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Capitolo 11

Metodi Variazionali.

11.1 Principio Variazionale.

Uno dei problemi principali in Meccanica Quantistica è quello di trovare gli autovalori e
gli autostati corrispondenti alle soluzioni stazionarie dell’equazione di Schrödinger

Hψ = Eψ (11.1)

È possibile formulare il problema in termini di un principio variazionale e questo permette
di ottenere delle tecniche di soluzione molto efficienti.

Il problema (11.1) è un problema lineare agli autovalori in uno spazio di Hilbert infinito
dimensionale, per capire da dove ha origine il principio variazionale facciamo l’esempio di
un problema agli autovalori in uno spazio finito-dimensionale:

Aijxj = λxi (11.2)

doveA è una matrice hermitianan× n.
Ad ogni matrice hermitiana è associata una forma quadratica

Q(x) = Aijx
∗
i xj

ed è immediato verificare che l’autovalore più piccolo della matriceA corrisponde al mini-
mo assunto dalla forma quadraticaQ sulla sfera unitaria, cioè sui vettori di norma uno. In
effetti siaX un vettore, unitario, con componenti(x1, . . . , xn) e siaei la base di autovettori,
normalizzati e ortogonali, dell’operatoreA. Dal teorema spettrale

A =
n∑
i=1

|ei〉λi〈ei| λ1 ≤ λ2 . . . ≤ λn (11.3)

si ha:

Q(X) = 〈X|A|X〉 =
n∑
i=1

|〈X|ei〉|2λi ≥ λ1

n∑
i=1

|〈X|ei〉|2 = λ1〈X|X〉 = λ1 (11.4)

Il vettore unitario|X〉 corrispondente al minimo è proprio|e1〉. Per trovareλ2 cerchiamo il
minimo della forma quadratica tra i vettoriY perpendicolari al primo autovettore trovato,
e1. Si ha, usando che〈e1|Y 〉 = 0

Q(Y ) = 〈Y |A|Y 〉 =
n∑
i=2

|〈Y |ei〉|2λi ≥ λ2 (11.5)

il minimo valore viene assunto per|Y 〉 = |e2〉 e così via.
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4 CAPITOLO 11. METODI VARIAZIONALI.

NOTA. Percercareil minimo della forma quadraticaQ corrispondente all’autovalorek−esimo dob-
biamo restringerci al sottospazio perpendicolare alla varietàVk−1 generata dai primik−1 autovettori,
ma una volta trovato il punto stazionario, cioè l’autovaloreλk e l’autovettore|ek〉 il valore diQ in
questo punto è stazionario perqualunquevariazione, anche comprendente i primik − 1 autovettori.
In altre parole

δQ(ψ)||ψ〉=|ek〉
= 0 (11.6)

Infatti, una qualunque variazioneδ|ψ〉 è della forma

|δψ〉 =
∑
k

ck|ek〉 ck infinitesimi

quindi

δQ(ψ)||ψ〉=|ek〉
=
〈ek|Q

∑
α cα|eα〉+ λk

1 + 〈ek|
∑
α cα|eα〉

− λk ' 〈ek|Q
∑
α

cα|eα〉 − λk〈ek|
∑
α

cα|eα〉 = 0

Nell’ultimo passaggio si è sfruttato il fatto che|ek〉 è un autostato diQ.

In uno spazio di Hilbert infinito dimensionale, se l’operatoreH è autoaggiunto ed
ammette una decomposizione spettrale

H =
∑
i

|ei〉Ei〈ei| (11.7)

il risultato è identico.
Mostriamo ora il viceversa, cioè che il minimo della forma quadratica costruita tramite

l’Hamiltoniana corrisponde ad una soluzione dell’equazione di Schrödinger. Sia|ψ〉 uno
stato qualunque, il valor medio dell’energia su questo stato è

Q(ψ) =
〈ψ|H|ψ〉
〈ψ|ψ〉

Il minimo di Q è il minimo di H sulla sfera unitaria nello spazio di Hilbert. Sia|ψ̄〉
l’autovettore corrispondente al minimo diQ e chiamiamoE il valore del minimo:

E = Q(ψ̄) =
〈ψ̄|H|ψ̄〉
〈ψ̄|ψ̄〉

(11.8)

Il minimo di Q è un punto stazionario, cioèQ non deve cambiare, al primo ordine, per
trasformazioni|ψ〉 → |ψ〉+ |δψ〉. Quindi:

δQ =
〈δψ|H|ψ̄〉
〈ψ̄|ψ̄〉

− 〈ψ̄|H|ψ̄〉
〈ψ̄|ψ̄〉

〈δψ|ψ̄〉
〈ψ̄|ψ̄〉

=
1

〈ψ̄|ψ̄〉
[
〈δψ|H|ψ̄〉 − E〈δψ̄|ψ̄〉

]
= 0

poichè questa uguaglianza deve valere per trasformazioni arbitrarie, il minimo|ψ̄〉 deve
soddisfare a

H|ψ̄〉 = E|ψ̄〉 (11.9)

cioè proprio l’equazione di Schródinger. Il valore del minimo,E, è proprio l’autovalore.
Una formulazione equivalente di questo procedimento è la seguente. È noto che un mi-

nimo soggetto ad un vincolo può essere trovato introducendo un moltiplicatore di Lagrange
per il vincolo, in questo caso il principio variazionale si scrive:

minQ′(ψ) = [〈ψ|H|ψ〉 − λ(ψψ − 1)] (11.10)

La variazione diQ′ deve annullarsi per variazioni diψ e diλ

δψQ
′ = 〈δψ|(H − λ)|ψ〉 = 0 δλQ

′ = δλ(ψψ − 1) = 0
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la seconda relazione esprime appunto il vincolo, la prima, dovendo essere valida per varia-
zioni arbitrarie, impone

Hψ = λψ (11.11)

che è appunto l’equazione di Schrödinger. Moltiplicando per〈ψ| la (11.11) si ottiene il
valore del moltiplicatore,λ = 〈ψ|H|ψ〉, cioè proprio l’energia dello stato fondamentale.
Trovato il primo autostato,|ψ1〉, si trova il minimo diQ sullo spazio perpendicolare a
|ψ1〉 e si trova il primo livello eccitato, e così di seguito, esattamente come nel caso finito
dimensionale.

La formulazioni (11.8) e (11.10) sono quindi equivalenti ma nella prima il significato
fisico è più diretto: si minimizza il valore dell’energia.

Vediamo ora perchè questa formulazione variazionale fornisce un pratico strumento per
lo studio dell’equazione di Schródinger. Consideriamo una funzione, uno stato in generale,
dipendente da un certo insieme di parametriα: |Φ(α)〉, che supponiamo per semplicità
normalizzato. Se calcoliamo il valor medio dell’Hamiltoniana su questo stato otterremo
una funzione diα:

E(α) = 〈Φ(α)|H|Φ(α)〉 (11.12)

Il principio variazionale ci assicura che comunque scegliamo lo stato e comunque sceglia-
mo i parametri avremoE(α) ≥ E1. Ma allora minimizzando la funzioneE(α) rispetto ai
parametri otterremo una stima per eccesso dell’energia dello stato fondamentale

minE(α) ≥ E1 (11.13)

Il punto è che la minimizzazione della funzioneE(α) è un problemaalgebrico, si tratta di
risolvere il sistema di equazioni

∂E

∂αi
= 0 (11.14)

abbiamo così approssimato un problema differenziale con un problema algebrico, normal-
mente più semplice. Se avremo cura, o fortuna, nello scegliere il tipo di stato|Φ〉 otterremo
non solo una maggiorazione diE1 ma anche una stima attendibile.

Supponiamo di avere trovato la soluzione del problema algebrico (11.14), cioè di aver
trovato i valoriᾱi che soddisfano le equazioni (11.14), in corrispondenza avremo uno stato
|Φ̄〉 = |Φ(ᾱ)〉 che è la nostra approssimazione allo stato fondamentale.

Questa procedura ha un “bonus” che rende il metodo molto efficace soprattutto per il
calcolo dei livelli energetici. Normalmente, a meno di casi fortunati, lo stato trovato non
coinciderà esattamente con lo stato fondamentale vero,|ψ1〉, del problema:

|Φ̄〉 = |ψ1〉+ |δψ1〉

se l’approssimazione è buona|δψ1〉 sarà “piccolo”1. Ma |ψ1〉, benchè incognito, è uno
stato stazionario diH, quindi

〈ψ1|H|δψ1〉 = 0

perciò:

E(ᾱ) = 〈Φ̄||H|Φ̄〉 = E1 + 2〈ψ1|H|δψ1〉+ 〈δψ1|H|δψ1〉 = E1 + 〈δψ1|H|δψ1〉 (11.15)

quindi l’errore commesso sugli autovalori è quadratico, ci si aspetta perciò che il risultato
sia molto buono.

Il problema fondamentale a questo punto è la scelta dello statoΦ e la scelta dei para-
metri. Non ci sono ricette universali valide per ogni problema, occorre caso per caso farsi
guidare dalla fisica del problema e, cosa non secondaria, dalla fattibilità della soluzione del
problema algebrico (11.14). Le linee guida generali possono essere dettate dal rispetto delle
simmetrie del problema originario, dall’introduzione di parametri che possano descrivere
le diverse scale presenti, dalla possibilità di valutare in modo efficiente il valore diE(α) al
variare dei parametri.

1Ad esempio nel senso diL2
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11.1.1 Limiti inferiori.

Il metodo variazionale fornisce dei limiti superiori agli autovaloriEi dell’Hamiltoniana, ma
è possibile formulare anche delle stime inferiori che permettono di stimare la precisione dei
risultati.

Un metodo, che qui presentiamo in forma molto semplice, è stato sviluppato da Wien-
stein e MacDonald, [Weinstein, MacDonald]. Consideriamo lo scarto quadratico medio
dell’Hamiltoniana su uno stato:

σ = 〈Hψ|Hψ〉 − 〈ψ|H|ψ〉2 ≡ Dψ − E2
ψ (11.16)

Si haσ ≥ 0. Infatti chiamandoEk gli autovalori esatti dell’HamiltonianaH e sviluppando
lo stato generico in autostati ortonormali diH

ψ =
∑
k

ak |ek〉 H |ek〉 = Ek |ek〉 k = 0, 1 . . .

segue

Eψ =
∑
k

Ek|ak|2 Dψ =
∑
k

|ak|2E2
k

∑
k

|ak|2 = 1 (11.17a)

σ =
∑
k

|ak|2E2
k − 2E

∑
k

Ek|ak|2 + E2
∑
k

|ak|2 =
∑
k

|ak|2(Ek − E)2 ≥ 0

(11.17b)

Fra i vari valori diEk siaEj quello più vicino adEψ, per cui cioè

(Ej − Eψ)2 ≤ (Ek − Eψ)2 ∀ k

Segue:
σ ≥ (Ej − Eψ)2

∑
k

|ak|2 = (Ej − Eψ)2 (11.18)

Considerando separatamente le due possibilitàEψ ≤ Ej , Eψ ≥ Ej si ricava immediata-
mente

Eψ −
√
σ ≤ Ej ≤ Eψ +

√
σ (11.19)

Quindi una volta calcolatoEψ, si trova almeno un autovalore nell’intervallo (11.19). La
(11.19) è naturalmente ovvia se si intepretano i fattori|ak|2 come una distribuzione di
probabilità per i valoriEk: nella (11.19) c’è scritto che all’interno dello scarto quadratico
medio cade almeno un elemento dell’insieme di cui si fa la media. Se la stima è accurata
possiamo avere una identificazione fra il valore stimato,Eψ e l’autovalore cercato, e quindi
σ è una stima dell’errore.

Un metodo spesso più efficienteè dovuto a Temple[Temple]. Consideriamo per sempli-
cità i limiti all’energia dello stato fondamentale del sistema. SianoE0, E1 . . . gli autovalori
esatti diH. Si ha la relazione

〈(H − E0)ψ|(H − E1)ψ〉 ≥ 0 ∀ψ (11.20)

Infatti sviluppandoψ sull’insieme completo di autostati dell’Hamiltoniana,|e0〉, |e1〉 . . .,
|ψ〉 =

∑
k ak|ek〉 si ha

〈(H − E0)ψ|(H − E1)ψ〉 =

∑
k 6=0

a∗k(Ek − E0)〈ek|

∑
j 6=1

aj(Ej − E1)|ej〉

 =

=
∑
k≥2

|ak|2(Ek − E0)(Ek − E1) ≥ 0
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Usando la notazione (11.17a), dalla (11.20) discende, per stati normalizzati:

E0 ≥ Eψ −
σ

E1 − Eψ
(11.21)

Per usare la relazione (??) occorre avere una stima diE1, che può essere ottenuta dallo
stesso metodo variazionale. Intal caso il secondo termine nella (11.21) può essere assunto
come stima dell’errore. La stima è poco efficace seE1 ∼ E0.

La trattazione può essere estesa a tutti gli stati ottenendo, vedi ad esempio ref.[Delves]:

Ej ≥ Eψ −
σ

Ej+1 − Eψ
(11.22)

che, al solito, è utilizzabile per stime abbastanza accurate.
Il problema pratico nell’uso delle stime (11.19), (11.22) è il calcolo diD, che di solito è

molto più complicato del calcolo diH. Comunque l’uso di queste stime permette di fornire
una stima a priori dell’errore che si compie con la procedura variazionale. Alcuni esempi
saranno dati nel seguito. Procedure più accurate, ad esempio applicate al calcolo dello stato
fondamentale dell’Elio, si possono trovare nelle referenze [Kinoshita, Pekeris].

11.2 Parametrizzazioni lineari.

Nella pratica il metodo variazionale viene usato scegliendo un insieme di base di funzioni
dipendenti eventualmente da uno o più parametri di scala. Il procedimento di minimizza-
zione fisserà questi parametri e nello stesso tempo i coefficienti delle combinazioni lineari
delle funzioni di base che concorrono a fare gli autostati. In questo paragrafo ci occuperemo
solo del secondo di questi problemi, quello lineare.

L’insieme delle funzioni scelte, linearmente indipendenti, forma evidentemente uno
spazio lineare che può essere visto come un sottinsieme dell’intero spazio di Hilbert. Quin-
di dal punto di vista algebrico considerare un insieme din funzioni significa “troncare” lo
spazio di Hilbert e considerare al suo posto un sottospazio finito dimensionale, l’equazione
di Schrödinger diventa allora un’equazione matriciale.

Per essere concreti supponiamo di voler risolvere un’equazione di Schrödinger del tipo

− ~2

2m
d2

dx2
ψ + U(x)ψ(x) = Eψ(x) (11.23)

Tutto quello che diremo vale praticamente senza cambiamenti in un caso generico.
Scegliamo un qualunque set di funzioni linearmente indipendenti,ϕi(x), i = 1 . . . n,

non necessariamente ortogonali. Scegliamo ora il nostro stato come combinazione lineare
delle funzioni scelte:

Φ =
n∑
i=1

ciϕi(x) (11.24)

I parametri variazionali sono in questo caso proprio i coefficientici. L’energia calcolata
sullo statoΦ è

Q(c) =
〈Φ|H|Φ〉
〈Φ|Φ〉

(11.25)

e la condizione di stazionarietà porta, come già visto, all’equazione di Schrödinger

0 = δQ =
〈δΦ|H|Φ〉
〈Φ|Φ〉

− 〈Φ|H|Φ〉
〈Φ|Φ〉

〈δΦ|Φ〉
〈Φ|Φ〉

⇒ H|Φ〉 = E|Φ〉 E ≡ Q(Φ) (11.26)

Posto
Hij = 〈ϕi|H|ϕj〉 Nij = 〈ϕi|ϕj〉
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moltiplicando la (11.26) per〈ϕi| si ottiene

Hijcj = ENijcj (11.27)

Se la base scelta è ortonormale si haNij = δij ma possiamo considerare il caso ge-
nerico senza difficoltà aggiuntive. La (11.27) è esattamente l’equazione di Schrödinger
“proiettata” sul sottospazio lineare generato dalla base scelta.

Nota. Per essere precisi la forma quadraticaQ(Φ) è un funzionale diΦ e Φ∗. Nell’effettuare le
variazioni si possono prendere come variabili indipendenti la parte reale e la parte immaginaria di
Φ, oppureΦ e Φ∗. Nel derivare la (11.26) noi abbiamo usato la variazione diΦ∗, infatti abbiamo
scritto〈δΦ| che in rappresentazine di Schrödinger è appuntoδΦ∗. Lasciamo al lettore verificare che
effettuando la variazione rispetto aΦ si ottiene il complesso coniugato dell’equazione (11.26).

Possiamo risolvere il problema lineare (11.27) e trovare l’autovalore più basso,E1,
che rappresenterà appunto la stima variazionale dell’autovalore esatto,E1, del problema
originario, per essere esatti una stima per eccesso.

Avremo in generalen autovaloriEi e corrispondentementen autovettori|ψ̃i〉:

|ψ̃i〉 =
∑
i

ciϕi H|ψ̃i〉 = Ei|ψ̃i〉 (11.28)

I vettori |ψ̃i〉 essendo autostati appartenenti ad autovalori diversi, in generale, sono ortogo-
nali fra loro, questo indipendentemente dalla ortogonalità della base.

Una cosa a priori non ovvia è che, ad esempio, il secondo autovalore fornirà anch’esso
una stima in eccesso perE2 e così via.2

Consideriamo in effetti un qualunque statoΦ̃ ortogonale allo stato fondamentale vero,
|ψ1〉. Φ̃ si può sviluppare in termini degli autostatiψi coni ≥ 2. Si ha quindi

〈Φ̃|H|Φ̃〉 =
∑
i=2

Ei|〈Φ̃|ψi〉|2 ≥ E2

∑
i=2

|〈Φ̃|ψi〉|2 = E2 (11.29)

Consideriamo ora una combinazione lineare dei primi due autostati approssimati|ψ̃1〉, |ψ̃2〉

|Φ̃〉 = x|ψ̃1〉+ y|ψ̃2〉

Possiamo sempre scegliere i due parametrix, y in modo che questi siano ortogonali a|ψ1〉:
se imponiamo la norma unitaria a|Φ̃〉 abbiamo due equazioni per le nostre due incognite:

〈ψ1|Φ̃〉 = x〈ψ1|ψ̃1〉+ y〈ψ1|ψ̃2〉 = 0 x2 + y2 = 1

Quindi possiamo usare le equazioni (11.28) e (11.29) per scrivere

〈Φ̃|H|Φ̃〉 = E1x
2 + E2y

2 = E2 − x2(E2 − E1) ≥ E2 ⇒ E2 ≥ E2

L’ultima disuguaglianza discende dal fatto cheE2 − E1 ≥ 0. Allo stesso modo, sempre
per la parte discreta dello spettro, si può procedere per gli altri livelli.

Alcune osservazioni:

• È sempre possibile allargare la base di funzioni (11.24), e poichè possiamo sempre
completare una base in uno spazio di Hilbert possiamo, purchèn sia abbastanza
grande, approssimare di principio con precisione arbitraria la soluzione del problema.
Pern finito avremo in ogni caso una stima per eccesso del risultato, quanto questa
stima sia buona dipende molto dalla scelta della base. Uno dei criteri che si possono
usare è verificare che, entro la precisione desiderata, l’allargamento della base non
migliora il risultato.

2Qui stiamo considerando lo spettro discreto diH, in presenza di uno spettro continuo evidentemente il
discorso cessa di valere.
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• La rapidità della convergenza del metodo può essere spesso migliorata da una scelta
oculata dei vettori di baseϕi(x), dettata da motivi di simmetria o dalla fisica del
problema.

Un utile esempio di questo modo di procedere è la costruzione del metodo dellediffe-
renze finite. Il lettore interessato può trovare una breve discussione dell’argomento nel
complemento 11.B.

11.3 Esempi elementari.

11.3.1 Oscillatore armonico.

Consideriamo un oscillatore armonico in diverse approssimazioni. L’Hamiltoniana è (po-
niamo~ = 1,m = 1):

H = −1
2
d2

dx2
+

1
2
ω2x2 (11.30)

Sappiamo che per lo stato fondamentale:

E0 =
1
2
ω ψ0 =

(ω
π

)1/4

e−
1
2ωx

2
(11.31)

Oscillatore armonico: 1

Supponiamo di essere “fortunati” e di provare una soluzione del tipo

ϕ =
(α
π

)1/4

e−
1
2αx

2
(11.32)

Il coefficiente davanti all’esponenziale è scelto in modo da avere una funzione normalizza-
ta. Il parametro variazionale èα. Il valor medio diH sullo stato (11.32) è

E(α) =
α

4
+
ω2

4α
(11.33)

Per ottenere questo risultato si possono effettuare le integrazioni del caso o osservare che la (11.32)
è la funzione d’onda fondamentale per un oscillatore armonico di frequenzaα. In un oscillatore
armonico la media dell’energia cinetica e potenziale sono uguali su uno stato stazionario (e valgono
la metà dell’energia), quindi

〈p
2

2
〉α =

1

4
α 〈α

2x2

2
〉α =

1

4
α ⇒ 〈x

2

2
〉α =

1

4α

Il minimo in α della stimaE(α) si ottiene effettuando la derivata rispetto adα:

dE(α)
dα

= 0 ⇒ 1− ω2

α2
= 0 ⇒ α = ω

e sostituendo nella espressione diE

E(α)|α=ω =
ω

4
+

1
4
ω2

ω
=
ω

2
(11.34)

che è il risultatoesatto.
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Oscillatore armonico: 2

Supponiamo ora di non essere così fortunati e di considerare una funzione di prova del tipo

ϕ =
√
αe−α|x| (11.35)

Sfruttando la parità della funzione possiamo scrivere

E(α) = 2
∫ ∞

0

ϕ∗Hϕ = α

∫ ∞

0

dx

{(
d

dx
e−αx

)2

+ ω2x2e−2αx

}
=

1
2

(
α2 + 2ω2 1

4α2

)

E(α) ha un minimo perα2 = ω/
√

2 e per tale valore

Emin =
ω√
2
' 0.707ω >

ω

2

come si vede in questo caso l’errore è di circa il40%.

Oscillatore armonico: 3

Proviamo a migliorare la stima precedente con

ϕ = (1 + βx2)e−α|x|

Poniamoω = 1 per semplificare le espressioni. Si ha

〈ϕ|H|ϕ〉
〈ϕ|ϕ〉

=
2
(
α4 + 2α8

)
− 4α2

(
−3 + α4

)
β +

(
45 + 2α4

)
β2

8α6 + 8α4 β + 12α2 β2

In questo caso il minimo può essere trovato in forma numerica, risulta

α = −0.0523 β = 0.73 Emin = 0.64

che è un miglioramento rispetto alla stima precedente.
Notiamo che le funzioni (11.35) hanno derivata seconda discontinua: la forma utilizzata

per il calcolo diE(α) è quella corretta. Sarebbe sbagliato usare la simmetria del problema
e scrivere per la parte cinetica un’espressione del tipo∫ ∞

0

ϕ∗
d2

dx2
ϕ

Integrando per parti ci si convince facilmente che questa espressione dà origine a dei ter-
mini di bordo aggiuntivi rispetto aE(α). In altre parole l’Hamiltoniana non è autoaggiunta
nella base (11.35), ma la minimizzazione della forma quadratica approssima lo stesso, in
L2, la soluzione del problema.

11.3.2 Elio: trattazione elementare.

Abbiamo già trattato dal punto di vista perturbativo il livello fondamentale dell’elio. In
unità atomiche

a =
~2

me2
E0 =

me4

~2
= 2Ry ' 27.2 eV

l’Hamiloniana à data da

H = H1 +H2 +H12 = −1
2
∆1 −

1
2
∆2 −

Z

r1
− Z

r2
+

1
|r1 − r2|

(11.36)
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La funzione d’onda idrogenoide che abbiamo usato nel calcolo perturbativo era

ψ1s =
1√
π
Z3/2e−Zr (11.37)

ed avevamo ottenuto

Epert = Z2 − 5
8
Z (11.38)

Se vogliamo usare la tecnica variazionale dobbiamo scegliere una base di funzioni.
Una prima idea può derivare dalla fisica del problema. In prima approssimazione pos-

siamo pensare che ogni elettrone veda la carica nucleare,Z, parzialmente schermata dal-
l’altro elettrone, è quindi naturale pensare di usare come funzioni variazionali delle funzio-
ni tipo idrogenoide ma con una carica effettiva,Z1, arbitraria e usare questa proprio come
parametro variazionale. Usiamo quindi come funzione di prova:

ψ(x1,x2) = ϕ(r1)ϕ(r2) ϕ(r) =
1√
π
Z

3/2
1 e−Z1r (11.39)

Il calcolo del valor medio diH su questa funzione è molto semplice: è la funzione d’onda
idrogenoide di un atomo con caricaZ1, ora ricordiamo che in un atomo idrogenoide vale3

la seguente relazione fra energia cineticaK e potenzialeU :

〈K〉 = −1
2
〈U〉 = −E (11.40)

Quindi

〈p
2
1

2
〉 =

Z2
1

2
(11.41a)

〈−Z1

r
〉 = −2

Z2
1

2
⇒ 〈−Z

r
〉 = −ZZ1 (11.41b)

〈H1〉 =
Z2

1

2
− ZZ1 ⇒ 〈H1 +H2〉 = Z2

1 − 2ZZ1 (11.41c)

Il calcolo del termine di repulsione coulombiana fra i due elettroni è identico a quello
effettuato nella teoria perturbativa, pur di sostituireZ conZ1:

〈H12〉 =
5
8
Z1

Quindi

〈H〉 = E(Z1) = Z2
1 − 2ZZ1 +

5
8
Z1 = Z2

1 − 2Z1

(
Z − 5

16

)
(11.42)

troviamo il minimo diE(Z1) al variare diZ1 e la corrispondente stima per l’energia dello
stato fondamentale: il minimo della (11.42) si ha perZ1 = Z−5/16 e sostituendo si ricava

dE

dZ1
= 0 ⇒ Z1 = Z − 5

16
〈H〉min = −(Z − 5

16
)2 (11.43)

Sperimentalmente il dato direttamente accessibile è l’energia di ionizzazione: una volta
estratto un elettrone quello restante ha energiaE0 = −Z2/2 e l’energia di ionizazione è
appunto

J(Z) = E0 − E (11.44)

3È un caso particolare del teorema del viriale che verrà trattato fra poco, ad ogni modo è una relazione nota
dallo studio dell’atomo di idrogeno.
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Per la stima perturbativa e quella variazionale si ha rispettivamente

Jpert(Z) = (
Z2

2
− 5

8
Z) a.u.= (Z2 − 5

4
Z) Ry (11.45)

Jvar(Z) = (Z − 5
16

)2 − Z2

2
= (

Z2

2
− 5

8
Z +

25
256

) a.u.= (Z2 − 5
4
Z +

25
128

) Ry

Abbiamo riportato il valore in Ry, ricordando che 1 a.u. = 2 Ry. Riportiamo nella tabel-
la 11.1 i risultati ottenuti confrontati con quelli sperimentali Come si vede c’è un discreto

H− He Li+ Be++

Jpert -0.25 1.5 5.25 11.
Jvar -0.055 1.695 5.445 11.195
Jexp +0.055 1.807 5.560 11.312

Tabella 11.1: Valori approssimati, in Rydberg di alcuni potenziali di ionizzazione.

miglioramento rispetto al calcolo perturbativo. È da notare come la differenzaJexp − Jvar
sia praticamente costante inZ. Sia l’approccio perturbativo che quello variazionale, a
quest’ordine, non rendono conto dell’esistenza di uno ioneH− stabile.

Discussione

Il risultato ottenuto con la semplice tecnica variazionale precedente ha una interessante
interpretazione fisica.

Le funzioni che abbiamo usato sono autofunzioni di un sistema idrogenoide con carica
Z1, cioè sono le autofunzioni dell’Hamiltoniana separabile:

HZ1 =
1
2
p2
1 −

Z1

r1
+

1
2
p2
2 −

Z1

r2
(11.46)

Quando si fa teoria perturbativa c’è una certa arbitrarietà nel dividere l’Hamiltoniana
in Hamiltoniana imperturbataH0 e perturbazioneHI , l’unico vero requisito è cheH0 sia
esattamente risolubile, altrimenti è impossibile effettuare i calcoli.

Ora immaginiamo di riscrivere l’Hamiltoniana del sistema aggiungendo e sottraendo
l’interazione fittizia di caricaZ1

H =
[
1
2
p2
1 −

Z1

r1
+

1
2
p2
2 −

Z1

r2

]
+
[

1
r12

+
Z1 − Z

r1
+
Z1 − Z

r2

]
≡ HZ1 + VZ1 (11.47)

Per oraZ1 è arbitrario. Se facessimo teoria peturbativa al primo ordine con questa Hamil-
toniana, avremmo per l’energia dello stato fondamentale

E(Z1) = 〈ψ|HZ1 |ψ〉+ 〈ψ|VZ1 |ψ〉 (11.48)

|ψ〉 è lo stato di due elettroni idrogenoidi in un nucleo di caricaZ1.
Nel nostro caso dal principio variazionale abbiamo ottenuto un valore ottimale perZ1,

Z1 = Z−5/16 ed il corrispondente valore per l’energia, v. eq.(11.43),E(Z1) = −Z2

1, ma
questoè proprio l’autovalore dell’Hamiltoniana(11.46), quindi confrontando con la teoria
perturbativa, eq.(11.46), segue che per questo particolare valore diZ1 la correzione pertur-
bativa deve essere nulla. In altre parole fra tutte le possibili decomposizioni per la teoria
perturbativa il metodo variazionale “sceglie” quella per cui la correzione al primo ordine
per l’autovalore è nulla. Quest’affermazione sarà generalizzata nel prossimo paragrafo a
tutti i potenziali omogeneinelle coordinate.
È facile verificare esplicitamente quanto affermato. Se usiamo le formule (11.41) otteniamo

〈ψ|VZ1 |ψ〉 =
5

8
Z1 + 2 · (Z1 − Z)Z1 = 2Z1(Z1 − Z +

5

16
)
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che si annulla appunto perZ1 = Z − 5/16.

Dal punto di vista fisico il risultato ottenuto può essere letto in due modi diversi

1) Ogni elettrone “vede” una carica effettiva schermata,Z1.

2) La scala caratteristica delle funzioni d’onda cambia. Ricordiamo che in un problema
idrogenoide il raggio caratteristico èaB/Z quindi cambiare carica è lo stesso che
cambiare scala. In effetti è proprio inquesta formache la carica effettiva interviene.
Un esponenziale

ψ1s ∼ e−Z1r

indica appunto che la scale caratteristica è1/Z1, lasciare libero di variareZ1 si può
utilmente interpretare come lasciare al problema decidere, tramite il principio va-
riazionale, qual’è la scala ottimale. Il vantaggio di questa interpretazione è che è
facilmente generalizzabile ad altri problemi. La cattiva notizia è che in un problema
con molte scale presenti contemporaneamente ci si aspetta che il metodo variazionale
richieda molti parametri.

Se il lettore riconsidera il caso dell’oscillatore armonico si accorgerà che trovare il parame-
tro α in una funzione di provae−αx

2/2 corrispondeva appunto a trovare la scala ottimale
del problema.

Il problema del calcolo dell’energia di ionizzazione dell’elio verrà trattato nel seguito
in modo molto più dettagliato. Nell’appendice 11.A è riportato come esempio il calcolo
del limite inferiore all’energia dell’elio ricavabile usando la tecnica variazionale di questo
paragrafo.

11.4 Teorema del viriale.

Il teorema del viriale stabilisce una relazione fra il valor medio dell’energia cinetica e quel-
lo dell’energia potenziale su statistazionari, per potenziali omogenei, ed è un’estensione
alla meccanica quantistica dell’analoga affermazione in meccanica classica, in cui il valor
medio nel tempo fa le veci del valor medio sullo stato stazionario.

Ci sono molte dimostrazioni di questo teorema, e ne vedremo alcune nel seguito: una
dimostrazione istruttiva usa il principio variazionale.

Un potenziale è omogeneo di gradoν seV (kx) = kνV (x). Abbiamo indicato conx
l’insieme di tutte le variabili posizione del problema.

Consideriamo un qualunque stato descritto da una funzione d’ondaϕ(x), avremo:

N =
∫
dDxϕ∗(x)ϕ(x) (11.49a)

〈ϕ|T |ϕ〉 =
1
N

∫
dDxϕ∗(x)

[
− ~2

2m
d2

dx2

]
ϕ(x) (11.49b)

〈ϕ|V |ϕ〉 =
1
N

∫
dDxϕ∗(x)V (x)ϕ(x) (11.49c)

Consideriamo ora un altro stato,ϕk(x) ottenuto dal precedente riscalando di un fattorek
le variabilix:

ϕk(x) = ϕ(kx)

calcolando i valori medi precedenti su questo stato tramite un cambiamento di variabile
x = x′/k si ha immediatamente

〈T 〉k = k2〈ϕ|T |ϕ〉 〈V 〉k = k−ν〈ϕ|V |ϕ〉 (11.50)
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Questo implica che il valor medio dell’Hamiltoniana sullo statoϕ(kx) vale

E(k) = k2〈ϕ|T |ϕ〉+ k−ν〈ϕ|V |ϕ〉 (11.51)

Supponiamo ora cheϕ(x) sia proprio la funzione d’onda di uno stato stazionario. Sap-
piamo cheH deve essere stazionaria su questo stato, quindi〈H〉 deve avere variazione
nulla al primo ordine per qualunque variazione della funzione d’onda, in particolare per
una variazionex→ kx, in altre parole deve essere

d

dk
E(k)

∣∣∣∣
k=1

= 0

cioè
2〈ϕ|T |ϕ〉 = ν〈ϕ|V |ϕ〉 (11.52)

Considerando le variazioni nel sottospazio ortogonale allo stato fondamentale il teorema si
estende a qualunque stato stazionario.

La formula (11.52) è ilteorema del viriale.Usando〈H〉 = 〈T 〉+ 〈V 〉 si ha anche

〈ϕ|T |ϕ〉 =
ν

ν + 2
E 〈ϕ|V |ϕ〉 =

2
ν + 2

E (11.53)

Queste formule possono in particolare essere applicate ai potenziali Coulombiani, in cui
ν = −1 ed all’oscillatore armonico,ν = 2.

Lasciamo al lettore la semplice generalizzazione dei risultati ad un potenzialeV scrivi-
bile come somma di potenziali omogenei di gradoνk:

2〈ϕ|T |ϕ〉 =
∑
k

νk〈ϕ|Vk|ϕ〉 (11.54)

Nota. Dimostriamo quanto visto nel paragrafo precedente. SeV è omogeneo significa, ad esempio,
che in una dimensione è della formaxν . Il fattore che determina la scala del problema è appunto la
costante davanti axν , in generale il coefficiente moltiplicativo diV . Possiamo separare daV una
parte che associamo all’energia cineticaT per costruire un’Hamiltoniana risolubile:

V0k
ν+2 + V − V0k

ν+2

questo corrisponde nel caso Coulombiano (ν = −1) ad un potenziale proporzionale aZ1, per un
oscillatore armonico ad un termine1

2
ω2x2, dove

√
ω è il parametro che determina la scala. etc. In

uno stato con scalak scelto fra gli autostati diH0, di scalak appunto,

E(k) = k2〈T 〉+ k−ν〈V 〉

e si ha un minimo per

kν+2 =
ν

2

〈V 〉
〈T 〉 (11.55)

dove i valori medi indicano gli elementi di matrice sugli stati con scalak = 1. Nella separazione fra
Hamiltoniana di base ed interazione si ha

H =
[
T + V0k

ν+2] +
[
V − V0k

ν+2]
Il valor medio della parte perturbativa, sul minimo, vale, essendo ancheV0 una funzione omogenea
di gradoν ed usando la (11.55):

δEpert = k−ν〈V 〉 − 〈V0〉k2 = k−ν
[
〈V 〉 − 〈V0〉

ν

2

〈V 〉
〈T 〉

]
ma nella teoria con scala 1 possiamo applicare il teorema del viriale alla stessaH0, per cui, dalla
(11.53)

〈V0〉 =
2

ν
〈T 〉

per cuiδEpert = 0.
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11.5 Oscillatore anarmonico.

Il punto che vogliamo studiare con l’esempio esplicito dell’oscillatore anarmonico è l’unio-
ne fra la parametrizzazione lineare studiata nei paragrafi precedenti e la scelta della scala
del problema.

L’Hamiltoniana del problema, in unità~ = 1, è4

H = −1
2
d

dx2
+
µ2

2
x2 +

g

2
x4 (11.56)

Accanto all’operatore (11.56) possiamo considerare

H = −1
2
d

dx2
− µ2

2
x2 +

g

2
x4 (11.57)

Il potenziale corrispondente a questo operatore ha due minimi, perx = ±µ/
√

2 quindi la
situazione di minima energia nel caso classico corrisponde ad una situazione non simme-
trica rispetto all’operazione di inversionex → −x. In Meccanica Quantistica sappiamo
che l’Hamiltoniana (11.57) commuta con la parità, quindi lo stato fondamentale deve avere
parità definita, non potendo avere nodi si tratta di uno stato simmetrico, quindi quantistica-
mente deve essere〈x〉 = 0. Come vedremo in dettaglio nel prossimo capitolo la possibilità
quantistica di attraversare la barriera che separa i due minimi classici permette questa si-
tuazione. Questa hamiltoniana può essere presa come modello per lo studio di sistemi in
cui sono possibili due stati stabili classici, come ad esempio succede nella molecolaNH3.
Questa molecola ha la forma di un tretraedro. l’atomo di azoto può passare da una parte
all’altra rispetto al piano formato dai tre atomi di idrogeno e le due configurazioni sono
classicamente distinte. Cominciamo dal caso+µ2.

Secondo le idee sviluppate nei paragrafi precedenti prendiamo come funzioni di base le
stesse funzioni di un oscillatore armonico ma riscalate per un fattoreα:

ϕn(x) =
[

α√
π2nn!

]1/2
Hn(αx)e−α

2x2/2 (11.58)

Hn sono i polinomi di Hermite. Le funzioni (11.58) sono un insieme ortonormale, in
pratica le autofunzioni di un oscillatore di frequenzaα2. Supponiamo di considerare una
base finita composta dai primiN elementi: tenendo conto della parità i primiN interi pari
per gli stati pari ed i primiN interi dispari per gli stati dispari.

Gli elementi di matrice non nulli degli operatori che compongono l’Hamiltoniana sono
facili da calcolare, sono quelli già visti nel calcolo della teoria delle perturbazioni dello
stesso sistema e possono, ad esempio essere calcolari, su un oscillatore di frequenzaα2,
tramite la decomposizione in operatori di creazione e distruzione

(p2)n,n =
1
2
α2(2n+ 1) (p2)n,n+2 = −1

2
α2
√

(n+ 1)(n+ 2)

(x2)nn =
1

2α2
(2n+ 1) (x2)n,n+2 =

1
2α2

√
(n+ 1)(n+ 2)

(x4)nn =
3

4α4
(2n2 + 2n+ 1) (x4)n,n+2 =

1
4α4

(4n+ 6)
√

(n+ 1)(n+ 2)

(x4)n,n+4 =
1

4α4

√
(n+ 1)(n+ 2)(n+ 3)(n+ 4) (11.59)

4Effettuando il cambiamento di variabilix = λξ, λ = |µ|−1/2, il lettore può facilemente convincersi che il
problema si riduce a quello conµ = 1 e pe rgli autovalori si ha

E(µ, g) = µE(1, gµ−3)

quindi ci si potrebbe limitare a stidiare il caso|µ| = 1. Preferiamo usare la forma risondante (11.56) per non
creare confusioni.
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Gli altri elementi di matrice non nulli,(p2)n+2,n, (x2)n+2,n, (x4)n+2,n, (x2)n+4,n si ot-
tengono dai precedenti prendendo il complesso coniugato.

Una stima degli autovalori del sistema (11.56) si ottiene allora dal sistema lineareN ×
N

Hijcj = Ecj (11.60)

Esistono in ogni linguaggio di programmazione delle routines molto efficienti per trovare
autovettori ed autovalori, nel paragrafo 11.C è fornito un esempio scritto in MatLab. Qui
ci concentreremo sui risultati e sulla fisica del problema, rimandando al paragrfo 11.C una
breve discussione di alcuni aspetti numerici. Il punto fondamentale è:Come scegliere la
scalaα ?

La prima osservazione che possiamo fare è che, essendo pern → ∞ le (11.58) un
insieme completo, qualunque scelta dovrebbe andare bene.

Scegliamo ad esempioα = 1. Postoµ2 = 1, la risoluzione numerica dell’equazione
(11.60) dà, al variare del numero di elementi di base:

V = 1*(1/2 x^2) + 10*(1/2 x^4)

2*E_0/10 2*E_20/1000 2*E_38/1000 base

0.245355528977 N= 10 alpha= 1.000 n_min= 0
0.244918685281 2.195371047917 43.840863925327 N= 20 alpha= 1.000 n_min= 0
0.244917407253 0.565782255693 6.303156501515 N= 40 alpha= 1.000 n_min= 0
0.244917407212 0.316259331069 2.723821857284 N= 60 alpha= 1.000 n_min= 0
0.244917407209 0.267450378105 1.576240610010 N= 80 alpha= 1.000 n_min= 0
0.244917407208 0.266495202786 1.074357868341 N= 100 alpha= 1.000 n_min= 0
0.244917407215 0.266487457903 0.821590674698 N= 120 alpha= 1.000 n_min= 0
0.244917407216 0.266487427950 0.689072848803 N= 140 alpha= 1.000 n_min= 0

Come si vede la convergenza è ragionevole per lo stato fondamentale ma non ottimale per
gli stati eccitati. Che la situazione non sia ottimale lo possiamo verificare anche in questo
modo: sugli stati stazionarideve valere il teorema del viriale, quindi gli stati ottenuti sono
ragionevoli se è verificata la relazione (11.54) che in questo caso si scrive:

0 = Kvir = 2〈ϕ|p2|ϕ〉 − (2〈ϕ|µ2x2|ϕ〉+ 4〈ϕ|gx4|ϕ〉) (11.61)

La situazione è riportata in fig.11.1. Per i primi 20 livelli circa la situazione è soddisfacen-
te ma per i livelli alti il coefficienteKvir raggiunge valori di circa105 (notare la legenda
riportata in figura), situazione chiaramente inaccettabile. Si nota che in pratica i primi 20
livelli hanno un viriale accettabile, dopo di che si ha un brusco decadimento dell’accuratez-
za del risultato. La scalaα = 1 sembra “ragionevole” per i primi livelli ma irragionevole
per quelli alti: bisogna ottimizzare il valore diα se si vuole avere una stima dello spettro. Il
valore per lo stato fondamentale sembra abbastanza stabile, comunque provando un valore
non molto ragionevole comeα = 0.1, si troverebbeE0/5 ' 1.091, cioè anche il valore
dell’energia dello stato fondamentale dipende daα.

Per capire il problema notiamo che, come conseguenza della forma a potenza delle
ineterazioni, se chiamiamoT, V2, V4 le matrici (11.59) perα = 1, la dipendenza daα è
facilmente isolabile nella matrice Hamiltoniana:

H = α2T +
1
α2
V2 +

1
α4
V4 (11.62)

Poichè la matrice dipende daα gli autostati,|Φk(α)〉 dipendono daα. Per eseguire una
procedura variazionale suα dovremmo calcolare l’energia sullo stato:

Ek(α) = 〈Φk|H|Φk〉 (11.63)

Il problema è che le funzioniEk sono diverse sui vari stati, quindi, la procedura variaziona-
le può essere applicata ad uno stato alla volta: se ad esempio ci interessa il fondamentale,
minimizziamo la (11.63) per questo stato, disinteressandoci del valore assunto dagli altri
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Figura 11.1: Viriale perα = 1, fissato.

autovalori. Ripetiamo poi il procedimento perE1 e via di seguito. Questa non è una proce-
dura molto pratica, anche se sarà proprio quello che faremo per l’elio, in cui però saremo
esplicitamente interessati alla sola energia dello stato fondamentale. Nel caso generale non
ci sono alternative ovvie a questa situazione.

Nel caso relativamente semplice che stiamo studiando si può proporre una soluzione
più efficiente. Gli stati di prova che stiamo usando sono gli autostati di una Hamiltoniana
H0, l’Hamiltoniana dell’oscillatore armonico con frequenzaα2. Scegliere un “buon”α
significa scegliere degli stati che già all’ordine 0 siano delle ragionevoli approssimazioni
degli stati esatti, come si farebbe in teoria perturbativa. Se uno stato di prova|ϕk(α)〉 è
approssimativamente stazionario deve soddisfare il teorema del viriale, o, il che è lo stesso,
il valor medio dell’Hamiltoniana deve essere stazionario per cambiamenti diα. La prima
opzione è dunque di scegliereα in modo che, a seconda della parità dello stato,

d

dα
〈ϕ0(α)|H|ϕ0(α)〉 = 0

d

dα
〈ϕ1(α)|H|ϕ1(α)〉 = 0 (11.64)

ottimizzando cioèα sullo stato fondamentale del sistema imperturbato, o sul primo eccitato
per gli stati dispari.

Una giustificazione semi-intuitiva per questa scelta è la seguente: Nel casoµ2 > 0, per
ogni stato di prova,|(n, α)〉, si ha, come si verifica facilmente

〈n+ 1|H|n+ 1〉 > 〈n|H|n〉

cioè si ha uno stretto ordinamento degli elementi di matrice diagonali dell’Hamiltoniana.
È naturale cercare di minimizzare il più piccolo fra questi valori. Copiando gli elementi di
matrice (11.59) i vincoli (11.64) si scrivono, nei due casi:

α6 − µ2α2 − 3g = 0 α6 − µ2α2 − 5g = 0 (11.65)

Sono delle equazioni cubiche perα2, possiamo trovarne una radice reale positiva, che
esiste sempre perg > 0, e prenderne la radice quadrata. I risultati migliorano visibilmente,
presentiamo un esempio per gli stati pari:
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V = 1*(1/2 x^2) + 10*(1/2 x^4)

2*E_0/10 2*E_20/1000 2*E_38/1000 base

0.244917414796 N= 10 alpha= 1.793 n_min= 0
0.244917407212 0.299163077637 4.275220568944 N= 20 alpha= 1.793 n_min= 0
0.244917407212 0.266487428904 0.775211251430 N= 40 alpha= 1.793 n_min= 0
0.244917407212 0.266487427865 0.615623574398 N= 60 alpha= 1.793 n_min= 0
0.244917407211 0.266487427865 0.615577264638 N= 80 alpha= 1.793 n_min= 0
0.244917407213 0.266487427865 0.615577264599 N= 100 alpha= 1.793 n_min= 0
0.244917407214 0.266487427865 0.615577264599 N= 120 alpha= 1.793 n_min= 0
0.244917407214 0.266487427865 0.615577264599 N= 140 alpha= 1.793 n_min= 0
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Figura 11.2: Viriale perα calcolato sullo stato fondamentale.

Dalla figura 11.2 appare che ora il risultato è molto buono per i primi 50 livelli, questo
corrisponde a 25 elementi della base scelta (i livelli in gioco sono quelli pari, quindi con
una base di 140 elementi si arriva al livello 280).

La situazione cambia se il termine quadratico nell’Hamiltoniana ha segno negativo: in
questo caso i valori medi diH sugli stati di prova non sono più ordinati, ma c’è una can-
cellazione fra il termine cinetico e quello potenziale. Una strada possibile è quella di con-
siderare lo stesso numero dello stato di prova come elemento da ottimizzare, e considerare
cioè le equazioni

∂

∂n
〈n|H|n〉 = α2 − µ2

α2
+

3g
α4

(
n+

1
2

)
= 0

∂

∂α
〈n|H|n〉 = (2n+ 1)(α+

µ2

α3
)− 3g

α5
(2n2 + 2n+ 1)

eliminandon

α12 − µ2α8 +
9
8
g = 0 (11.66)

In questo caso la situazione ritorna stabile e si ha un comportamento simile a quelo già
visto, lasciamo al lettore l’esercizio di verificare questa affermazione.

Vogliamo invece seguire un’altra strada: i problemi chiaramente vengono dai termini
con granden, quindi la cosa ragionevole è trovare l’equazione perα ottimizzando sullo
stato conn più grande a disposizione. Pern qualunque la (11.65) diventa, a seconda del
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segno del termine quadratico:

(2n+ 1)(α∓ µ2

α3
)− 3g

α5
(2n2 + 2n+ 1) = 0 (11.67)

Perα scegliamo la soluzione di questa equazione per lo stato più alto a disposizione.
In questo modo la stabiltà migliora drasticamente:

V = 1*(1/2 x^2) + 10*(1/2 x^4)

2*E_0/10 2*E_20/1000 2*E_38/1000 base

0.244917407215 N= 10 alpha= 2.923 n_min= 20
0.244917407212 0.266487438975 0.716038982773 N= 20 alpha= 3.271 n_min= 40
0.244917407212 0.266487427865 0.615577264599 N= 40 alpha= 3.666 n_min= 80
0.244917407212 0.266487427865 0.615577264599 N= 60 alpha= 3.920 n_min= 120
0.244917407212 0.266487427865 0.615577264599 N= 80 alpha= 4.112 n_min= 160
0.244917407212 0.266487427865 0.615577264599 N= 100 alpha= 4.267 n_min= 200
0.244917407212 0.266487427865 0.615577264599 N= 120 alpha= 4.398 n_min= 240
0.244917407212 0.266487427865 0.615577264599 N= 140 alpha= 4.512 n_min= 280
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Figura 11.3: Viriale perα calcolato sullo stato di energia più alta.

Si ha cioè praticamente tutto lo spettro, esclusi naturalmente i livelli che corrispondono
a elementi di matrice “sul bordo” della matriceH. Nel caso in esame i livelli fino circa 200
sono completamente stabili. La situazione è analoga nel caso di potenziale−µ2x2.

11.5.1 Stima dell’errore.

Ina conferma dei risultati si ha valutando l’errore con il metodo di Temple, vedi eq.(11.22).
In questo caso il calcolo dello scarto quadratico dell’Hamiltoniana è abbastanza semplice.
Infatti sulla base scelta gli elementi di matrice diH al massimo cambiano di 4 il numero
di occupazione, quindi, a parità definita, si ha al massimo un cambiamento di 2 sull’ordine
dello stato di base. Supponiamo di avere calcolato le matrici, gli autovalori e gli autostati
perN elementi di base (cioè fino al livello2N ). Un dato autostato sarà rapresentato da un
vettoreY aN componenti.

Allarghiamo la base aN + 2 possiamo ricalcolare la matriceH, che ora è una matrice
(N + 2) × (N + 2), e costruire il vettorẽY = (Y, 0, 0), aggiungendo 2 zeri nelle ultime
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componenti: questo vettore coincide conY nel sottospazioN ×N . Si ha ora:

〈HỸ |HỸ 〉 =
N+2∑

1

(
Hij Ỹj

)(
HikỸk

)
Questa espressione è esatta perchè a partire dal vettoreY adN componenti possono essere
coinvolti nel prodotto solo gli stati conj ≤ N + 2, compresi nella somma precedente.

Il risultato per l’erroreassolutosugli autovalori è riportato in figura 11.4 nel caso in
cui la scalaα sia determinata dal valore più alto din, come discusso nelparagrafo prece-
dente. Come si vede l’errore sul risultato è minore di10−13 sulla gran parte dello spettro,
confermando la stabilità delle tabelle precedenti.
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Figura 11.4: Viriale perα calcolato sullo stato di energia più alta.

11.5.2 Limite semiclassico.

La “filosofia” dietro all’approccio precedentemente sviluppato è che per ogni stato se si
vuole trovare l’Hamiltoniana di oscillatore armonico che meglio approssima il sistema la
scelta conveniente è minimizzare il valor medio dell’Hamiltoniana sullo stato, consideran-
do la frequenza dell’oscillatore come parametro da ottimizzare.

Proviamo ad applicare questo criterio a stati conn � 1. Dagli elementi di matrice
(11.59) si ha, per un oscillatore di prova con frequenzaω:

En(ω) = 〈n|H|n〉 =
2n+ 1

4

(
ω +

µ2

ω

)
+

3
8
g

1
ω2

(2n2 + 2n+ 1) (11.68)

La frequenza ottimale si ottiene annullando la derivata rispetto adω di En(ω) e questo dà
l’equazione

µ2ω(1 + 2n)− ω3(1 + 2n) + 3g(1 + 2n+ 2n2) = 0 (11.69)

Se siamo interessati a stati conn� 1, vediamo che la cancellazione del termine inn2 nella
(11.69) implica cheω deve crescere conn, quindi, tenendo solo il termine dominante nella
(11.69)

−2nω3 + 6gn2 = 0 ⇒ ω ∼ (3gn)1/3 (11.70)
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Sostituendo questo valore nella (11.68), e conservando solo i termini dominanti inn,
troviamo come stima perEn:

En ' ω

[
3
4
g
n2

ω3
+
n

2

]
=

3
4
ωn =

3
4
(3g)1/3n4/3 ' 1.08 g1/3n4/3 (11.71)

All’espressione (11.71) hanno contribuito il termine cinetico ed il termine inx4 dell’Hamil-
toniana, questo corrisponde al fatto intuitivo che per stati a grande energia, classicamente,
il termine inx4 è dominante.

Secondo la vecchia teoria dei quanti la regola di quantizzazione di Bohr Sommerfeld
per questo sistema dovrebbe dare per i livelli di energia:

2
∫ a

−a
dx
√

2E − µ2x2 − gx4 = 2πn (11.72)

±a sono i punti di inversione classica, in cui si annulla l’espressione sotto radice, cioè
l’impulso del sistema. Se prevalgono i grandi valori dix, possiamo trascurare il termine in
x2 e i punti di inversione sono

a = ±
(

2E
g

)1/4

Scrivendox = az, l’integrale (11.72) si riscrive

2πn = 2
(

2E
g

)1/4√
2E
∫ 1

−1

dz
√

1− z4 = 27/4g−1/4E3/4 ·K

dove

K =
√
πΓ(1/4)

4Γ(7/4)
∼ 1.748

E ' 2−7/3(
2π
K

)4/3g1/3n4/3 ∼ 1.09 g1/3n4/3 (11.73)

Se confrontiamo la (11.73) con la (11.71) possiamo verificare che la procedura usata
non solo dà il corretto andamento5 con n, g ma anche una stima ragionevole del fatto-
re numerico: in altre parole uno stato con granden è ben approssimato da un oscilatore
armonico.

Il fatto che la stima (11.71) sia, leggermente, inferiore al valore “esatto” (11.73) non de-
ve preoccupare: la (11.71) non è una stima variazionale, ricordiamo che per farlo avremmo
bisogno di almeno tutti i livelli fino all’ennesimo. Nel caso variazionale la stima avrebbe
dovuto essere per eccesso.

11.6 Stato fondamentale dell’elio.

Il calcolo dell’energia dello stato fondamentale dell’elio ha avuto storicamente una certa
importanza. È un sistema che non è completamente integrabile: non esistono cioè a livel-
lo classico coordinate canoniche globali del tipo azione-angolo, questo rende impossibile
trattare il sistema tramite le regole di quantizzazione alla Bohr-Sommerfeld, a meno di non
ricorrere alla teoria perturbativa6.

I tentativi di usare metodi perturbativi all’interno della vecchia teoria dei quanti per
risolvere il problema non avevano portato ad una spiegazione dello spettro ed erano in
disaccordo con i dati sperimentali. La non separabilità classica si riflette nel fatto che

5Corretto nel senso che dimostreremo nel prossimo capitolo che pern →∞ l’approssimazione semiclassica
è corretta

6Discuteremo questo problema nel capitolo dedicato all’approssimazione semiclassica.
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l’equazione di Schrödinger non è a variabili separabili, ma è pur sempre un’equazione
differenziale che può essere trattata con metodi numerici e in particolare variazionali.

In questo paragrafo illustreremo la procedura seguita nello studio di questo problema.
Nel testo cercheremo di concentrare i risultati e le idee principali rimandando alcuni calcoli
espliciti ed un concreto esempio di programma numerico in fondo al paragrafo. La presen-
tazione di questo problema ha lo scopo di illustrare in un esempio realistico la profondità e
la precisione dei metodi normalmente usati in Meccanica Quantistica. Normalmente questo
tipo di trattazione non trova spazio in un testo elementare ma pensiamo che oggi, avendo
gli studenti a disposizione diversi strumenti di calcolo, sia opportuno trasmettere l’idea che
la Meccanica Quantistica è un potente strumento per capire la realtà.

L’idea di base di questo approccio risale agli articoli di Hylleras e ai lavori di Bethe
citati in bibliografia. Lo studente che voglia approfondire l’argomento troverà in questi la-
vori un’ampia bibliografia ed una esposizione chiara e sotto molti aspetti illuminante delle
varie questioni trattate. Il motivo per cui trattiamo in dettaglio il problema invece di riman-
dare semplicemente agli articoli originali è quello di fornire allo studente alle prime armi
degli esempi espliciti di calcolo di alcune quantità ed un semplice programma numerico
che possa implementare il metodo variazionale.

Dati sperimentali.

I valori sperimentali del potenziale di ionizzazione (l’energia necessaria per estrarre uno
dei due elettroni dallo stato fondamentale) sono riportati in tabella 11.2. Le unità di misura
sono cm−1, come normalmente fatto in misure spettroscopiche, il fattore di conversione è

E(cm−1) =
1
hc
E

In particolare

1 cm−1 = 1.23984244(15) · 10−4 eV

1 Ry = 109737.3156 cm−1 1a.u.= 2Ry = 219474.6313 cm−1

H− He Li+ Be++

6100± 100 198310.82± 0.15 610079± 25 1241225± 100

Tabella 11.2: Potenziali di ionizzazione per l’elio ed alcuni ioni. Le quantità sono espresse
in cm−1.

Hamiltoniana.

L’Hamiltoniana del sistema, in unità atomiche è

H = −1
2
∇2

1 −
1
2
∇2

2 −
Z

r1
− Z

r2
+

1
r12

(11.74)

r1, r2 indicano le distanze degli elettroni dal nucleo,r12 la loro distanza relativa. Gli au-
tostati di questo sistema sono descritti da funzioni d’onda orbitaliψ(x1,x2) a cui bisogna
associare delle variabili di spin. Come vedremo nello studio del principio di Pauli il fatto
che i due elettroni siano particelle identiche si traduce in un requisito di simmetria per le
funzioniψ: a seconda che lo spin totale sia 0 o 1, la funzione d’onda orbitale deve essere
simmetrica o antisimmetrica. Noi ci limiteremo allo studio dello stato simmetrico orbitale,
che corrisponde effettivamente allo stato fondamentale del sistema, in cuiS = 0, il cosid-
dettoparaelio. Le configurazioni antisimmetriche orbitali, corrispondenti a spin totale 1,
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sono dette diortoelio. Il significato e le implicazioni di questa suddivisione saranno am-
piamente discusse in un capitolo successivo. Per i nostri scopi immediati tutto ciò si riduce
a dire che stiamo cercando le soluzioni al problema di Schrödingersimmetrichenelle due
variabili:

ψ(x1,x2) = ψ(x2,x1) (11.75)

È naturale cercare la soluzione relativa allo stato fondamentale come una soluzione con
momento angolare totale nullo, e questo coincide con l’osservazione sperimentale che non
c’è degenerazione sul livello fondamentale.

Il metodo variazionale applicato a questo problema significa cercare il punto stazionario
del funzionale

Q =
∫
dx1dx2

[
1
2

(∇1ψ)2 +
1
2

(∇2ψ)2 + ψ2

(
−Z
r1
− Z

r2
+

1
r12

)]
(11.76)

sulla sfera unitara nello spazio di Hilbert:

δ
〈ψ|Q|ψ〉
〈ψ|ψ〉

= 0 (11.77)

Possiamo sempre scegliere le fasi in modo che lo stato fondamentale sia descritto da una
funzione d’onda reale, quindi ci limitiamo a scrivere la (11.76) per funzioni reali.

La funzioneψ nella (11.76) è una funzione di 6 variabili, vediamo ora come la scelta
di uno stato a simmetria sferica riduce a 3 il numero di variabili indipendenti.

Consideriamo un triangolo che ha come vertici i due elettroni ed il nucleo. Un triango-
lo è fissato una volta noti i 3 lati, in questo casor1, r2, r12. La funzione d’onda dipenderà
quindi da queste tre variabili e da quelle angolari necessarie a determinare l’orientazione
di questo triangolo nello spazio, ma se studiamo il problema a simmetria sferica laψ non
deve dipendere dall’orientazione del triangolo quindi deve essereψ = ψ(r1, r2, r12). Ri-
cordiamo che una rotazione globale del triangolo equivale ad una rotazione del sistema di
riferimento, se la funzione d’onda è a simmetria sferica deve essere invariante sotto questa
rotazione: è questo il contenuto del discorso appena fatto.

Dal punto di vista analitico possiamo pensare di passare dalle coordinatex1,x2 alle
nuove variabili in questo modo: consideriamo un sistema di riferimento con origine nel
nucleo, usiamo due angoli, ad esempio l’angolo polareθ2 e l’angolo azimutaleϕ2 del
secondo elettrone per fissare l’assez del nostro sistema di riferimento. Usiamo poi l’angolo
azimutualeϕ1 del primo elettrone in questo sistema di riferimento in modo che il pianoxz
contenga i due elettroni.

Come variabili indipendenti usiamo delle combinazioni simmetriche e antisimmetriche
delle variabilir1, r2, r12

s = r1 + r2 t = r1 − r2 u = r12 (11.78)

Le variabili s, u sono simmetriche per scambio, lat antisimmetrica. Scambiando i due
elettroni la funzione d’onda deve essere simmetrica, quindi deve essere una funzionepari
di t. In tutti gli integrali potremo perciò limitarci alla regionet ≥ 0 pur di moltiplicare per
2 il risultato.

I limiti di variabilità di s, t, u, così ristretti, discendono immediatamente dalla disugua-
glianza triangolare sui lati di un triangolo:

0 ≤ t ≤ u ≤ s <∞ (11.79)

Si tratta ora di effettuare esplicitamente il cambiamento di variabili ed esprimere il
nostro funzionaleQ in termini dis, t, u. Bisogna scrivere lo Jacobiano delle trasformazione
ed esprimere i prodotti di gradiente in queste variabili.
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Il calcolo è piuttosto noioso, benchè elementare, ed è riportato in appendice, il risultato
è, sottintendendo di integrare sulle variabili da cui non dipendeψ, cioè gli angoli:

dx1dx2 = 2π2u(s2 − t2)dsdtdu (11.80)

〈ψ|Q|ψ〉 =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt

{
u(s2 − t2)

[(
∂ψ

∂s

)2

+
(
∂ψ

∂t

)2

+
(
∂ψ

∂u

)2
]

+

+ 2
∂ψ

∂u

[
s(u2 − t2)

∂ψ

∂s
+ t(s2 − u2)

∂ψ

∂t

]
−
[
4Zsu− s2 + t2

]
ψ2

}
(11.81)

〈ψ|ψ〉 =
∫
u(s2 − t2)ψ2

Procedura variazionale.

Il criterio per scegliere le funzioni di prova è guidato dalle considerazioni esposte nei
paragrafi precedenti. Supponiamo di avere scelto un certo insieme di funzioni di ba-
seϕi(s, t, u), converrà avere a disposizione un parametro che permetta di ottimizzare la
“scala” del problema, quindi considerare un insieme del tipo

ϕ̃i = k6ϕi(ks, kt, ku)

il coefficientek6 è del tutto arbitrario ed è stato inserito per rendere più trasparente un
cambiamento di variabili che effettueremo in seguito. Poniamo quindi

ψ =
∑
i

ciϕ̃i(ks, kt, kt)

Se sostituiamo questa espressione nella (11.81) e cambiamo variabiles′ = ks, t′ = kt, u′ =
ku otteniamo

〈ψ|Q|ψ〉 = k2M− kL 〈ψ|ψ〉 = N (11.82)

dove abbiamo posto, per brevità di notazione∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt ≡
∫

M =
∫
u(s2 − t2)

[(
∂ϕ

∂s

)2

+
(
∂ϕ

∂t

)2

+
(
∂ϕ

∂u

)2
]

+ 2
∂ϕ

∂u

[
s(u2 − t2)

∂ϕ

∂s
+ t(s2 − u2)

∂ϕ

∂t

]
L =

∫ [
4Zsu− s2 + t2

]
ϕ2 N =

∫
u(s2 − t2)ϕ2 (11.83)

Nelle (11.83) abbiamo di nuovo chiamato le variabili riscalates, t, u; le funzioniϕ dipende
da queste variabili ed il parametrok è stato fattorizzato come appare nella (11.82):

ϕ =
∑
i

ciϕi(s, t, u) (11.84)

Le forme quadraticheM.L,N sulla base (11.84) assumono la forma di matrici simmetri-
che

M = Mijcicj L = Lijcicj N = Nijcicj

dove, ad esempio

Lij =
∫ [

4Zsu− s2 + t2
] 1

2
(ϕiϕj + ϕjϕi)
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Nota Abbiamo scritto la formula precedente esplicitamente simmetrizzata, anche se non
ce n’era bisogno in questo caso, per sottolineare il fatto che le forme quadratiche determi-
nano delle matrici simmetricheM,L.N . Nel caso il lettore volesse ripetere i calcoli che
seguono, tenga conto di questo fatto.

La richiesta di stazionarietà rispetto aci ek implicano rispettivamente

k2Mijcj − kLijcj = ENijcj E =
k2M− kL

N
(11.85)

2kM−L = 0 k =
L

2M
(11.86)

Come si vede gli autovaloriE della (11.85) ed il valore dik nella (11.86) non dipendono
dalla normalizzazione assoluta dello statoϕ, come deve essere. Notiamo che gli autovalori
E della (11.85) dipendono dak che a sua volta è fissato, noti i coefficientici, dalla (11.86).
Il modo più semplice per risolvere il sistema (11.85),(11.86) è quello iterativo:

1) Si sceglie un valore iniziale perk, ad esempio quello suggerito dal calcolo elementare
fatto nei paragrafi precedenti.

2) Per questo valore dik si trovano gli autovaloriE nella (11.85).

3) Si fa variarek, k → k + dk e si vede se l’energia corrispondente al nuovo valore
cresce o diminuisce, nel secondo caso si accetta il nuovo valore dik e si ricomincia,
altrimenti si prova a far variarek in un intervallo più piccolo. se ad ogni passo
dimezziamodk è chiaro che abbiamo una convergenza piuttosto rapida.

Sottolineiamo che la scelta di introdurre il parametrok è puramente strumentale: si vuole
ottenere una convergenza con un numero relativamente piccolo di funzioniϕi.

Funzioni di prova.

Abbiamo visto nei paragrafi precedenti che un risultato non disprezzabile si ottiene da
funzioni del tipo

ψ ∝ e−Z1(r1+r2)

è abbastanza naturale allora provare con variazioni sul tema, cioè

ϕ̃ = P (ks, kt, ku)e−ks/2 s = r1 + r2 P = polinomio

Il fattore1/2 nell’esponente è stato introdotto per effettuare più facilmente gli integrali che
definiscono le matriciM,L,N . Come abbiamo visto il parametrok viene riassorbito da
un cambiamento di variabili, quindi ci basta definire una base di funzioni non riscalata.
Prendiamo come base

ϕijk(s, t, u) = sit2juke−
s
2 (11.87)

La simmetria rispetto at→ −t (scambio dei due elettroni) impone che solo le potenze pari
di t possano comparire.

Scegliamo la maniera più semplice di far variare le potenze dis, t, u: prendiamo tutte
le potenze possibili al di sotto di un certo grado fissato a priori. Sianomds,mdt,mdu
i massimi esponenti che vogliamo far comparire nella base (11.87), avremo in tutton =
(mds + 1)(mdt + 1)(mdu + 1) monomi indipendenti. Il+1 deriva dal fatto che anches0,
ad esempio, va contato.

Se il lettore è confuso dalla presenza di un indice triplo nella (11.87) può, ad esempio,
codificare i vari monomi attraverso

I = i+ (mds + 1) · j + (mds + 1) · (mdt + 1) · k + 1

al variare dii, j, k nell’intervallo prescritto, l’indiceI varia da 1 adn, avremo così delle
normali matricin× n.
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L’ultima cosa che resta da fare è calcolare gli elementi di matriceMij , Lij , Nij . L’in-
tegrale più generale che compare in questo calcolo, vista la forma delle funzioni di base
è

A(α, β, γ) =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dtsαtβuγ e−s (11.88)

conα, β, γ numeri interi. Si ha facilmente

A(α, β, γ) =
(2 + α+ β + γ)!

(1 + β)(2 + β + γ)

Si tratta ora solo di mettere assieme i vari pezzi di informazione e ricostruire le matri-
ci M.L.N . La forma di queste matrici non è particolarmente interessante, i risultati del
calcolo sono riportati in appendice. Il lettore che lo voglia rifare può utilmente utilizzare
qualche software di manipolazione algebrica.

Esempi con piccole basi.

Prima di presentare i risultati proponiamo al lettore un paio di esempi analitici che permet-
tono di seguire la logica del calcolo.

Cominciamo dal caso più semplice, prendiamo un solo polinomio, costante, che corri-
sponde amds = mdt = mdu = 0. Dovremmo riottenere il risultato già noto in termini di
un singolo esponenziale. Per una base unidimensionale le forme quadratiche e le matrici
coincidono, cioèM = M etc. Postoϕ = e−s/2 si ha:

M =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt u(s2 − t2)
(
∂ϕ

∂s

)2

= 8

L =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt
[
4Zsu− s2 + t2

]
ϕ2 = 32Z − 10

N =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt u(s2 − t2)ϕ2 = 32

L’energia ed il fattorek sono dati allora da

k =
L

2M
= 2Z − 10

16
= 2(Z − 5

16
) (11.89)

E =
k2M− kL

N
= − 1

N
L2

4M
= −

(
Z − 5

16

)2

(11.90)

che coincide con il risultato (11.43).

In realtà il risultato (11.43) ha validità un pò più generale. Consideriamo una funzione che dipende
solo das, le forme quadraticheM,L,N si scrivono immediatamente

M =

∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt u(s2 − t2)

(
∂ϕ

∂s

)2

=

∫ ∞

0

ds
4

15
s5(ϕ′)2 (11.91)

L =

∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt
[
4Zsu− s2 + t2

]
ϕ2 =

∫ ∞

0

dss4
[

5

12
+

4

3
Z

]
ϕ2 (11.92)

N =

∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt u(s2 − t2)ϕ2 =

∫ ∞

0

ds
4

15
s5(ϕ)2 (11.93)

Se effettuiamo una variazione, integrando per parti per fattorizzareδϕ si ha

δM = − 4

15

∫
ds δϕ · d

ds

(
s5ϕ′

)
δL =

∫
ds δϕ · s4

[
5

12
+

4

3
Z

]
ϕ

δN =

∫
ds δϕ · 4

15
s5ϕ
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La solita condizione di stazionarietà impone l’equazione agli autovalori

− 4

15

d

ds

(
s5ϕ′

)
− s4

[
5

12
+

4

3
Z

]
ϕ = E

4

15
s5ϕ

cioè

ϕ′′ +
5

s
ϕ′ +

(
E +

5

s
Z − 25

16

1

s

)
ϕ = 0

Per sostituzione si verifica che la soluzione precedente,ϕ = exp(−(Z − 5/16)s) è un autostato con
autovalore dato dalla (11.90). Questo autostato non ha nodi quindi l’autovalore trovato è il più basso.
Questo dimostra che la soluzione descritta dalle (11.89),(11.90) è la migliore possibile fra tutte le
fuzioni che dipendono solo das = r1 + r2.

Vediamo ora in dettaglio cosa succede nel caso immediatamente più complicato, per fun-
zioni di prova, ad esempio, del tipo

ϕi =
{
e−s/2, ue−s/2

}
(11.94)

Anche qui il calcolo delle marici,2× 2 è abbastanza semplice e si ottiene, perZ = 2

M =
(

8 25
25 128

)
L =

(
54 208
208 1012

)
N =

(
32 140
140 768

)
Per determinare gli autovalori del sistema lineare (11.86) basta imporre

det
(
k2M − kL− EN

)
= 0

che è un’equazione di secondo grado inE con soluzione minore:

E =
−1952 k + 405 k2 − 2

√
6 k
√

11245− 6168 k + 1664 k2

1244
(11.95)

per determinare la soluzione occorre trovare il minimo ink di questa espressione, e, con
questo valore, considerare autovalori ed autovettori. Numericamente si trova

kmin = 3.69937 E(kmin) = −2.89112 J = .8911 = 1.782 Ry

ψ = (1 + 0.0989 ku)e−ks/2

Il valore diE eJ sono da confrontare con−(Z−5/16)2 = −2.84766, J = 0.8477. Come
si vede si è avuto un certo miglioramento, circa il5% per il potenziale di ionizzazione e
l’accordo con il dato sperimentale, vedi Tab. 11.2 comincia a diventare ragionevole.

È inutile provare polinomi di grado 1 ins, già sappiamo che la pura funzione esponen-
ziale è la migliore possibile, comunque il lettore può verificare la cosa considerando la base
ϕi =

{
e−s/2, se−s/2

}
. Troverà che l’autostato coincide con il primo elemento della base.

Lasciamo come esercizio per il lettore il caso di un polinomio di grado 1 int2.
Citiamo ancora un risultato che può essere usato per avere un’idea analitica delle cose.

Si può provare una base a 3 parametri, con un polinomio lineare int2 e u, si ottiene dal
formalismo precedente considerandomds = 0,mdt = 1,mdu = 1 e considerando solo le
sottomatrici3× 3 che coinvolgono i polinomi lineari. L’equazione caratteristica perE ora
è di terzo grado. La soluzione numerica del problema di minimo fornisce

k = 3.63 E = −2.9024 J = 1.8048 Ry

come si vede il potenziale di ionizzazione è già preciso all’uno per mille. L’autostato
risultante, non normalizzato, è

ψ = (1 + 0.0099 · k2t2 + 0.08 · ku)e−ks/2 (11.96)
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Risultati.

Le espressioni riportate in appendice per gli elementi di matriceMij , Lij , Nij permettono
di scrivere facilmente un programma numerico che calcoli l’energia dello stato fondamen-
tale e la funzione d’onda.

In appendice è riportato come esempio un programma scritto in MatLab, ma il lettore
può facilmente scriverne uno equivalente in un qualunque linguaggio di programmazione.
Il programma non è assolutamente ottimizzato e non è fatto alcun controllo sull’accuratezza
numerica, è scritto solo a scopo illustrativo.

I risultati, ad esempio per una base di 120 elementi, sono riprodotti di seguito. Vediamo
come il fattore di scalak “evolva” dal valore iniziale, che è il valore già vistok = 2(Z −
5/16). Vediamo che per cambiamentiδk ∼ 10−3 l’autovalore dell’energia cambia meno
di 10−6: è un riflesso della stazionarietà del minimo, come già visto.

Il risultato per il potenziale di ionizzazione è

J = 1.807448Ry (11.97)

coincidente con quello noto dalla letteratura sull’argomento in una parte su un milione.

Il risultato è in buon accordo col valore sperimentale, buono ma non a sufficienza.

Z = 2 Livello: 1 1s^2
deg(s) = 3 deg(t) = 4 deg(u) = 5 DIM = 120
num_max_iterazioni = 50 toll. dE = 1.0e-10 dk = 1.0e-06
k_in = 3.3750 dk = 0.6750 E_in = -2.9037230 a.u.

LOOP per k
E = -2.903724 k = 4.05 iter = 5
E = -2.903724 k = 4.047363 iter = 10

Ris.: E = -2.903724 a.u. J= 1.807448 Ry = 198344.51 cm^-1
k = 4.047363

ord. 0: E0 = -2.847656 a.u. J0= 1.695312 Ry = 186039.04 cm^-1

Correz. non radiative: dJ_massa = -27.18 ; dJ_Pol = -4.78
J_NR = J + dJ_massa + dJ_Pol = 198312.55
Correzioni radiative: dJ_rad = -1.90

J_calc = J_NR + dJ_rad = 198310.64 J_exp = 198310.67

Trasformando per comodità di confronto le energie misurate da Ry in cm−1, dividendo
perciò perhc, si ha, per l’elio:

J = 198344.51 cm−1 Jexp = 198310.67 (11.98)

L’errore sperimentale, non riportato, è meno di10−3 cm−1. Come si vede il risultato otte-
nuto non è compatibile con quello sperimentale. Non solo, il metodo variazionale fornisce
un limite superiore all’energia di legame e quindi un limiteinferiore per il potenziale di
ionizzazione, anche questo in contraddizione con il risultato (11.98). La differenza fra va-
lore teorico e sperimentale è dell’ordine di∆J/J ∼ 10−4, significa che a quest’odine di
precisione dobbiamo tenere conto di qualche altro effetto che abbiamo trascurato. il più
importante è di natura puramente cinematica ed è dovuto alla massa finita del nucleo.
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Correzioni di massa.

Il risultato che abbiamo ottenuto è il valore approssimato per lo stato fondamentale di due
elettroni che si muovono in interazione elettrostatica nel campo di un nucleo fisso.

Ricordiamo brevemente come questo risultato vada corretto per la massa finita del
nucleo. Nel sistema del centro di massa dell’atomo

PN +
Z∑
i=1

pi = 0 (11.99)

quindi l’energia cinetica del sistema si scrive, indicando conM la massa del nucleo e con
m la massa degli elettroni:

1
2M

p2
N +

1
2m

Z∑
i=1

p2
i =

1
2M

(
Z∑
i=1

pe

)2

+
1

2m

Z∑
i=1

p2
i =

1
2µ

Z∑
i=1

p2
i +

1
M

∑
i<j

pipj

(11.100)
Dove

µ =
mM

m+M
(11.101)

è la massa ridotta elettrone nucleo. Il lettore può trovare una dimostrazione tramite trasfor-
mazioni canoniche della (11.100) nel capitolo 8, nell’appendice 11.D una terza dimostra-
zione basata direttamente su un cambio di variabili per l’equazione di Schrödinger.

Nel caso di un sistema di due elettroni quindi, l’Hamiltoniana effettiva del sistema ha
la forma:

H =
1
2µ

(p2
1 + p2

2) + V +
1
M

p1 · p2 (11.102)

Rispetto al caso di un centro fisso ci sono due correzioni

• La massa ridotta ha preso il posto della massa dell’elettrone. Abbiamo fatto tutti i
calcoli precedenti in unità atomiche, la massa interveniva appunto nella definizione di
unità atomica, essendo1a.u. ∝ m. Quindi per tener conto di questa correzione basta
semplicemente moltiplicare il risultato precedente perµ

m . Anche l’energia dello stato
fondamentale dell’elio ionizzato va calcolata in termini della massa ridotta, è proprio
il caso di un atomo idrogenoide, quindi entrambi i termini che vanno a comporre il
potenziale di ionizzazione hanno la stessa correzione, che si può scrivere nella forma:

∆1E0 =
( µ
m
− 1
)
E0 ∆1J =

( µ
m
− 1
)
J (11.103)

notiamo cheµ/m − 1 ∼ −m/M < 0 quindi la correzione tende ad abbassare il
potenziale di ionizzazione, cioè và nella direzione giusta.

• La seconda correzione prende il nome dipolarizzazione di massa.È una piccola
correzione, essendo proporzionale am/M , quindi possiamo trattarla in teoria delle
perturbazioni ed il suo contributo è

∆2E0 =
m

M

1
〈ψ|ψ〉

〈ψ| 1
m

p1p2|ψ〉 ≡
m

M

1
N
K (11.104)

abbiamo fattorizzato un termine adimensionale, quindi il valor medio può essere nelle usua-
li unità atomiche, la correzione di massa su questo termine sarebbe al secondo ordine in
1/M e la possiamo trascurare.

La polarizzazione di massa non darebbe contributo in caso di funzioni fattorizzate, del
tipo f(r1)f(r2): l’elemento di matrice di ogni impulso sarebbe fattorizzato e quindi nullo,
ad esempio per parità.
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Il contributo di polarizzazione di massa, integrando per parti, si scrive

m

M

1
N

∫
(∇1ψ) ·∇2ψ (11.105)

doveN è la forma quadratica già definita e relativa alla norma dello stato. Anche que-
sta nuova forma quadratica può essere espressa intermini delle coordinates, t, u, diamo il
risultato

K(ϕ) =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt{
(s2 + t2 − 2u2)

[(
∂ϕ

∂s

)2

−
(
∂ϕ

∂u

)2
]
u− (s2 − t2)u

(
∂ϕ

∂u

)2

−

−2
∂ϕ

∂u

[
∂ϕ

∂s
s(u2 − t2) +

∂ϕ

∂t
t(s2 − u2)

]}
I corrispondenti elementi di matriceKij sono riportati in appendice. I risultati delle corre-
zioni appena discusse sono riportati in fondo alla precedente stampa dei risultati:

∆1J = −27.18 cm−1 ∆2J = −4.78 cm−1

queste correzioni, aggiunte al risultato precedente portano il totale a

J ′ = J + ∆1J + ∆2J = 198312.55 cm−1 Jexp = 198310.67

Come si vede sussiste ancora una piccola discrepanza,∆J/J ∼ 10−6, ma in un certo senso
l’approssimazione è fin troppo buona. Infatti nel calcolo abbiamo trascurato le correzioni
relativistiche, analoghe alle correzioni di struttura fine dell’atomo di idrogeno. A priori ci
si aspettano delle correzioni percentuali per l’energia dell’ordine di(Zα)2 ∼ 10−4, invece
il risultato sembra essere corretto fino a una parte su105.

In effetti quello che succede è che per lo stato fondamentale le correzioni di struttura
fine si cancellano quasi esattamente fra loro, dando un contributo di un ordine di grandezza
più piccolo di quello aspettato. Il contributo dominante per la correzione di energia è
quello dovuto al Lamb shift. Il calcolo, piuttosto complesso, dei due contributi porta ad
uno spostamento aggiuntivo di−1.90 cm−1 sul potenziale di ionizzazione.

Con questa correzione

J ′ = J + ∆1J + ∆2J + ∆rel = 198310.65 cm−1 Jexp = 198310.67

e l’accordo è eccellente. Lo studente può verificare che l’accordo è stabile prendendo una
base più ampia di stati.

Il programma presentato in appendice funziona perZ qualunque, ma i confronti spe-
rimentali sono inseriti solo perZ < 4, in caso si vogliano i risultati perZ > 4 occorre
cambiare le opportune istruzioni.

I risultati, fino alBe++ sono, inserendo la piccola correzione relativistica7 indicata:

H− He Li+ Be++

Jexp 6100±100 198310.669±0.001 610079±1 1241242.±5
J 6082.99 198310.65 610076.03 1241247.06
δJrel -0.31 -1.90 8.86 75.00

7La correzione per ilBe++ è solo una stima, lo studente può trovare in letteratura il valore esatto.
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11.6.1 Stati eccitati.

Dovrebbe essere chiaro al lettore che l’insieme di funzioni di base scelto, (11.87), è poco
adatto a studiare gli stati eccitati. Ci si aspetta, ad esempio, che per una coppia di elettroni
nella configurazione1s2s, cioè un elettrone in uno stato idrogenoide1s e l’altro nello stato
2s, l’andamento esponenziale della funzione d’onda sia diverso, cioè del tipo8

Φ(r1, r2) ∼
[
e−kar1−kbr2 + e−kbr1−kar2

]
È vero che scrivendoka,b = k1 ± δk, queste funzioni possono essere generate come svi-
luppi in serie di un singolo esponenziale e polinomi inr, e quindi, in linea di principio,
approssimabili con funzioni del tipo (11.87), ma, essendoka, kb legati alle scale caratteri-
stiche dell’atomo, cisi aspetta cheδkr ∼ 1 e quindi occorrerebbero molti termini per avere
una approssimazione ragionevole.

Comunque fatta questa premessa possiamo sempre controllare quanto gli autovalori,
successivi al fondamentale, delle forme quadratiche generate nel paragrafo precedente,
approssimano i valori delle energie delgi atati eccitati.

Come ampiamente spiegato nei paragrafi precedenti si pone di nuovo il problema della
scelta della scala. Abbbiamo due possibilità:

1) Calcoliamo nel modo spiegato l’energia del fondamentale, ottimizzando perciò il
valore dik per ottenere proprio questo livello. L’Hamiltoniana effettivan × n ha
comunque altri autovalori e possiamo confrontarli con le energie degli stati eccitati.

2) Possiamo, per ogni livello, ottimizzare ilk per ottenere quel particolare livello. Ad
esempio per il primo stato eccitato possiamo trovarek facendo in modo che ilsecon-
do autovalore della matrice sia minimo. In questo caso otterremo unk diverso dal
precedente e energie corrispondentemente diverse.

Come esempio usando la solita ottimizzazione sullo stato fondamentale dell’elio si otten-
gono le differenze di energie riportate nella prima colonna della tabella 11.6.1. Per i primi
livelli l’accordo con i dati non è pessimo, ma migliora se si adotta la seconda procedura,
cioè per ogni livello si trova il valore dik dettato dal principio variazionale per quel livello.
I risultati sono riportati nell’ultima colonna: l’accordo è migliorato. tenendo conto che non
si è considerata la struttura fine sui livelli eccitati l’accordo può ritenersi soddisfacente.
Ripetiamo: ogni numero riportato nella terza colonna è il risultato di un diverso “run” del
programma. La mancanza del risultato pe ril livello5s è dovuta ad una instablità numeri-

∆E k - fond. dati sper. k diverso∀ stato
1s2s− 1s2 166417.98 166277.54 166279.9
1s3s− 1s2 186777.82 184864.93 185034.3
1s4s− 1s2 205186.81 190940.33 193669.47
1s5s− 1s2 233674.63 193663.61 *

ca del programma: per l’elio se il numero di vettori di base supera circa 150, l’algoritmo
per trovare gli autovalori diventa instabile. Anche questa instabilità è dovuta alla “cattiva
scelta” delle funzioni d’onda.

Infine una annotazione sulle dimensioni della base di funzioni. Uno stato di tipo1sns
fattorizzato ha uno zero di ordinen sulla parte radiale della funzione d’onda di uno dei due
elettroni, e ci si aspetta una struttura analoga per gli stati non fattorizzati. Nelle funzioni di
prova gli zeri sono dovuti alla parte polinomiale, e, per coprire almeno il caso fattorizzato,
ognuna delle due variabilir1, r2, deve poter comparire fino alla potenzan, quindi generi-
camente i valorimds,mdt,mdu definiti dopo la formula (11.87) sono dell’ordine din e

8Stiamo sempre considerando funzioni d’onda simmetriche, che come vedremo nello studio della struttura
atomica, corrispondono a stati con spin totale nullo.
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quindi la base deve crescere come(n+ 1)3. Questo è uno dei motivi per cui con una base
di 120-140 elementi è problematico ottenere già il quinto livello eccitato.

11.7 Metodo variazionale e teoria delle perturbazioni.

Il metodo variazionale “puro” può non essere conveniente nel caso si vogliano calcolare le
dipendenze dei risultati da alcuni parametri, tipicamente campi esterni.

Ad esempio supponiamo di voler calcolare la polarizzabilità di un atomo, nello stato
fondamentale. Sappiamo che in campo elettrico il livello energetico dello stato fondamen-
tale, che supponiamo per semplicità conL = 0, è

E = E0 −
1
2
αE2 (11.106)

In principio possiamo calcolare l’energia dell’atomo in campo elettrico esternoE col meto-
do variazionale per diversi valori del campo ed estrarre il coefficiente del termine quadratico
in E .

Questo metodo, oltre ad essere discretamente inefficiente, presenta dei problemi diffi-
cilmente risolubili: per poter distinguere il termine inE2 dai dati, il suo contributo deve
essere maggiore dell’errore insito nel metodo variazionale ( che spesso non è facile da sti-
mare) quindiE deve essere abbastanza grande, ma allora non abbiamo sotto controllo i
termini di ordine superiore inE nella (11.106).

In realtà la soluzione è molto più semplice: i coefficienti come la polarizzabilità sono
per definizione le risposte a piccole variazioni di campi esterni, quindi la teoria perturbativa
è l’ideale per questo tipo di calcoli.

Se l’effetto è al primo ordine nel campo esterno non ci sono problemi: si calcola lo
stato fondamentale|ψ0〉 del sistema col metodo variazionale. La variazione al primo ordine
dell’energia è

E1 = 〈ψ0|HI |ψ0〉 (11.107)

e questo calcolo non presenta particolari difficoltà.
Il problema è nella correzione al secondo ordine, vedi eq.(10.15), in cui occorre fare

una somma su infiniti stati intermedi:

E2 =
∑′

n
〈ψ0|V |n〉

1
E0 − En

〈n|V |ψ0〉 (11.108)

La soluzione sta nel capire che la stessa teoria perturbativa può essere usata nel metodo
variazionale.

Supponiamo di conoscere|ψ0〉 e la prima correzioneE1 all’energia. Siccome il princi-
pio variazionale vale ordine per ordine nel parametro di sviluppo, e siccome già conoscia-
moE0, E1, dobbiamo minimizzare fino al secondo ordine, cioè sviluppare fino al secondo
ordine l’espressione

E[ψ] =
〈ψ|(H0 +HI |ψ〉

〈ψ|ψ〉
(11.109)

Scriviamo lo stato ed il funzionale in forma di sviluppo perturbativo:

ψ = ψ0 + ψ1 + ψ2 + . . . E[ψ] = E0[ψ] + E1[ψ] + E2[ψ] + . . .

all’ordine 0 la (11.109) dà il principio di minimo perψ0

min
〈ψ0|(H0|ψ0〉
〈ψ0|ψ0〉

che supponiamo risolto con soluzioneψ0, lo stato imperturbato. La (11.109) non dipende
dalla normalizzazione, scegliamo〈ψ0|ψ0〉 = 1 per semplificare le formule seguenti. Al
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primo ordine si ha

E1[ψ] = 2〈ψ0|H0|ψ1〉+ 〈ψ0|HI |ψ0〉+ 〈ψ0|H0|ψ0〉(−2〈ψ0|ψ1〉) = 〈ψ0|HI |ψ0〉
(11.110)

Quindi il primo ordine è un funzionale costante, che è proprio il valore perturbativo della
correzione al primo ordine dell’energia. Al secondo ordine la maggior parte dei contributi
si cancellano, usandoH|ψ0〉 = E0|ψ0〉. Li scriviamo tutti per chiarezza:

E2[ψ] = 2〈ψ0|H0|ψ2〉+ 〈ψ1|H0|ψ1〉+ 2〈ψ0|HI |ψ1〉
(−2〈ψ0|ψ1〉)(〈ψ0|HI |ψ0〉+ 2〈ψ0|H0|ψ1〉)
〈ψ0|H0|ψ0〉

[
4〈ψ0|ψ1〉2 − 2〈ψ0|ψ2〉 − 〈ψ1|ψ1〉

]
Semplificando:

E2[ψ] = 2〈ψ0|HI |ψ1〉+ 〈ψ1|H0|ψ1〉 − E0〈ψ1|ψ1〉 − 2E1〈ψ0|ψ1〉 (11.111)

È semplice verificare che imponendo la stazionarietà aE2 per piccole variazioni diψ1 si
ottiene effetivamente l’usuale equazione perturbativa, eq.(10.8):

2HI |ψ0〉+ 2H0|ψ1〉 − 2E0|ψ1〉 − 2E1|ψ0〉 = 0 (11.112)

Per variazioni generiche diψ1, E2 ha un modo zero, cioè una direzione nello spazio di
Hilbert in cui al variare diψ1 resta costante: le componenti diψ1 lungoψ0 non cambiano
E2, questo in accordo con la teoria perturbativa standard, in cui si impone〈ψ1|ψ0〉 = 0.
Possiamo imporre questa condizione anche aE2 in modo da avere un minimo e non un
semplice punto stazionario.

Il grosso vantaggio della espressione (11.111) è quella di poter valutare il minimo usan-
do degli stati di prova, come si fa normalmente nel metodo variazionale: la stima diE2[ψ]
sarà un limite superiore al valore vero della correzione dell’energia al secondo ordine dello
stato,E2 ≡ E2[ψ]min.

Il caso più interessante è quello in cuiE1 = 0. Normalmente questa circostanza è
dovuta a fattori di simmetria, è quindi facile selezionare statiψ1 perpendicolari aψ0: basta
scegliere stati con una simmetria diversa.

Consideriamo in particolare il caso di una particella sottoposta ad una perturbazione
V (x). Conviene fattorizzare daψ1 una parte proporzionale aψ0, scrivendo

ψ1 = ϕψ0 (11.113)

In questo modo, assumendo per semplicità funzioni d’onda reali:

〈ψ1|H0|ψ1〉 − E0〈ψ1|ψ1〉 = − ~2

2m

∫
ϕψ0

[
ψ0∇2ϕ+ 2∇ϕ∇ψ0

]
Integrando per parti∫

ϕ∇ϕ 2ψ0∇ψ0 =
∫
ϕ∇ϕ∇ψ2

0 = −
∫
ψ2

0

[
∇ϕ∇ϕ+ ϕ∇2ϕ

]
e quindi:

〈ψ1|H0|ψ1〉 − E0〈ψ1|ψ1〉 =
~2

2m

∫
ψ2

0(∇ϕ)2

Per la variazione di energia si ha

E2 =
∫
ψ2

0

[
2V ϕ− 2E1ϕ+

~2

2m
(∇ϕ)2

]
(11.114)

Per più particelle, analogamente:

E2 =
∫
ψ2

0

[
2V ϕ− 2E1ϕ+

∑
i

~2

2mi
(∇ϕ)2i

]
(11.115)
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Atomo di idrogeno.

Consideriamo come esempio il caso della polarizzabilità dell’atomo di idrogeno. Conoscia-
mo il risultato esattoE2 = −9/4, α = 9/2 In unità atomicheV = −Ez, ψ0 = 1/

√
πe−r,

E1 = 0. Per ragioni di simmetria è naturale usare funzioni di prova del tipo

ψ1 = Eβzψ0

β è il parametro variazionale. In questo modo, fra l’altro,ψ1 ha parità diversa daψ0 e
quindi è automaticamente ortogonale allo stato imperturbato. La (11.114) dà:

E2 = E2

[
−2β〈ψ0|z2|ψ0〉+

1
2
β2

]
= E2

[
−2β

3
〈ψ0|r2|ψ0〉+

1
2
β2

]
= E2

[
−2β +

1
2
β2

]
Il minimo di questa espressione è perβ = 2, nel qual caso

E2 = −2E2 > −9
4

⇒ α = 4 <
9
2

Si ha una discreta approssimazione del valore esattoα = 9/2. Possiamo allargare lo spazio
delle funzioni di prova. Ad esempio per

ϕ = Ez [β0 + β1r]

si ha

E2 = E2

{
−2〈z2(β0 + β1r)〉+

1
2

〈[
(β0 + β1r)2 + β2

1z
2 + 2β1

z2

r
(β0 + β1r)

]〉}
=

= E2

{
1
2
β2

0 +
4
3
β0β1〈r〉+ (β2

1 −
2
3
β0)〈r2〉 −

2
3
β1〈r3〉

}
(11.116)

= E2

[
β2

0

2
+ 2β0(β1 − 1) + β1(3β1 − 5)

]
Questa espressione ha un minimo perβ1 = 1/2, β0 = 1, e la corrispondente energia vale

E2 = −9
4

(11.117)

che è il risultato esatto. La cosa non deve sorprendere se si ricorda il metodo usato per il
calcolo della polarizzabilità nel paragafo (10.D).

11.7.1 Polarizzabilità e costante dielettrica dell’elio.

Per l’elio possiamo adottare la stessa procedura vista per l’idrogeno. L’interazione di dipolo
per gli elettroni si scrive, in unità atomiche,

V = −E(z1 + z2) (11.118)

e la (11.115) diventa

E2 =
∫
ψ2

0

[
2E(z1 + z2)ϕ+

1
2
(∇1ϕ)2 +

1
2
(∇1ϕ)2

]
(11.119)

In prima approssimazione poniamo

ϕ = Eβ(z1 + z2) (11.120)

e quindi
E2

E2
=
∫
ψ2

0

[
−2β(z1 + z2)2 + β2

]
(11.121)
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Come funzione d’onda per lo stato fondamentale possiamo considerare quella ottenuta nel
modo più semplice dal metodo variazionale, la eq.(11.39):

ψ0(x1,x2) =
1
π
Z3

1e
−Z1(r1+r2) Z1 = Z − 5

16
=

27
16

(11.122)

Il calcolo è identico a quello dell’idrogeno, e si ha:

E2

E2
=
[
−4

3
3
Z2

1

β + β2

]
Il minimo è perβ = 2/Z2

1 e fornisce la stima

E2

E2
= − 4

Z4
1

' −0.49 (11.123)

Il risultato (11.123) è ovvio: se consideriamo l’espressione (11.121) vediamo che il
minimo inβ si ha per

β = 〈(z1 + z2)2〉 → E2

E2
= −

[
〈(z1 + z2)2〉

]2
(11.124)

Per funzioni fattorizzate il valor medio dei termini misti è nullo e quindi, usando la simme-
tria fra i due elettroni:

E2

E2
= −(2〈z2

1〉)2 = −4(〈z2
1〉)2 (11.125)

Rispetto alle funzioni d’onda dell’idrogeno la scala, per l’elio, è data dalla carica effettiva
Z1 e quindi segue

〈z2
1〉 =

1
Z2

1

E2

E2
= − 4

Z4
1

che è il risultato (11.123).
In generale, usando le variabili (11.78) e la simmetria fra i due elettroni

〈(z1 + z2)2〉 =
1
3
〈(r21 + r22)〉+

2
3
〈(x1x2 + y1y2 + z1z2)〉 =

1
3
〈(r21 + r22)〉+

1
3
〈(r21 + r22 − (r1 − r2)2〉 =

1
3
〈(s2 + t2 − u2)

Ricordando il cambiamento di variabili dato dalle (11.80) e seguenti:

E2

E2
= −1

9

(
A

N

)2

(11.126)

N =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt u(s2 − t2)ψ2
0

A =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt u(s2 − t2)ψ2
0 · (s2 + t2 − u2)

Ad esempio usando la base semplificata (11.96) si ha, effettuando gli integrali elementari

E2

E2
= −0.544683

che è un miglioramento rispetto al risultato (11.123).
Sperimentalmente si ha

E2

E2
' −0.74 (11.127)

Si può migliorare l’ansatz (11.120) e, soprattutto, si può usare una funzione più realistica
per lo stato fondamentale, migliorando nettamente il risultato.
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Concludiamo questo argomento con una osservazione numerica che può essere utile.
In un gas la polarizzazione è direttamente connessa alla costante dielettrica dalla relazione

ε = 1 + 4πα n ≡ 1 + 8πn
α

2
(11.128)

n è il numero di particelle per unità di volume, quindi se si usano unità atomiche

n→ na3
B 8πna3

B = 8π
NAa

3
B

Vol. mol.
= 1.006 · 10−4

quindi con ottima approssimazioneε − 1 dà10−4α/2, ovvero il coefficiente diE2 nell’e-
nergia, in unità atomiche. Ad esempio per l’elio

ε = 1.000074

11.8 Alcune indicazioni bibliografiche.

Il metodo variazionale è trattato in tutti i testi di Meccanica Quantistica, ad esempio [Landau3,
Messiah]. Una trattazione semplice ed istruttiva si trova in [Pauling]. Un esempio di calcolo
per l’oscillatore anarmonico, a cui è parzialmente ispirato il testo, si trova in [Balsa].

Per una trattazione più approfondita, soprattutto per quanto riguarda il problema dell’e-
lio, il lettore può consultare il testo di Bethe e Salpeter [Bethe]. Molto di quanto abbiamo
riportato sull’elio si trova in questa referenza. Sotto molti punti di vista questo testo è fon-
damentale e lo consigliamo caldamente al lettore che voglia approfondire alcuni aspetti di
questo corso.

La prima applicazione del metodo variazionale all’elio si trova in [Hylleraas]. I pro-
gressi successivi sono discussi nel testo di Bethe. In particolare Kinoshita usa una variante
del metodo di Temple[Temple] per valutare un limite inferiore alle stime variazionali.

Lavori più recenti, come quelli di Pekeris[Pekeris] e quello di Bürgers et. al [Bürgers]
usano variabili leggermente diverse da quelle di Hylleraas ottenendo un netto miglioramen-
to nella precisione e, soprattutto, riescono a calcolare i livelli molto eccitati dell’atomo di
elio.



Appendici e Complementi

11.A Stima degli errori.

Come esempio di stima, molto grossolana, dei limiti inferiori sull’energia consideriamo il
caso della trattazione elementare dell’elio data nel paragrafo 11.3.2. La funzione d’onda
variazionale è, vedi (11.39):

ψ(x1,x2) = ϕ(r1)ϕ(r2) ϕ(r) =
1√
π
Z

3/2
1 e−Z1r (11.129)

Vogliamo calcolare

σ = 〈Hψ|Hψ〉 − E2 = 〈H0ψ|H0ψ〉+ 2〈H0ψ|H12ψ〉+ 〈H12ψ|H12ψ〉 − E2 (11.130)

Sappiamo già che, sul minimo

E = 〈ψ|H|ψ〉 = −
(
Z − 5

16

)2

Z1 = Z − 5
16

(11.131)

In coordinate polari si calcola subito:

H0ψ =
[
−Z2

1 + (Z1 − Z)
(

1
r1

+
1
r2

)]
ψ H12ψ =

1
|r1 − r2|

ψ (11.132)

Dalle (11.129) segue

〈 1
r1
〉 = Z1 〈 1

r21
〉 = 2Z2

1

e quindi

〈H0ψ|H0ψ〉 = Z4
1 − 2(Z1 − Z)Z2

1 〈
(

1
r1

+
1
r2

)
〉+ (Z1 − Z)2〈

(
1
r1

+
1
r2

)2

〉

= Z4
1 − 4(Z1 − Z)Z2

1 〈
1
r1
〉+ 2(Z1 − Z)2〈 1

r21
+

1
r1

1
r2
〉 =

= Z2
1

[
6Z2 − 8ZZ1 + 3Z2

1

]
(11.133)

Per il secondo termine nella (11.130) si ha:

〈H12ψ|H0ψ〉 = −Z2
1 〈H12〉+ 2(Z1 − Z)

∫
ψ

1
|r1 − r2|

1
r1
ψ = −5

8
Z3

1 + 2(Z1 − Z)I

L’integrale si calcola in trasformata di Fourier (si veda l’analogo calcolo perturbativo):

I =
1

(4π)2
Z1

2
· (2Z1)

∫
d3x1d

3x2 e
−|x1|e−|x2| 1

|x1 − x2|
1
|x1

=
1

(4π)2
Z2

1

∫
d3k

(2π)3
8π

(k2 + 1)2
4π
k2

4π
k2 + 1

=
29π4Z2

1

27π5

∫ ∞

0

dk
1

(k2 + 1)3
=

=
4Z2

1

π

∫ ∞

0

dk
1

(k2 + 1)3
=

3
4
Z2

1

37
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Da cui

〈H12ψ|H0ψ〉 =
1
8
Z2

1 (7Z1 − 12Z) (11.134)

Utilizzando la trasformata di Fourier9

F
(

1
r2

)
=

(2π)3

4π
1
|k|

=
2π2

|k|

il terzo termine nella (11.130) si scrive

〈H12ψ|H12ψ〉 =
∫
ψ

1
|r1 − r2|2

ψ =
1

(4π)2
Z1

2
· (2Z1)

∫
d3x1d

3x2 e
−|x1|e−|x2| 1

|x1 − x2|2

=
1

(4π)2
Z2

1

∫
d3k

(2π)3
8π

(k2 + 1)2
2π2

|k|
8π

(k2 + 1)2
= 4Z2

1

∫ ∞

0

dk
k

(k2 + 1)4
=

2
3
Z2

1

Sommando i vari termini ed inserendo i valori numerici:

σ =
121

98304
(5− 16Z)2 = 0.897 a.u.2

√
σ ' 0.95 a.u. (11.135)

poichèE ' 2.9a.u. il limite inferiore che si ricava sull’energia dello stato fondamentale
dalla relazione (11.19):

E −
√
σ ≤ Ej ≤ E +

√
σ

è piuttosto debole.

11.B Metodo delle differenze finite.

Negli primi esempi visti nel testo abbiamo sempre fatto uso di una sola funzione di prova,
vediamo in quest’appendice come la “macchina” dell’algebra lineare entra in gioco.

Discretizzazione.

Il primo esempio che vogliamo trattare è un metodo che ha il vantaggio di essere semplice
e flessibile, e spesso dà una buona approssimazione per problemi unidimensionali.

Consideriamo di nuovo il problema differenziale

−1
2
d2

dx2
ψ + V (x)ψ = Eψ (11.136)

C’è un metodo molto brutale per risolvere approssimativamente la (11.136). Stiamo cerca-
no soluzioni stazionarie, quindi ci aspettiamo cheψ decresca esponenzialmente all’infinito.
Possiamo allora pensare di approssimare l’equazione limitandoci ad un intervallo finito, di-
ciamo[−L,L]. Se il problema iniziale era già definito su un intervallo finito questo passo
lo possiamo saltare.
Possiamo ora pensare di risolvere la (11.136)
per punti: discretizziamo il nostro interval-
lo in N + 1 intervalli di lunghezzaa. Avre-
mo una successione di punti equispaziati
x0, x1, . . . xN , xN+1. I punti x0, xN+1 coin-
cidono con gli estremi dell’intervallo ed in
questi punti imponiamo la condizione al con-
torno approssiamataψ(x0) = ψ(xN+1) = 0.
le nostre incognite sono i valoriψi ≡ ψ(xi)
nei puntiinterni.

   

0 1 2 3 4 5 6

N = 5

L/2-L/2

Come è chiaro dalla figura il segmento è diviso inN + 1 intervalli di lunghezzaa =
9È semplicemenete l’inversa della trasformata di un campo Coulombiano.
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L/(N+1). Se l’intervallo da considerare è[0, L], come ad esempio per la parte radiale delle
equazioni di Schrödinger, basta prendere i punti con coordinatexk = ka, k = 1 . . . N . Se
si vuole invece un intervallo simmetrico,[−L/2, L/2] e si vuole che lo zero sia uno dei
punti della griglia occorre considerareN dispari. I punti della griglia hanno coordinate
xk = −L/2 + ka.

Possiamo sostituire la derivata seconda con la sua versione discretizzata10 ed il poten-
ziale con il valore assunto nei puntixi, otteniamo

−ψi+1 − 2ψi + ψi−1

2a2
+ Viψi = Eψi (11.137)

Abbiamo allora una equazione matricialeN ×N

1
2a2

∆ijψj + Viψi = Eψi (11.138)

∆ij è una matrice diagonale con2 sulla diagonale principale e−1 sulle diagonale adiacenti
a questa:

∆ =



2 −1 0
−1 2 −1 0

0 −1 2 −1
·

·
−1 2 −1

−1 2


(11.139)

Notiamo che∆ è una matrice autoaggiunta ed ha questa forma nella prima e nell’ultima
riga in virtù delle condizioni al contorno scelte.

Possiamo risolvere l’equazione (11.138) e trovare una approssimazione per gli autova-
lori. Il lettore può fare qualche esperimento usando ad esempio l’equazione per un oscilla-
tore armonico o anarmonico. Le poche righe di programma seguente risolvono entrambi i
casi. Il risultato non è eccelso ma il lavoro è veramente minimo.

function harmonic_osc1
N = 501;
L = 20; a = L/(N+1);
e = ones(N,1);
x = a*(1:N)’ - L/2;
D = 1/a^2*spdiags([-e 2*e -e],-1:1,N,N);
% Osc. armonico
V_vect = 0.5*x.^2;
V = spdiags(V_vect,0,N,N);

H = 1/(2)*D + V;
E = eig(H);
E= sort(E);
fprintf(’ Osc. armonico E_0 = : %12.9f\n’,E(1))
% Osc. anarmonico
g = 10;
V_vect = 0.5*x.^2 + g/2 * x.^4;
V = spdiags(V_vect,0,N,N);

H = 1/(2)*D + V;
E = eig(H);
E= sort(E);
fprintf(’ Osc. anarmonico, g=10 2*E_0/10 = : %12.9f\n’,2*E(1)/10)

10La discretizzaizone della derivata seconda usa le relazioni:f(x ± a) = f(x) ± af ′(x) + 1
2
f ′′(x)a2.

Sommandole si ottiene l’espressione (11.137).
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Un punto da sottolineare è la necessità di avere una griglia abbastanza fitta per avere un
risultato ragionevole. La necessità dell’indipendenza daL complica anche un pò le cose.
Il vantaggio è che comunque sia complicato il potenziale il programma è sempre lo stesso.

Vediamo ora come dal principio variazionale si può ottenere una forma analoga alla
(11.138) ma che fornisce, discendendo da un principio variazionale, un limite rigoroso
al risultato e, sfruttando la completezza dello spazio di Hilbert, assicura che infittendo la
griglia di punti si ha convergenza alla soluzione esatta.

Consideriamo a questo scopo delle funzioni continue a tratti, che hanno la forma di un
triangolo isoscele di lato2a, altezza 1 e centrate sui punti della griglia. Analiticamente

fi(x) =



0 x ≤ xi−1
x− xi−1

xi − xi−1
≡ 1

a (x− xi−1) xi−1 ≤ x ≤ xi

xi+1 − x

xi+1 − xi
≡ 1

a (xi+1 − x) xi ≤ x ≤ xi+1

0 x ≥ xi+1

(11.140)

Possiamo prendere le funzionifi come funzioni di base e su queste costruire la tecnica
variazionale. La quantità da minimizzare è, al solito11,

Q =
∫
dx

1
2

(∇ψ)2 + V (x)ψ2 − Eψ2 (11.141)

Prendiamo come funzioni di prova

ψ =
n∑
i=1

cifi(x)

è facile calcolare il termine derivativo nella (11.141) e ricavare

Q(c) =
∑
ij

[
1
2a

∆ijcicj + Vijcicj − ENijcicj

]
(11.142)

Vij =
∫
dxV (x)fifj Nij =

∫
dxfifj

dove∆ è proprio la matrice (11.139). Notiamo che il coefficiente davanti a questa matrice
è1/a non1/a2. La base non è ortonormale e per questo motivoNij 6= δij . Si trova subito,
calcolando gli integrali

∫
fi(x)fj(x)

N = aN N =



2/3 1/6 0
1/6 2/3 1/6 0
0 1/6 2/3 1/6

·
·

1/6 2/3 1/6
1/6 2/3


(11.143)

L’equazione di minimo∂Q/∂ci = 0 dà

1
2a

∆ijcj + Vijcj = ENijcj (11.144)

Possiamo trovare autovalori ed autovettori senza particolari problemi. La basefi è ov-
viamente densa nell’intervallo considerato pern → ∞, quindi al crescere din abbiamo

11Stiamo definendo il punto stazionario tramite il metodo dei moltiplicatori di Lagrange. Consideriamo il caso
di funzioni reali per semplicità.
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una successione decrescente di stime per l’autovaloreE1 e siamo sicuri che questa succes-
sione converge al valore esatto. Nel caso di intervallo infinito in realtà dobbiamo anche
controllare che si raggiunge un limite allargando l’intervallo.

Questo metodo è particolarmente adatto al calcolo numerico perchè le matriciVij , Nij ,∆ij

sono matrici sparse, in pratica la maggior parte degli elementi è nullo. Infatti le funzioni
fi il cui indice differisce per più di 1 hanno supporto distinto, quindi tutti gli integrali nella
(11.144) sono nulli eccetto quelli che si riferiscono agli elementi di matrice sulla diagonale
principale e sulle due diagonali adiacenti, esattamente come∆ij . È possibile allora trattare
matrici molto grandi senza troppa difficoltà.

Questo metodo si può generalizzare a più di una dimensione, i simplessi prendono il
posto dei triangoli, è il metodo delledifferenze finiteed è uno dei più potenti per risolvere
numericamente le equazioni differenziali.

Un vantaggio non trascurabile del metodo è che gli stessi elementi di matriceVij
possono essere calcolati numericamente, ad esempio usando la formula dei trapezi:∫ x2

x1

f(x)dx = (x2 − x1)
(

1
2
f1 +

1
2
f2

)
(11.145)

La grossa semplifizione che si ha in questo caso è che negli elementi di matrice fuori
diagonale perV :

Vi−1,i =
∫
dxfi−1V (x)fi(x) ' 0

l’integrando si annulla ad entrambi gli estremi, quindi gli elementi di matrice fuori diago-
nale possono essere considerati nulli. Quelli sulla diagonale, applicando sempre la (11.145)
danno semplicemente

Vii = aV (xi)

quindi la matriceV è diagonaleVij = aV D. In conclusione usando il metodo dei trapezi
e dividendo pera entrambi i membri della (11.144), l’equazione di minimo diventa quasi
identica all’equazione (11.137):

1
2a2

∆ijcj + V Dij cj = ENijcj (11.146)

L’unico posto in cui comparea è nel fattore1/a2, come nella (11.137). L’aggiunta di poche
al programma precedente lo trasforma in un metodo variazionale:

N = spdiags([1./6*e 2./3*e 1./6*e],-1:1,N,N);
E = eig(full(N\H);
E= sort(E);
fprintf(’ Osc. anarmonico, g=10 2*E_0/10 = : %12.9f\n’,2*E(1)/10)

11.C Programma numerico per l’oscillatore anarmonico.
function studiox4()

g=10;
C2 = 1;
% C2 = -50; g = 1; % potenziale instabile nell’origine

max_base = 200; % scegliere un multiplo di 20

parita = 0; % scelta fra stati pari e dispari
parita = rem(parita,2);

%--- opzioni per la scelta della scala ----
stat_fond = 0; % se si vuole minimizzare sul fond. -> stat_fond = 1
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alpha_fixed = 0; % se si vuole fissare il valore di alpha ;
valore_di_riferimento = 1; % valore a cui viene fissato alpha
opzione = 0; % se si vuole lo stato n variazionalmente per mu^2 < 0
% -----------------------------------
N = 2*max_base+1;
[p2in,x2in,x4in] = matrici(N);
%--- Scelta degli autovalori da stampare ----
E_stampa = [1,11,20];
scala = [1/10,1/1000,1/1000];
% -----------------------------------
fprintf(’\t\t V = %2d*(1/2 x^2) + %2d*(1/2 x^4)’,C2,g);
fprintf(’\n\n’);
if parita == 0
fprintf(’ 2*E_0/10 2*E_20/1000 2*E_38/1000 ’);
else
fprintf(’ 2*E_1/10 2*E_21/1000 2*E_39/1000 ’);
end
fprintf(’ base\n\n’);

tic
for base = [10,20:20:max_base]

ind= (1+parita:2:2*base+parita);
nmin = parita + (1-stat_fond)*floor(base)*2;
%----- scelta della scala ----------
if alpha_fixed == 0
[alpha,n_eff] = scegli_alpha(C2,g,nmin,opzione);
else
alpha = valore_di_riferimento;
n_eff = 0;
end
% -----------------------------------
p2 = p2in(ind,ind);
x2 = x2in(ind,ind);
x4 = x4in(ind,ind);

p2 = (alpha^2)*p2;
x2 = (1./alpha^2)*x2;
x4 = (1./alpha^4)*x4;

H = p2+ C2*x2+ g*x4;
% ------ Procedura di diagonalizzazione -----

[Y,E_out] = eig(full(H),’nobalance’);
[E,ind] = sort(diag(E_out));
E = E’;
% --------------------------------------------
istampa = 1;
for k=E_stampa
if k <= base
fprintf(’ %15.12f ’,E(k)*scala(istampa));
istampa = istampa+1;
else
fprintf(’ ’);
end
end
fprintf(’ N= %3d alpha= %5.3f n_min= %3d\n’,base,alpha,n_eff);
end
tempo = toc;
% Togliere i commenti se si vogliono stampare alcuni elementi diagonali
%fprintf(’\n\n’);
% dH = diag(H);
% istampa = 1;
% for k=E_stampa
% if k <= base
% fprintf(’ %15.12f ’,dH(k)*scala(istampa));
% istampa = istampa+1;
% else
% fprintf(’ ’);
% end
% end
% fprintf(’ N = %3d\n’,base);

fprintf(’\n tempo esecuzione: %d sec \n’,tempo);

%--------- Calcolo del viriale -------
N = length(E);
for j=1:N
Y1 = Y(:,ind(j));
L2 = Y1’*p2*Y1;
V2 = C2*Y1’*x2*Y1;
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V4 = g*Y1’*x4*Y1;
viriale(j) = (2*L2 - 4*V4 - 2*V2);
end

figura_viriale(viriale,parita,alpha);
%--- Stima errore col metodo di Temple
Y1 = Y(:,1);
stima_Temple(Y,E,max_base,C2,g,alpha)

%====================
function stima_Temple(Y,E,max_base,C2,g,alpha)
parita = 0;
aug_base = 2; % aumento della base
base = max_base+aug_base;
N = 2*base+1;
[p2in,x2in,x4in] = matrici(N);
ind= (1+parita:2:2*base+parita);

p2 = p2in(ind,ind); p2 = (alpha^2)*p2;
x2 = x2in(ind,ind); x2 = (1./alpha^2)*x2;
x4 = x4in(ind,ind); x4 = (1./alpha^4)*x4;
H = p2+ C2*x2+ g*x4;

Y = [Y;zeros(aug_base,max_base)];
HY = H*Y;

H2_non_ord = diag(HY’*HY);
H2 = sort(H2_non_ord);
H2 = H2(1:length(E))’;
E2 = E.^2;
sigma2 = H2 - E2;
sigma = sqrt(sigma2);
num_plot = 1:floor((2*max_base)/3);
denE = diff(E); denE = [denE,E(length(E))];
err = (sigma2)./denE;
figure
plot(2*num_plot,10^12*real(err(num_plot))./E(num_plot))
xlabel(’livello’,’fontsize’,20);
xlab = str2num(get(gca,’XTickLabel’));
ylab = str2num(get(gca,’YTickLabel’));
text(0.5*(xlab(1)+xlab(2)),0.5*(ylab(1)+ylab(2)),’10^{12} * dE’,’fontsize’,15);

%====================
function figura_viriale(viriale,parita,alpha)
figure
virialplot = viriale;
N = length(virialplot);
pt = parita+2*(1:N) - 1;

mxv = max(abs(virialplot));
ev = floor(log(mxv)/log(10)); numev = mxv/10^(ev);
yplot = virialplot/10^(ev);

subplot (2,1,1), plot(pt,yplot);
xlabel(’livello’,’fontsize’,15);
ytext = min(yplot) + 0.25*(max(yplot)-min(yplot));
vshift = min(yplot);
text(10,ytext,[’10^{’,num2str(-ev),’}*Viriale’,’ \alpha = ’,num2str(alpha)],’fontsize’,20);
% ----- secondo plot sui primi N/2 lementi della base ----
virialplot = viriale(1:floor(2*N/3));
N = length(virialplot); pt = parita+2*(1:N);

mxv = max(abs(virialplot));
ev = floor(log(mxv)/log(10)); numev = mxv/10^(ev);
yplot = virialplot/10^(ev);

subplot (2,1,2), plot(pt,yplot);
ytext = min(yplot) + 0.25*(max(yplot)-min(yplot));
text(5,ytext,[’10^{’,num2str(-ev),’}*Viriale’],’fontsize’,20);
xlabel(’livello’,’fontsize’,15);
return
%====================
function alpha = trova_radice(coff)
pol = coff;
rad = roots(pol);
ind_rad = find(rad-conj(rad)==0);
rad = rad(ind_rad);
rad = -sort(-rad);
ind_rad = find(rad > 0);
alpha = rad(ind_rad(1));
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return
%===============
function [alpha,n_eff] = scegli_alpha(C2,g,nmin,opzione)
coff = zeros(1,4);
if C2 < 0 & opzione == 1
coff(1) = 1;
coff(2) = -abs(C2);
coff(3) = 0;
coff(4) = 9./8*g;
alpha = trova_radice(coff);
alpha = alpha^(1./4); % l’equazione e’ in alpha^4
n_eff = -( (alpha^6-alpha^2*abs(C2))/(3.*g)-1./2 );
else
coff(1) = 2*nmin+1;
coff(3) = -C2*coff(1);
coff(4) = -3*g*(2*nmin^2+coff(1));
alpha = trova_radice(coff);
alpha = sqrt(alpha); % l’equazione e’ in alpha^2
n_eff = nmin;
end

%===============
function [p2,x2,x4] = matrici(N)

n_v = 0:N;
sq1 = sqrt((n_v+1).*(n_v+2));
sq2 = sqrt((n_v+1).*(n_v+2).*(n_v+3).*(n_v+4));
vd_p2 = 1./2*(2*n_v +1);
vd_x2 = 1./2*(2*n_v+1);
vd_x4 = 3./4*(2*n_v.^2+2*n_v+1);

v_up1_p2 = -1./2*sq1;
v_up1_x2 = 1./2*sq1;
v_up1_x4 = 1./4*(4*n_v+6).*sq1;
v_up2_x4 = 1./4*sq2;

p2 = spdiags([1./2*vd_p2’ v_up1_p2’],[0,-2],N+1,N+1);
x2 = spdiags([1./2*vd_x2’ v_up1_x2’],[0,-2],N+1,N+1);
x4 = spdiags([1./2*vd_x4’ v_up1_x4’ v_up2_x4’],[0,-2,-4],N+1,N+1);
p2 = p2+p2’;
x2 = x2+x2’;
x4 = x4+x4’;

11.D Appendice per l’atomo di He.

Raccogliamo in queste appendici i calcoli necessari per lo studio dello stato fondamentale
dell’elio.

Correzione di massa.

Ricaviamo l’effetto della massa finita del nucleo sull’Hamiltoniana. Il caso generale col
formalismo canonico è stato affrontato nel capitolo 8, qui diamo per comodità del lettore
una dimostrazione diversa, basata direttamente su un cambiamento di variabili nell’equa-
zione di Schrödinger.

Consideriamo l’Hamiltoniana totale dell’atomo di elio, compreso il nucleo;

H =
1
2
p2
1 +

1
2
p2
2 +

1
2
p2
N + Vint (11.147)

Notiamo che questa hamiltoniana deve avere uno spettro continuo

E = Ekin + E0

doveEkin è l’energia cinetica del sistema,E0 l’energia dello stato fondamentalenel siste-
ma del centro di massa.Questa è semplicemente la definizione corretta di energia dello
stato.

Chiamiamoρ = (ξ, η, ζ) le coordinate in un riferimento inerziale qualunque,R =
(X,Y, Z) la coordinata del centro di massa eri le coordinate relative rispetto al nucleo.
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Ricordiamo che il sistema è invariante sotto traslazioni quindi il potenzialeV dipende
solo dalle coordinate relativeri, ad esempior12 = r1 − r2. Facciamo esplicitamente il
cambiamento di variabili che corrisponde alla trasformazione canonica classica per passare
a coordinate del centro di massa e coordinate relative. Consideriamo ad esempio la prima
coordinata, si ha:

X =
1

2m+M
(MξN +mξ1 +mξ2) xi = ξi − ξN (11.148)

Quindi

∂

∂ξi
=
∂X

∂ξi

∂

∂X
+
∂xj
∂ξi

∂

∂xj
=

m

2m+M

∂

∂X
+

∂

∂xi
∂

∂ξN
=

∂X

∂ξN

∂

∂X
+
∂xj
∂ξN

∂

∂xj
=

M

2m+M

∂

∂X
− ∂

∂x1
− ∂

∂x2

Ovvero, considrando anche le altre componenti delle coordinate e scrivendoq per gli im-
pulsi nel sistema inerziale di partenza ep,P per gli impulsi relativi e quelli del centro di
massa

qi =
m

2m+M
P + pi qN =

M

2m+M
P − (p1 + p2)

Quindi l’energia cinetica si scrive

1
2M

q2
N =

1
2

M

(2m+M)2
P 2 − 1

2m+M
P (p1 + p2) +

1
2M

(p1 + p2)
2

1
2m

q2
1 +

1
2m

q2
2 =

m

(2m+M)2
P 2 +

1
2m

p2
1 +

1
2m

p2
2 +

1
2m+M

P (p1 + p2)

sommando

Ekin =
1

2m+M
P 2 +

1
2µ

(p2
1 + p2

2) +
1
M

p1 · p2 (11.149)

µ =
mM

m+M
= massa ridotta (11.150)

Quindi correttamente è stato isolato il termine di energia cinetica globale del sistema.
L’Hamiltoniana relativa ai gradi di libertà interni è allora

H =
1
2µ

(p2
1 + p2

2) + V +
1
M

p1 · p2 (11.151)

Jacobiano ed elementi di matrice.

Le notazioni sono le seguenti:r1, r2, r12 indicano rispettivamente la distanza del primo e
del secondo elettrone dal nucleo e la loro distanza relativa.

Il sistema di riferimento è centrato sul nucleo,γ è l’angolo fra la direzione della
posizione del primo elettrone e quella del secondo. Le variabili usate sono

s = r1 + r2 t = r1 − r2 u = r12 (11.152)

r212 = r21 + r22 − 2r1r2 cos γ
cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)
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Da cui

r21 + r22 =
s2 + t2

2
(11.153a)

2r1r2 =
s2 − t2

2
(11.153b)

1
r1

+
1
r2

=
r1 + r2
r1r2

=
4s

s2 − t2
1
r1
− 1
r2

=
r2 − r1
r1r2

= − 4t
s2 − t2

(11.153c)

1− cos γ = 2
u2 − t2

s2 − t2
1 + cos γ = 2

s2 − u2

s2 − t2
(11.153d)

Jacobiano.

d3r1d
3r2 dipende da sei variabili. Tre di queste variabili possono essere eliminate im-

mediatamente: due angoli che determinano la direzione, arbitraria, del primo elettrone,
un’altra variabile è l’angolo azimutale fra il piano che passa per i due elettroni ed il nucleo
e l’assez. Restano come variabili i due raggi e l’angolo relativo fra il primo ed il secondo
elettrone,γ, quindi

d3r1d
3r2 = (4π) · (2π)r21r

2
2dr1dr2d cos γ

si ha da una parte

r21r
2
2 =

(s2 − t2)2

4
cos γ =

s2 + t2 − u2

s2 − t2

dall’altra lo jacobiano alle variabilis, t, u è semplice, usando

∂(r1, r2, cos γ)
∂(s, t, u)

=

∣∣∣∣∣∣
1
2

1
2 0

1
2 − 1

2 0
∗ ∗ − u

s2−t2

∣∣∣∣∣∣ = 1
2

u

s2 − t2

Quindi

d3r1d
3r2 → 8π2 (s2 − t2)2

4
1
2

u

s2 − t2
dsdtdu = π2u(s2 − t2)dsdtdu (11.154)

Un ulteriore fattore 2 si ottiene se ci si limita alla regione di integrazionet > 0, come
indicato nel testo.

Forme quadratiche.

Vogliamo esprimere le forme quadratiche

M =
∫

1
2
[
(∇1ψ)2 + (∇2ψ)2

]
(11.155)

L =
∫ [

Z

r1
+
Z

r2
− 1
r12

]
ψ2 (11.156)

N =
∫
ψ2 (11.157)

in termini delle variabilis, t, u. Dallo jacobiano (11.154) si ha, trascurando il fattore2π2

comune a tutti i termini e ricordando i limiti di integrazione

0 ≤ t ≤ u ≤ s <∞
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si ha facilmente, usando le (11.153)

L =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt
[
4Zus− (s2 − t2)

]
ψ2 (11.158a)

N =
∫ ∞

0

ds

∫ s

0

du

∫ u

0

dtu(s2 − t2)ψ2 (11.158b)

Il termineM è leggermente più complicato. Chiamiamox,y le coordinate dei due elettro-
ni, si ha:

∂s

∂xi
=
xi

r1

∂t

∂xi
=
xi

r1

∂u

∂xi
=
xi − yi

r12
∂s

∂yi
=
yi

r2

∂t

∂yi
= −y

i

r2

∂u

∂yi
=
yi − xi

r12

quindi

∂ψ

∂xi
∂ψ

∂xi
=
[

x

r1
(∂sψ + ∂tψ) +

x− y

r12
∂uψ

]2
= (∂sψ + ∂tψ)2 + (∂uψ)2 + 2

x · (x− y)
r1r12

∂uψ(∂sψ + ∂tψ)

= (∂sψ + ∂tψ)2 + (∂uψ)2 +
2
r12

[
r1 −

r21 + r22 − r212
2r1

]
∂uψ(∂sψ + ∂tψ)

∂ψ

∂yi
∂ψ

∂yi
= (∂sψ − ∂tψ)2 + (∂uψ)2 +

2
r12

[
r2 −

r21 + r22 − r212
2r2

]
∂uψ(∂sψ − ∂tψ)

La seconda derivata si ottiene dalla prima scambiando l’indice 1 con l’indice 2, in questa
operazione∂t → −∂t. La semisomma dei termini dà

1
2
((∇1ψ)2 + (∇2ψ)2) = (∂sψ)2 + (∂tψ)2 + (∂uψ)2+

+
1
r12

[
(r1 + r2)−

1
2
(

1
r1

+
1
r2

)(r21 + r22 − r212)
]
∂uψ∂sψ =

+
1
r12

[
(r1 − r2)−

1
2
(

1
r1
− 1
r2

)(r21 + r22 − r212)
]
∂uψ∂tψ

Utilizzando le (11.153) i coefficienti dei termini misti si scrivono:

∂uψ∂sψ : → 1
u

[
s− 2s

s2 − t2
(
s2 + t2

2
− u2)

]
=

2s
u

u2 − t2

s2 − t2

∂uψ∂tψ : → 1
u

[
t+

2t
s2 − t2

(
s2 + t2

2
− u2)

]
=

2t
u

s2 − u2

s2 − t2

e finalmente, moltiplicando per il fattore jacobiano

M = u(s2− t2)
[
(∂sψ)2 + (∂tψ)2 + (∂uψ)2

]
+2∂uψ

[
s(u2 − t2)∂sψ + t(s2 − u2)∂tψ

]
che è l’espressione usata nel testo.

Elementi di matrice.

Riportiamo qui i valori degli elementi di matrice, non simmetrizzati, relativi alle forme
quadraticheM,L,N . Si sottintende che l’integrale è preso fra due funzioni del tipo

si1t2j1uk1e−s/2 si2t2j2uk2e−s/2



48 CAPITOLO 11. METODI VARIAZIONALI.

Poniamo

a = i1 + i2 b = 2(j1 + j2) c = (k1 + k2)

Risulta

M =
(3 + a+ b+ c)!

2(1 + b)(3 + b+ c)
(X1 +X2 +X3 +X4 +X5)

X1 =
(6 + 2 b+ c)

(
20 + a− a2 + b2 + 9 c+ c2 + b (9 + 2 c) + 4 i1 i2

)
(3 + b) (5 + b+ c)

X2 =
16 (2 + 2 b+ c) j1 j2
(−1 + b) (1 + b+ c)

X3 =
−4 (4 + a+ b+ c− 2 i1) k2

3 + b

X4 =
16 j1 k2

1 + b+ c
X5 =

4 (4 + 2 b+ c) k1 k2

(3 + b) (1 + b+ c)

L =
(4 + a+ b+ c)!
(1 + b)(3 + b)

[
−2 (5 + 2 b+ c)

(2 + b+ c) (4 + b+ c)
+

4 (3 + b) Z
3 + b+ c

]
N =

2 (6 + 2 b+ c) (5 + a+ b+ c)!
(1 + b) (3 + b) (3 + b+ c) (5 + b+ c)

K =
(3 + a+ b+ c)!

2(3 + b+ c)
(Y1 + Y2 + Y3 + Y4 + Y5)

Y1 = −

(
c
(
20 + a− a2 + b2 + 9 c+ c2 + b (9 + 2 c) + 4 i1 i2

)
(1 + b) (3 + b) (5 + b+ c)

)

Y2 =
16 c j1 j2

(−1 + b2) (1 + b+ c)
Y3 =

4 (4 + a+ b+ c− 2 i2) k1

(1 + b) (3 + b)

Y4 =
−16 j2 k1

(1 + b) (1 + b+ c)
Y5 =

−4 (4 + 2 b+ c) k1 k2

(1 + b) (3 + b) (1 + b+ c)

Programma numerico in MatLab.

Di seguito è riportata la lista dei comandi in MatLab che eseguono il calcolo variazionale
per l’elio ed altri ioni a due elettroni. Rispetto a quanto riportato nel testo l’unica differenza
è che la normalizzazione delle funzioni di base è

1
i!(2j)!k!

sit2juke−s/2

Il prefattore stabilizza in una certa misura le matrici, che hanno elementi differenti fra loro
per decine di ordini di grandezza.

Se il lettore vuole sperimentare con il programma i parametri da tenere in conto sono
quelli definiti nelle prime righe.

• LIVELLO: Indica su quale livello si effettua l’ottimizzazione. 1 corrisponde allo
stato fondamentale, 2 al primo eccitato etc. Questo parametro deve essere minore di
5.
num_livelli = 5 indica il numero di autovalori presi in considerazione. Se si vuole
cambiare questo parametro si deve modificare la procedura di stampa dei risultati.

• Z: Indica lo ione che si vuole considerare. I confronti con i dati si hanno solo per
Z ≤ 4. Se si vuole uno ione conZ più alto occorre modificare, oltre alle procedure
di stampa, il vettoremassa dove sono definite le masse nucleari, nella funzione
calcolo_correzioni.
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• maxexp_s , maxexp_t , maxexp_u definiscono le massime potenze delle
variabili s, t, u nelle funzionidi prova. La dimensione della base è

DIM = (maxexp_s + 1) (maxexp_t + 1) (maxexp_u + 1)

QuandoDIM supera 150 per l’elio si producono delle instabilità numeriche, ma basi
molto più piccole danno risultati stabili per i livelli fondamentali.

Gli altri parametri sono semplicemente parametri di inizializzazione per il “loop” usato per
trovare il minimo ink dell’energia.

Il programma non è particolarmente efficiente, soprattutto nel calcolo delle matrici.
Naturalmente siccome le matrici sono fisse il lettore può conservare il loro valore in un file
e sostituire la chiamatamatrici all’inizio del file con un’operazione di lettura.

function studioElio()

LIVELLO = 1;
num_livelli = 5;
Z = 2;

maxexp_s = 3; maxexp_t = 5; maxexp_u =5;
nummax = 50; dE_prec = 1.e-10; dk_prec = 1.e-6;

k = 2*(Z-5/16);
dk = 0.2*k;

Ry = 109737.3156; % cm^-1
AU = 2*Ry; % atomic unit

tic;
[L,M,N,K] = matrici(maxexp_s,maxexp_t,maxexp_u,Z);
tempo_matrici = toc;

[E_liv,Y0] = calcola_energia(k,M,L,N,num_livelli);
ene = E_liv(LIVELLO);

intestazione( Z,LIVELLO,maxexp_s , maxexp_t , maxexp_u,nummax,dE_prec,dk_prec,k,dk,ene);

kvolte = 1; dE = 1;
fprintf(’\n LOOP per k \n’);
tic;
while ( (kvolte <= nummax) & (dk > dk_prec) & dE > dE_prec)
kup = k + dk;
[E_liv,Y1] = calcola_energia(kup,M,L,N,num_livelli);
ene1 = E_liv(LIVELLO);
kdown = k - dk;
[E_liv,Y2] = calcola_energia(kdown,M,L,N,num_livelli);
ene2 = E_liv(LIVELLO);
if ene1 <= ene
k = kup;
dE = abs(ene1-ene);
ene = ene1;
elseif ene2 < ene
k = kdown;
dE = abs(ene2-ene);
ene = ene2;
else
dk = dk/2;
end
if (rem(kvolte,5) == 0)
fprintf(’E = %11.7g k = %11.7g iter = %d \n’,ene,k,kvolte);
end
kvolte = kvolte + 1;
end
if (rem(kvolte-1,5) ~= 0)
fprintf(’E = %11.7g k = %11.7g iter = %d \n’,ene,k,kvolte);
end
tempo_loop = toc;
[E_liv,Y_liv] = calcola_energia(k,M,L,N,num_livelli);

J = 2*(-Z^2/2 - E_liv(LIVELLO)); % in Rydberg
J0 = 2*(-Z^2/2 + (Z-5/16)^2); ene0 = -(Z-5/16)^2; % ordine 0 in Rydberg
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fprintf(’\n Risultati: E = %10.6f a.u. J = %10.6f Ry = %10.2f cm^-1 k = %10.6f\n’,...
E_liv(LIVELLO),J,J*Ry,k);

fprintf(’ordine zero: E_0 = %10.6f a.u. J0 = %10.6f Ry = %10.2f cm^-1\n\n’,ene0,J0,J0*Ry);
%fprintf(’Tempi: calcolo matrici = %6.3f sec. loop = %6.3f sec \n’,tempo_matrici,tempo_loop);

% =============== Correzioni di massa e confronti
[dE_pol,dE_massa,dJ_massa] = calcolo_correzioni(K,N,Z,num_livelli,k,E_liv,Y_liv);

J = (-Z^2/2 - E_liv )*AU; % in cm^-1
dJ_massa = dJ_massa*AU;
dJ_pol = -dE_pol*AU;
J_NR = J + dJ_massa + dJ_pol;

fprintf(’\n Correz. non radiative: ’);
fprintf(’ dJ_massa = %5.2f ; dJ_Pol = %5.2f\n’, dJ_massa(LIVELLO),dJ_pol(LIVELLO));
fprintf(’ J_NR = J + dJ_massa + dJ_Pol = %10.2f\n’,J_NR(LIVELLO));

confronti_exp(J_NR,LIVELLO,Z);

%------
function confronti_exp(J_NR,LIVELLO,Z)
%J_exp = [6100,198310.6691,610079,1241225.]; %[6100, 198310.6691 ,610078,1241242 ]
J_exp = [6100,198310.6691,610079., 1241242.];

dJ_exp = [100,0.15,25,100];
dJ_exp = [0 , 0 , 0 , 0 , 0 ;

0, 166277.542,184864.932 ,190940.330,193663.6140 ;
0, 491374.6 ,558777.88 ,581596.77 ,591184.26 ;
0, 981178. ,1127705. ,1178005. ,1199650. ];

dJ_rad = -[.0037+0.304,1.341+0.562,-16.69+7.83,-75]; % in cm^-1 v.s. Z
Jtot = J_NR(LIVELLO) + dJ_rad(Z);
if LIVELLO == 1
fprintf(’ Correzioni radiative: dJ_rad = %5.2f\n’,dJ_rad(Z));
fprintf(’J_calc = J_NR + dJ_rad = %10.2f J_exp = %10.2f\n’,Jtot,J_exp(Z)-dJ_exp(Z,LIVELLO));
end

% Valori calcolati con questo programma
J_calc_th = [6082.99, 198310.65,610076.03,1241247.06];
J_NR_th = [198312.55, 32032.65, 13278.25, 4643.08, 0;

610067.17, 118698.75, 51244.91,25955.16,5152.65;
1241172.06, 260033.22, 113496.43,60632.32,22376.81];

for i=1:3, for j=1:5, dJ_NR_th(i,j) = - J_NR_th(i,j) + J_NR_th(i,1); , end , end
for i=1:3, for j=1:5 , strdJ{i,j} = ’ *’; end,end
for i=1:3, for j=1:5 , strdJ{i,j} = num2str(dJ_NR_th(i,j)); end, end
strdJ{1,5}=’ *’;

trsz = {’1s2s - 1s^2’,’1s3s - 1s^2’,’1s4s - 1s^2’,’1s5s - 1s^2’};
strliv = {’1s^2 ’,’1s2s ’,’1s3s ’,’1s4s ’,’1s4s ’};

if Z > 1
fprintf(’\n Stima delle righe di transizione \n’);
fprintf(’ dE da liv: %s Dati da tutti i liv.\n’,strliv{LIVELLO})
for j = 1:4
fprintf(’ %s %10.2f %10.2f %-9s \n’,trsz{j},-J_NR(j+1) + J_NR(1),dJ_exp(Z,j+1),strdJ{Z-1,j+1});
end
end

%=========
function [dE_pol,dE_massa,dJ_massa] = calcolo_correzioni(K,N,Z,num_livelli,k,E_liv,Y_liv)
me_au = 0.510998902/931.494013;
massa = [1,4.002602,6.941,9.012182];
mu = massa(Z)/(me_au+massa(Z));
dE_pol = zeros(num_livelli,1);
for j = 1:num_livelli
Y = Y_liv(:,j);
dE_pol(j) = k^2*(Y’*K*Y)/(Y’*N*Y)*me_au/massa(Z);
end
dE_massa = (mu-1)*E_liv;
dJ_massa = (mu-1)*(-Z^2/2 - E_liv);
return
%=========

function livelli(E_liv,Y_liv,Ry,k,L,M,N,K,mu,fattore_polar)
num_liv = length(E_liv);
fprintf(’\n’)
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for j=1: num_liv
Y = Y_liv(:,j);
polarizz = k^2*(Y’*K*Y)/(Y’*N*Y)*fattore_polar;
dmassa = (mu-1)*E_liv(j);
ene(j) = E_liv(j) + polarizz + dmassa;
end

for j=2:num_liv
dE =(ene(j) - ene(1))*2*Ry;
fprintf(’ E = %10.2f \n’,dE);
end

%========== calcolo Energia ================
function [E_liv,Y_liv] = calcola_energia(k,M,L,N,num_livelli)
szN = size(N);
H0 = k^2*M - k*L;
[V,Ematrix] = eig(N\H0);
[E,ind] = sort(diag(real(Ematrix)));
E_liv = E(1:num_livelli);
for k = 1:num_livelli
Y_liv(:,k) = real(V(:,ind(k)));
end
%========== Calcolo elementi di matrice ====
function [L,M,N,K] = matrici(maxexp_s,maxexp_t,maxexp_u,Z)
maxind_s = maxexp_s+1; maxind_t = maxexp_t+1; maxind_u = maxexp_u+1;
dim = maxind_s*maxind_t*maxind_u;

L = zeros(dim,dim); M = L; N = L; K = L;

for i1=0:maxexp_s
for j1=0:maxexp_t
for k1 = 0:maxexp_u
for i2=0:maxexp_s
for j2=0:maxexp_t
for k2 = 0:maxexp_u

i = i1 + maxind_s*j1+ maxind_s*maxind_t*k1 + 1;
j = i2 + maxind_s*j2+ maxind_s*maxind_t*k2 + 1;
a = i1+i2; b=2*(j1+j2); c = k1+k2;

norma = prod(1:(i1+2*j1+k1))*prod(1:(i2+2*j2+k2));

fatt3 = prod(1:(3 + a + b + c));
fatt4 = fatt3*(4+a+b+c);

fattN = fatt4/( (1 + b)*(3 + b)*(3 + b + c)*(5 + b + c));
N(i,j) = 2*(5 + a + b + c)*(6 + 2*b + c)*fattN/norma;

fattM = fatt3/( 2*(1 + b)*(3 + b + c) );
x1n = ( (6 + 2*b + c)*(20 + a - a^2 + b^2 + 9*c + c^2 + b*(9 + 2*c) + 4*i1*i2) );
x1d = (3 + b)*(5 + b + c); x1 = x1n/x1d;
x2 = (16*(2 + 2*b + c)*j1*j2)/((-1 + b)*(1 + b + c));
x3 = -(4*(4 + a + b + c - 2*i1)*k2)/(3 + b);
x4 = (16*j1*k2)/(1 + b + c);
x5 = (4*(4 + 2*b + c)*k1*k2)/((3 + b)*(1 + b + c));
M(i,j) = (x1+x2+x3+x4+x5)*fattM/norma;

L(i,j) = fatt4/( (1+b)*(3+b) )*( 2*(5+2*b+c)/( -(2+b+c)*(4+b+c) ) + 4*(3+b)*Z/(3+b+c) )/norma;

fattK = fatt3/( 2*(3 + b + c) );
kin1 = -((c*(20 + a - a^2 + b^2 + 9*c + c^2 + b*(9 + 2*c) + 4*i1*i2))/((1 + b)*(3 + b)*(5 + b + c)));
kin2 = (16*c*j1*j2)/((-1 + b^2)*(1 + b + c));
kin3 = (4*(4 + a + b + c - 2*i2)*k1)/((1 + b)*(3 + b));
kin4 = (-16*j2*k1)/((1 + b)*(1 + b + c));
kin5 = (-4*(4 + 2*b + c)*k1*k2)/((1 + b)*(3 + b)*(1 + b + c));
K(i,j) = fattK*(kin1+kin2+kin3+kin4+kin5)/norma;
end, end , end , end , end , end
M = 1/2*(M+M’); L = 1/2*(L+L’); N = 1/2*(N+N’); K = 1/2*(K+K’);
return

function intestazione( Z,LIVELLO,maxexp_s , maxexp_t , maxexp_u,nummax,dE_prec,dk_prec,k,dk,ene)
dim_base = (maxexp_s+1)*(maxexp_t+1)*(maxexp_u+1);
strliv = {’1s^2 ’,’1s2s ’,’1s3s ’,’1s4s ’,’1s4s ’};

fprintf(’\n Z = %2d Livello: %2d %s \n’,Z,LIVELLO,strliv{LIVELLO});
fprintf(’ deg(s) = %2d deg(t) = %2d deg(u) = %2d DIM = %3d \n’, ...

maxexp_s , maxexp_t , maxexp_u,dim_base);
fprintf(’ num_max_iterazioni = %3d toll. dE = %7.1e dk = %7.1e\n’,nummax,dE_prec,dk_prec);
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fprintf(’ k_in = %7.4f dk = %7.4f E_in = %11.7f a.u. \n’,k,dk,ene);
return
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