camente i valorind,, md;, md, definiti dopo la formula (11.87) sono dell’'ordine die

8Stiamo sempre considerando funzioni d’'onda simmetriche, che come vedremo nello studio della struttura
atomica, corrispondono a stati con spin totale nullo.
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quindi la base deve crescere cofmet 1)3. Questo € uno dei motivi per cui con una base
di 120-140 elementi € problematico ottenere gia il quinto livello eccitato.

11.7 Metodo variazionale e teoria delle perturbazioni.

Il metodo variazionale “puro” pud non essere conveniente nel caso si vogliano calcolare le
dipendenze dei risultati da alcuni parametri, tipicamente campi esterni.

Ad esempio supponiamo di voler calcolare la polarizzabilita di un atomo, nello stato
fondamentale. Sappiamo che in campo elettrico il livello energetico dello stato fondamen-
tale, che supponiamo per semplicita doa- 0, &

E=E)— %aé’Q (11.106)

In principio possiamo calcolare I'energia dell’'atomo in campo elettrico esteow meto-
do variazionale per diversi valori del campo ed estrarre il coefficiente del termine quadratico
in&.

Questo metodo, oltre ad essere discretamente inefficiente, presenta dei problemi diffi-
cilmente risolubili: per poter distinguere il termine é# dai dati, il suo contributo deve
essere maggiore dell’errore insito nel metodo variazionale ( che spesso non € facile da sti-
mare) quindi€ deve essere abbastanza grande, ma allora non abbiamo sotto controllo i
termini di ordine superiore i& nella (11.106).

In realta la soluzione € molto piu semplice: i coefficienti come la polarizzabilita sono
per definizione le risposte a piccole variazioni di campi esterni, quindi la teoria perturbativa
e l'ideale per questo tipo di calcoli.

Se l'effetto e al primo ordine nel campo esterno non ci sono problemi: si calcola lo
stato fondamentalg),) del sistema col metodo variazionale. La variazione al primo ordine
dell’energia &

By = (o] Hrltho) (11.107)

e questo calcolo non presenta particolari difficolta.
Il problema & nella correzione al secondo ordine, vedi eq.(10.15), in cui occorre fare
una somma su infiniti stati intermedi:

By = 37 (bolVinh g (nlV o) (11.108)

La soluzione sta nel capire che la stessa teoria perturbativa puo essere usata nel metodo
variazionale.

Supponiamo di conoscefé,) e la prima correzion&’; all'energia. Siccome il princi-
pio variazionale vale ordine per ordine nel parametro di sviluppo, e siccome gia conoscia-
mo Ey, F1, dobbiamo minimizzare fino al secondo ordine, cioé sviluppare fino al secondo
ordine I'espressione
(V|(Ho + Hr|9)

()

Scriviamo lo stato ed il funzionale in forma di sviluppo perturbativo:
Yv=vo+ V1 +Y2+... ER)] = Eo[¢]+ E1[Y] + B[] + ...
all'ordine 0 la (11.109) da il principio di minimo pef,

(10| (Holtho)
(¥olbo)

che supponiamo risolto con soluziotg, lo stato imperturbato. La (11.109) non dipende
dalla normalizzazione, scegliamay|yy) = 1 per semplificare le formule seguenti. Al

El] = (11.109)

min
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primo ordine si ha

B[] = 2(ho| Holth1) + (Yol Hrltho) + (o] Holto) (—2(bo|v1)) = (ol Hrlto)
(11.110)

Quindi il primo ordine & un funzionale costante, che € proprio il valore perturbativo della
correzione al primo ordine dell’energia. Al secondo ordine la maggior parte dei contributi
si cancellano, usandl |vy) = Eo|vo). Li scriviamo tutti per chiarezza:

Es[y] = 2(vo| Holv2) + (¢1|Holth1) + 2(to| Hrlth1)
(=2(%o|¥1)) ({0l Hr|v0) + 2(3o| Hole1))
(ol Holvo) [4(tholth1)® — 2(tboltba) — (1 1h1)]

Semplificando:

Es[y] = 2(spo|Hr|v1) + (1| Holth1) — Eo{b1|vn) — 2E1 (Yolbr) (11.111)

E semplice verificare che imponendo la stazionariefg @er piccole variazioni diy; si
ottiene effetivamente I'usuale equazione perturbativa, eq.(10.8):

2H|vo) + 2Ho|11) — 2Eo1p1) — 2B |1pg) =0 (11.112)

Per variazioni generiche di;, F; ha un modo zero, cioeé una direzione nello spazio di
Hilbert in cui al variare di), resta costante: le componentiwi lungo, non cambiano
Es, questo in accordo con la teoria perturbativa standard, in cui si imporég) = 0.
Possiamo imporre questa condizione anchig,an modo da avere un minimo e non un
semplice punto stazionario.

Il grosso vantaggio della espressione (11.111) e quella di poter valutare il minimo usan-
do degli stati di prova, come si fa normalmente nel metodo variazionale: la stifidli
sara un limite superiore al valore vero della correzione dell’energia al secondo ordine dello
stato,Es = Es[t]min-

Il caso piu interessante & quello in clili = 0. Normalmente questa circostanza é
dovuta a fattori di simmetria, & quindi facile selezionare statperpendicolari a)y: basta
scegliere stati con una simmetria diversa.

Consideriamo in particolare il caso di una particella sottoposta ad una perturbazione
V(x). Conviene fattorizzare d@; una parte proporzionalew,, scrivendo

Y1 = @i (11.113)
In questo modo, assumendo per semplicita funzioni d’'onda reali:

h2
(alHoln) — Eatvalbn) = —5 [ oo [60 9% + 29 9ui]

Integrando per parti

/«pvw 2009 Vb = /soVwVwS = —/1/% [VoVo + oV3y]
e quindi:
h2 2 2
(alolun) = Enlinlin) = 5 [ 48(V)

Per la variazione di energia si ha

2

By = /w% [QVso —2E10+ f (V<p)2] (11.114)

2m
Per piu particelle, analogamente:

E2=/¢g

h2
2V —2F1¢0 + Z Sy (Vg&)?] (11.115)
i (3
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Atomo di idrogeno.

Consideriamo come esempio il caso della polarizzabilita dell'atomo di idrogeno. Conoscia-
mo il risultato esattd@s = —9/4, « = 9/2 In unita atomiché” = —€z, ¢y = 1//me™",
E1 = 0. Per ragioni di simmetria € naturale usare funzioni di prova del tipo

Y1 = EBzYg

0 € il parametro variazionale. In questo modo, fra I'altrq, ha parita diversa da, e
quindi € automaticamente ortogonale allo stato imperturbato. La (11.114) da:

1 2 1 1
By = £% | =28(o|2*[th0) + ﬁ] =& [—fwor?ww - Qﬁﬂ =& [—25 - Qﬁﬂ
Il minimo di questa espressione € gk 2, nel qual caso
9 9
— _9g2 _ 7Y — b
Ey = —28% > 1 = a=4< 5

Si ha una discreta approssimazione del valore esattd® /2. Possiamo allargare lo spazio
delle funzioni di prova. Ad esempio per

o =Ez[fo+ frr]
si ha
2
Ey,=¢&? {_2<Z2(50 + /i) + % < [(50 + B17)? + B2 + 2ﬁ127(50 + ﬁﬂ“)} >} =

—e2{ S+ gt + (5 - S0 - 34| (11.116)

2
=& |2k 261 1)+ 1351 - 9)
Questa espressione ha un minimo gee= 1/2, 5y = 1, e la corrispondente energia vale

By=— (11.117)

che é il risultato esatto. La cosa non deve sorprendere se si ricorda il metodo usato per il
calcolo della polarizzabilita nel paragafo (10.D).

11.7.1 Polarizzabilitd e costante dielettrica dell’elio.

Per I'elio possiamo adottare la stessa procedura vista per I'idrogeno. L'interazione di dipolo
per gli elettroni si scrive, in unita atomiche,

V= —E(z + 2) (11.118)

ela (11.115) diventa
1 1
Ba= [43 [2 (1 + 20 J(Vio + (Vi (11.119)
In prima approssimazione poniamo
v =EB(z1 + 22) (11.120)

e quindi
% = /w% [—28(z1 + 22)* + B7] (11.121)
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Come funzione d’onda per lo stato fondamentale possiamo considerare quella ottenuta nel
modo piu semplice dal metodo variazionale, la eq.(11.39):

) 27

_ l 3 —Z1(r1+rz2) —_z_ - _ 2
1/10(331,(122) = Tere Z1 =7 16 = 16 (11122)
Il calcolo & identico a quello dell'idrogeno, e si ha:
Ey [ 43 )
o2 = { 3 Z%ﬁJrﬁ ]
Il minimo & per3 = 2/Z3 e fornisce la stima
Fs 4
= =——~-049 11.123

Il risultato (11.123) & ovvio: se consideriamo l'espressione (11.121) vediamo che |l
minimo in 3 si ha per
E,
&2
Per funzioni fattorizzate il valor medio dei termini misti &€ nullo e quindi, usando la simme-
tria fra i due elettroni:

B ={(z1+2)* — — — [((z1 + 22)%)]” (11.124)

75 = () = —4((D)” (11.125)
Rispetto alle funzioni d’'onda dell'idrogeno la scala, per I'elio, & data dalla carica effettiva
Z, e quindi segue

) 1 E, 4

<Z1>:7% ﬁ__if

che é il risultato (11.123).
In generale, usando le variabili (11.78) e la simmetria fra i due elettroni

1 2

= §<(7"% +73) + g((xlf@ +y1y2 + 2122)) =
1 1 1

ST 4rE) + (T 475 = (r = 12)?) = S (57 + £ — )
Ricordando il cambiamento di variabili dato dalle (11.80) e seguenti:

2
% = fé (;1[) (11.126)

N:/ ds/du/dtu(s2—t2)¢g

0 0 0

A:/ ds/du/dtu(sthz)z/}g«(sertzfuz)
0 0 0

Ad esempio usando la base semplificata (11.96) si ha, effettuando gli integrali elementari

((z1+ 22)%) =

Es
2= —0.544683
che e un miglioramento rispetto al risultato (11.123).
Sperimentalmente si ha

=2~ 0.74 (11.127)

Si pud migliorare I'ansatz (11.120) e, soprattutto, si pud usare una funzione piu realistica
per lo stato fondamentale, migliorando nettamente il risultato.
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Concludiamo questo argomento con una osservazione numerica che puo essere utile.
In un gas la polarizzazione é direttamente connessa alla costante dielettrica dalla relazione

e=1+4ran= 1+87m% (11.128)

n € il numero di particelle per unita di volume, quindi se si usano unita atomiche

N 3
n—nad  Smnad = swﬁ = 1.006 - 10~

quindi con ottima approssimazioae- 1 da10~*«,/2, ovvero il coefficiente dE£? nell’e-
nergia, in unita atomiche. Ad esempio per I'elio

€ = 1.000074

11.8 Alcune indicazioni bibliografiche.

Il metodo variazionale € trattato in tutti i testi di Meccanica Quantistica, ad esempio [Landau3,
Messiah]. Una trattazione semplice ed istruttiva si trova in [Pauling]. Un esempio di calcolo
per I'oscillatore anarmonico, a cui & parzialmente ispirato il testo, si trova in [Balsa].

Per una trattazione piu approfondita, soprattutto per quanto riguarda il problema dell’e-
lio, il lettore puo consultare il testo di Bethe e Salpeter [Bethe]. Molto di quanto abbiamo
riportato sull’elio si trova in questa referenza. Sotto molti punti di vista questo testo e fon-
damentale e lo consigliamo caldamente al lettore che voglia approfondire alcuni aspetti di
guesto corso.

La prima applicazione del metodo variazionale all’elio si trova in [Hylleraas]. | pro-
gressi successivi sono discussi nel testo di Bethe. In particolare Kinoshita usa una variante
del metodo di Temple[Temple] per valutare un limite inferiore alle stime variazionali.

Lavori piu recenti, come quelli di Pekeris[Pekeris] e quello di Biirgers et. al [Biirgers]
usano variabili leggermente diverse da quelle di Hylleraas ottenendo un netto miglioramen-
to nella precisione e, soprattutto, riescono a calcolare i livelli molto eccitati dell’'atomo di
elio.



Appendici e Complementi

11.A Stima degli errori.

Come esempio di stima, molto grossolana, dei limiti inferiori sull’energia consideriamo il
caso della trattazione elementare dell’elio data nel paragrafo 11.3.2. La funzione d’onda
variazionale &, vedi (11.39):

Y(x1,®2) = @(r1)p(r2) ¢%r)=:;%;2f”efz“‘ (11.129)

Vogliamo calcolare

o = (Hy|Hy) — E* = (Hyp|Hop) + 2(Hop|Hi2tp) + (Hiot|Hia9p) — E* (11.130)

Sappiamo gia che, sul minimo

51° 5
E=&HWY) =-2Z2-— 71 =7 — — 11.131
wiw =-(2-%)  z-z-3 (11.131)
In coordinate polari si calcola subito:
1 1 1
Hoy = |—Z7 +(Z1 — Z) ( + )} v Hpp=—""—"-% (11.132)
™ T2 |7'1 - 7°2|
Dalle (11.129) segue
—V\=2Z —) =277
" 1 <7’%> 1
e quindi
. o (1 1 (1 1Y
(Hov|Hop) = 2y =221 = 2) 2| —+ — ) + (L = 2) (| =+ — ] )
Lo T2 L T2
1 1 11
=72t~ A2, - 2)ZH—)+ 22 - D)= +——) =
LAz = D)) 26T - 2P
=77 (62> — 822, + 377 (11.133)
Per il secondo termine nella (11.130) si ha:
1 1 5
(Hiop|Hot) = =23 (H12) +2(Z1 — Z) / V= 4+ 22— 2)]
|T1 — ’I"Ql 1 8
L'integrale si calcola in trasformata di Fourier (si veda I'analogo calcolo perturbativo):
1 Z s ml 1 1
I=——_2-.(27 Bxd o] —l@al =~
(4m)% 2 ( 1)/ e P

1 2/ d3k 8w Am dm _297T4Z12/00dk 1 B

T m2Tt ) @r)3 (k212 k2 k241 2T (k24+1)3
473 [ 1 3 9

= — 7:—Z1
r Jo T (R2+1)3 4

37
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Da cui )
(Hiot|Hot) = 2 21(721 — 122) (11.134)

Utilizzando la trasformata di Fourier

il terzo termine nella (11.130) si scrive

1 1 Z; _ B 1
H H = - =2 (2z B d® les| w2l =
(ot iat) = [t = o g 02) [ dimdie e
1 A3k 87 272 87 > k 2
= Z? e = 422/ dk———— =272
(47)2 1/(%)3 (k2 +1)2 |k| (k24 1)2 o (k2 +1)4 371
Sommando i vari termini ed inserendo i valori numerici:
121 0 )
a:m@—mZ) =0.897 a.u. Vo ~0.95a.u. (11.135)

poiché E ~ 2.9a.u. il limite inferiore che si ricava sull’'energia dello stato fondamentale
dalla relazione (11.19):
E—Vo<E;<E+\o

€ piuttosto debole.

11.B Metodo delle differenze finite.

Negli primi esempi visti nel testo abbiamo sempre fatto uso di una sola funzione di prova,
vediamo in quest’appendice come la “macchina” dell'algebra lineare entra in gioco.

Discretizzazione.

Il primo esempio che vogliamo trattare € un metodo che ha il vantaggio di essere semplice
e flessibile, e spesso da una buona approssimazione per problemi unidimensionali.
Consideriamo di nuovo il problema differenziale

1 d?

2 dx?
C’é un metodo molto brutale per risolvere approssimativamente la (11.136). Stiamo cerca-
no soluzioni stazionarie, quindi ci aspettiamo ¢héecresca esponenzialmente all'infinito.
Possiamo allora pensare di approssimare I'equazione limitandoci ad un intervallo finito, di-
ciamo[—L, L]. Se il problema iniziale era gia definito su un intervallo finito questo passo

lo possiamo saltare.
Possiamo ora pensare di risolvere la (11.136)

per punti: discretizziamo il nostro interval-
loin N + 1 intervalli di lunghezza:. Avre-

Y+ V(x)y = Ey (11.136)

Mo una successione di punti equispaziati N=5

o, T1y+- - TNy TN41- |pUﬂtiCE0,£L’N+1 coin- :

cidono con gli estremi dell'intervallo ed in  -L/2 L/2
qguesti puntiimponiamo la condizione alcon- o o o § o o o
torno approssiamata(zo) = ¥(zn41) = 0. 0 1 2 3 4 5 6

le nostre incognite sono i valott; = ¥ (x;)

nei puntiinterni.
Come é chiaro dalla figura il segmento & divisoNh+ 1 intervalli di lunghezzan =

9E semplicemenete l'inversa della trasformata di un campo Coulombiano.
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L/(N+1). SeTintervallo da considerard@, L], come ad esempio per la parte radiale delle
equazioni di Schrodinger, basta prendere i punti con coordinate ka, k = 1... N. Se
si vuole invece un intervallo simmetricp;-L/2, L/2] e si vuole che lo zero sia uno dei
punti della griglia occorre considerafé dispari. | punti della griglia hanno coordinate
xp =—L/2+ ka.

Possiamo sostituire la derivata seconda con la sua versione discréfizzhiigpoten-
ziale con il valore assunto nei puntj, otteniamo

~ Yig1 = 29 + i
2a2

Abbiamo allora una equazione matricidlfex N

+ Viths = Enp; (11.137)

s ity + Vit = By (11.138)
A,;; & una matrice diagonale c@rsulla diagonale principale-el sulle diagonale adiacenti
a questa:
2 -1 0
-1 2 -1 0
0 -1 2 -1
A= . (11.139)

-1 2 -1
—1 2
Notiamo cheA & una matrice autoaggiunta ed ha questa forma nella prima e nell'ultima
riga in virtt delle condizioni al contorno scelte.

Possiamo risolvere I'equazione (11.138) e trovare una approssimazione per gli autova-
lori. Il lettore puo fare qualche esperimento usando ad esempio I'equazione per un oscilla-
tore armonico o anarmonico. Le poche righe di programma seguente risolvono entrambi i
casi. |l risultato non € eccelso ma il lavoro € veramente minimo.

function harmonic_oscl

N = 501;

L = 20; a = L/(N+1);

e = ones(N,1);

x = a*(L:N) - L/2;

D = 1/a"2*spdiags([-e 2*e -e],-1:1,N,N);

% Osc. armonico
V_vect = 0.5*x."2;
V = spdiags(V_vect,0,N,N);

H = 12D + V,
E = eig(H);
E= sort(E);

fprintfC Osc. armonico E_0 = : %12.9\n’,E(1))
% Osc. anarmonico

g = 10;

V_vect = 0.5*x."2 + g/2 * x4

V = spdiags(V_vect,0,N,N);

H = 12D + V,
E = eig(H);
E= sort(E);

fprintfC Osc. anarmonico, g=10 2*E_0/10 = : %12.9f\n’,2*E(1)/10)

10 a discretizzaizone della derivata seconda usa le relazipfi: &+ a) = f(z) + af'(z) + 51" (z)a?.
Sommandole si ottiene I'espressione (11.137).
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Un punto da sottolineare € la necessita di avere una griglia abbastanza fitta per avere un
risultato ragionevole. La necessita dell'indipendenzd.damplica anche un po le cose.
Il vantaggio & che comunque sia complicato il potenziale il programma & sempre lo stesso.
Vediamo ora come dal principio variazionale si puo ottenere una forma analoga alla
(11.138) ma che fornisce, discendendo da un principio variazionale, un limite rigoroso
al risultato e, sfruttando la completezza dello spazio di Hilbert, assicura che infittendo la
griglia di punti si ha convergenza alla soluzione esatta.
Consideriamo a questo scopo delle funzioni continue a tratti, che hanno la forma di un
triangolo isoscele di lat@a, altezza 1 e centrate sui punti della griglia. Analiticamente

0 T <X
T— T

=

=s(@z—wi1) i1 <ax<m

filw) =S 4~ il (11.140)

Tivr1 — T

== L —2) z<z<aip
Tit+1 — T4

0 1‘21‘1‘4_1

Possiamo prendere le funziofii come funzioni di base e su queste costruire la tecnica
variazionale. La quantita da minimizzare &, al séfito

Q= / dm% (V)2 + V(2)0? — Ey? (11.141)

Prendiamo come funzioni di prova
n
=Y cifi(x)
=1
e facile calcolare il termine derivativo nella (11.141) e ricavare

1
Q)= [Mﬁijcz‘cj + Vijcicy — ENijCicj] (11.142)

Vij Zjdl’v(x)fifj Nij = /dl‘fifj

doveA é proprio la matrice (11.139). Notiamo che il coefficiente davanti a questa matrice
€1/anonl/a?. La base non & ortonormale e per questo mokiyp+# d;;. Si trova subito,
calcolando gli integralif f;(z)f;(z)

2/13 1/6 0
6 2/3 16 0
0 16 2/3 1/6
N=aN N= : (11.143)
1/6 2/3 1/6
16 2/3

L'equazione di minim@Q/dc; = 0 da
1
%A,’jcj‘ + Vijc; = ENjjcj (11.144)

Possiamo trovare autovalori ed autovettori senza particolari problemi. Lafba@sev-
viamente densa nell'intervallo considerato per— oo, quindi al crescere di abbiamo

lstiamo definendo il punto stazionario tramite il metodo dei moltiplicatori di Lagrange. Consideriamo il caso
di funzioni reali per semplicita.
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una successione decrescente di stime per I'autov&lpeesiamo sicuri che questa succes-
sione converge al valore esatto. Nel caso di intervallo infinito in realta dobbiamo anche
controllare che si raggiunge un limite allargando l'intervallo.

Questo metodo & particolarmente adatto al calcolo numerico perche le Wgtrigj,;, A;;
sono matrici sparse, in pratica la maggior parte degli elementi &€ nullo. Infatti le funzioni
fi il cui indice differisce per piu di 1 hanno supporto distinto, quindi tutti gli integrali nella
(11.144) sono nulli eccetto quelli che si riferiscono agli elementi di matrice sulla diagonale
principale e sulle due diagonali adiacenti, esattamente eoneE possibile allora trattare
matrici molto grandi senza troppa difficolta.

Questo metodo si pud generalizzare a piu di una dimensione, i simplessi prendono il
posto dei triangoli, € il metodo deltdifferenze finiteed € uno dei pit potenti per risolvere
numericamente le equazioni differenziali.

Un vantaggio non trascurabile del metodo & che gli stessi elementi di mafrice
possono essere calcolati numericamente, ad esempio usando la formula dei trapezi:

/m f(w)de = (x2 — 1) <;f1 + ;fz) (11.145)

La grossa semplifizione che si ha in questo caso & che negli elementi di matrice fuori
diagonale pe¥’:

Vici,i = /dl'fiflv(m)fi(x) ~0

l'integrando si annulla ad entrambi gli estremi, quindi gli elementi di matrice fuori diago-
nale possono essere considerati nulli. Quelli sulla diagonale, applicando sempre la (11.145)
danno semplicemente

Vis = (IV(CUi)

quindi la matricel’ & diagonalé/;; = aV'”. In conclusione usando il metodo dei trapezi
e dividendo per entrambi i membri della (11.144), I'equazione di minimo diventa quasi
identica all'equazione (11.137):

1
3z fises + VYej = ENyje; (11.146)

L'unico posto in cui compare & nel fattorel /a2, come nella (11.137). L'aggiunta di poche
al programma precedente lo trasforma in un metodo variazionale:

N spdiags([1./6*e 2./3*e 1./6*€],-1:1,N,N);

E = eig(full(N\H);

E= sort(E);

fprintfC Osc. anarmonico, g=10 2*E_0/10 = : %12.9f\n’,2*E(1)/10)

11.C Programma numerico per I'oscillatore anarmonico.

function studiox4()

9=10;

C2 = 1;

% C2 = -50; g = 1; % potenziale instabile nell'origine

max_base = 200; % scegliere un multiplo di 20

parita
parita

= 0; % scelta fra stati pari e dispari

= rem(parita,2);

%--- opzioni per la scelta della scala

stat_fond = 0; % se si vuole minimizzare sul fond. -> stat fond = 1
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alpha_fixed = 0; % se si vuole fissare il valore di alpha ;
valore_di_riferimento = 1; % valore a cui viene fissato alpha
opzione = 0; % se si vuole lo stato n variazionalmente per mu*2 < 0

%
N = 2*max_base+1;

[p2in,x2in,x4in] = matrici(N);

%--- Scelta degli autovalori da stampare ----
E_stampa = [1,11,20];

scala = [1/10,1/1000,1/1000];

%
fprintf(\t\t V = %2d*(1/2 x*2) + %2d*(1/2 x"4),C2,9);

fprintfC\n\n’);

if parita == 0

fprintf( 2*E_0/10 2*E_20/1000 2*E_38/1000 *);
else

fprintf(’ 2*E_1/10 2*E_21/1000 2*E_39/1000 °);
end

fprintf(’ base\n\n’);

tic
for base = [10,20:20:max_base]

ind= (1+parita:2:2*base+parita);

nmin = parita + (1-stat_fond)*floor(base)*2;
Yo----- scelta della scala ----------

if alpha_fixed == 0

[alpha,n_eff] = scegli_alpha(C2,g,nmin,opzione);

else

alpha = valore_di_riferimento;
n_eff = 0;

end

%

p2 = p2in(ind,ind);
x2 = x2in(ind,ind);
x4 = x4in(ind,ind);
p2 = (alpha”2)*p2;
x2 = (1./alpha™2)*x2;
x4 = (1./alpha™4)*x4;

H = p2+ C2*x2+ g*x4,

% ------ Procedura di diagonalizzazione -----
[Y,E_out] = eig(full(H),’nobalance’);

[E,ind] = sort(diag(E_out));

E = E}

%

istampa = 1;

for k=E_stampa

if k <= base

fprintfC %15.12f ' E(k)*scala(istampa));

istampa = istampa+1;

else

fprintf(’ ;

end

end

fprintf(’ N= %3d alpha= %5.3f n_min= %3d\n’,base,alpha,n_eff);

end

tempo = toc;

% Togliere i commenti se si vogliono stampare alcuni elementi diagonali

%fprintf(\n\n’);

% dH = diag(H);

b istampa = 1;

% for k=E_stampa

% if k <= base

% fprintfC %15.12f ’,dH(k)*scala(istampa));

% istampa = istampa+1;

% else

%  fprintf(’ ;

% end

% end

b fprintf(’ N = %3d\n’,base);

LR

L

fprintf(\n tempo esecuzione: %d sec \n',tempo);

%--------- Calcolo del viriale -------
N = length(E);

for j=1:N

Y1 = Y(,ind(j));

L2 = Y1™p2*Y1;

V2 C2*Y1*x2*Y1,
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V4 = g*Y1™*x4*Y1;
viriale(j) = (2*L2 - 4*V4 - 2*V2);
end

figura_viriale(viriale,parita,alpha);

%--- Stima errore col metodo di Temple
Y1 = Y(,1);
stima_Temple(Y,E,max_base,C2,g,alpha)

0,
function stima_Temple(Y,E,max_base,C2,g,alpha)
parita = O;

aug_base = 2; % aumento della base

base = max_base+aug_base;

N = 2*base+l;

[p2in,x2in,x4in] = matrici(N);

ind= (1+parita:2:2*base+parita);

p2 = p2in(ind,ind); p2 = (alpha™2)*p2;
x2 = x2in(ind,ind); x2 = (1./alpha™2)*x2;
x4 = x4in(ind,ind); x4 = (1./alpha™4)*x4;

H = p2+ C2*x2+ g*x4,

Y = [Y;zeros(aug_base,max_base)];
HY = H*Y;

H2_non_ord = diag(HY™*HY);

H2 = sort(H2_non_ord);
H2 = H2(1:length(E))’;
E2 = EN2;

sigma2 = H2 - E2;

sigma = sqrt(sigma2);

num_plot = 1:floor((2*max_base)/3);

denE = diff(E); denE = [denE,E(length(E))];

err = (sigma2)./denE;

figure
plot(2*num_plot,10"12*real(err(num_plot))./E(num_plot))
xlabel(’livello’, fontsize’,20);

xlab = str2num(get(gca, XTickLabel’));

ylab = str2num(get(gca, YTickLabel’));
text(0.5*(xlab(1)+xlab(2)),0.5*(ylab(1)+ylab(2)),’107{12} * dE’,'fontsize’,15);

0,
function figura_viriale(viriale,parita,alpha)
figure

virialplot = viriale;

N = length(virialplot);

pt = parita+2*(1:N) - 1;

mxv = max(abs(virialplot));
ev = floor(log(mxv)/log(10)); numev = mxv/10"(ev);
yplot = virialplot/10”(ev);

subplot (2,1,1), plot(pt,yplot);

xlabel(’livello’,'fontsize’,15);

ytext = min(yplot) + 0.25*(max(yplot)-min(yplot));

vshift = min(yplot);

text(10,ytext,['10{’,num2str(-ev), }*Viriale’,’ \alpha = ’,num2str(alpha)], fontsize’,20);
% ----- secondo plot sui primi N/2 lementi della base ----

virialplot = viriale(1:floor(2*N/3));

N = length(virialplot); pt = parita+2*(1:N);

mxv = max(abs(virialplot));
ev = floor(log(mxv)/log(10)); numev = mxv/10™(ev);
yplot = virialplot/10”(ev);

subplot (2,1,2), plot(pt,yplot);

ytext = min(yplot) + 0.25*(max(yplot)-min(yplot));
text(5,ytext,['107{",num2str(-ev), }*Viriale’], fontsize’,20);
xlabel(’livello’, fontsize’,15);

return

0,

function alpha = trova_radice(coff)
pol = coff;

rad = roots(pol);

ind_rad = find(rad-conj(rad)==0);
rad = rad(ind_rad);

rad = -sort(-rad);

ind_rad = find(rad > 0);

alpha = rad(ind_rad(1));

43
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return

function [alpha,n_eff] = scegli_alpha(C2,g,nmin,opzione)
coff = zeros(1,4);
if C2 < 0 & opzione ==

coff(l) = 1;
coff(2) = -abs(C2);
coff(3) = 0;
coff(4) = 9./8*g;

alpha = trova_radice(coff);

alpha = alpha™(1./4); % l'equazione e’ in alpha™4
n_eff = -( (alpha™6-alpha*2*abs(C2))/(3.*9)-1./2 );
else

coff(1) = 2*nmin+1;

coff(3) = -C2*coff(1);

coff(4) = -3*g*(2*nmin”2+coff(1));

alpha = trova_radice(coff);

alpha = sqrt(alpha); % I'equazione e’ in alpha’2
n_eff = nmin;

end

function [p2,x2,x4] = matrici(N)

n_v = O:N;

sgl = sqrt((n_v+1).*(n_v+2));

sq2 = sqrt((n_v+1).*(n_v+2).*(n_v+3).*(n_v+4));
vd_p2 1./2%(2*n_v +1);

vd_x2 1./2%(2*n_v+1);

vd_x4 = 3./4%(2*n_v.A2+2*n_v+1);

v_upl_p2
v_upl_x2
v_upl_x4
v_up2_x4

-1./2*sq1;

1./2*sq1;
1./4*(4*n_v+6).*sq1l;
1./4*sq2;

spdiags([1./2*vd_p2’ v_upl_p27,[0,-2],N+1,N+1);
spdiags([1./2*vd_x2' v_upl_x2'],[0,-2],N+1,N+1);
spdiags([1./2*vd_x4" v_upl_x4" v_up2_x4],[0,-2,-4],N+1,N+1);
p2+p2’;

X2+x2",

X4+x4';

el
N
[ L I T TR |

11.D Appendice per I'atomo di He.

Raccogliamo in queste appendici i calcoli necessari per lo studio dello stato fondamentale
dell’elio.

Correzione di massa.

Ricaviamo l'effetto della massa finita del nucleo sull’Hamiltoniana. Il caso generale col
formalismo canonico é stato affrontato nel capitolo 8, qui diamo per comodita del lettore
una dimostrazione diversa, basata direttamente su un cambiamento di variabili nell’equa-
zione di Schrédinger.

Consideriamo I'Hamiltoniana totale dell’atomo di elio, compreso il nucleo;

1
2

1

5P+ Vine (11.147)

1
Hzipf—i— Ps+

Notiamo che questa hamiltoniana deve avere uno spettro continuo
E = Eyin + Eo

dove Fy;,, € I'energia cinetica del sistem&y I'energia dello stato fondamentahel siste-
ma del centro di massaQuesta € semplicemente la definizione corretta di energia dello
stato.

Chiamiamop = (£,7,() le coordinate in un riferimento inerziale qualunque,=
(X,Y, Z) la coordinata del centro di massargle coordinate relative rispetto al nucleo.
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Ricordiamo che il sistema €& invariante sotto traslazioni quindi il potenZialdipende

solo dalle coordinate relative;, ad esempio;o = r; — ro. Facciamo esplicitamente il
cambiamento di variabili che corrisponde alla trasformazione canonica classica per passare
a coordinate del centro di massa e coordinate relative. Consideriamo ad esempio la prima
coordinata, si ha:

1
= o ar Mév tmér+me) @i =6~ &y (11.148)
Quindi
0 _0X 9 om0 om0 0
0 _0X 9 0y, 9 M 9 9 9

0y 0y OX | Oén Oz; 2m+MOX Oz Oy

Ovvero, considrando anche le altre componenti delle coordinate e scriggpetogli im-
pulsi nel sistema inerziale di partenz@eP per gli impulsi relativi e quelli del centro di
massa

M

- p_
o 1 M (p1 + p2)

q; P +p, an

B m
C2m+ M

Quindi I'energia cinetica si scrive

1, 1 M ) 1 )
— g% == - P —
N = 3 @m 1 e o+ (P +P2) + 577 (1 +P2)
1 5 2 m 2 1 1
— =" p2y - — _ - p
om I T 9 2 (2m+ M)? tonPi gt o, +M (p1 +p2)
sommando
1 1 1
Epin = ———P*+ —(p> +p2) + —p, - 11.149
! P +2N(p1+p2)+Mp1 Do ( )
mM
= = massa ridotta 11.150
e V1 ( )

Quindi correttamente € stato isolato il termine di energia cinetica globale del sistema.
L'Hamiltoniana relativa ai gradi di liberta interni & allora

1 1
H= ﬂ(prf +p3)+V+ 77P1 P2 (11.151)

Jacobiano ed elementi di matrice.

Le notazioni sono le seguentiy, o, 712 indicano rispettivamente la distanza del primo e
del secondo elettrone dal nucleo e la loro distanza relativa.

Il sistema di riferimento & centrato sul nuclep,é I'angolo fra la direzione della
posizione del primo elettrone e quella del secondo. Le variabili usate sono
s=r1+7r t=ri—r9 U= T2 (11.152)

rf2 = T% + r% — 27179 cos 7y

cosy = cos B cos 0 + sin 01 sin O, cos(p1 — @2)



46 CAPITOLO 11. METODI VARIAZIONALL

Da cui
s = - ;tQ (11.153a)
iy = © ;tz (11.153b)
711+%: Tlrlt“zm B 524—81&2 %7%: ?ﬂ2r177‘:1 :7824—tt2 (11.153¢)
1—cosy= 2% 14 cosy = 2% (11.153d)
Jacobiano.

d3r1d3r, dipende da sei variabili. Tre di queste variabili possono essere eliminate im-
mediatamente: due angoli che determinano la direzione, arbitraria, del primo elettrone,
un’altra variabile & I'angolo azimutale fra il piano che passa per i due elettroni ed il nucleo
e l'assez. Restano come variabili i due raggi e I'angolo relativo fra il primo ed il secondo
elettrone;y, quindi

d*rid3ry = (47) - (21)riridridryd cosy
si ha da una parte

2 _ 4232 2 42,2
549 (s —=1%) s+ —u
riry = ———"— Cosy = —5——5—
12 4 0 82—t2

1 1 0
d(ri,ra,co8y) |1 % 0 1w
(s, t,u) i *2 S 2822
Quindi
2 _42)21
d*rid*ry — 87° (s ) ) 35 11 2 dsdtdu = Tu(s* — t*)dsdtdu (11.154)

Un ulteriore fattore 2 si ottiene se ci si limita alla regione di integrazibne 0, come
indicato nel testo.

Forme quadratiche.

Vogliamo esprimere le forme quadratiche
1
M= / 5 [(V19)” + (Vau)?] (11.155)
Co {Z L2 1} 0 (11.156)

1 T2 12
/\f:/w?

in termini delle variabilis, ¢, w. Dallo jacobiano (11.154) si ha, trascurando il fatt®né
comune a tutti i termini e ricordando i limiti di integrazione

(11.157)

0<t<u<s<
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si ha facilmente, usando le (11.153)
c:/ ds/du/ dt [4Zus — (s* — )] ¢? (11.158a)
0 0 0
N = / ds / du / dtu(s* — t?)y? (11.158b)
0 0 JO

Il termine M e leggermente pit complicato. Chiamiamgy le coordinate dei due elettro-
ni, si ha:

Js x ot x! ou ' —yt

ot ort oz’ T12

0s ot yt ou y —at

oy o Yy’ T2 oy’ T12

quindi
ooy |z T—y 2
— (D) + 0p)2 + (D)? + 222 Y ;";_ y) 0wt (051 + Op1))
1712

12 2rq
7‘% + 7‘% — T%Q
27’2

2 2 .2
= (@ + 0 + () + [7“1 - w} 005 + Or)

0 00 _ (5,0 — 0,) + (0uth) + — [ ] D (Outs — 01)

oyt Oyt r12
La seconda derivata si ottiene dalla prima scambiando I'indice 1 con l'indice 2, in questa
operazion&); — —0;. La semisomma dei termini da

%((Vﬂ/})Q + (V27/})2) = (351/1)2 + (at¢)2 + (auw)2+
1 11 1

+ . {(7’1 + 1) — §(E + E)(T% +r3— T%Q)} 0uY0sth =
1 1.1 1

- 12 {(rl —re) - §(E B E)(T% +rj - T%z)} OuY 0y

Utilizzando le (11.153) i coefficienti dei termini misti si scrivono:

1 2s 2+t 25 u? — t2
%WWHU{S‘M(Q‘“) SuaEoe
1 2t 824 t2 2t 52 — u?

Oy W0 - — |t —_ 2 = =
Yoy Hu{—FthQ( 2 w) u s2 —t2

e finalmente, moltiplicando per il fattore jacobiano
M = u(s® = 12) [(0s9)® + (0:)? + (0ut)?] + 20,1 [s(u® — 12)05 + 1(s* — u®) O]

che é I'espressione usata nel testo.

Elementi di matrice.

Riportiamo qui i valori degli elementi di matrice, non simmetrizzati, relativi alle forme
quadraticheM, £, V. Si sottintende che l'integrale € preso fra due funzioni del tipo

Szlt2]1ukle—s/2 812ﬁ2j2uk26—3/2
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Poniamo
a =11+ 12 b=2(j1—‘rj2) C:(k‘l-i-k‘g)
Risulta
|
M = 2((13jb63(+3i23'6) (X1 4+ Xo+ X3+ X4+ X5)
X1:(6+2b+c) (20+a—a?+b?+9c+c?+b(9+2¢)+4iyia)
(3+b) 5+b+c)
16 (24 2b+ ¢) j1 jo 4 (4d+a+b+c—2i) ko
X,y = X3 =
(=14+0b) (L+b+ec) 3+
X, — 16 51 k2 X5:4(4+2b+c)k1k2
1+b+c (3+0b) (1+b+c)
_ (A+a+b+o) -2 (54+2b+c) 4(340b)Z
 (1+b)B+b) [24+b+c) (4+b+c)  3+b+c
2(64+2b+c¢) (b+a+b+c)!
N =
(1+b) 3+0b) B3+b+c) B+b+c)
K:W(Y1+YQ+Y3+H+YS)

v c(20+a—a?+ b2 +9c+cE+b(9+2¢)+4iyin)
e (14+0) (3+0b) (5+b+c)

16 cjy1 j2 4(d+a+b+c—2i3) Kk

R g s s MR Ch (1+b) 3+0)
- —16j2 ve —4 (44 2b+c) ky ko
YT (1tbto) T+ B3+ (1+b+0)

Programma numerico in MatLab.

Di seguito é riportata la lista dei comandi in MatLab che eseguono il calcolo variazionale
per I'elio ed altri ioni a due elettroni. Rispetto a quanto riportato nel testo I'unica differenza
e che la normalizzazione delle funzioni di base &

1
i1(2j)1k!

SthQuke—s/Q

Il prefattore stabilizza in una certa misura le matrici, che hanno elementi differenti fra loro
per decine di ordini di grandezza.

Se il lettore vuole sperimentare con il programma i parametri da tenere in conto sono
quelli definiti nelle prime righe.

e LIVELLO: Indica su quale livello si effettua I'ottimizzazione. 1 corrisponde allo
stato fondamentale, 2 al primo eccitato etc. Questo parametro deve essere minore di
5.
num_livelli = 5 indica il numero di autovalori presi in considerazione. Se si vuole
cambiare questo parametro si deve modificare la procedura di stampa dei risultati.

e Z: Indica lo ione che si vuole considerare. | confronti con i dati si hanno solo per
Z < 4. Se sivuole uno ione co# piu alto occorre modificare, oltre alle procedure
di stampa, il vettorenassa dove sono definite le masse nucleari, nella funzione
calcolo_correzioni.
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e maxexp_s , maxexp_t , maxexp_u definiscono le massime potenze delle
variabili s, ¢, u nelle funzionidi prova. La dimensione della base é

DIM = (maxexp_s + 1) (maxexp_t + 1) (maxexp_u + 1)

QuandaDIM supera 150 per I'elio si producono delle instabilitd numeriche, ma basi
molto piu piccole danno risultati stabili per i livelli fondamentali.

Gli altri parametri sono semplicemente parametri di inizializzazione per il “loop” usato per
trovare il minimo ink dell’energia.

Il programma non & particolarmente efficiente, soprattutto nel calcolo delle matrici.
Naturalmente siccome le matrici sono fisse il lettore pud conservare il loro valore in un file
e sostituire la chiamataatrici  all'inizio del file con un’operazione di lettura.
function studioElio()

LIVELLO = 1,
num_livelli = 5;

Z =2

maxexp_s = 3; maxexp_t = 5; maxexp_u =5;
nummax = 50; dE_prec = 1.e-10; dk_prec = 1l.e-6;

k = 2*Z-5/16);
dk = 0.2%;

Ry = 109737.3156; % cm”-1
AU = 2*Ry; % atomic unit

tic;
[LLM,N,K] = matrici(maxexp_s,maxexp_t,maxexp_u,Z);
tempo_matrici = toc;

[E_liv,Y0] = calcola_energia(k,M,L,N,num_livelli);
ene = E_liv(LIVELLO);

intestazione( Z,LIVELLO,maxexp_s , maxexp_t , maxexp_u,nummax,dE_prec,dk_prec,k,dk,ene);

kvolte = 1; dE = 1;

fprintf(\n LOOP per k \n’);

tic;

while ( (kvolte <= nummax) & (dk > dk_prec) & dE > dE_prec)
kup = k + dk;

[E_liv,Y1] = calcola_energia(kup,M,L,N,num_livelli);
enel = E_liv(LIVELLO);

kdown = k - dk;

[E_liv,Y2] = calcola_energia(kdown,M,L,N,num_livelli);
ene2 = E_liv(LIVELLO);

if enel <= ene

k = kup;

dE = abs(enel-ene);

ene = enel,;

elseif ene2 < ene

k = kdown;

dE = abs(ene2-ene);

ene = enez;

else

dk = dk/2;

end

if (rem(kvolte,5) == 0)

fprintfCE = %11.79 k = %11.79 iter = %d \n’,ene,k.kvolte);
end

kvolte = kvolte + 1;

end

if (rem(kvolte-1,5) ~= 0)

fprintfC(E = %11.79 k = %11.79 iter = %d \n’,ene,k.kvolte);
end

tempo_loop = toc;

[E_liv,Y_liv] = calcola_energia(k,M,L,N,num_livelli);

J = 2%(-Z"2/2 - E_liv(LIVELLO)); % in Rydberg
JO = 2%(-Z2"2/2 + (Z-5/16)"2); ene0 = -(Z-5/16)"2; % ordine 0 in Rydberg
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fprintfC\n  Risultati: E = %10.6f a.u. J = %10.6f Ry = %10.2f cm"-1 k = %10.6M\n’,...
E_liv(LIVELLO),J,J*Ry K);
fprintf(ordine zero: E_0 = %10.6f a.u. JO = %10.6f Ry = %10.2f cm”-1\n\n’,ene0,J0,JO*RY);

%fprintf(Tempi: calcolo matrici = %6.3f sec. loop = %6.3f sec \n’,tempo_matrici,tempo_loop);

% =============== Correzioni di massa e confronti
[dE_pol,dE_massa,dJ_massa] = calcolo_correzioni(K,N,Z,num_livelli,k,E_liv,Y_liv);

J = (27212 - E_liv )*AU; % in cmA-1
dJ_massa = dJ_massa*AU;

dJ_pol = -dE_pol*AU;

JNR = J + dJ_massa + dJ_pol;

fprintfC\n Correz. non radiative: );
fprintfC dJ_massa = %5.2f ; dJ_Pol = %5.2f\n’, dJ_massa(LIVELLO),dJ_pol(LIVELLO));
fprintfC J_NR = J + dJ_massa + dJ_Pol = %10.2f\n’,J_NR(LIVELLO));

confronti_exp(J_NR,LIVELLO,Z);

function confronti_exp(J_NR,LIVELLO,Z)
%J_exp = [6100,198310.6691,610079,1241225.]; %[6100, 198310.6691 ,610078,1241242 ]
J_exp = [6100,198310.6691,610079., 1241242.];

dJ_exp = [100,0.15,25,100];
dJexp=[0,0,0,0,0;
0, 166277.542,184864.932 ,190940.330,193663.6140 ;
0, 491374.6 ,558777.88 ,581596.77 ,591184.26 ;
0, 981178. ,1127705. ,1178005. ,1199650. ];

dJ_rad = -[.0037+0.304,1.341+0.562,-16.69+7.83,-75]; % in cm"-1 v.s. Z

Jtot = J_NR(LIVELLO) + dJ_rad(2);

if LIVELLO == 1

fprintf( Correzioni radiative: dJ_rad = %5.2f\n’,dJ_rad(Z));

fprintf(J_calc = J_NR + dJ_rad = %10.2f J_exp = %210.2\n’,Jtot,J_exp(Z)-dJ_exp(Z,LIVELLO));
end

% Valori calcolati con questo programma

J_calc_th = [6082.99, 198310.65,610076.03,1241247.06];

J_NR_th = [198312.55, 32032.65, 13278.25, 4643.08, O;
610067.17, 118698.75, 51244.91,25955.16,5152.65;
1241172.06, 260033.22, 113496.43,60632.32,22376.81];

for i=1:3, for j=1:5, dJ_NR_th(ij) = - J_NR_th(ij) + J_NR_th(i,1); , end , end

for i=1:3, for j=1:5 , strdJ{i,j} =’ * end,end
for i=1:3, for j=1:5 , strdJ{i,j} = num2str(dJ_NR_th(i,j)); end, end
strdJ{1,5}=' *

trsz = {'1s2s - 1s"2'1s3s - 1s"2''ls4s - 1s"2''1s5s - 1s"2'};
strliv = {{1s"2 ’1s2s ’/’1s3s ’'’1s4s '’ls4s '};

if z>1

fprintf(\n Stima delle righe di transizione \n’);

fprintf(’ dE da liv: %s Dati da tutti i liv.\n’,strliv{LIVELLQO})

for j = 1.4

fprintf(C %s %10.2f %10.2f %-9s \n',trsz{j},-J_NR(j+1) + J_NR(1),dJ_exp(Z,j+1),strdJ{Z-1,j+1});
end

end

%=
function [dE_pol,dE_massa,dJ_massa] = calcolo_correzioni(K,N,Z,num_livelli,k,E_liv,Y_liv)
me_au = 0.510998902/931.494013;

massa = [1,4.002602,6.941,9.012182];

mu = massa(Z)/(me_au+massa(Z));

dE_pol = zeros(num_livelli,1);

for j = L:num_livelli

Y = Y_liv(:));

dE_pol(j) = k"2*(Y*K*Y)/(Y*N*Y)*me_au/massa(Z);

end

dE_massa = (mu-1)*E_liv;

dJ_massa = (mu-1)*(-Z"2/2 - E_liv);

return

function livelli(E_liv,Y_liv,Ry, k,L,M,N,K,mu,fattore_polar)
num_liv = length(E_liv);
fprintf(\n’)
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for j=1: num_liv

Y = Y_liv(.j);

polarizz = k"2*(Y™*K*Y)/(Y™*N*Y)*fattore_polar;
dmassa = (mu-1)*E_liv(j);

ene(j) = E_liv(j) + polarizz + dmassa;

end

for j=2:num_liv
dE =(ene(j) - ene(1))*2*Ry;
fprintfC E = %210.2f \n',dE);

end

%==========calcolo Energia ———————————————=—
function [E_liv,Y_liv] = calcola_energia(k,M,L,N,num_livelli)
szN = size(N);

HO = k"2*M - k*L;

[V,Ematrix] = eig(N\HO);

[E,ind] = sort(diag(real(Ematrix)));

E_liv = E(1:num_livelli);

for k = L:num_livelli

Y_liv(;,k) = real(V(;,ind(k)));

end

%========== Calcolo elementi di matrice ====

function [L,M,N,K] = matrici(maxexp_s,maxexp_t,maxexp_u,Z)
maxind_s = maxexp_s+1; maxind_t = maxexp_t+1; maxind_u = maxexp_u+1;
dim = maxind_s*maxind_t*maxind_u;

L = zeros(dim,dim); M = L; N = L; K = L;

for i1=0:maxexp_s
for j1=0:maxexp_t
for k1 = O:maxexp_u
for i2=0:maxexp_s
for j2=0:maxexp_t
for k2 = O0:maxexp_u

i1 + maxind_s*1+ maxind_s*maxind_t*k1 + 1;
i2 + maxind_s*2+ maxind_s*maxind_t*k2 + 1;
a = i1+i2; b=2%(j1+j2); ¢ = k1+k2;

norma = prod(1:(i1+2*j1+k1))*prod(1:(i2+2*2+k2));

fatt3
fatt4

= prod(1:(3 + a + b + ¢));

= fatt3*(4+a+b+c);

fattN = fattd/( (1 + b)*(3 + b)*(3 + b + ¢)*(5 + b + ¢));
N(@,j) = 2*(5 + a + b + ¢)*6 + 2*b + c)*fattN/norma;

fattM = fatt3/( 2*(1 + b)*@3 + b + ¢) );
xIn = ( (6 + 2*b + C)*(20 + a - a2 + b2 + 9% + c’2 + bXQ + 2%C) + 441*i2) );

x1d B+ b)*5 + b + c) x1 = x1n/x1d;

x2 = (16%2 + 2*b + c)*j1%2)/((-1 + b)*(1 + b + c¢));
x3 = -(4*4 + a + b + ¢ - 2%1)*k2)/(3 + b);

x4 = (16%1*k2)/(1 + b + c);

x5 = (4*(4 + 2*b + c)*k1*k2)/((3 + b)*(1 + b + c));

M(i,j) = (x1+x2+x3+x4+x5)*fattM/norma;

L(ij) = fattd/( (1+b)*(3+b) )*( 2*(5+2*b+c)( -(2+b+c)*(d+btc) ) + 4*(3+b)*Z/(3+b+c) )norma;

fattk = fatt3/( 2*3 + b + c) );

kinl = -((c*(20 + a - a™2 + b"2 + 9*c + ¢"2 + b*9 + 2*c) + 4*1*i2))/((1 + b)*(3 + b)*(5 + b + ¢)));
kin2 = (16*c*1%2)/((-1 + b"2)*(1 + b + ¢));

kin3 = (4*(4 + a + b + ¢ - 2%2)*k1)/((1 + b)*(8 + b));

kind = (-16%2*k1)/((1 + b)*(1 + b + c));

kins = (-4*(4 + 2*b + c)*k1*k2)/((1 + b)*(3 + b)*(1 + b + ¢));

K(i,j) = fattK*(kin1+kin2+kin3+kin4+kin5)/norma;

end, end , end , end , end , end

M = 12(M+M’); L = 1/2*(L+L’); N = 1/2*(N+N’); K = 1/2%(K+K’);
return

function intestazione( Z,LIVELLO,maxexp_s , maxexp_t , maxexp_u,nummax,dE_prec,dk_prec,k,dk,ene)
dim_base = (maxexp_s+1)*(maxexp_t+1)*(maxexp_u+1);
strliv = {1s"2 '’1s2s ’/’1s3s ’’'ls4s ''ls4s '};

fprintf(\n Z = %2d Livello: %2d %s \n’,Z,LIVELLO,strliv{LIVELLO});
fprintfC deg(s) = %2d deg(t) = %2d deg(u) = %2d DIM = %3d \n’, ...
maxexp_s , maxexp_t , maxexp_u,dim_base);
fprintfC num_max_iterazioni = %3d toll. dE = %7.1e dk = %7.1e\n’,nummax,dE_prec,dk_prec);
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fprintf(C k_in = %7.4f dk = %7.4f E_in = %11.7f a.u. \n'k,dk,ene);
return
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