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Capitolo 1

La nascita della Meccanica
Quantistica.

1.1 Introduzione

La nascita della meccanica quantistica nella sua forma odierna ha una fase di gestazione che
si pùo convenzionalmente fissare fra la data della prima comunicazione di Planck[Pla00a]
in cui viene presentata la formula per la distribuzione spettrale della radiazione di corpo
nero, 9 Ottobre 1900, e la stesura dell’articolo di Heisenberg[Heis25], Luglio 1925, in
cui si delineano le linee guida della meccanica quantistica. Questo processo, innescato
da una profonda crisi della fisica classica a fronte del nuovo mondo microscopico che le
tecniche sperimentali cominciavano a disvelare, ha costituito uno dei più profondi sconvol-
gimenti culturali nella storia della scienza, coinvolgendo il concetto stesso di realtà fisica
ed imponendo un cambiamento radicale nel paradigma interpretativo della natura.

In questo breve capitolo non vogliamo fare una storia di questi eventi, cosa per la quale
non ci sentiamo competenti, quanto presentare nella maniera più semplice possibile alcuni
fili conduttori che permettano di seguire la logica di questa evoluzione.

Uno dei motivi di questa presentazioneè la convinzione degli autori che una compren-
sione, almeno parziale, del retroterra teorico - sperimentale della meccanica quantistica
possa far capire meglio alcuni concetti della teoria. Una seconda motivazioneè la constata-
zione che l’evoluzione della meccanica quantistica non può certo dirsi conclusa, quindi la
conoscenza dei fondamenti su cui poggia può aiutare a capire alcuni degli sviluppi futuri.

Qualche precisazione per il lettore.

1) La lettura di questo capitolo noǹe tecnicamente necessaria per la comprensione del
testo principale, una buona idea sarebbe una rilettura di questa partedopoaver letto
il resto del libro, alcune cose appariranno sotto un’altra luce.

2) In questo capitolo, necessariamente, daremo per scontate moltissime cose di fisi-
ca classica. Un minimo di conoscenza della meccanica statistica può essere uti-
le. Daremo delle dimostrazioni per alcuni punti che potrebbero non far parte delle
conoscenze di base del lettore. Le dimostrazioni non strettamente necessarie alla
comprensione del testo saranno messe in appendice.

1.1.1 Aree di crisi.

Si è soliti indicare in tre questioni principali i punti di crisi della fisica classica. In parole
semplici:

a) Il problema della radiazione del corpo nero: la teoria elettromagnetica classica nonè
capace di spiegare il colore della luce emesso da un corpo caldo.
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4 CAPITOLO 1. LA NASCITA DELLA MECCANICA QUANTISTICA.

b) Il problema dei calori specifici: secondo la meccanica statistica classica ogni grado
di libertà contribuisce in ugual misura al calore specifico di un corpo, questoè in
palese contraddizione con l’evidenza sperimentale, come commenteremo fra breve,
ed è piuttosto “imbarazzante” da un punto di vista logico, prefigurando un limite
alla possibile struttura interna dei corpi (all’aumentare della struttura aumentano di
sicuro i gradi di libert̀a).

c) Il problema degli spettri atomici: l’osservazione sperimentale mostra che la luce
emessa, e assorbita, dai vari elementi chimiciè ristretta a ben definite frequenze,
caratteristiche di ogni elemento. Lo spettro, cioè l’insieme delle frequenze, e le sue
regolarit̀a sono incomprensibili classicamente.

Bench̀e questi problemi siano gravi, confinare in questo modo la problematicaè una
ottimistica sottovalutazione. Quello che i dati sperimentali sempre più precisi della se-
conda met̀a dell’ottocento andavano svelando era la struttura microscopica, atomica, della
materia. La fisica classicàe assolutamente incompatibile con l’esistenza stessa di strutture
microscopiche stabili legate da forze di tipo elettrico (le uniche conosciute all’epoca), non
essendo capace nemmeno di stabilire l’ordine di grandezza delle dimensioni atomiche. I
problemi precedenti sono una conseguenza di questa situazione. Il problema fondamentale
ècinematico, come emergerà a poco a poco nel primo quarto del novecento: non sono pre-
senti forze sconosciute, sono i concetti stessi di posizione, impulso, energia a dover essere
rivisti. Accanto a questi aspetti “cinematici” appariranno anche delle nuove forze, rivelate
dalla scoperta della radioattività, ma queste questioni avranno un’influenza marginale nella
prima fase di sviluppo della teoria.

Non basta. La fisica classica poggia su una dicotomia fraparticelle, definite da pochi
gradi di libert̀a, ad esempio la posizione e l’impulso, ecampiche necessariamente hanno
infiniti gradi di libert̀a: se vogliamo ad esempio conoscere l’evoluzione temporale di un
campo elettromagnetico dobbiamo assegnarne il valore su un’intera superficie. Matemati-
camente questa differenza si riflette nel fatto che le equazioni per il campo elettromagnetico
sono equazioni alle derivate parziali, mentre le equazioni di Newton, per i supposti costi-
tuenti elementari, sono equazioni ordinarie. Questo puntoè connesso al precedente nel
senso che qualunque tentativo classico di immaginare una struttura interna agli elettroni
(le uniche particelle abbastanza conosciute all’epoca) era fallito, quindi questi costituenti
andavano trattati come puntiformi. La coesistenza quasi pacifica di queste due rappresen-
tazioni del reale comincia ad entrare in conflitto con l’analisi teorica ed i dati sperimen-
tali, risolvendosi infine nell’abbandono delle due visioni, che diventano un caso limite di
rappresentazione dello stesso oggetto quantistico.

Uno dei campi in cui tutte queste problematiche vengono per prime alla luceè lo stu-
dio della radiazione di corpo nero, edè da questo fenomeno che partiamo per la nostra
presentazione.

1.2 Radiazione di corpo nero.

Un importante risultato della fisica classica, dovuto a Kirkhhoff, afferma che in condizioni
di equilibrio termico il rapporto fra il potere emissivo di un corpo ed il potere assorbente
è universaleed è porporzionale alla densità spettrale di energia in una cavità. Per la di-
mostrazione rimandiamo all’appendice 1.A ed al libro di Planck sull’argomento[Pla-H.R.].
Consideriamo una cavità a pareti perfettamente riflettenti, di volumeV , (per semplicit̀a
supporremo un cubo) e tenuta a temperaturaT . Le pareti di questa cavità sono in equi-
librio termico con la radiazione elettromagnetica emessa ed assorbita dalle pareti. SiaU
l’energia elettromagnetica totale,u = U/V la densit̀a di energia euν(ν, T ) la sua densit̀a
spettrale, ciòeuν(ν, T )dν è la quantit̀a di energia elettromagnetica per unità di volume e di
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frequenza1. Naturalmente

u =
∫ ∞

0

uν(ν, T )dν (1.1)

Un corpo neroè definito come un corpo che assorbe completamente la luce di tutte le
frequenze, ciòe con potere assorbente 1. In forza del risultato citato sopra il potere emissivo
di questo corpòe direttamente proporzionale alla funzioneuν . Il teorema di Kirkhhoff
afferma appunto che la funzioneuν(ν, T ) èuniversale, il potere emissivo di un corpo nero
non dipende ciòe dal tipo di corpo, dalla sua composizione chimica etc, e la densità di
radiazione non dipende dal tipo di cavità.

Una affermazione cosı̀ generale f̀a capire che la determinazione della funzioneuν(ν, T )
coinvolge solo costanti universali e riflette qualche importante proprietà fisica. Dal punto
di vista “visivo” la determinazione della funzione permette di capire il “colore” della luce
emessa: la dipendenza dalla temperatura provocherà una diversa distribuzione in frequenza
della luce, e quindi un colore (cioè una frequenza) diversi.

La situazione teorica dell’argomento alla fine dell’800 può essere riassunta nei seguenti
fatti:

• Legge di Stefan Boltzmann.La densit̀a di energiàe proporzionale alla quarta potenza
della temperatura:

u(T ) = aT 4 ≡ 4
c
σT 4 J(T ) = σT 4 (1.2)

σ è detta costante di Stefan-Boltzmann,c è la velocit̀a della luce, eJ è l’energia
radiante emessa al secondo dall’unità di superficie di un corpo nero a temperatura
T . Si pùo pensare di misurareJ considerando un forno a temperaturaT con un pic-
colo foro da cui esce la radiazione. La (1.2)è una conseguenza diretta del secondo
principio della termodinamica e della relazionep = u/3 che lega la densità di ener-
gia elettromagnetica e la pressione di radiazione. Come sottoprodotto si ha anche
l’espressione dell’entropia della radiazione2

S =
4
3

u

T
V ≡ 4

3
U

V
(1.3)

• Legge di Wien.La funzioneuν(ν, T ) ha la forma

uν(ν, T ) = ν3f(
ν

T
) (1.4)

Dalla (1.4) segue la legge di Stefan-Boltzmann

u =
∫ ∞

0

uν(ν, T )dν =
∫ ∞

0

ν3f(ν/T )dν = T 4

∫ ∞

0

x3f(x)dx = aT 4

La (1.4) racchiude lalegge dello spostamento di Wien:il massimo della funzione
spettrale soddisfa alla relazione

νmax/T = cost. ovvero λmaxT = cost. (1.5)

Basta infatti scrivere l’equazioneduν/dν = 0: si ottiene un’equazione nella sola
incognitaν/T .

La situazione fenomenologico-sperimentale era la seguente:

1Nella speranza di ridurre la possibile confusione dovuta al proliferare delle quantità, cercheremo di usare in
modo consistente la seguente convenzione tipografica,Q indica una quantit̀a globale,q la sua densit̀a, ciòeQ/V ,
eqν la densit̀a spettrale.

2Ricordiamo che la dimostrazione di tutte queste affermazioni può essere trovata nel paragrafo 1.A
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• Sulla base di analogie con la distribuzione di Maxwell, Wien aveva proposto la forma
seguente per la funzioneuν(ν, T ):

uν(ν, T ) = aν3e−bν/T (1.6)

Non ci sono giustificazioni teoriche ragionevoli per questa legge, può essere pensata
come una descrizione fenomenologica dei dati.

• I dati sperimentali, limitati a piccole lunghezze d’onda, si accordano bene alla eq.(1.6).

La situazione cambia rapidamente alla fine dell’800 con l’affinarsi delle misure e l’esten-
sione delle stesse verso l’infrarosso, cioè a grandi lunghezze d’onda: i dati sperimentali
mostrano una deviazione significativa dalla legge proposta da Wien, e la teoria non ha al-
cuna predizione ǹe per la proposta fenomenologica di Wien, nè tantomeno per le deviazioni
misurate.È a questo punto che Planck scopre la corretta forma diuν(ν, T ) e per giustificare
questa forma, che si adatta perfettamente ai dati sperimentali,è “costretto” a introdurre il
concetto di quanto, ciòe la possibilit̀a di una discontinuit̀a nei processi fisici.

1.2.1 La legge di Planck.

È chiaro che la determinazione della funzioneuν(ν, T ) è un problema di equilibrio stati-
stico, ma bisogna tener conto del fatto che la meccanica statistica era una parte della fisica
relativamente nuova e non universalmente accettata, in particolare Planck non ne era certo
un sostenitore. L’approccio usato da Planckè percìo, almeno inizialmente, termodinamico:
una metodologia ben suffragata dal fatto che gli unici risultati noti all’epoca, la legge di
Wien e la legge di Stefan-Boltzmann, erano stati ottenuti appunto in questo modo.

Il risultato finaleè laformula di Planckper la radiazione di corpo nero

uν(ν, T ) =
8πhν3

c3

1

e
hν
kT − 1

(1.7)

h è la costante di Planck ek la costante di Boltzman. Per quanto detto sull’universalità
della radiazione di corpo nero,h ek sono due costanti universali. Dimensionalmente:

[h] = energia× tempo= azione

È interessante notare che la costante di Boltzmann fa la sua prima comparsa proprio nel
lavoro di Planck [Pla00a], ritorneremo più avanti su questo punto. In questo capitolo deri-
veremo la (1.7) in diversi modi, màe interessante seguire la logica originale della deduzione
di Planck3.

L’equilibrio termico della radiazionèe mantenuto da uno scambio continuo di energia
con le pareti della cavità, la prima idea di Planck̀e di trasformare la ricerca diuν(ν, T )
nello studio dell’equilibrio termico del materiale della cavità. Per il teorema di Kirkhhoff
la scelta del materialèe arbitraria, quindi Planck sceglie il modello più semplice: oscillatori
armonici che mantengono l’equilibrio assorbendo e riemettendo radiazione. Un oscillatore
con frequenza propriaν0 assorbe ed emette luce a frequenzaν0. Comeè noto la potenza
emessa da una carica accelerataè

I =
2
3

e2

c3
a2

dovea è l’accelerazione. La potenza assorbitaè fornita dal lavoro del campo elettrico
della radiazioneeE · v. L’ampiezza di oscillazionèe proporzionale al campo elettrico,
quindi il lavoroè proporzionale aE2, cioè alla densit̀a di energia. All’equilibrio l’energia
emessàe uguale all’energia assorbita ed un semplice calcolo, riportato per comodità nel

3Lo studio della radiazione di corpo nero costituiva da anni l’interesse scientifico di Planck, nel lavoro del
1900 vengono utilizzate molte idee sviluppate in lavori precedenti.
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paragrafo 1.C d̀a la relazione fra l’energia media dell’oscillatore di frequenzaν, Eν , e la
densit̀a spettrale:

uν(ν, T ) =
8πν2

c3
Eν (1.8)

Notiamo che, in accordo col teorema di Kirkhhoff, nella (1.8) non compaiono i parametri
dell’oscillatore,e,m. Se si riesce a calcolare l’energia media termica dell’oscillatore,Eν ,
si ha la soluzione del problema4. La (1.8), assieme alla legge di Wien, assicura che a fisso
ν, Eν è una funzione solo diT :

Eν = Eν(T ) (1.9)

È ben noto, ed era noto da oltre 30 anni nel 1900, che un oscillatore armonico in equi-
librio termico ha classicamente un’energia mediaEν = kT : è il teorema di equipartizione
dell’energia, ad ogni grado di libertà che compare in forma quadratica nell’Hamiltoniana
è associata un’energia12kT e l’oscillatore ha un grado di libertà traslazionale,p2/2m, ed
uno vibrazionale,12mω2

0q2. Probabilmente Planck non crede alla validità del teorema di
equipartizione e non lo applica, per fortuna, alla (1.8): se lo avesse fatto non avrebbe sco-
perto la legge (1.7). Planck parte dal secondo principio della termodinamica applicato agli
oscillatori. L’entropiaè una quantit̀a estensiva, se consideriamo fisso il volume della cavità
possiamo considerare l’entropia per oscillatore come funzione dell’energiaEν e scrivere il
secondo principio nella forma

dS

dE
=

1
T

(1.10)

Siccome nel discorso che segueν è fisso tralasceremo di indicarlo.S indica l’entropia
per oscillatore edE l’energia media per oscillatore. Nella (1.10) la temperaturaT va
pensata come funzione diE, ottenuta invertendo la (1.9). Viceversa se si conoscedS/dE
in funzione diE si pùo trovare la (1.9).

Consideriamo ad esempio la legge fenomenologica di Wien. Dalla (1.8) segue

E = ανe−βν/T ⇒ −βν

T
= log(

E

αν
) (1.11a)

d2S

dE2
=

d

dE

(
1
T

)
= − 1

βν

1
E

(1.11b)

Ripetiamo: i fattoriν sono costanti, sono stati messi in evidenza per sottolineare che i due
coefficientiα, β sono costanti universali, indipendenti daν.

Viceversa assumendo l’equazione (1.11b) si ricava la legge di Wien. Notiamo che in
questo modo la costanteα è una costante di integrazione. Una relazione del tipod2S/dE2 ∝
1/E era stata ipotizzata da Planck in base ad un modello piuttosto complicato, ma i dati
sperimentali indicavano una violazione della legge di Wien e quindi la non validità di que-
sta equazione. Dalla (1.11a) vediamo che perT → 0, oppureν → ∞, E → 0. In questo
regime la (1.11a)̀e in accordo con i dati, quindi la correzione deve consistere in qualcosa
che si annulla pìu rapidamente diE quandoE → 0. L’ipotesi più semplicèe

d2S

dE2
= − 1

a1

1
E(a2 + E)

(1.12)

Integrando la (1.12) si ha:

1
T

=
dS

dE
= − 1

a1a2

∫
dE

(
1
E
− 1

a2 + E

)
= − 1

a1a2

[
log

E

a2 + E
+ c

]
(1.13)

Un punto da sottolinearèe ora il seguente: perT → ∞, l’energia media dell’oscillatore
deve divergere, quindi il limiteE → ∞ della (1.13) deve essere nullo, questo fissa la

4Per evitare malintesi le energie che compaiono nella (1.8) sono energietermiche, lo zero dell’energia ciòe è
fissato aT = 0. Eventuali altre forme che non dipendono dalla temperatura sono escluse.
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costante additivac = 0. Si hanno quindi ancora 2 costanti, come nel caso della legge di
Wien. Notiamo che il vincoloE → ∞ perT → ∞ è incompatibile invece con la (1.11a).
Imponendo ora che perE → 0, cioèT → 0 si recuperi la (1.11a) si ottiene

a1a2 = βν a2 = αν (1.14)

Invertendo la (1.13) e usando la (1.8)

E = αν
e−βν/T

1− e−βν/T
= αν

1
eβν/T − 1

⇒ uν(ν, T ) =
8παν3

c3

1
eβν/T − 1

(1.15)

Cambiando nome alle costanti

α = h β =
h

k

si ha la legge di Planck nella notazione usuale. L’identificazione della costante di Boltz-
mann segue dal limite di alta temperatura:

Eν → αν
T

βν
=

α

β
T (1.16)

Notiamo due cose molto importanti:

• Il teorema di equipartizione classico nonè un “optional” della fisica classica, seè
violato, come nella (1.15), qualche principio fondamentale deve venire a mancare.

• Dai dati sperimentali, piuttosto precisi, Planck ricava il valore delle due costantih, k.
Dal valore dik si possono ricavare il numero di Avogadro, usando la costante dei gas,
e, dal valore del Faraday, la carica dell’elettrone:

NA = R/k F = NAe (1.17)

i valori ricavati sono i migliori per l’epoca in esame, solo diversi anni dopo, ad
esempio, la misura die è stata migliorata. Lo stesso si può dire per il valore di
NA.

• Dal valore diuν è possibile ricavare la costante di Stefan-Boltzmann

σ =
2π5k4

15h3c2
a =

4σ

c
=

8π5k4

15h3c3
(1.18)

Usando l’integrale

I =

∫ ∞

0

x3

ex − 1
dx =

π4

15

si ha

u =

∫ ∞

0

uνdν =
8πh

c3

∫ ∞

0

ν3

ehν/kT − 1
dν =

8πk4

h3c3
T 4 · I

da cui segue la (1.18).

La conclusione che si può trarre dalle previsioni (1.17)è che la formula di Planck̀e qualcosa
di più di un semplice accordo fenomenologico, mentre l’indicazione teoricaè che qualcosa
di rilevante deve essere sbagliato nella fisica classica.

Quanto rilevante sia lo scostamento dalla fisica classica lo si capisce nella proposta di
spiegazione che Planck avanza nel lavoro[Pla00b]. Riscrivendo la (1.13) con il valore delle
costanti (1.14) e integrando si ha

S =
α

β

[(
1 +

E

αν

)(
log
(
1 +

E

αν

)
− 1
)
− E

αν

(
log
( E

αν

)
− 1
)]

+ S0
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PerT → 0, E → 0. Imponendo5 S(0) = 0 si haS0 = 1 e, sostituendo il valore noto delle
costanti

S = k

[(
1 +

E

hν

)
log
(
1 +

E

hν

)
− E

hν
log
( E

hν

)]
(1.19)

Naturalmente dall’espressione (1.19), derivando si ottiene la formula di Planck, come vi-
sto precedentemente. Si tratta quindi di dimostrare la (1.19). Ricordiamo che in termini
statistici l’entropia di un sistemàe data da

S = k log W (1.20)

doveW , nel linguaggio usuale,̀e il numero di microstati corrispondente al macrostato di
equilibrio. Confrontando la (1.20) con la (1.19)è naturale provare a calcolareS valutando
W all’equilibrio. Il ragionamento di Planck̀e il seguente. ConsideriamoN oscillatori.
Sia EN l’energia di equilibrio eSN la corrispondente entropia. All’equilibrio l’energia
EN è in qualche modo distribuita fra gliN oscillatori e l’energia media per oscillatoreè
E = EN/N . Supponiamo di considerare l’energia come composta da tante piccole parti,
ε, si avr̀a EN = Pε, P è il numero di pezzetti di energia. Planck afferma cheW è il
numero di modi in cui questa energia può essere distribuita, il nome tecnico usato per un
microstato, all’epoca, eracomplessione. Quindi W è il numero di modi in cuiP palline
identichepossono essere distribuite inN cassetti.È facile calcolare questo numero: se si
traccianoN −1 righe verticali, si delimitanoN cassetti, comprendendo lo spazio a sinistra
della prima riga e a destra dell’ultima. Si distribuiscono oraP palline nei cassetti, il numero
delle distribuzioni possibili si ottiene permutando fra di loro l’insieme delle palline e degli
oggetti,(N + P − 1)!. Le (N − 1)! permutazioni che scambiano fra loro le righe sono
ininfluenti, e lo stesso dicasi delleP ! permutazioni delle palline, quindi

W =
(N + P − 1)!
(N − 1)!P !

(1.21)

EssendoN � 1, P � 1, possiamo trascurare il termine−1 nella espressione precedente
ed applicare la formula di Strirlinglog(n!) ∼ n(log n− 1), ottenendo

SN = k [(N + P )(log(N + P )− 1)−N(log N − 1)− P (log P − 1)] =

= kN

[(
1 +

P

N

)
log
(
1 +

P

N

)
− P

N
log

P

N

]
Ricordando cheP = EN/ε = NE/ε si ha, per l’entropia per oscillatore

S =
S

N
= k

[(
1 +

E

ε

)
log
(
1 +

E

ε

)
− E

ε
log
(E

ε

)]
(1.22)

Cheè identicaalla (1.19) se si identifica il “pezzetto minimo” di energiaε conhν.
Il problemaè chenon si pùo fare il limite ε → 0, questo corrisponde al limiteν → 0

nella (1.19), ciòe E → ∞ ed in questo caso si ricade nel caso classico in cuiE = kT .
Quindi la formula di Planck si ottiene assumendo unadiscretizzazione dell’energiain
quanti di grandezzahν.

È ovvio che questòe in contrasto con tutta la meccanica classica, non solo, rischia di
entrare in conflitto con le stesse equazioni di Maxwell nella cavità, ciòe nel vuoto. Co-
munque a questo livello la situazioneè perlomeno ambigua. Si può ad esempio pensare a
qualche, oscuro in verità, meccanismo dinamico che provochi a livello effettivo una discre-
tizzazione del tipo (1.22). Il vero problemaè la violazione del principio di equipartizione
dell’energia. Un altro problema all’apparenza tecnicoè che il conteggio usato per dedurre
la (1.22)nonè il conteggio di Boltzmann, o almeno non sembra il conteggio di Boltzmann.
Le differenze sono due

5L’annullarsi dell’entropia perT = 0 è il contenuto delTeorema di Nerst.
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• Nel normale conteggio combinatorio per il calcolo del numero di microstati, si con-
siderano gli stati di oggettidistinguibili, le particelle di un gas, mentre le quantità ε
usate da Planck sono oggettiindistinguibili.

• Nel conteggio di Boltzmann occorre scrivere la realizzazione di un macrostato gene-
rico e trovareS all’equilibrio massimizzando questa espressione, questo identifica lo
stato di equilibrio come lo stato più probabile. Nel risultato (1.22) non siè effettuata
nessuna operazione di massimizzazione, quindi nonè molto chiaro in che senso il
conteggio fatto descriva lo stato di equilibrio, non avendo specificato quali sono gli
altri stati possibili. Queso conteggio fu ampiamente discusso, e criticato, nei primi
anni del 900, vedremo più avanti qual’̀e la spiegazione corretta.

Il problema del principio di equipartizione dell’energia viene sollevato in varie forme
da Raleigh, Einstein, Jeans. PonendoEν = kT la formula (1.8) diventa

uν(ν, T ) ' 8πν2

c3
kT (1.23)

e prende il nome di formula di Raleigh-Jeans. Un punto interessanteè che pùo essere
dedottasenza far ricorsoagli oscillatori materiali. Se consideriamo una cavità a pareti
riflettenti, possiamo decomporre il campo elettrico, e quello magnetico, in onde stazionarie,
diciamo che si annullano ai bordi. Per annullarsi ai bordi,x = L, una funzione del tipo

sin(2π
x

λ
)

deve avereλ = 2L
n , cioè per ogni lato occorre sistemare un numero intero di semilunghezze

d’onda. Queste lunghezze d’onda corrispondono a frequenze

ν =
c

λ
=

nc

2L
n = 1, 2 . . .

Questo vale per ognuna delle 3 direzioni spaziali. Il numero di frequenze possibili, o
modi di vibrazione, è allora il volume individuato dalle triplette di interi positivin =
(nx, ny, nz), tutti in un ottante dello spazio tridimensionale. L’elemento di volume in
questo spaziòe

1
8
4πn2dn = 4π

ν2

c3
L3dν ν = |n| c

2L

Tenendo conto che per ogni modo di vibrazione del campo elettrico ci sono due modi di
polarizzazione, il numero di modi in frequenza, per unità di volume,̀e

Zνdν = 8π
ν2

c3
dν (1.24)

Ogni modo di vibrazionèe un modo armonico, quindi a tutti gli effetti un oscillatore. La
densit̀a di energia di radiazionèe allora

uν(ν, T ) = ZνEν (1.25)

doveEν è l’energia media di unoscillatore di campo( nel 1900, per Raleigh, un oscillatore
dell’etere): la (1.25) coincide con la (1.8). Questo modo di procedere ha il vantaggio di
focalizzare l’attenzione sulla radiazione.

È a questo punto che compare un rivoluzionario lavoro di Einstein[Ein05], che da una
parte ribadisce la validità in meccanica classica del principio di equipartizione, dall’altra
segna la nascita del concetto di fotone.
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1.3 Il fotone.

Vogliamo capire quali sono le implicazioni della formula di Planck per la radiazione elettro-
magnetica, ciòe cosa dice sulla luce. Seguiremo essenzialmente la logica usata da Einstein
in una serie di lavori scritti a partire dal 1905: in questi lavori vengono delineati molti dei
concetti che costituiranno l’ossatura della meccanica quantistica.

Nella regione infrarossa della radiazione di corpo nero, perhν � kT , la legge di
Planck riproduce la legge di Raleigh-Jeans, (1.23). Quindi almeno nella zona di grandi
lunghezze d’onda le previsioni della fisica classica funzionano. D’altra parte la stessa legge,
non pùo averevalidità generale. Infatti se fosse sempre valida si avrebbe, per l’energia
totale

u =
∫ ∞

0

uνdν =
∫ ∞

0

8πν2

c3
kTdν = ∞ (catastrofe ultravioletta) (1.26)

un risultato palesemente assurdo[Ein05]. Quindi nella regionehν � kT non possono va-
lere le leggi della meccanica classica e/o dell’elettromagnetismo classico. Il fatto che la
stessa legge (1.26) possa essere ottenuta considerando gli oscillatori di campo, indipenden-
temente quindi dai particolari meccanismi di interazione, induce a ritenere che l’opzione
“e/o” vada intesa come un “e”, cioè non possono valere le equazioni di Maxwell. Faccia-
mo notare di nuovo che si tratta dele equazioni di Maxwell nel vuoto, cioè una delle cose
meglio verificate della fisica.

Sia la formula di Planck, sia la legge fenomenologica di Wien, indicano una modifica
della (1.23) perhν � kT , quindi la domandàe: come si descrive la radiazione elettro-
magnetica in questo regime? La deduzione di Planck suggerisce una discretizzazione dei
processi di emissione ed assorbimento,è quindi naturale pensare che uno stesso tipo di
discretizzazione possa avvenire a livello di radiazione, per la radiazione questo significa
interpretare la luce in termini di particelle, che saranno chiamatefotoni. Quanto questo sia
in contrasto con tutta l’evidenza dei fenomeni di interferenza, diffrazione, etc.,è cosa facile
da immaginare.

Ogni fotone dovrebbe avere una certa energia e, vista l’analogia della legge di Wien
con la distribuzione di Maxwell di un gas perfetto, o in generale con la distribuzione di
Boltzmann,exp(−E/kT ), ci si aspetta che questa energia cresca con la frequenza. Nella
zonahν � kT la densit̀a di energia tende rapidamente a zero con la frequenza, quindi,
se di fotoni si tratta, in questo regime si deve avere un gas “rarefatto” di fotoni. Se il gas
non fosse rarefatto ci potrebbero essere problemi a distinguere una distribuzione continua
di energia, come quella aspettata classicamente, da una distribuzione discretizzata ed orga-
nizzata inquantielementari. Se invece il gasè rarefatto la cosàe relativatemente semplice:
dividiamo il volume della cavit̀a in piccoli elementi, se distribuiamo l’energia in forma
discretizzata ci saranno delle cellette vuote e delle cellette piene, come se distribuissimo
delle palline. Il punto essenzialeè che una pallina o c’è o non c’̀e, non pùo esserrci mezza
pallina, mentre non si hanno vincoli per una distribuzione continua. In un normale gas que-
sto semplice concetto geometricoè tradotto in una proprietà dell’entropia. Se dividiamo
il volume V in cellette di dimensioniv la probabilit̀a di trovare una particella in una data
cellettaè proporzionale av/V , la probabilit̀a di trovarneN sar̀a proporzionale a(v/V )N ,
se supponiamo che le particelle siano statisticamente indipendenti (lo sono di sicuro se il
gasè rarefatto). Se consideriamo due diverse suddivisioni, la probabilità relativa sar̀a

PN =
(

v2

v1

)N

(1.27)

PN è il rapporto fra la probabilit̀a di trovareN particelle in un volumettov2 e la probabilit̀a
di trovareN particelle in un volumettov1. Ma sappiamo che la relazione di BoltzmannS =
k log W lega l’entropia alla probabilità di un dato stato di equilibrio, quindi considerando
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l’entropia di un volumettov2 e quella di un volumettov1 si ha

S2 − S1 = k log PN = k log
(

v2

v1

)N

⇒ S = kN log(V ) + f (1.28)

conf indipendente daV .
Se i fotoni esistono l’entropia della radiazione di corpo nero, perhν � kT , deve

soddisfare ad una relazione come la (1.28). L’entropia della radiazione può essere scritta
nella forma

S = s V = V

∫ ∞

0

sν(uν , ν) dν (1.29)

La (1.29)è una “decomposizione spettrale” per l’entropia. Il volume a fattore indica la
propriet̀a estensiva, le variabiliuν sono intensive. Noi vogliamo “estrarre” dalla (1.29) solo
la parte ad alta frequenza. Se consideriamo un volume unitario, quindi fisso, il secondo
principio della termodinamica mette in relazione6 sν euν :

dsν

duν
=

1
T

(1.30)

Nel limite hν � kT possiamo usare la relazione di Wien per ricavare1/T

dsν

duν
=

1
T

= − k

hν
log

uν

αν3

da cui integrando

sν = − k

hν
uν

[
log

uν

αν3
− 1
]

(1.31)

Consideriamo ora l’energia, dovuta ad un intervalloδν di frequenza,E = V uνδν e la
corrispondente entropia,S = V sνδν, dalla (1.30) si ha

S(V,E) = − k

hν
E

[
log

E

V δναν3
− 1
]

quindi considerando due diversi volumi

S2 − S1 = k
E

hν
log
(

V2

V1

)
(1.32)

confrontando questa espressione con la (1.28) si ha che la radiazione di corpo nero ad
alta frequenza si comporta come un gas rarefatto di particelle di energiahν, in modo che
E/hν sia il numero di particelle (fotoni). In altre parole[Ein05],è lecito ipotizzare che la
radiazione elettromagnetica sia costituita da particelle. Notiamo che questa interpretazione
a “particelle indipendenti”̀e valida nella regionehν � kT , cioè lontano dalla zona di
validità della legge di Raleigh-Jeans. Nel lavoro del 1905[Ein05], ed in quelli successivi,
Einstein propone diversi esperimenti che possono convalidare questa interpretazione. Il più
notoè l’effetto fotoelettrico, ed il suo inverso, l’effetto Volta.

1.3.1 Effetto fotoelettrico.

Se si invia della radiazione elettromagnetica su un metallo, si osserva una emissione di
elettroni, questo effetto si chiamaeffetto fotoelettrico.È noto che per estrarre degli elet-
troni da un metallo occorre fornire una certa energia, il cosiddetto potenziale di estrazione,
W , caratteristico del metallo. La spiegazione classica dell’effetto fotoelettricoè chiara: il
campo elettrico dell’onda incidente accelera l’elettrone e quando la sua energia superaW ,

6Le affermazioni (1.29) e (1.30) anche se intuitive, non sono in realtà banali, ne diamo una dimostrazione in
appendice 1.A.2.
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l’elettrone viene emesso. L’energia trasferitaè proporzionale all’intensità della radiazione,
quindi ci si aspetterebbero degli elettroni energetici per onde di alta intensità, mentre non ci
si aspetta nessuna dipendenza significativa dalla frequenza della radiazione incidente. La
situazione sperimentale, come evidenziato da Lenard nel 1902[Len02],è completamente
opposta

1) C’è una frequenza caratteristicaνmin al di sotto della quale, qualunque sia l’intensità
della radiazione, non vengono emessi elettroni.

2) L’energia degli elettronidipendedalla frequenza manon dipendedall’intensit̀a.

3) Gli elettroni vengono emessi a qualunque intensità della radiazione, anche a bassisi-
me intensit̀a. Al descrescere dell’intensità ne vengono emessi meno.

La spiegazione di questi fattiè immediata se si considera la luce come composta da fotoni.
Un fotone di energiahν può al massimo cedere tutta la sua energia ad un elettrone del
metallo, questo ne può perdere eventualmente una parte per “attrito” (urti col materiale),
uscendo dal metallo stesso. Quindi l’elettroneè estratto dal metallo solo sehν > W ,
il che spiega la soglia in frequenza, anzi mette in relazione la soglia con il potenziale di
estrazione. L’energia, massima, dell’elettrone estrattoè

Emax = hν −W (1.33)

L’intensità dell’ondaè proporzionale al numero di fotoni, quindi al variare dell’intensità
l’unica cosa che variàe il numerodi elettroni emessi, non la loro energia. Tutti questi
effetti ed in particolare la relazione (1.33) sono stati verificati sperimentalmente negli anni
fra il 1905 ed il 1920[Mil14], facendo a poco a poco accettare l’idea dell’esistenza dei
fotoni.

L’effetto Volta è l’inverso dell’effetto fotoelettrico: se un facio di elettroni incide su
un metallo e viene assorbito, si ha un’emissione di radiazione. La (1.33) in questo caso
predice che la frequenza della luce emessaèhν = E + W . Anche questo effetto ha avuto
conferma sperimentale in quegli anni[Dua15]. Per le altre prime applicazioni del concetto
di fotone il lettore pùo consultare gli articoli[Ein05, Ein06].

Ci occuperemo più avanti delle altre caratteristiche del fotone.

1.4 Livelli energetici discreti.

Facciamo il punto della situazione: la formula di Planck descrive in modo perfetto la ra-
diazione di corpo nero, la sua spiegazione teorica richiede in qualche modo una discretiz-
zazione degli scambi di energia fra radiazione ed atomo, d’altra parte l’interpretazione di
Einstein della radiazione presuppone una discretizzazione della radiazione stessa. Entram-
be queste cose, ovviamente, sono inconsistenti con la meccanica classica.È merito ancora
di Einstein[Ein06], nel 1906, avere messo in luce i problemi e proposto in modo chiaro la
necessit̀a di un’ulteriore rottura con la meccanica classica: la quantizzazione dell’energia
per i corpi materiali, oltre che per la radiazione.

Cominciamo col notare che nell’ambito dell’elettromagnetismo classico nonè natural-
mente possibile che un oscillatore assorba energia “a salti’, quindi se si assume corretta la
deduzione di Planck ciò significa che l’interazione oscillatore-atomononè descrittadall’e-
lettromagnetismo classico. Ma l’elettromagnetismo classicoè stato usato nella derivazione
della (1.8)! La conclusionèe che in realt̀a la (1.8)è un’ipotesi. Il secondo puntòe che
in meccanica classica,qualunque sia l’interazionedell’oscillatore col campo elettroma-
gnetico, l’energia termica media di un oscillatoreè kT , si ricade ciòe nella formula di
Raleigh-Jeans.

Questa conclusionèe estremamente generale. La distribuzione statistica, in energia, di
un sistemàe data dalla legge di Boltzmann

dP = Ce−E/kT ω(E)dE (1.34)
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ω(E) è la densit̀a degli stati,C una costante di normalizzazione. Questa formula, per
oscillatori indipendenti, implicaE = kT , lo sappiamo gìa. Il lettore, se vuole, pùo trovare
la dimostrazione dettagliata a partire dalla (1.34) nel paragrafo 1.4.1. Il punto importante
è che questa conclusione dipende solo dalla densità degli stati dell’oscillatore, in ultima
analisi dalla forma quadratica dell’Hamiltoniana,non dall’interazione elettromagnetica.
L’unico modo per non ottenere la formula di Raleigh-Jeansè che la densità degli statinon
sia quella classica. Per un oscillatore classicoω(E) = 1, cioè tutte le energie, a parte
il fattore di Boltzmann, sono pesate uguali. La chiave per capire come cambiaω(E) è
l’ipotesi dei fotoni di Einstein.

La descrizione di Einstein della radiazione di corpo nero descrive la luce come un in-
sieme di particelle di energiahν: questa conclusionenon fa uso della(1.8), quindi non
presuppone nessun meccanismo particolare7. Se l’energia di radiazionèe discretizzata pùo
essere assorbita solo in forma di “quanti” di grandezzahν, ma allora l’energia dell’oscil-
latore pùo variaresolo di hν. Questoè compatibile con la descrizione di Planck ma la
richiesta della possibilità di una descrizione statistica impone qualcosa di più: queste ener-
gie sonole sole possibiliper l’oscillatore, a meno di una costante additiva. In altre parole
le uniche energie possibili, per il singolo oscillatore, sono:

En = E0 + nhν n ≥ 1 (1.35)

Trascuriamo l’energiaE0, che come vedremo in seguito non va in effetti considerata per
questo problema. Dimostriamo[Ein06] che dalla (1.35) si riottiene la legge di Planck. Si
possono dare diverse versioni di questo fatto, la più semplicèe la seguente. Per oscillatori
indipendenti la (1.34) pùo essere applicata al singolo oscillatore. Se sono possibilisolo i
livelli energetici (1.35) la densità degli statìe, in notazione moderna, a meno di una costante
moltiplicativa inessenziale per le medie,

ω(E) =
∑

n

δ(E − En) (1.36)

Per il lettore che non conosce la distribuzione di Diracδ: se sono presenti solo livelli
discreti invece degli integrali sull’energia bisogna fare delle somme. Per l’energia media si
ha allora

E =
∫

EdP∫
dP

=
∞∑

n=1

nhν · e−nhν/kT

[ ∞∑
n=1

e−nhν/kT

]−1

Usando
∞∑
1

xn =
x

1− x

∞∑
1

nxn = x
d

dx

∞∑
1

xn =
x

(1− x)2
(1.37)

si ha

E = hν
e−hν/kT

1− e−hν/kT
= hν

1
ehν/kT − 1

(1.38)

Usando la (1.8):

Eν = hν
1

ehν/kT − 1
uν = 8πhν3 1

ehν/kT − 1
(1.39)

cioè la formula di Planck. Nel paragrafo seguenteè brevemente analizzata la relazione fra
discretizzazione dell’energia e conteggio degli stati.

Se fossero presenti altri livelli cambierebbe la densità ω(E), cioè la (1.36), e non si
otterrebbe la formula di Planck.

7Nella deduzione sìe fatto uso della legge di Wien, non dimostrata se non si usa la legge di Planck, ma a
questo livello l’esistenza dei fotoniè l’ipotesi di partenza, non va vista come una conseguenza di un’altra legge.
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Una dimostrazione formale può essere questa. In una distribuzione di Boltzmann, effettuando le
derivate rispetto aT di E, si possono ricavare i valori medi diE2, E3 etc. ciòe i momenti della
distribuzione. Una distribuzione di probabilità regolarèe individuata univocamente dai suoi momenti,
quindi la soluzione trovatàe unica.

La conclusione che si può trarre a questo puntòe che la dinamica microscopica deve
essere tale da imporre una discretizzazione dell’energia, quindi la meccanica classicaè
esclusa.

L’unico punto (relativamente) insoddisfacente, per ora,è il fatto che si sia dovuta as-
sumere, nella deduzione, la validità della (1.8), ciòe della relazione fra energia della ra-
diazione ed energia dell’oscillatore, cosa opinabile, vista la dimostrata non validità della
descrizione classica. Un altro fondamentale lavoro, sempre di Einstein, del 1917[Ein17]
rimedia a questo punto, introducendo il concetto di emissione spontanea ed emissione in-
dotta, e dando, in ultima analisi, la prima derivazione consistente della legge di Planck
basata sullo scambio di energia radiazione-materia.

1.4.1 Conteggi e spazio delle fasi.

Presentiamo due modi diversi, ma equivalenti, di ricavare i risultati (1.21), (1.22), entrambi
basati sulla discretizzazione dell’energia.

Probabilit à massima. Per calcolare l’energia media di un oscillatore a frequenzaν con-
sideriamoN oscillatori. Se l’energiàe discretizzata ognuno di essi può assumere un mul-
tiplo del quanto elementareε. SiaNk il numero di oscillatori con energiakε. Il numero di
modi in cui possono essere suddivisiN oscillatori indipendenti e distinguibilìe

W =
N !

N1!N2! . . .
Nk = # oscillatori con energiakε (1.40)

i vincoli macroscopici che individuano lo stato sono: il numero di oscillatori (N ) e l’energia
totale del sistema,(U):

N =
∑

Ni U =
∑

Nk · kε (1.41)

In meccanica statistica si mostra come nel limite termodinamico,N → ∞, nell’ipote-
si di equiprobabilit̀a di tutte le configurazioni, lo stato di equilibrio macroscopico si può
ottenere come lo stato di probabilità massima, che corrisponde allo stato con il maggior
numero di realizzazioni possibili. Si tratta perciò si massimizzare l’espressione (1.40), o
più semplicementelog(W ), soggetta ai vincoli (1.41), cosa che si può fare introducendo
dei moltiplicatori di Lagrange:

∂

∂Ns

(
log W + λ1(

∑
Ns −N) + λ2(

∑
Ns · sε− U)

)
= 0

usando l’approssimazione di Stirling

log(n!) = n(log n− 1) (1.42)

si ricava
Ns = eλ1eλ2s ε

I moltiplicatori di Lagange sono fissati dalle condizioni ausiliarie (1.41). Usando le (1.37):

eλ1 = N(1− eλ2ε) N
eλ2ε

1− eλ2ε
= U ≡ NE ⇒ eλ2ε =

E/ε

1 + E/ε
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L’entropiaè definita daS = k log(Wmax) quindi

S

k
= N(log(N)− 1)−

∑
s

Ns(log(Ns)− 1) =

= N log(N)−
∑

s

Nsλ1 −
∑

s

Nsλ1sε = N log(N)−Nλ1 − λ2NE

da cui

S

k
= N log(1+

E

ε
)−N

E

ε
log

E/ε

1 + E/ε
= N

[
(1 +

E

ε
) log(1 +

E

ε
)− E

ε
log

E

ε

]
(1.43)

Insieme microcanonico. I valori medi in meccancia statistica sono calcolati suensem-
bles, cioè su misure di probabilità che forniscono una termodinamica. Il più sempliceè
l’ensemble microcanonico, cheè definito assegnando uguale probabilità a tutti gli elementi
dello spazio delle fasi del sistema compresi fra energiaU e U + ∆U , doveU è l’energia
totale. L’entropiàe definita, a meno di una costante che qui non interessa:

S = k log
∫ U+∆U

U

∏
k

(dpkdqk) (1.44)

il prodotto è sulle variabili canoniche del sistema. Per un oscillatore armonico di energia
E:

p2

2m
+

1
2
kq2 = E (1.45)

La curva (1.45)̀e un’ellisse di area proporzionale adE, per cui passando a “coordinate
radiali”

dpdq ∝ dE (1.46)

e quindi

S = k log
∫ U+∆U

U

∏
k

dEk + S0 (1.47)

Se l’energiàe discretizzata al posto dell’integrale occorre fare una somma e ponendo∆U =
ε si ha che l’integrale (1.47) si riduce a

S = k log
∑

∑
Ej=U

1 = k log W

doveW è il numero di “punti” sulla superfiieU =
∑

j Ej , cioè il numero di modi di
ottenere un interoU = Pε a partire daN (il numero di oscillatori) interini, doveEi = niε,
cioè il numero di modi di scrivere

N∑
i=1

ni = P

ma questòe esattamente il valore già calcolato (1.21): corrisponde a porreni unità ε in
ogni “cassetto” costituito dall’oscillatorei-esimo:

W =
(N + P − 1)!
(N − 1)!P !

(1.48)

si riottiene percìo il risultato di Planck.
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NOTA. Entrambe le derivazioni presentate in questo paragrafosembranouna derivazio-
ne consistente con il conteggio di Boltzmann, o equivalentemente con l’ensemle classico
microcanonico di Gibbs (che Boltzmann naturalmente conosceva e chiamavaergodo). In
realt̀a in entrambi gli approcci la distribuzione di equilibrioè definita a partire dall’asse-
gnazione a priori di stati equiprobabili. Banalizzando: alla domanda qual’è la probabilit̀a
che gettando due dadi si possa ottenere un dato numero, 10 diciamo,è possibile rispon-
dere solo assegnando per via empirica o teorica una distribuzione di probabilità per tutti
gli eventi che costituiscono l’ensemble, qui i possibili risultati. In molti casi, in particolare
nei dadi ed in meccanica statistica per sistemi non interagenti, questo si fa decidendo quali
sono gli eventi elementari ed assegnando una probabilità uguale ai diversi elementi. Nel
caso dei dadi si suppone che dadi non siano truccati, si assegna la probabilità 1/6 al risul-
tato di ogni faccia e si costruiscono le probabilità dell’evento “risultato del lancio di due
dadi”, come il rapporto fra i casi favorevoli e quelli possibili. Notiamo che in ogni caso
dobbiamo avere un procedimento per contare i possibili riultati del lancio, cioè dobbiamo
definire cosa intendiamo per evento. Nel caso della meccanica statistica classica gli “stati
equiprobabili”, corrispondenti alle facce dei dadi, sono le coppie posizione-impulso di ogni
particella, ciòe i punti nello spazio delle fasi del sistema. assegnate queste come equipro-
babili, nell’insieme microcanico, dobbiamo “contare” in quanti modiè possibile costruire
uno stato macroscopico dato, che quiè l’evento, cioè il lancio dei dadi. Assumere che gli
stati equiprobabili siano gli intervalli di energianon è la stessa cosa che assumere come
equiprobabili i punti nello spazio delle fasi. Torneremo sull’argomento nel paragrafo 1.9.

1.5 Emissione e assorbimento: coefficienti di Einstein.

Come vedremo nei prossimi paragrafi il quadro delineato nel paragrafo precedente per
l’oscillatore armonico si generalizza agli altri sistemi: l’energia di un sistema legato, come
una molecola, un atomo etc., ha valoridiscreti: E1, E2 . . ..

La differenza rispetto al caso semplice dell’oscillatore armonicoè di due tipi:

a) I livelli non sono necessariamente equispaziati.

b) Ad ogni livello possono corrispondere più “stati interni” dell’oggetto,gn. Il coeffi-
cientegn è detto “degenerazione del livello”. Genericamentegn è dovuto al fatto che
diverse configurazioni del sistema possono corrispondere alla stessa energia,è quello
che succede ad esempio ruotando nello spazio una molecola. Come vedremo l’in-
troduzione della teoria dei quanti permette il calcolo dign, ma per le considerazioni
seguenti il valore dign è inessenziale.

Questo quadro presenta una grave lacuna: come si tratta il campo elettromagnetico? Sap-
piamo dal paragrafo precedente cheè possibile trattare la luce in termini di fotoni, ma non
abbiamo ancora nessun modello preciso che sostituisca le equazioni di Maxwell e, a mag-
gior ragione, nessun indizio su come debba essere trattata l’interazione elettromagnetica.

In questo paragrafo, seguendo la prima parte del lavoro[Ein17], dimostreremo che da
alcune ragionevolissime e molto generali ipotesi sull’interazione elettromagnetica e dallo
schema precedente sulla struttura dei livelli energetici discendono due cose:

a) Una precisa relazione fra assorbimento ed emissione di luce.

b) La formula di Planck per la radiazione di corpo nero.

Per concretezza possiamo considerare un gas, rarefatto, di molecole8 all’equilibrio ter-
mico. La probabilit̀a di avere una molecola nel livello energeticon-esimoè proporzionale
al corrispondente fattore di Boltzmann

gne−En/kT → Pn = Cgne−En/kT (1.49)

8Qui “molecole”è un nome generico dato ai sistemi microscopici.
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C è una costante di normalizzazione, fissata da
∑

n Pn = 1. La (1.49) è data dalla
generalizzazione della (1.36): tenendo conto della molteplicità dei livelli si pùo scrivere

ω(E) =
∑

n

gnδ(E − En) (1.50)

da cui segue la (1.49). Consideriamo ora una particolare coppia di livelli,u, d (up,down),
con

Eu > Ed (1.51)

A causa dell’interazione elettromagnetica la molecola può effettuare delle transizioni fra i
due livelli, e, in questo processo, può cedere o assorbire energia dalla radiazione, ad una
frequenza caratteristicaν che per ora lasciamo arbitraria.

Le molecole quindi assorbono ed emettono radiazione in continuazione. Supponiamo
che il sistema sia completamente isotropo, la radiazione sia isotropa, e l’orientazione stessa
delle moleocole sia isotropa, nel senso che quand’anche ci fossero, nei singoli processi,
direzioni privilegiate per questa o quella molecola, prenderemo una media sugli angoli;
questàe la situazione normale all’equilibrio termico: non ci sono direzioni privilegiate.

Le ipotesi fatte sull’interazione luce-materia sono le seguenti:

a) La molecola nello stato di energia più alta pùo decadere allo stato di energia più
bassa emettendo radiazione. Questo processoè l’analogo della radiazione classica di
una carica accelerata. Ogni molecola avrà una certa probabilità per unit̀a di tempo di
effettuare questa transizione. Indichiamo questa probabilità con

Au→d ≡ Prob. al secondo peru → d (1.52)

b) Il sistema nello statou può decadere nello statod sotto l’influsso della radiazione
esterna, si avrà una probabilit̀a di transizione per unità di tempo

Bu→duν (1.53)

c) Il sistema nello statod può assorbire un fotone e passare allo statou, con una
probabilit̀a al secondo:

Bd→uuν (1.54)

Il coefficienteBu→d è chiamato coefficiente diemissione indotta, e quelloBd→u coeffi-
ciente di assorbimento. Il coefficienteA ha il nome, per ovvi motivi, dicoefficiente di
emissione spontanea.

La (1.52), nella sua semplicità, ha un elementomolto peculiare. In meccanica clas-
sica l’energia viene emessa in modo continuo, la dinamica deterministica fissa un tempo
iniziale ed un tempo finale per il processo. Il fotoneè trattato come una particella, quindi
l’emissioneè sicuramentediscontinuanel tempo. Qui non stiamo facendo nessuna ipotesi
sull’esistenza o meno di un tempo definito di emissione, l’unica cosa che stiamo richie-
dendoè che ci sia una probabilità che l’evento si verifichi. Questa proceduraè identica
a quanto si fa fenomenologicamente per descrivere la probabilità di un decadimento ra-
dioattivo. Formalmente la (1.52)è il primo punto in cui incontriamo una rinuncia ad una
descrizione strettamente deterministica dei processi fisici.

Ci chiediamo ora sotto che condizioni si possa verificare una situazione di equilibrio
termico. In condizioni di equilibrio termico il flusso di transizioni al secondo fra i due
livelli si deve equilibrare, altrimenti non si avrebbe equilibrio, quindi

(prob. di essere inu)× (prob./secu → d) = (prob. di essere ind)× (prob./secd → u)

cioè
gue−Eu/kT · (Au→d + Bu→duν) = gde

−Ed/kT Bd→uuν (1.55)
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Innanzitutto ad alta temperatura la densità di radiazione deve divergere, quindi facendo il
limite T →∞ si ha

guBu→d = gdBd→u (1.56)

Quindi il coefficiente di emissione e di assorbimento sono legati, in particolare sono uguali
per livelli non degeneri. Dividendo membro a membro la (1.55) perguBu→d si ha

e−h(Eu−Ed)/kT (
Au→d

Bu→d
+ uν) = uν

Da cui

uν =
Au→d/Bu→d

eh(Eu−Ed)/kT − 1
(1.57)

La legge di Wien (1.4) impone due cose

Eu − Ed = c1ν (1.58a)

Au→d

Bu→d
= c2ν

3 (1.58b)

L’universalit̀a della legge di Wien impone che le due costantic1, c2 sianouniversali. Iden-
tifichiamo ovviamentec1 con la costante di Planckh. La costantec2 può essere espressa
in funzione di altre costanti note se si effettua il limiteT →∞, in cui si deve recuperare la
legge di Raleigh-Jeans

uν → c2ν
3 kT

hν
= 8π

ν2

c3
kT ⇒ c2 =

8πh

c3

quindi

uν = 8π
hν3

c3

1
ehν/kT − 1

(1.59)

cheè proprio la legge di Planck. In conclusione:

1) L’unico modo per avere equilibrio termicoè che la luce che interagisce con la coppia
di stati deve avere frequenza determinata dalla (1.58a), cioè si ha la conservazione
dell’energia in termini di fotoni, come visto nel precedente paragrafo.

2) I coefficienti di emissione e assorbimento sono legati dalla (1.56).

3) Il coeficiente di emissione spontaneaè legato a quello di assorbimento dalla (1.58b).

4) La densit̀a spettrale della radiazioneè quella di Planck.

Quindi la teoria dell’interazione elettromagnetica luce materia, benchè ancora non formu-
lata, ha le caratteristiche su esposte, in particolare vale la legge di Planck.

Notiamo cheuν è proporzionale al rapportoAu→d/Bu→d chenon si riferiscead uno
stato di equilibrio della molecola ma ad una probabilità di transizione fra stati diversi,
questoè il motivo per cui nella deduzione del paragrafo precedente si era trascurato il
fattoreE0 nell’energia dell’oscillatore.

Emissione indotta e legge di Wien. È interessante capire quale delle ipotesi fatteè re-
sponsabile della sostituzione della legge fenomenologica di Wien con quella di Planck:è
l’ipotesi b), ciòe l’ipotesi che esista unaemissione indotta, eq.(1.53). Infatti se non ci fosse
questo termine si avrebbe per l’equilibrio:

gue−Eu/kT ·Au→d = gde
−Ed/kT Bd→uuν ⇒ uν =

gu

gd

Au→d

Bd→u
e−(Eu−Ed)/kT (1.60)
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La legge di Wien (1.4) impone ancora i vincoli (1.58) e si ottiene cosı̀ la distribuzione di
Wien (1.6),uν = Cν3 exp(−hν/kT ). Quindi l’esistenza dell’emissione indottaè, dal pun-
to di vista dei fotoni, il fattore responsabile della “non classicità” della formula di Planck.
Il motivo è il seguente: se i fotoni fossero particelle classiche, la probabilità di emissione
dell’oscillatore non dovrebbe dipendere dall’esistenza o meno dei fotoni esterni. Viceversa
l’emissione indottàe esattamente quanto ci si aspetta se vale un discorso classico in termini
di onde: in presenza di un campo esterno il sistemaè posto in oscillazione e irraggia. La
formadell’emissione cos̀ı ottenuta, proporzionale all’intensità della radiazione incidente,è
quella suggerita dal calcolo classico. Questoè, in nuce, un esempio di un concetto che ve-
dremo apparire molto spesso: la forma dell’interazione quantisticaè suggerita dal calcolo
classico, in una forma un pò più precisa sar̀a il cosiddettoprincipio di corrispondenza.

1.6 Statistica e dualit̀a onda-particella.

Come siè visto nei paragrafi precedenti l’ipotesi di quantizzazione dei livelli energetici
conduce alla formula di Planck. Nelle due deduzioni presentate la differenza fondamentale
è la seguente:

a) Usando come sistema un oscillatore armonico sia nella deduzione di Planck, sia in
quella di Einstein, si usa l’ipotesi (1.8)

uν(ν, T ) =
8πν2

c3
Eν

che lega la densità di radiazione alla energia media di un oscillatore. Notiamo che
questa formulàe dimostrata solo in teoria classica e, in più, l’oscillatore armonico
quantizzato ha una struttura dei livelli molto particolare: sono equidistanti fra loro.

b) Nella deduzione di Einstein del paragrafo precedente si generalizza la questione ad
un sistema qualunque, non ci sono più ipotesi particolari sui livelli energetici del si-
stema, ma si fanno solo delle ipotesi molto generali sulle proprietà di assorbimento ed
emissione. Queste proprietà, bench̀e ragionevoli, non sono dimostrate, non avendo
ancora sviluppato una teoria per l’interazione quantistica fra radiazione e materia.

Per certi aspetti questo stato di cose nonè molto soddisfacente: sarebbe come voler ricavare
la legge di distribuzione di Maxwell per un gas perfetto partendo da un’analisi degli urti
con un sistema all’equilibrio termico, le pareti della cavità ad esempio. Si può fare, maè
più semplice, e pìu logico, trattare un gas perfetto come sistema a se stante, debolmente
interagente, a cui applicare la meccanica statistica.

L’analisi di Einstein sull’interpretazione a fotoni della radiazione elettomagnetica sem-
bra andare in questa direzione; fra l’altro non prevedendo alcuna interazione diretta fotone-
fotone si dovrebbe essere esattamente nel caso ideale in cui poter applicare tutte le note
tecniche della statistica dei gas perfetti. Ci si convince subito però che la proposta presenta
delle difficolt̀a, e non sono difficoltà tecniche, ma profonde. Una breve analisi di questa
questione ci permetterà di evidenziare il problema che fin dall’inizio aleggia sulla questio-
ne: come si conciliano i fotoni con le equazioni di Maxwell ed in che senso assomigliano
a particelle? La risposta sarà piuttosto spiazzante: i fotoni non si comportano nè come
particelle classiche ǹe come onde classiche, ma hanno contemporaneamente entrambe le
caratteristiche!

L’idea di baseè molto semplice: consideriamo un piccolo volumev all’interno della
cavit̀a. Lo stato di equilibrio, ricordiamo,è uno stato di equilibrio statistico, il che significa
che accanto al valor medio delle grandezze osservate, possono esserci delle fluttuazioni
dal valor medio. Se l’energiàe distribuita in maniera continua, come nella descrizione
ondulatoria, si avr̀a un certo tipo di fluttuazioni, se l’energiaè corpuscolare un altro tipo,
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quindi misurando le fluttuazioni dalla media possiamo decidere in che forma si presenta la
radiazione elettromagnetica.

Una misura delle fluttuazioni si ha considerando lo scostamento dell’energia dal suo
valor medio. Sia〈E〉 l’energia media nel volumetto, la media dello scarto quadratico

〈∆E2〉 ≡ 〈(E − 〈E〉)2〉 = 〈E2〉 − 2〈E〉〈E〉+ 〈E〉2 = 〈E2〉 − 〈E〉2 (1.61)

fornisce la misura cercata. Noi considereremo l’energia in un intervallo di frequenzeδν,
quindi

E = v uνδν (1.62)

Vediamo innanzitutto cosa ci si deve aspettare nei due casi, quello ondulatorio e quello
corpuscolare.

Caso ondulatorio. In questo caso la radiazioneè descritta da un campo elettromagnetico,
soluzione delle equazioni di Maxwell nel vuoto, cioè una sovrapposizione di onde piane
corrispondenti ai modi di vibrazione della cavità. Il fatto di essere all’equilibrio termico,
quindi in uno stato completamente disordinato, significa che le fasi relative di tutte queste
onde sono distribuite casualmente. Perchè si hanno fluttuazioni di energia? La densità di
energia elettromagneticaè proporzionale al quadrato del campo elettrico:u ∝ E2, il cam-
po elettrico che va a formare l’energia nell’intervalloδν è una sovrapposizione di onde a
frequenze vicine, nell’intervalloδν appunto: nel fare il quadrato si hanno fenomeni di bat-
timento fra onde di frequenza quasi uguale. Misurare il valor medio statistico all’equilibrio
è la stessa cosa che misurare il valor medio temporale, quindi il valor medio dell’energia
misurataè dovuto al risultato di tutti questi battimenti. La posizione di questi battimenti
nel volume considerato fluttua nel tempo, cosı̀ come il loro numero, e questo provoca una
fluttuazione dell’energia attorno alla media. Sperimentalmente se si fanno molte misure si
otterranno una serie di risultati con media〈E〉 ed una certa “incertezza” parametrizzata da
〈∆E2〉.

Ora l’energia dipende dal quadrato dell’ampiezza, cosı̀ come i battimenti fra due onde,
quindi la fluttuazione〈E2〉 − 〈E〉2 dipende dallaquarta potenzadell’ampiezza, ciòe è
proporzionale all’energia al quadrato

〈∆E2〉 ∝ 〈E〉2 (1.63)

C’è per̀o un altro fattore da considerare. Come abbiamo visto dall’analisi della legge
di Raleigh-Jeans, la radiazione elettromagnetica nell’intervalloδν di frequenza, attorno
ad una frequenzaν, corrisponde ad un numero di oscillazioni della cavità vZ(ν)dν =
v8π2ν2/c3dν che sono i “gradi di libert̀a” del sistema, ciòe il numero di ampiezze stati-
sticamente indipendenti che possono fluttuare. La fluttuazione sarà proporzionale a questo
numero, come anche l’energia media, che però nella (1.63) compare al quadrato, quindi
deve essere

〈∆E2〉 = C
(〈E〉)2

vZ(ν)δν
(1.64)

C è una costante adimensionale. Il calcolo esatto, riportato nel paragrafo 1.B mostra che
C = 1, ma questo noǹe importante per il seguito del discorso.

Caso corpuscolare. Qui il meccanismo delle fluttuazioniè completamente diverso. Pos-
siamo prenderev abbastanza piccolo in modo che la probabilità di avere pìu di una par-
ticella nel volume sia trascurabile, in questo modo l’origine delle fluttuazioniè chiara: se
si fanno molte misure alcune volte si trova una particella, altre volte non si trova niente,
raramente si trovano due particelle etc. Se ogni particella ha energiahν il valor medio
dell’energiaà fissato dalnumero mediodi particelle che si trovano nel volume. Per un
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gas rarefatto, o per volumi abbastanza piccoli, la distribuzione statistica pern è la classica
distribuzione di Poisson e si ha

〈∆n2〉 = 〈n〉 (1.65)

La probabilit̀a di trovare una particella nel volu-
mettov è x = v/V . Chiamataρ = N/V la
densit̀a numerica, si hax = ρv/N . Le proba-
bilit à di trovaren particelle inv sono elencate
nella tabella a fianco, ad esempio la probabilità
di trovare una sola particellàe la probabilitit̀a di
trovare una particella moltiplicata per la proba-
bilit à che le altreN − 1 si trovino al di fuori di
v .
(

N
1

)
= N è il numero di modi di scegliere

una particella fra leN a disposizione. Nel limite
N →∞ si ha

(1− x)N = (1− ρv

N
)N ∼ e−ρv

e applicando la formula di Stirling, pern � N(
N

n

)
∼ 1

n!

NNe−N

(N − n)N−ne−(N−n)
∼ Nn

n!

Probabilit̀a

0 particelle (1− x)N

1 particella
(

N
1

)
x (1− x)N−1

2 particelle
(

N
2

)
x2 (1− x)N−2

3 particelle
(

N
3

)
x3 (1− x)N−3

. . . . . .

n particelle
(

N
n

)
xn (1− x)N−n

Quindi

Pn =
1

n!
(ρv)ne−ρv

Da cui immediatamente
〈n〉 = ρv ; 〈n2〉 = 〈n〉2 + 〈n〉

e quindi la (1.65).

〈n〉 è il numero di fotoni inv , quindiE = hνn e

〈∆E2〉 = (hν)2〈∆n2〉 = hνE (1.66)

Calcolo della fluttuazione. Le due stime precedenti possono essere confrontate con il
valoreesattodella fluttuazione dell’energia, che può essere facilmente calcolato. Consi-
deriamo infatti il volumettov , la radiazione al suo internòe in equilibrio termico con la
radiazione all’esterno, nel volumeV − v � v . Questo grande volume esterno funziona
come un bagno termico, perchè la sua capacità termica, proporzionale al volume,è infini-
tamente pìu grande di quella della radiazione nel volumev . Un sistema in equilibrio in un
bagno termico a temperaturaT ha una distribuzione statistica nota,è proprio la definizione
di insieme canonico:

p(E)dE =
1
Z

e−E/kT ω(E)dE Z =
∫

e−E/kT ω(E)dE (1.67)

ω(E) è la densit̀a degli stati. Dalla definizione di media segue∫
(E − 〈E〉)e−E/kT ω(E) = 0

Effettuando la derivata rispetto aT

0 =
1

kT 2

∫
(E − 〈E〉)Ee−E/kT ω(E)− d〈E〉

dT

∫
e−E/kT ω(E)dE =

=
1

kT 2
Z(〈E2〉 − 〈E〉2)− d〈E〉

dT
Z
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quindi

〈∆E2〉 = kT 2 d〈E〉
dT

(1.68)

La fluttuazione in energiàe percìo calcolabile una volta che sia nota l’energia media in
funzione della temperatura.

Consideriamo ora la distribuzione di Planck ed i suoi casi limite:

E = vδνuν = vδν
Z(ν)hν

ehν/kT − 1
→

{
vδν Z(ν)kT hν � kT Raleigh-Jeans

vδν Z(ν)hνe−hν/kT hν � kT Wien

La derivata (1.68) si scrive

kT 2 d〈E〉
dT

= kT 2 vδν Z(ν)hν
hν

kT 2

ehν/kT

(ehν/kT − 1)2
=

= vδνZ(ν)(hν)2
[

1
(ehν/kT − 1)2

+
1

ehν/kT − 1

]
=

〈E〉2

vδνZ(ν)
+ hν〈E〉

Mentre pìu semplicemente, nei casi limite:

R.-J.: kT 2 d〈E〉
dT

= kT 2 vδν Z(ν)k =
〈E〉2

vδν Z(ν)

W.: kT 2 d〈E〉
dT

= kT 2 vδν Z(ν)hν
hν

kT 2
e−hν/kT = hν〈E〉

Quindi

Planck: 〈∆E2〉 =
〈E〉2

vδνZ(ν)
+ hν〈E〉 ≡

(
c3

8πν2
u2

ν + hνuν

)
vδν (1.69a)

R.-J.: 〈∆E2〉 =
〈E〉2

vδνZ(ν)
(1.69b)

Wien: 〈∆E2〉 = hν〈E〉 (1.69c)

Si ha quindi che la radiazione di corpo nero nel limite di basse frequenze si comporta
come un’onda, nel limite di alte frequenze, viceversa, come un insieme di particelle, ma
genericamente haentrambe le caratteristiche.

Il risultato (1.69a)̀e assolutamente incomprensibile nell’ambito della fisica classica:

• Le equazioni di Maxwell sonolineari, non ci sono interazioni delle onde elettroma-
gnetiche nel vuoto, ciòe nella cavit̀a. I fenomeni di battimento esprimono appunto la
linearit̀a delle equazioni, quindi se le equazioni di Maxwell descrivono la radiazione,
deve essereverificata la (1.69b).

• Se si interpreta la luce come un insieme di particelle classiche non interagenti,deve
valerela (1.69c): abbiamo visto chèe semplicemente una conseguenza del “contare”
le particelle, ciòe della distribuzione di Poisson.

La distribuzione di Planck, chèe quella verificata sperimentalmente, impone invece che la
luce si comportanello stesso tempocome ondae come particella. Insistiamo sulla con-
giunzionee, nonè vero che la luce si comportio come ondao come particella, si comporta
in entrambi i modi contemporaneamente.È solo nei casi limite di basse frequenze, rispetto
akT , o di alte frequenze che si recupera il limite classico di onda o particella.

Come vedremo la soluzione che darà la meccanica quantisticaè piuttosto sottile:

• I fotoni, trattati come particelle quantistiche, si comportano come particelle libere
nella cavit̀a, ma nonostante ciò la costruzione degli stati quantistici di molti fotoni
implica delle correlazioni, non classiche, che provocano una deviazione dalla stati-
stica di Poisson. Ripetiamo nonè questione di interazione fra fotoni,è il concetto di
stato diN particelle che cambia.
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• Se si usa il campo elettromagnetico direttamente si trova che questo nonè un normale
vettore numerico ma un operatore; in termini di sviluppo in onde piane

E(x) =
∑

k

(
Ekeikx + E∗

ke−ikx
]

i coefficienti dello sviluppo di Fourier,Ek, non sono numeri ma operatori che agi-
scono su uno spazio di Hilbert. Le regole di commutazione di questi operatori danno
luogo ad un termine aggiuntivo nel calcolo delle fluttuazioni che origina il termine
lineare in〈E〉 nell’espressione di〈∆E2〉.

Fluttuazioni del numero di fotoni. Chiamiamonk il numero di fotoni per unit̀a di vo-
lume che hanno impulso in direzionek e frequenzaν. A causa delle fluttuazionink è una
variabile stocastica. L’energia per unità di volume e per unità di frequenza si scrive

ε =
∑

k

hνnk 2πν =
|k|
c

(1.70)

le variabili corrispondenti a impulsi diversi sono statisticamente indipendenti, edè noto
che la varianza di una somma di quantità statisticamente indipendentiè la somma delle
varianze. Quindi si ha

〈∆ε2〉 =
∑

k

(hν)2〈∆n2
k〉 (1.71)

Considerando un piccolo intervallo di frequenza e sommando sulle direzioni (si assume
che la distribuzione ink sia isotropa) sappiamo che i modi indipendenti sono

Zνdν = 8π
ν2

c3
dν

quindi abbiamo
〈ε〉 = Zνdν〈nk〉 〈∆ε2〉 = Zνdν〈∆n2

k〉
Confrontando con la (1.69a) ricaviamo l’importante relazione

〈∆n2
k〉 = 〈nk〉+ 〈nk〉2 (1.72)

che mostra chiaramente la diversità dalla statistica di Poisson.

1.7 Impulso del fotone

La radiazione elettromagnetica trasporta energia ed impulso.È noto che ad una densità di
energiau è associata una densità di impulsou/c, e quindi ad una energiaE un impulso
E/c. Se crediamo all’ipotesi della quantizzazione della radiazione dobbiamo dedurre che
all’energiahν, associata ad un quanto di luce, deve corrispondere un impulso|p| = hν/c.
Usando la relazionem2c2 = E2/c2−p2 si ha che i fotoni devono essere particelle a massa
nulla. Come si fa a “vedere” questo impulso? Normalmente per misurare l’impulso di un
oggetto si trasferisce questo impulso ad un altro oggetto per cuiè facile misurare la velo-
cità, che diventa allora lo “strumento di misura” dell’impulso. La cosa più semplice quindi
è trasferire l’impulso della luce ad una particella e misurare l’impulso di quest’ultima. La
radiazione trasferisce impulso anche nella teoria classica di Maxwell, in cosa dovrebbe
consistere allora l’evidenza sperimentale dell’impulso di un fotone? Occorre mettere in
luce la “granularit̀a” del trasferimento di impulso, analogamente a quanto fatto per l’ener-
gia con l’effetto fotoelettrico. La prima idea potrebbe essere, appunto, quella di sfruttare
l’effetto fotoelettico, ma l’idea noǹe molto brillante. Se scriviamo l’effetto fotoelettrico
come una reazione:

γ + A → A∗ + e−
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in cui A∗ è l’atomo ionizzato,A l’atomo neutro, capiamo immediatamente che una parte
rilevante dell’impulsoè assorbita dall’atomo, quindi se non misuriamo questa parte, non
possiamo misurare l’impulso del fotone.

La cosaè più semplice da vedere nel centro di massa. In questo sistema il fotone ha un’energia
leggermente più piccola dovuta all’effetto Doppler,ν′ ∼ ν(1−V/c) e la velocit̀aV è determinata da
hν′/c = MV , doveM è la massa dell’atomo,V ∼ hν/Mc. In seguito alla ionizzazione l’elettrone
e l’atomo si muovo in direzioni opposte e la conservazione dell’impulso imponeM∗V ′ = meve,
doveM∗ ∼ M è la massa dell’atomo ionizzato. L’impulso dell’atomo quindiè uguale a quello
dell’elettrone. Passando nel sistema di riferimento del laboratorio si ha una differenziazione dei due
impulsi, dipendente dall’angolo di uscita dell’elettrone, ma restano dello stesso ordine. Diversoè il
discorso sull’energia. L’energia cinetica dello ioneè

1

2
MV 2 =

1

2
M

m2v
2
e

M2
=

m

M
Ee � Ee

Anche passando al sistema del laboratorio questa energia cambia di un termine dell’ordineMV Vcm ∼
MV 2. In tutti i casi il contributo dell’energia (cinetica) dello ione al processoè trascurabile, il con-
tributo all’impulso no. Il caso limite ovviamentèe quello di un atomo di massa infinita che assorbe
il fotone ed emette un elettrone: si può trasformare l’energia del fotone in energia dell’elettrone ma
l’impulso del fotone viene perso completamente:è un processo cinematicamente simile all’urto di
una palla di gomma contro un muro.

Bisogna allora considerare un processo in cui l’atomo fa da spettatore. Questoè sem-
plice da immaginare: il fotone, o la radiazione elettromagnetica in termini classici, può
diffondere sull’elettrone invece di venire assorbito dall’atomo, quindi la reazioneè del tipo

γ + A → A∗ + e− + γ

Classicamente il processoè il seguente. Possiamo schematizzare l’elettrone come legato
elasticamente allo ione. Se la frequenza della luce incidenteè grande rispetto alla frequenza
caratteristica del sistema, l’elettrone entra in oscillazione con la frequenza del campo elet-
trico dell’onda incidente, ciòe si comporta come un elettrone libero. Se oscilla a frequenza
ν, riemette luce alla stessa frequenza:è il cosiddettoThomson scattering(diffusione di
Thomson). Consideriamo allora un atomo con frequenze di oscillazione di tipo ottico, o
inferiori, cioè che diffonde la luce tipicamente a lunghezze d’onda di qualche migliaio di
Å. Se inviamo dei raggi X sull’atomo dobbiamo aspettarci dei raggi X diffusialla stessa
frequenzadella luce incidente.

In termini di fotoni invece il fenomenòe completamente diverso: si ha un urto, elastico,
fra fotone ed elettrone, l’energia, e quindi la frequenza, della luce diffusa dipende dall’urto.
Il processoè stato analizzato per la prima volta da Compton e Debye[Comp23, Deb23]
ed il primo esperimento effettuato da Compton. Possiamo supporre che l’elettrone prima
dell’urto sia fermo, chiamandop, E, l’impulso e l’energia dell’elettrone dopo l’urto,k,k′

gli impulsi del fotone prima e dopo l’urto, la conservazione dell’energia e dell’impulso
impongono:

hν + mc2 = E + hν′ ⇒ c2(p2 + m2c2) = (hν + mc2 − hν′)2

k = p + k′ ⇒ p2 = (k − k′)2 =
h2

c2
(ν2 + ν′

2 − 2νν′ cos ϕ)

doveϕ è l’angolo di diffusione del fotone, vedi figura. Sostituendo il valore dip2 nella
prima equazione si ricava:

h

mc2
νν′(1− cos ϕ) = ν − ν′ ⇒ 1

λ
− 1

λ′
=

h

mc
(1− cos ϕ) (1.73)

λ = c/ν è la lunghezza d’onda. La relazione (1.73) predice un risultato completamente di-
verso da quello classico: nella diffusione si ha cambiamento di energia. Sperimentalmente
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il segnalèe molto chiaro: qualunque sia la lunghezza d’onda della luce incidente, ad angolo
fisso si deve osservare uno spostamento in lunghezza d’onda. Quindi non c’è bisogno di
selezionare in modo particolare il fascio di raggi X: se ci si pone, ad esempio, ad angolo
retto rispetto al fascio incidente si deve osservare, per qualunque lunghezza d’onda, uno
spostamneto dih/mc per lo spettro in funzione di1/λ. L’esperimento, ideato e realizzato
da Compton[Comp23] verifica perfettamente la previsione (1.73), vedi fig.1.2.

φ

θγ

γ

e

Figura 1.1: Cinematica dell’effetto Compton.
Figura 1.2: Risultati schematici
dell’esperimento di Compton.

Rapidamente l’esperimentòe stato raffinato, da Wilson e Bothe. Se una particella ca-
rica attraversa una camera piena di gas soprassatura di vapor d’acqua (camera a nebbia),
le molecole di gas vengono ionizzate e funzionano da nuclei di condensazione per il va-
pore. In questo modòe possibile visualizzare la traiettoria (traccia) della particella. Dalla
lunghezza della tracciàe possibile risalire all’energia della particella. In questo modoè
possibile visualizzare direttamente gli elettroni di rinculo nella diffusione.

Si pùo fare anche di meglio: talvolta, anche se raramente, il fotone diffuso può subire
una seconda deviazione. Unendo i punti in cui iniziano le traccie dei due elettroni diffusi
si pùo determinare l’angoloϕ della figura. Misurando l’angoloθ di diffusione del primo
elettrone e la sua energia possiamo predire l’angoloϕ e confrontarlo con il valore misurato,
avendo cos̀ı una verifica diretta delle leggi di conservazione (1.73), che dimostrano oltre
ogni ragionevole dubbio che il fotone esiste e si comporta come una particella elementare
a tutti gli effetti.

I dubbi sull’esistenza del fotone, prima dell’esperimento di Compton, erano molto dif-
fusi: non è esagerato dire che in pratica solo Einstein e pochi altri fisici erano convinti
della sua esistenza. Il motivo, come abbiamo più volte sottolineato, era la naturale ritrosia
a dichiarare che le equazioni di Maxwell nel vuoto non erano una buona descrizione della
realt̀a microscopica.

Nel parlare dell’impulso del fotone abbiamo sovvertito la cronologia degli eventi. Nei
lavori di Einstein dal 1906 al 1917 la necessità dell’impulso del fotone, e quindi la sua esi-
stenza come particella, e non semplicemente come modo fenomenologico di considerare
una qualche pacchetto discretizzato di energia,è messa più volte in evidenza. Il metodo
usatoè ancora una volta lo studio delle fluttuazioni, qui le fluttuazioni di impulso. Pre-
sentiamo brevemente le argomentazioni, sia per il loro indubbio valore metodologico sia
perch̀e in questa analisi emerge di nuovo una caratteristica che si era incontrata nello stu-
dio dei coefficienti di emissione e assorbimento. In quel contesto non si facevano ipotesi
sull’istante di emissione dei fotoni nell’emissione spontanea, rinunciando di fatto ad una
descrizione deterministica del processo (anche se a priori, per quanto abbiamo visto, po-
trebbe esserci una dinamica deterministica, incognita, dietro al processo di emissione). Se
ora aggiungiamo un impulso definito al fotone, dobbiamo assegnare una direzionalità alla
radiazione emessa: questo chiaramenteè in contrasto con la visione intuitiva di un’onda più
o meno sferica emessa per radiazione da un oggetto miscroscopico, ma la cosa veramente
rilevanteè che, analogamente a quanto succedeva per il tempo di emissione, qui si troverà
che per ladirezionedi emissione del fotone si possono fare solo affermazioni di tipo sta-
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tistico. Questo, unito a quanto vedremo per l’emissione di radiazione nella teoria di Bohr
degli spettri atomici,̀e l’inizio della rinuncia, forzata, della descrizione deterministica, nel
senso classico, dei fenomeni fisici.

1.8 Impulso e sue fluttuazioni.

Consideriamo un corpo qualunque, una molecola ad esempio, in equilibrio termico con la
radiazione, all’interno di una cavità a temperaturaT . Sappiamo che all’equilibrio termo-
dinamico la sua energia cinetica media deve essere3

2kT . D’altronde se ad un certo istante
il corpo ha velocit̀a v, questo urta in continuazione con la radiazione elettromagnetica. La
radiazione che viaggia in direzione opposta al corpoè vista, nel sistema di riferimento del
corpo, con una frequenza maggiore, per effetto Doppler; viceversa quella che procede nella
stessa direzione ha frequenza minore. Sappiamo che la radiazione produce una pressione di
radiazione, quindi la pressione sui due “lati” del corpoè diversa, questo provoca una sorta
di forza di attrito, che dovrebbe portare il corpo in quiete: come fa a mantenere un’energia
cinetica3

2kT? La rispostàe che esistono delle fluttuazioni nella radiazione e queste devono
essere tali da compensare, statisticamente, la forza di attrito. Ciò che vogliamo verificarèe
che questa descrizioneè in accordo con l’interpretazione della radiazione come composta
da fotoni.

Consideriamo per semplicità il moto lungo un unico asse, l’assex diciamo. Ad un certo
istante il corpo abbia velocitàv. Dopo un piccolo tempoτ l’impulso è

mv − Pvτ + Q (1.74)

−Pv indica la forza di attrito,Q il contributo casuale delle fluttuazioni di impulso. In
media naturalmente〈Q〉 = 0. All’equilibrio termico l’energia cinetica media non deve
cambiare quindi

1
2
m〈v2〉 =

1
2m

〈(mv − Pvτ + Q)2〉 ' 1
2m

(
m2〈v2〉 − 2mP 〈v2〉τ + 〈Q2〉

)
Avendo trascurato gli ordini superiori inτ e usato il fatto che〈Q〉 = 0. Per il moto lungo
l’assex, all’equilibrio termico deve essere

1
2
m〈v2〉 =

1
2
kT

Abbiamo quindi il vincolo[Ein09]

〈Q2〉 = 2mP 〈v2〉τ ⇒ 〈Q2〉 = 2kTPτ (1.75)

Per esemplificare il contenuto di questa relazione consideriamo uno specchio, di superficie
f, che si muove con velocità v nel verso positivo dell’assex. Lo specchio sia trasparente a
tutte le radiazioni eccetto quelle comprese in un intervalloδν attorno alla frequenzaν; in
questo modo possiamo selezionare la densità spettrale della radiazione.

Previsione. EssendoQ2 piccolo, possiamo valutarlo per uno specchio fermo, trascuriamo
cos̀ı termini di ordineQ2v/c. Se la fluttuazione di impulsòe dovuta ad urti elementari si
può scrivere:

Q = Q1 + . . . QN

Dove Qi è il trasferimento di impulso nell’urtoi-esimo eN è il numero medio di urti
nell’intervallo τ . Per urti statisticamente indipendenti

〈QiQj〉 = 0 peri 6= j
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quindi
〈Q2〉 = N〈Q2

1〉 (1.76)

In pratica si ha un “random walk” nello spazio degli impulsi. Se l’impulso dei fotoniè
legato all’energia dalla relazionep = E/c possiamo scrivere

〈Q2〉 ' 1
c2

N〈∆E2〉 (1.77)

La radiazione che pùo interagire con lo specchio in questo intervalloè quella compresa in
un volume2f cτ , met̀a di questa urta contro lo specchio, l’altra metà è diretta in direzione
opposta.N quindi coincide col numero medio di fotoni in un volumef cτ . N〈∆E2〉 è la
fluttuazione in energia in questo volume, data, secondo la legge di Planck, dalla relazione
(1.69a). Dobbiamo quindi avere

〈Q2〉 =
1
c2

(
hνuν +

c3

8πν2
u2

ν

)
f cτδν = δνf τ

1
c

(
hνuν +

c3

8πν2
u2

ν

)
(1.78)

Un modo pìu corretto di ottenere il risultato (1.78)è il seguente. In una riflessione un fotone con
angolo di incidenzaθ trasferisce un impulso2hν/c cos θ La variazione totale di impulso, chiamando
nk il numero di fotoni corrispondenti alla direzionek per unit̀a di volume,̀e

Q =
∑
vol

∑
k

2
hν

c
cos θnk

la sommaè fatta sul volume in cui sono presenti i fotoni che vengono assorbiti dallo specchio. La
media diQ è zero per isotropia,θ varia su tutto l’angolo solido perchè i fotoni possono assorbiti
da entrambi i lati dello specchio. Consideriamo statisticamente indipendenti sia le variabilink sia i
singoli urti, quindi la varianza diQ, somma di variabili staticamente indipendenti9 è

〈Q2〉 =
∑
vol

∑
k

4
h2ν2

c2
cos2 θ〈∆n2

k〉

Il volume interessatòe, per ogniθ, f | cos θ|cτ La media sulle direzioni d̀a∫
dΩ

4π
cos2 θ| cos θ| = 1

4

quindi

〈Q2〉 = f cτ ·
∑

k

h2ν2

c2
〈∆n2

k〉

Utilizzando l’espressione (1.71) per la variazione di densità di energia si ha

〈Q2〉 = f τ
1

c
〈∆ε2〉 (1.79)

che coincide con la (1.78).

Calcolo della forza di attrito. La forza di attritoè data dalla variazione di impulso nel-
l’unit à di tempo, ed̀e un invariante per trasformazioni di Galileo (lo specchio si muove con
velocit̀a v � c) quindi si pùo calcolare nel sistema di riferimento in cui lo specchioè a
riposo. Questo fra l’altro permette di esprimere in modo semplice la selezione sulle fre-
quenze della radiazione: lo specchio riflette la luce a frequenzaν nelsistema di riferimento
a riposo, la stessa luce ha frequenza diversa nel sistema di riferimento in cui la cavità è
ferma (laboratorio).

9Vedi l’equazione (1.70) e seguenti per un procedimento analogo.
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Nel sistema dello specchio la radiazione di corpo nero nonè più isotropa, ed ha una
diversa distribuzione in frequenza, che fra poco scriveremo, in questo modo la pressione
di radiazione ai due lati dello specchioè diversa, questo provoca una forza netta contraria
al moto. Siaρ(ν, θ) la densit̀a spettrale nel sistema dello specchio. Sappiamo che per
riflessione di un raggio proveniente da un angolo solidodΩ vi è un trasferimento di impulso
lungo l’assex, sullo specchio:

2
ρ(ν, θ) δν

c

dΩ
4π

cos θ[f cdt cos θ] (1.80)

La (1.80)è il modo usuale in cui viene calcolata la pressione di radiazione, infattiρ/c è la
densit̀a di impulso per un’onda elettromagnetica, vedi eq. (1.340b),(1.341). Integrando su
tutte le direzioni, a destra e a sinistra dello specchio, e facendo la differenza otterremo la
forza risultante.

Si tratta quindi di scrivereρ. Nel sistema del laboratorio la densità spettralèe isotropa,
edè data dauν(ν0), indicheremo con l’indice0 le quantit̀a che si riferiscono al laboratorio.
ρ(ν, θ)dνdΩ è la densit̀a di energia, quindi per cambiamento del sistema di riferimento
deve trasformarsi comeE2, doveE è il campo elettrico. Per trasformazionidi Galileo ( o
per trasformazioni di Lorentz a bassa velocità):

E = E0 −H0 ∧
v

c
⇒ E2 ' E2

0 − 2E0(H0 ∧
v

c
) = E2

0 − 2(E0 ∧H0) ·
v

c

per un’onda|E0| = |H0|, la direzione diE0 ∧ H0 è la direzione di propagazione
dell’onda, quindi se chiamiamoθ l’angolo di incidenza sullo specchio:

E2 ' E2
0(1− 2

v

c
cos θ0) (1.81)

Deve quindi essere10

ρ(ν, θ)dνdΩ = uν(ν0)dν0dΩ0

(
1− 2

v

c
cos θ0)

)
(1.82)

La legge dello spostamento Doppler e la legge di aberrazione della luce forniscono la
relazione fra le frequenze e gli angoli nei due riferimenti. Al primo ordine inv/c

ν = ν0

(
1− v

c
cos θ0

)
ν0 = ν

(
1 +

v

c
cos θ

)
(1.83a)

cos θ = cos θ0 −
v

c
+

v

c
cos2 θ0 cos θ0 = cos θ +

v

c
− v

c
cos2 θ (1.83b)

Un modo semplice per ricavare le (1.83)è di applicare una trasformazione di Lorentz, con piccola
velocit̀a, ad una particella di massa zero, conE = hν, p = hν/c

E′ = (E − v

c
cpx) ⇒ ν′ = ν(1− v

c
cos θ)

p′x = (px −
v

c

E

c
) ⇒ ν′ cos θ′ = ν(cos θ − v

c
)

Dalla prima equazioneν/ν′ ' (1 + v
c

cos θ) e sostituendo nella seconda

cos θ′ = (cos θ − v

c
)(1 +

v

c
cos θ) ' cos θ − v

c
+

v

c
cos2 θ

Non stiamo assumendo l’esistenza del fotone, facendo un ragionamento circolare, questa dimostra-
zioneè semplicemente un modo veloce di ricavare i risultati (1.83), sfruttando il fatto che le proprietà
di trasformazione di un fotone devono essere uguali a quelli di un raggio luminoso. Vediamo infatti
che la costante di Planck non gioca alcun ruolo nella derivazione, in realtà stiamo sfruttando solo il

10Diamo per scontata la simmetria assiale, cioè l’indipendenza per rotazioni attorno all’assex, direzione di
moto dello specchio.
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fatto che il numero d’ondak, |k| = 2π/λ, e la frequenza formano un quadrivettore. Il lettore può
facilmente dimostrare la cosa o consultare in merito un qualunque testo di elettromagnetismo.

Dalle (1.83) si ha al primo ordine inv/c, e ricordando chedΩ = dϕd cos θ:

dν0

dν
'
(
1 +

v

c
cos θ

) dΩ0

dΩ
'
(
1− 2

v

c
cos θ

)
All’ordine più basso inv/c possiamo scrivereθ al posto diθ0 nella (1.82) ed ottenere

ρ(ν, θ) = uν(ν0)(1− 3
v

c
cos θ)

Esprimendoν0 in funzione diν con la (1.83a) e sviluppando in serie di Taylor:

ρ(ν, θ) =
[
uν(ν) +

v

c
cos θ ν

∂uν

∂ν

]
(1−3

v

c
cos θ) ' uν+

v

c
cos θ

(
ν

∂uν

∂ν
− 3uν

)
(1.84)

che esprime l’anisotropia della radiazione. Integrando la (1.80) in un semispazio,θ ≤ π/2
si ha l’impulso trasferito da un lato (quello davanti allo specchio):

Π+ =
∫

<

2f dt cos2 θ
dΩ
4π

δν

[
uν +

v

c
cos θ

(
ν

∂uν

∂ν
− 3uν

)]
Usando ∫

<

dΩ
4π

cos2 θ =
2π

4π

∫ π/2

0

cos2 θ sin θdθ =
1
6

∫
<

dΩ
4π

cos3 θ =
1
8

si ha

Π+ = δνf dt

[
1
3
uν +

v

c

1
4

(
ν

∂uν

∂ν
− 3uν

)]
Si riconosce il fattoreu/3 della pressione di radiazione. Analogamente, integrando sull’al-
tro lato, quindi perπ/2 ≤ θ ≤ π si ha il traferimento di impulso per pressione di radiazione
dal lato posteriore lo specchio:

Π− = δνf dt

[
1
3
uν −

v

c

1
4

(
ν

∂uν

∂ν
− 3uν

)]
Per la forza ed il coefficiente di attrito si ha quindi

F =
Π+ −Π−

dt
= δνf

v

c

1
2

(
ν

∂uν

∂ν
− 3uν

)
P = δνf

1
2c

(
3uν − ν

∂uν

∂ν

)
(1.85)

Per la distribuzione di Planck(
3uν − ν

∂uν

∂ν

)
=

8πh

c3

[
3

ν3

ehν/kT − 1
− ν

∂

∂ν

ν3

ehν/kT − 1

]
=

8πh

c3
ν

h

kT

ν3ehν/kT

(ehν/kT − 1)2
=

hν

kT

[
uν +

u2
ν

8πh
c3 ν3

]
=

1
kT

[
hνuν +

c3u2
ν

8πν2

]
e quindi[Ein09]

P = δνf
1
2c

1
kT

[
hνuν +

c3u2
ν

8πν2

]
(1.86)

Dalla relazione (1.75),〈Q2〉 = 2kTPτ ricaviamo percìo

〈Q2〉 = δνf τ
1
c

[
hνuν +

c3u2
ν

8πν2

]
(1.87)

che coincide con la (1.78), confermando cosı̀ la interpretazione corpuscolare della radia-
zione.
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1.8.1 L’mpulso nei processi di emissione e assorbimento.

Una descrizione analoga a quella del paragrafo precedente ma più dettagliata ed interes-
sante, pùo essere fatta se si considera un processo microscopico, come fatto a proposito
dell’energia nel paragrafo 1.5. Si tratta di studiare il processo di trasferimento dell’impul-
so dalla radiazione ad una molecola. Limiteremo la nostra attenzione a soli due statiu, d
che corrispondono all’emissione e assorbimento di luce a frequenzaν.

Notiamo innanzitutto che nel processo di assorbimento, all’energiaEu−Ed = hν deve
necessariamente corrispondere un trasferimento di impulsohν/c, nella direzione del fascio
di luce incidente. Visto il ruolo simmetrico dei due stati per quanto riguarda la radiazione
esterna,̀e ragionevole assumere che nel processo inverso di emissione indotta,u → d, ven-
ga trasferito lo stesso impulso alla radiazione. In altre parolela luce emessa per emissione
indotta ha la stessa energia e lo stesso impulso di quella incidente.Questoè uno dei punti
cruciali: l’emissionèe direzionale. Se l’emissione e l’assorbimento sono discretizzati, co-
me nel caso dei fotoni, questo significa che in ogni singolo processo si ha un’emissione in
una direzione ben definita, questoè compatibile con l’ipotesi dei fotoni màe chiaramente
contrario a quanto aspettato in termini di una teoria classica dell’irragiamento.

Per quanto riguarda l’emissione spontanea, questa non dipende dalla radiazione esterna,
quindi, nell’ipotesi di completa isotropia fatta nel paragrafo 1.5, dobbiamo assumere che la
direzione della luce in questo caso abbia, in media, simmetria sferica. Questoè compatibile
con l’emissione direzionale se si assume che un fotone possa essere emesso in una direzione
particolare in ogni decadimento, ma la direzione sia casuale.

Ciò che verificheremo qui di seguito[Ein17],è che la distribuzione di Planck̀e compa-
tibile con queste ipotesi, viceversa qualora una di queste ipotesi venisse a cadere occorre-
rebbe fare delle ipotesi molto “ad hoc” per poter ottenere la distribuzione di Planck come
distribuzione di equilibrio.

La fisicaè semplice ed̀e analoga a quella analizzata per l’urto con lo specchio. Conside-
riamo una molecola in equilibrio termico con la radizione. Siav la velocit̀a della molecola
ad un certo istante. Come nel caso dello specchio considereremo solo il moto lungo l’asse
x. Questa molecola può assorbire o emettere luce solo a frequenzaν. La luce emessa dalla
molecola ha frequenzaν nel suo centro di massa. Quindi un fotone emesso in avanti, ad
esempio, ha, nel laboratorio, frequenzaν(1 + v/c) per effetto Doppler. Viceversa un foto-
ne assorbito, in senso contrario al moto, ha nel laboratorio frequenzaν(1− v/c), in modo
che nel centro di massa abbia frequenzaν. Associando un impulsohν/c ad ogni fotone,
se vede che c’è uno sbilanciamento di impulso,2hν/c, che tende a frenare la molecola.
Lo stesso ragionamento può essere fatto per le altre direzioni. Si crea quindi una forza di
attrito. Nel sistema di riferimento del centro di massa la distribuzione della radiazioneè
anisotropa, l’assorbimento e l’emissione quindi hanno una anisotropia ed un corrisponden-
te trasferimento di impulso, cioè una forza di attrito. Affinch̀e la molecola non si fermi,
cosa contraria all’equilibrio termico, questa forza d’attrito deve venire compensata dalle
fluttuazioni della radiazione. Nella stessa notazione del paragrafo precedente possiamo
scrivere, per l’impulso dopo un piccolo tempoτ

mv − Pvτ + Q (1.88)

P è il coefficiente di attrito. All’equilibrio termico deve essere1
2mv2 = 1

2kT e quindi,
analogamente alla (1.75):

〈Q2〉
τ

= 2kTP (1.89)

Calcoliamo ora separatamente il coefficiente di attrito e la fluttuazione dell’impulso.

Calcolo di P . Consideriamo il sistema di riferimento di quiete per la molecola. L’assor-
bimento di un quanto di energia, che d’ora in poi chiameremo fotone, con energiahν e
angolo di incidenzaθ, rispetto all’assex, trasferisce un impulsohν/c cos θ alla molecola.
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Per assorbire il fotone la molecola deve trovarsi nello stato di energia minore,d. L’impulso
trasferito al secondo, per assorbimento, dalla radiazioneè:

hν

c
cos θ ×

(
probabilit̀a di

transizione al sec.

)
×

probabilit̀a di
trovare la

molecola ind


Nel sistema di riferimento considerato la radiazione di corpo nero ha una densità spettra-
le ρ(ν, θ), quindi secondo la definizione di coefficiente di assorbimento, la probabilità di
transizione per angolo solidòe:

prob. trans./sec.= Bd→u ρ(ν, θ)
dΩ
4π

Ogni molecola, all’equilibrio termico ha una probabilità di trovarsi nei due stati,u, d, data
dalla distribuzione di Boltzmann:

Pu =
1
S

gue−Eu/kT Pd =
1
S

gde
−Eu/kT S = gue−Eu/kT + gde

−Ed/kT (1.90)

Quindi l’impulso assorbito dalla molecola al secondoè, integrando sull’angolo solido:

Π+ =
∫

hν

c
cos θ Bd→u ρ(ν, θ)

gde
−Ed/kT

S

dΩ
4π

(1.91)

In emissione la molecolacede impulsoalla radiazione. Per l’ipotesi fatta di isotropia l’e-
missione spontaneanon contribuisce in mediaa questo processo, quindi, analogamente
alla (1.91) l’impulso perso dalla molecolaè dovuto solo all’emissione indotta. Nell’ipotesi
fatta anche questa emissioneè direzionale, quindi in presenza di radiazione ad angoloθ,
l’impulso persòehν/c cos θ. Si ha allora

hν

c
cos θ ×

(
probabilit̀a di

transizione al sec.

)
×

probabilit̀a di
trovare la

molecola inu


cioè

Π− =
∫

hν

c
cos θ Bu→d ρ(ν, θ)

gue−Eu/kT

S

dΩ
4π

(1.92)

La variazione di impulso al secondoè la forza, quindi:

F = Π+ −Π− =
∫ [

gde
−Ed/kT

S
Bd→u −

gue−Eu/kT

S
Bu→d

]
hν

c
cos θρ(ν, θ)

dΩ
4π

Usando le relazioni di equilibrio (1.56),guBu→d = gdBd→u, la forza si pùo scrivere nella
forma

F =
gde

−Ed/kT

S
Bd→u

[
1− e−hν/kt

] hν

c
cos θρ(ν, θ)

dΩ
4π

(1.93)

Abbiamo gìa calcolato la distribuzione spettraleρ(ν, θ), (1.84):

ρ(ν, θ) = uν +
v

c
cos θ

(
ν

∂uν

∂ν
− 3uν

)
(1.94)

Effettuando l’integrale angolare

F = −gde
−Ed/kT

S
Bd→u

[
1− e−hν/kt

] v

c

hν

c

[
uν −

1
3
ν

∂uν

∂ν

]
(1.95)
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quindi il coefficiente di attritòa dato da

P =
gde

−Ed/kT

S
Bd→u

[
1− e−hν/kt

] hν

c2

[
uν −

1
3
ν

∂uν

∂ν

]
(1.96)

Per la distribuzione di Planck(
uν −

1
3
ν
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e perP segue
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8πh
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1
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=
1
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1
kT

gde
−Ed/kT

S
Bd→u

(
hν

c

)2

uν (1.97)

Calcolo di 〈Q2〉. Come nel caso dello specchio l’impulso totale trasferito si può scrivere
nella forma

Q = Q1 + . . . QN

essendo gli eventi casuali e statisticamente indipendenti si ha un random walk nello spazio
degli impulsi e quindi

〈Q2〉 = N〈Q2
1〉 (1.98)

In ogni processo l’impulso scambiatoèhν/c cos θ, quindi

〈Q2
1〉 =

(
hν

c

)2

〈cos2 θ〉 =
1
3

(
hν

c

)2

(1.99)

Il numero di eventìe il numero di processi al secondo per il tempoτ preso in considerazione
N = Nsec ·τ . All’equilibrio si hanno tante emissioni quanti assorbimenti, quindi il numero
di eventi al secondòe il doppio del numero si assorbimenti:

Nsec = 2×
(

probabilit̀a di
transizione al sec.

)
×

probabilit̀a di
trovare la

molecola ind

 = 2
gde

−Ed/kT

S
Bd→u ρ

In questa approssimazione possiamo considerareρ come la distribuzione di equilibrio, cioè
quella di corpo nero, quindi

〈Q2〉 =
2
3

(
hν

c

)2
gde

−Ed/kT

S
Bd→uuν τ (1.100)

Notiamo che nel calcolo di〈Q2〉 hanno contribuito anche le emissioni spontanee. Il numero
degli assorbimentìe uguale al numero delle emissioni indottepiù il numero delle emissioni
spontanee. Se si fossero trascurate queste ultime non si sarebbe ottenuto il fattore costante
2 nella (1.100), ma un termine complicato, dipendente dalla temperatura e dalla frequenza.

Risultato Dalla (1.100) e dalla (1.97) si vede subito che la relazione di equilibrio (1.89),
〈Q2〉 = 2kT Pτ , è soddisfatta per la radiazione di Planck. Dalla derivazione dovrebbe
essere chiaro che se qualche ipotesi venisse meno la speranza dell’accordo sarebbe molto
tenue. Ad esempio se l’emissione indotta non avvenise nella direzione della radiazione
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incidente, il coefficiente relativo nei due termini della forza sarebbe diverso, non si potreb-
be cancellare il quadrato a denominatore nella espressione di(uν − 1/3ν∂νuν) e non si
potrebbe allora trovare accordo con la (1.100), cheè lineare nella densità spettrale. Della
necessit̀a della emissione spontanea siè gìa detto. Anche questa deve essere direzionale.
Se l’emissione spontanea fosse a simmetria sferica, come nel caso classico, non potrebbe
contribuire alle fluttuazioni: si deve invece avere una isotropiamedia, che permette quindi
delle fluttuazioni.

È sotto certi aspetti sorprendente che anche dopo questa dimostrazione da parte di Ein-
stein, nel 1917, l’idea del fotone non fosse ancora accettata dalla gran maggioranza dei
fisici. Pur di non accettare questa spiegazione siè anche proposta una conservazione so-
lo statistica dell’energia e dell’impulso[BKS24] nei processi radiativi. Anche quest’ultima
opzione, alquanto stravagante nell’ottica odierna,è caduta solo con il progredire degli espe-
rimenti sull’effetto Compton: sìe potuto verificare evento per evento la conservazione del-
l’energia e dell’impulso misurando contemporaneamente l’impulso dell’elettrone diffuso e
quello del fotone in un singolo processo.

L’ultimo punto da chiarirèe la costruzione di una statistica per questo “gas di fotoni”.
La relazione di Einstein sulla fluttuazione di energia, soprattutto nella forma (1.72), indica
che i fotoni, anche se particelle libere, non soddisfano ad una statistica di tipo Poissoniano,
e questòe abbastanza misterioso nella fisica classica. La soluzione definitiva sarà trovata
da Bose ed Einstein nel 1924[Bos24, Ein24a]. Il problema parallelo per gli elettroni sarà
risolto da Fermi[Fer26]. La spiegazione di queste statistiche nell’ambito della meccanica
quantisticàe dovuta a Dirac[Dir26b].

1.9 Il problema dei calori specifici.

La seconda “area di crisi” menzionata nel paragrafo 1.1.1 riguardava i calori specifici.
Il problema, si pùo ben dire,è coevo alla stessa meccanica statistica ed in sostanzaè la
riproposizione del principio di equipartizione. Consideriamo ad esempio un gas perfetto
monoatomico, nella schematizzazione di un insieme di oggetti puntiformi. L’Hamiltoniana
dei singoli atomi si scrive

H =
p2

2m
Questàe una forma quadratica in 3 variabili, che corrispondono a 3 gradi di libertà, quidi
l’energia media per atomòe 3

2kT . In un gas perfetto le molecole sono statisticamenete in-
dipendenti e debolmente interagenti, quindi l’energia interna di una mole di gas, contenente
NA atomi (NA è il numero di Avogadro)̀e

U = NA
3
2
kT =

3
2
RT R = NAk = Costante dei gas

Questo corrisponde ad un calore specifico per mole, a volume costante, di

CV =
(

∂U

∂T

)
V

=
3
2
R

Si pùo fare un modello analogo per una molecola poliatomica, schematizzata come un
corpo rigido: vi sono 3 gradi di libertà traslazionali e 3 rotazionali, e questo dà un calore
specifico molareCV = 3R. Schematizzando infine una molecola lineare, in particolare
biatomica, come un corpo rigido con due soli momenti d’inerzia, e quindi solo due termini
di energia rotazionale, si ha, per queste molecole, un calore specifico molare diCV =
5/2R. Il problemaè che appena si introduce un grado di libertà interno, sotto forma ad
esempio di oscillazione degli atomi attorno alla posizione di equilibrio, si ha un termine
aggiuntivo nell’Hamiltoniana per descrivere questo moto di oscilazione:

m

2
q̇2 +

1
2
kq2
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Altri due gradi di libert̀a: quindi un termine aggiuntivo diRT nell’energia molare e un
termine aggiuntivo diR nel calore specifico. La cosaè chiaramente assurda, basta pensare
ad una molecola composta da molti atomi per avere un calore specifico enorme. A questo
logicamente bisognerebbe aggiungere quello dovuto ai gradi di libertà interni degli stessi
atomi, peggiorando la situazione. Nella seconda metà dell’ottocento la situazione era al-
quanto ambigua, da una parte non si conoscevano i costituenti elementari delle molecole,
e la stessa ipotesi atomica era messa in discussione, dall’altra per diversi gas, ma non per
tutti, i valori dei calori specifici sperimentali riproducevano i risultati suddetti. Boltzmann
stesso affermava che il calcolo dei calori specifici era uno dei punti fondamentali da capi-
re nella meccanica statistica. Notiamo, come fatto acutamente osservare da Sommerfeld
molti anni dopo, che la situazioneè piuttosto peculiare: se veramente si crede che un certo
numero, qui il rapportoCV /R sia un intero, o un multiplo di1/2 in generale, noǹe pos-
sibile accontentarsi di un accordo men che perfetto, se il risultato sperimentale per un gas
biatomico fosseCV /R = 2.6±0.02 non si avrebbe un discreto accordo col valore previsto,
5/2 = 2.5, si avrebbe un disaccordo completo! Un numero oè un intero o non lòe, non ci
sono interi “approssimativamente giusti”.

Una situazione molto simile si presenta nei solidi. Già nel 1819 Doulong e Petit ave-
vano osservato sperimentalmente che per i solidi valeva la seguente “regola”: il calore
specifico molarèe approssimativamente3R, edè costante con la temperatura. Questo ri-
sultato ha una spiegazione che sembra molto naturale: in un grammoatomo vi sonoNA

atomi, ogni atomòe libero di oscillare attorno alla posizione di equilibrio, in questo modo
ad ogni atomo competono 3 modi di oscillazione (uno per direzione) ed una corrisponden-
te energia media termica3kT . Per un sistema diNA atomi questo d̀a un calore specifico
C = 3kNA = 3R ∼ 5.96 cal/K. Notiamo in particolare che in questo contestoè assolu-
tamente impossibile avere un calore specifico minore di3/2R, corispondente ai gradi di
libertà traslazionali.

La situazione sperimetale per molti materialiè conforme, a temperatura ambiente, alla
legge di Doulong e Petit, ma per diversi materiali si trovano fortissime deviazioni, ed in
particolare un calore specifico dipendente dalla temperatura. Il problemaè particolarmente
acuto per materiali come il diamante, per cui, ad esempio,C ∼ 0.76 cal/K a temperature
di circa−50◦C. Un valore cos̀ı basso, minore ciòe di 3/2R è assolutamente incompati-
bile con qualunque modello classico. In generale si trova che il calore specifico tende a
zero perT → 0. La situazione chiaramente peggiora all’inizio del ventesimo secolo: la
scoperta dell’elettrone porta ad aggiungere i gradi di libertà di questa particella al moto
microscopico, rendendo ancora più critica la situazione.

L’idea per la soluzione di questo problemaè di Einstein[Ein07]. Come abbiamo visto
le ricerche precedenti di Einstein indicavano in maniera piuttosto netta la tesi che l’ener-
gia di un oscillatore armonico potesse assumeresolovalori discreti. La tesi, parzialmente
contrapposta, sostenuta da Planck, era che la discretizzazione fosse dovuta a qualche pro-
cesso incognito di emissione della luce da parte di un oscilatore microscopico. L’analisi
dell’equilibrio termico tramite la distribuzione canonica nei lavori[Ein05, Ein06] già in-
dicava che, invece, il punto essenziale era lo spettro dei valori energetici dell’oscillatore,
indipendentemente dal meccanismo di interazione. La situazione ideale si può schematiz-
zare in questa maniera: la radiazione di corpo nero può interagire elettromagneticamente
con degli oscillatori, in tal modo però non si pùo stabilire un equilibrio termico perchè
l’oscillatore ha un sua frequenza propria,ν0 ed emette e assorbe solo a questa frequenza.
L’equilibrio termico si instaura quando si permette agli oscilatori di interagire fra loro e
scambiarsi energia, ad esempio attraverso gli urti con un gas. Basta in teoria una singola
molecola di gas, che costituisce il “granello di polvere” a cui siè accennato all’inizio della
discussione sulla termodinamica del corpo nero. In questo modo l’insieme di oscillatoriè
all’equilibrio, a temperaturaT , sia con la radiazione sia con il gas. Lo stato di equilibrio
termodinamicòe unico, quindi verrebbe mantenuto anche se si “spegnesse” la radiazione,
e sarebbe mantenuto dall’equilibrio col gas. Questo significa che lo stato di equilibrio del-
l’insieme di oscillatori non ha niente a che vedere con la radiazione termica, ma dipende
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solo dalla temperatura del sistema, come ogni equilibrio termodinamico.
In formule questòe proprio quello che si fa quando si scrive una distribuzione statistica

di equilibrio, come la distribuzione canonica: ciò che determina l’equilibrio sono i parame-
tri come la temperatura, non il modo in cui siè arrivati all’equilibrio11. Questo discorso,
col senno di poi, sembra ovvio, ma non lo era affatto nei primi anni del ventesimo secolo,
perch̀e, ripetiamo ancora una volta, significava abbandonare la meccanica classica.

Il problema dei calori specifici assume un altro aspetto sotto questa nuova luce. Il risul-
tatoC = 3R si basa sul principio di equipartizione, ma già sappiamo che questo principio
non è vero, in generale, per l’oscillatore armonico. Come abbiamo visto la descrizione
più elementare di un solido consiste nell’assimilarlo ad un insieme di oscilatori armonici.
La cosa pìu semplicèe dire che si hanno3N oscillatori indipendenti a frequenzaν, dove
N = nNA è il numero di atomi (n il numero di moli) eν una frequenza caratteristica
dell’elemento in esame che esprime quanto fortemente un atomoè legato al reticolo cri-
stallino. In questo modo l’energia totale del sistemaè semplicemente3N volte l’energia di
un singolo oscillatore, che abbiamo già calcolato:

E = 3N
hν

ehν/kT − 1
→

{
3Nhνe−hν/kT T → 0
3NkT T →∞

(1.101)

Dalla (1.101) si ricava il calore specifico

C =
dE

dT
= 3Nk

(
hν

kT

)2
ehν/kT

(ehν/kT − 1)2
→

3Nk

(
hν

kT

)2

e−hν/kT T → 0

3Nk = 3nR T →∞
(1.102)
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Figura 1.3: Calore specifico per grammoatomo nel modello di Einstein.

11Qui si suppone che il sistema sia all’equilibrio, la cosa a priori potrebbe non essere vera. Alcuni autori, come
Jeans, contestavano il risultato di Planck asserendo appunto che probabilmente non si era raggiunto l’equilibrio
termodinamico.
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Quindi nel limite di alta temperatura si riottiene il valore classico3R, mentre per bassa
temperatura il calore specifico tende a zero. Il calore specifico classicoè proporzionale al
numero di gradi di libert̀a: quntisticamente i gradi di libertà vengono “congelati” a bassa
temperatura. Il modello di solido descritto nella (1.101) prende il nome di modello di
Einstein e fu dallo stesso autore confrontato con i dati sperimentali allora disponibili (1907)
sul diamante e su altri elementi trovando una discreta corrispondenza. La frequenzaν può
essere stimata dalle caratteristiche del solito e confrontata con quella derivante dai dati sul
calore specifico, trovando un certo accordo.

La (1.101) coglie l’essenza del problema ma naturalmenteè un modello troppo sem-
plificato. Come nota lo stesso Einstein in un modello di atomi legati da forze elastiche lo
spostamento di un atomo provoca uno spostamento collettivo, in altre parole un’onda elasti-
ca nel mezzo, quindi occorrerebbe parlare di oscillatori accoppiati. A questo naturalmente
vanno aggiunte le correzioni di anarmonicità, ciòe le deviazioni degli oscillatori dal com-
portamento armonico, etc. Un modello più realisticoè stato proposto negli anni seguenti
da Debye[Deb12], e quasi contemporaneamente da Born e von Karman[BornKar].

Modello di Debye. Consideriamo un solido come descritto daN atomi che possono oscillare
attorno alla posizione di equilibrio. Come esempio concreto si può pensare ad un reticolo cubico in
cui l’interazione fra primi vicini ha un’energia potenziale della forma

U =
1

2
k(xi − xj)

2

Le equazioni del moto in generale sono della forma

ẍi = −Ωijxj (1.103)

cioè un sistema di3N oscillatori lineari. Lo spettro vero di oscillazioni possibili si ottiene risolven-
do il sistema (1.103), ciòe dalla diagonalizzazione della matriceΩ ma possiamo fare semplicemente
l’ipotesi di avere uno spettro continuo di frequenze daν = 0 a ν = νm. Fisicamentèe chiaro cosa
rappresentano i vari modi di oscillazione: supponiamo di spostare un atomo dalla posizione di equi-
librio, ad esempio fornendogli una certa velocità, questo spostamento si trasmette agli atomi vicini
tramite gli accoppiamenti elastici, i quali a loro volta inducono uno spostamento su altri atomi etc.è
quello che si chiamaun’onda elasticain un solido. Le varie frequenze corrispondono a onde elasti-
che a frequenze diverse. Il lettore noterà che la descrizionèe identica a quella dei modi di vibrazione
elettromagnetici in una cavità. La velocit̀a di propagazione delle onde elasticheè la velocit̀a del suo-
no nel mezzo, che prende il posto della velocità della luce. Consideriamo per brevità un cubo di lato
L. Imponendo, ad esempio, condizioni al contorno periodiche per le vibrazioni, si ha che il vettore
d’ondaè della forma (vedi anche eq.(1.384))

k =
2π

L
(nx, ny, nz) nx, ny, nz : interi positivi e negativi (1.104)

La connessione fra vettore d’onda e frequenzaè |k| = ν/c. Il numero di oscilazioni corrispondenti
ad interi compresi in un intervallo∆nx∆ny∆nz, attorno ad unvalore centrale(nx, ny, nz) si scrive
immediatamente dalla (1.104)

dNk = L3 d3k

(2π)3

e passando alle frequenze (integrando quindi sulle direzioni di propagazione dell’onda):

dNν = L34π
ν2

c3
dν

In un solido possono propagarsi onde sonore trasversali, con velocitàct, ed onde sonore longitudinali,
con velocit̀a cl. Notando che esistono due direzioni trasverse per ogni direzione di propagazione
dell’onda, il numero totale di modi a fissa frequenza si riscrive:

dNν = L3

(
2

c3
t

+
1

c3
l

)
4πν2dν = L312π

ν2

c3
s

dν
3

c3
s

≡ 2

c3
t

+
1

c3
l

(1.105)
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Abbiamo introdotto per comodità la velocit̀a media del suono,cs. Il numero totale di modi di
vibrazioneè3N , questo fissa il valore della frequenza massimaνm∫ νm

0

dNν = L312π
1

3

ν3
m

c3
s

= 3N ⇒ ν3
m =

3Nc3
s

4πL3
; dNν = 9N

ν2

ν3
m

dν (1.106)

Poich̀e (N/L3)1/3 ∼ a = passo reticolare, la frequenza massima corrisponde ad una lunghezza
d’onda minimaλ = cs/νm ∼ a, come era lecito aspettarsi. Assumendo ora, come nel modello di
Einstein, uno spettro di Planck per ogni oscillatore, l’energia del solido ha la forma

E =

∫ νm

0

hν

ehν/kT − 1
dNν = 9N

∫ νm

0

hν

ehν/kT − 1

ν2

ν3
m

(1.107)

Esprimendoνm in termini di una temperatura, latemperatura di Debye

Θ =
hνm

k
(1.108)

ed effettuando il cambiamento di variabilix = hν/kT , l’espressione (1.107) può essere riscritta
nella forma

E = 3NkTD(
Θ

T
) con D(x) =

3

x3

∫ x

0

z3dz

ez − 1
(1.109)

Nella forma (1.109) la diversità rispetto al caso classicoè parametrizzata da una funzione universale,
D(x) e da un parametro,Θ, che dipende dal materiale. Sviluppando in serie il fattore1/(ex − 1) si
ricava lo sviluppo per la funzioneD(x):

D(x) = 1− 3

8
x + . . .

e quindi risulta evidente il limite classico per alte temperature. Lasciamo al lettore verificare che per
basse temperatureE ∼ T 4 e quindi, per il calore specificoC ∼ T 3. Questa dipendenza daT è
diversa da quella del modello di Einstein, edè quella in accordo con i dati sperimentali.

La cosa che ci interessa sottolineareè che con questa applicazione del concetto di quan-
to di energia al di fuori dell’ambito della radiazione di corpo nero, la discretizzazione
dei livelli energetici incomincia ad apparire come una proprietà generale della materia,
non come un qualche misterioso meccanismo dell’interazione elettromagnetica a livello
miscroscopico.

Nel lavoro[Ein07], la (1.101)̀e ricavata dalla distribuzione canonica, (1.34), come ab-
biamo fatto nel paragrafo 1.4. In questo lavoro come in quello precedente del 1906[Ein06]
e soprattutto nella edizione del 1906 del libro di Planck[Pla-H.R.] l’attenzione si sposta
gradatamente dalla discretizzazione dei livelli energetici alla discretizzazione dello spazio
delle fasi del sistema.

Abbiamo gìa accennato, vedi (1.46), alla questione. La distribuzione canonica può
essere vista direttamente nello spazio delle fasi del sistema. Per un singolo oscillatore la
distribuzione di probablit̀a è

dP = Ce−H(p,q)dpdq = e−E/kT ω(E)dE (1.110)

Come abbiamo visto la (1.110), usandodpdq ∝ dE, implica classicamenteω(E) = 1.
La quantizzazione dei livelli energetici equivale a sostituire delle somme agli integrali nei
valor medi. Formalmente la distribuzioneω(E) è nulla per tutti valori diE eccettonε,
conε = hν. Se si vuole evitare l’uso della distribuzione di Dirac si può pensare aω(E)
come una funzione ovunque nulla eccetto un intervallo infinitesimo, diciamo di larghezza
α, attorno ai valorinε, in modo tale che l’integrale su questi piccoli intervalli sia costante:∫ α

0

ω(E) =
∫ ε+α

ε

ω(E) = . . . = A
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In questo modo i valori medi hanno la forma

〈f(E)〉 =
∑∞

0 f(nε)e−nεA∑∞
0 e−nεA

(1.111)

Il risultato non dipende dai parametriα, A edè quello di Planck.
Guardiamo la stessa cosa dal punto di vista delle variabili canoniche(p, q). La traiet-

toria classica di un oscillatore nello spazio delle fasi del sistema, cioè nel piano(p, q) è
costituita da un’ellisse:

E =
p2

2m
+

1
2
mω2q2 (1.112)

Come gìa detto nel paragrafo 1.4.1 l’area di questa ellisseè proporzionale adE. In effetti
con il cambiamento di variabili, con Jacobiano 1,

p =
√

mωx q =
y√
mω

dpdq = dxdy

la (1.112) si riscrive

x2 + y2 = 2
E

ω
(1.113)

cioè un cerchio di raggioR =
√

2E/ω l’areaè percìo, usando la regola di quantizzazione
per l’energia:

A = πR2 = π
2E

ω
= π

2nhν

2πν
= nh (1.114)

Due energie diverse di un oscillatore corrispondono a due diverse ellissi, energie che diffe-
riscono dihν delimitano una “corona ellittica” (circolare nelle variabilix, y) di area

A = (n + 1)h− nh = h (1.115)

Oradpdq è l’elemento d’area nello spazio delle fasi, quindi l’integrale indpdq che occorre
fare nella definizione classica di media

f ∝
∫

dpdqe−H(p,q)f(p, q)

è un integrale di area sullo spazio delle fasi,dpdq = dA: la prescrizione quantistica sulle
energie significa allora affermare che l’integrale sullo spazio delle fasi va sostituito con una
somma su delle “cellette”, di areah.

Questo stesso significato si ottiene, se il lettore ricorda, dalla definizione microcanonica
di entropia (1.44): anche in quel caso si era trasformato il conteggio nello spazio delle fasi
in termini di un conteggio in cellette di energia. Si può fare anche un passo in avanti: il
numero di microstatìe un numero puro, quindi, a voler essere precisi, la definizione di
entropia dovrebbe essere (edè in effetti):

S = k log
∫ U+∆U

U

∏
k

dpkdqk

∆
(1.116)

Dove∆ è l’area di una celletta nello spazio delle fasi. In meccanica classica questa quan-
tità è arbitraria e cìo impedisce di definire uno zero per l’entropia. Se assumiamo che la
grandezza∆ sia proprioh, poniamo ciòe

δpδq = ∆ = h (1.117)

otteniamo una normalizzazione assoluta per l’entropia. In realtà la (1.116) lascia ancora a
desiderare, come vedremo tra poco.

Questa interpretazione ha tre elementi distinti, importanti per motivi diversi:
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1) h ha le dimensioni di un’azione: in questo modo si lega il significato dih ad una
quantit̀a con le dimensioni di un’azione che ha significato meccanico, come cella
dello spazio delle fasi, indipendentemente dalla radiazione elettromagetica.

2) Dal punto di vista statistico si opera una discretizzazione dello spazio delle fasi e si
propone una scelta per lo zero dell’entropia.

3) Si opera unasceltasulle celle dello spazio delle fasi.

Gli ultimi due punti sono pìu sottili di quanto possa sembrare.Non bastala discretizzazione
dello spazio delle fasi per ottenere la statistica di Planck. Consideriamo ad esempio una
divisione in cellette del tipo

p = `δp q = nδq δpδq = h (1.118)

L’integrale sullo spazio delle fasi ha la forma∑
`n

exp(−`2
δp2

2mkT
− n2 mω2δq2

2kT
)

e questo non solo ha poco a che fare con la distribuzione di Planck, ma dipende dalla scelta
esplicita diδp, δq12.

Il punto essenzialèe invece il punto 3): la scelta diquali celle sommare, in questo
caso celle “ellittiche”, molto diverse da quadratini come nella (1.118). La scelta delle
celle nell’insieme microcanonicòe connessa con la scelta degli stati equiprobabili a priori.
Classicamente lo stato di una particellaè individuato dalle coordinate canoniche(p, q) ed
una cella del tipo (1.118) corrisponde a questa concezione di stato. Scegliendo come celle
elementari le celle determinate dall’energia si opera in realtà un grande allontanamento
dal concetto classico di particelle. In effetti questo tipo di scelta sarà quella dettata dalla
meccanica quantistica.

Se si assumeil punto 3 allora l’entropia per un sistema di oscillatori, (1.116), assume
la forma

S = k log
∫ U+∆U

U

∏
k

dEk

∆
(1.119)

e questàe l’espressione che abbiamo visto nel paragrafo 1.4.1. Questo dovrebbe chiarire
il senso della nota posta alla fine del paragrafo 1.4.1. Notiamo cha la (1.119)è usata in
un modo o nell’altro sia da Einstein[Ein06] sia da Planck[Pla04, Pla-H.R.], ed entrambi
avevano ben presente il problema. Probabilmente il primo a mettere chiaramente in luce la
differenza fra il “conteggio alla Planck” e quello alla Boltzmann, fu Ehrenfest[Ehr06], che
era un allievo di Boltzmann.

C’è comunque un punto abbastanza interessante da notare: ad alta temperatura ci si
aspetta che il regime classico sia valido, come nel caso dell’oscillatore. La prescrizio-
ne (1.117) fissa la costante dell’entropia, e questa può essere misurata, ad esempio, dagli
equilibri chimici, quindi dovrebbe essere possibile verificare la (1.117) calcolando l’entro-
pia di un gas perfetto:̀e quanto fatto da Sackur e Tetrode, nel 1912-1913. Il calcolo, molto
semplicèe riportato nel paragrafo 1.D.

Queste prime applicazioni della ipotesi dei quanti, effetto fotoelettrico, calori specifici,
etc. segnano la chiusura della fase interlocutoria della teoria dei quanti, Nel congresso di
Solvay del 1911, il primo congresso dedicato a questa nuova teoria,è ormai chiaro che
la fisica classica richiede una revisione. Nello stesso congresso cominciano ad affacciarsi
nuove ipotesi, come la trattazione degli invarianti adiabatici (Einstein) o la quantizzazione
del momento angolare (Lorentz) che saranno sviluppate negli anni a venire. Ciò che resta
completamente oscuròe su che basi debba poggiare questa svolta nella dinamica. Due
eventi “rivoluzionari” cambiano la situazione:

12Il lettore pùo verificare che la funzione di partizioneè un prodotto di funzioni ellitticheθ3 e che nel limite
δp → 0, δq → 0 si ha il teorema di equipartizione classico per l’energia.
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• Rutherford rielaborando una serie di esperimenti effettuati nel suo laboratorio, pro-
pone nel 1911, ancor prima del congresso Solvay, l’esistenza di un nucleo pesante
di carica positiva negli atomi. Il modello che ne consegue, elettroni leggeri orbitanti
attorno ad un nucleo pesante, come un sistema solare in miniatura, prende il nome di
modello atomico di Rutherford.

• La pubblicazione del primo articolo di Bohr sulla meccanica quantistica[Boh13].È
la sintesi fra il modello atomico di Rutherford e la teoria dei quanti: viene avanzata
la prima spiegazione dell’esistenza delle righe spettrali, si crea la prospettiva per
la formulazione di una meccanica atomica e, infine, si ha un ottimo accordo fra le
previsioni della teoria e lo spettro dell’atomo di idrogeno, che fino a quel momento
era un mistero.

1.10 Alcune nozioni elementari sugli spettri atomici.

In questo capitolo non discuteremo le motivazioni che portarono Rutherford alla formu-
lazione di un modello “planetario” dell’atomo. Il lettore che non conoscesse l’argomento
può consultare, ad esempio, il libro di Born[Born32] o il libro di Ter Haar[TerHaar], dove
è ristampato l’articolo orginale di Rutherford.

Per motivi di spazio non discuteremo nemmeno le classificazioni dettagliate degli spet-
tri atomici. Un’introduzione all’argomento si trova nel testo[Born32] o, in modo più detta-
gliato, nel libro di G. Herzberg[Herzberg]. L’unica nozione che ci servirà nel seguitòe la
legge di ricombinazione di Raleygh-Ritz, che ora illutreremo sommariamente.

Lo spettro di ogni elemento si presenta come un insieme di righe organizzate in serie,
ogni serie ha un “punto finale”, o “end point” che fissa la frequenza massima di quella serie.
Un esempio molto schematicoè presentato per l’idrogeno in figura 1.4.

Si nota che le frequenze di ogni serie possono essere espresse nella forma

ν = T2(n2)− T1(n1) (1.120)

n1, n2 sono numeri interi. La serie si ottiene tenendo fisson2 e cambiandon1. I fattori
T (n) sono dettitermini della serie, e tendono a zero pern → ∞, di modo che il termine
T2(n2) nella (1.120) individua la frequenza limite della serie.

Nella notazione spettroscopica comune i vari termini sono denotati in questo modo

1s 2s 3s 4s 5s 6s . . .
2p 3p 4p 5p 6p . . .

3d 4d 5d 6d . . .
4f 5f 6f . . .

. . . . . . . . .

Le serie principali hanno nomi particolari, che sono all’origine delle letteres, p, d . . .:

Serieprincipale ν = 1s− np
Seriesharp ν = 2p− ns
Seriediffusa ν = 2p− nd

Seriefondamentale ν = 3d− nf
Seconda serieprincipale ν = 2s− np

Seconda seriediffusa ν = 3p− nd
. . . . . .

L’osservazione cruciale, frutto dell’elaborazione di una gran quantità di dati spettrosco-
pici è la seguente: ogni rigàe scrivibile come una differenza di termini e, viceversa, ad ogni
differnza di terminìe possibile associare una riga. In certi casi alcune differenze di termini
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corrispondono a righe molto deboli o completamente assenti, in questo caso si parla dire-
gole di selezione.Questo principio si chiamaprincipio di ricombinazione di Raleygh-Ritz,
edè il vero contenuto dell’equazione (1.120).

Qualche esempio può servire a chiarire le cose. Lo spettro più semplicèe quello dell’a-
tomo di idrogeno. Per questo elemento i vari terminiT nella (1.120) hanno tutti la stessa
forma e si scrivono

T (n) =
R

n2

R

c
' 109 677.581 cm−1 (1.121)

La costanteR si chiamacostante di Rydberg. Spesso le righe spettrali sono identificate
dal numero d’onda,λ−1 = ν/c, per questo abbiamo scritto il valore diR/c. Le serie
dell’atomo di idrogeno sono allora espresse nella forma molto semplice

ν = T (n2)− T (n1) = R

(
1
n2

2

− 1
n2

1

)
n2 fisso n1 = n2 + 1, n2 + 2 . . . (1.122)

Queste serie hanno di solito il nome del loro scopritore:

Serie di Lyman n2 = 1 ν = 1s− np ultravioletto
Serie di Balmer n2 = 2 ν = 2p− nd visibile
Serie di Paschen n2 = 3 ν = 3d− nf infrarosso
Serie di Brackett n2 = 4 ν = 4f − ng infrarosso
Serie di Pfund n2 = 5 ν = 5g − ne infrarosso

Dovrebbe essere chiaro allora cheT (4) − T (10) corrisponde alla sesta riga della serie di
Brackett, mentreT (2) − T (10) all’ottava riga della serie di Balmer, etc. L’idrogenoè
particolarmente semplice perchè i terminiT , ovvero le funzioniT (n), sono le stesse per
tutte le serie.

    LymanBalmer   Pa.Br.

0 2 4 6 8 10

numeri di onde × 104

Figura 1.4: Diagramma schematico di una parte dello spettro dell’Idrogeno. In ascissaè
riportato il numero d’onda1/λ. Le linee verticali tratteggiatate indicano il punto finale
della serie. Sono riportate 4 serie, di Lyman (nell’ultravioletto), di Balmer (nel visibile), di
Ritz-Paschen e di Brackett (entrambe nell’infrarosso). Si noti che c’è sovrapposizione fra
alcune serie, nel diagramma fra quella di Brackett e quella di Ritz-Paschen.

Il caso immediatamente più complicatoè quello dei metalli alcalini, (Li, Na, K, Rb,
Cs). In questo caso i termini sono ottimamente approssimati dalla semplice formula

R

(n + δ)2
(1.123)

doveδ dipende dalla serie ed̀e chiamatacorrezione di Rydberg.Si avr̀a cos̀ı
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Serieprincipale ν = 1s− np TPS −
R

(n + δp)2
n = 2, 3 . . .

Seriesharp ν = 2p− ns TSS −
R

(n + δs)2
n = 2, 3 . . .

Seriediffusa ν = 2p− nd TSS −
R

(n + δd)2
n = 3, 4 . . .

Seriefondamentale ν = 3d− nf TFS −
R

(n + δf )2
n = 4, 5 . . .

Notiamo che la frequenza limite per la serie sharp e quella diffusaè la stessa. Il punto
importante, conseguenza del principio di Raleygh-Ritzè che i terminiTPS , TSS , TFS sono
termini delle serie adiacenti:

TPS =
R

(1 + δs)2
TSS =

R

(2 + δp)2
TFS =

R

(3 + δd)2

la qual cosa giustifica la notazione usata nella tabella.
Se indichiamo conk = 1, 2, 3, 4 . . . le series, p, d, f . . . possiamo esprimere in modo

semplice un’importanteregola di selezione: sono osservate solo le righe corrispondenti a
∆k = ±1. Ad esempio non si osservano righe della forma2s− 3d.

La procedura di classificazione può essere estesa agli altri elementi.
Notiamo, a scanso di equivoci, che, misurate con maggiore risoluzione, le righe prece-

dentemente elencate in realtà si rivelano costituite damultipletti, i cosiddettimultipletti di
struttura fine.È chiaro che per descrivere questi multipletti occorrerà avere a disposizione
degli altri “numeri quantici”, oltre an, k già usati.

1.11 Modello di Bohr.

L’articolo di Bohr[Boh13] segna l’inizio della “vecchia teoria dei quanti”: si crea uno sche-
ma per la comprensione dei fenomeni microscopici basato sul concetto di quanto. La teoria
ha inizialmente un grosso successo, riuscendo a spiegare quantitativamente e qualitativa-
mente molti fenomeni: per la prima volta la stessa “dimensione” degli atomi viene dedotta
a partire da costanti universali, quali la carica e la massa dell’elettrone. La teoria si basa
su un insieme essenzialmente contraddittorio di ipotesi, cercando di introdurre in qualche
modo la quantizzazione all’interno di uno schema descrittivo e cinematico prevalentemente
classico, queste contraddizioni vengono via via alla luce generando infine, nel 1925, una
nuova cinematica ed una nuova meccanica, la meccanica quantistica.

Malgrado questa premessa pensiamo sia importante avere un’idea almeno approssi-
mativa dei metodi e dei risultati ottenuti nella vecchia meccanica quantistica perchè in
quest’ambitòe ancora possibile usare, almeno parzialmente, un linguaggio classico per la
descrizione dei fenomeni: si può parlare di particelle, di posizione, di impulso, di orbite
etc. Questa possibilità viene meno nella meccanica quantistica, nel cui ambito gli oggetti
saranno descritti in modo molto più astratto e lontano dall’esperienza comune. Partiamo
quindi dall’analisi del lavoro di Bohr.

NOTA In questo paragrafo, come nei paragrafi 1.2.1 e 1.3, il lettore deve avere ben in
mente che non si tratta didedurredelle propriet̀a della materia da principi noti, ma di
indovinarequali sono le leggi a partire dai dati sperimentali e da “pregiudizi teorici”.

Riassumiamo ciò che si sa per certo sugli atomi prima del lavoro di Bohr:

1) Esiste, e noǹe spiegata, la tavola di Mendeleiev che indica una qualche periodicità
nella struttura chimica degli elementi.

2) La lunghezza tipica associata ad un atomo, il “raggio” dell’atomo,è dell’ordine di
10−8 cm. La massa atomicàe abbastanza conosciuta.
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3) Si sono scoperti gli elettroni e se ne conosce il rapportoe/m.

4) Si conosce approssimativamente13 la “grandezza” di un elettrone,10−10 cm.

5) Gli elettroni sono costituenti dell’atomo, questa convinzione deriva dallo studio dei
raggi catodici e da altre esperienze. Come conseguenza dei punti 2) e 4) gli elettroni
sono “piccoli” costituenti del sistema.

6) L’unica vera informazione sulla struttura atomica deriva dagli spettri di emissione
e di assorbimento. Le esperienze di Zeeman, la spiegazione di Lorentz dell’effet-
to Zeeman, ed i punti precedenti indicano che i movimenti degli elettroni sono in
qualche modo causa dello spettro.

7) La regola di ricombinazione di Ritz, vedi eq.(1.120), dice che esiste una qualche sem-
plice relazione lineare fra le frequenze della luce negli spettri esprimibile tramite
numeri interi.

8) Il modello di Rutherford suggerisce l’esistenza di un nucleo pesante, di carica posi-
tiva e praticamente puntiforme, in cuiè concentrata la massa atomica.

L’esperienza con la radiazione di corpo nero e con la teoria dei calori specifici insegna
che a livello microscopico gli scambi di energia, almeno quelli di tipo elettromagnetico,
avvengono attraverso “quanti” discreti di energia, e questa energiaè legata alla frequenza
della luce dalla relazioneE = hν. Il problema centralèe proprio qui: nell’elettrodinamica
classica la frequenza della luce emessaè legata al periodo di oscillazione delle cariche, se il
moto nonè periodico si ha uno spettro continuo di luce, se inveceè periodico, con periodo
T , si avr̀a uno spettro di armoniche con frequenzen/T , multipli della frequenza fonda-
mentale14. Le frequenze osservate negli spettri però non sono armoniche. Bisognerebbe
allora immaginare un modo di oscillazione diverso associato ad ogni frequenza. Ma allora
come mai le frequenze soddisfano una relazione come quella di Ritz?

In un oscillatore quantistico la frequenza di emissione della luce ha un duplice ruolo: da
una parte indica la frequenza propria dell’oscillatore, dall’altra, con la relazioneE = hν,
indica ladifferenza di energiafra uno stato e l’altro dell’oscillatore armonico. Il fatto che
la luce sia monocromatica in questo casoè dovuto al fatto che ledifferenzedi energia fra
i vari livelli sono costanti e queste differenzecoincidono, in frequenza, con la frequenza
classica di oscillazione.

La proposta di soluzione quindi potrebbe essere: la luce emessa dagli atomiè connessa
con ladifferenza di energiafra diversi livelli atomici,hν dovrebbe ciòe indicare la diffe-
renza fra due livelli energetici. Se si vuole fare un modello atomico occorre allora trovare
una “regola” per costruire questi livelli energetici, in modo tale da riprodurre gli spettri
osservati.È questo che fa Bohr nel suo lavoro.

Che il problema non sia banale lo si capisce subito da questa considerazione: se un ato-
mo emette luce perde energia, se perde energia cambia il moto degli elettroni, ad esempio
se oscillano cambia l’ampiezza di oscillazione. Ma la frequenza del motodipendedal-
l’energia: l’isocronismo si ha, comèe noto, solo in casi tipo l’oscillatore armonico. Ma
cambiando la frequenza del moto dovrebbe cambiare la frequenza di emissione della luce,
come mai allora la luce osservataè moncromatica, ciòe le righe sono ben definite?

Un’altra spinosa questione ha a che vedere con le dimensioni dell’atomo. Se consi-
deriamo le dimensioni come un dato caratteristico dell’elemento, come ad esempio nel
modello di Thompson, abbiamo che come ordine di grandezza l’energia cinetica, e quindi
l’energia totale, devono essere della forma

E ∼ 1
2
mv2 ∼ a2

T 2
(1.124)

13Questòe un concetto puramente classico, il lettore lo consideri tale e non lo prenda alla lettera.
14Se il moto ha periodoT le coordinate ammettono uno sviluppo in serie di Fourier con frequenzeνk = k/T ,

ed ogni armonica si comporta come un oscillatore.
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Come vediamo compare la frequenza1/T al quadrato. Se si ha una qualche forma di
discretizzazione dell’energia si avrà una relazione con numeri interi fra iquadrati delle
frequenze, mentre le relazioni spettroscopiche indicano una relazione fra le frequenze, non
i loro quadrati. Quindi assegnare un significato fondamentale alla grandezza di un atomo
sicuramente non porta nella giusta direzione.

Il modello di Rutherford da questo punto di vistaè preferito: non ci sono lunghezze
intrinseche. Bohr usa il modello di Rutherford.

Consideriamo allora l’atomo più semplice, l’atomo di idrogeno. Per questo elemento,
nel 1913, si conoscevano due ben note serie spettrali, la serie di Balmer, nel visibile, e la
serie di Paschen, nell’infrarosso. Le frequenze di queste righe soddisfano, fenomenologi-
camente, alle seguenti relazioni:

ν =
c

λ
=


R

(
1
22
− 1

n2

)
Serie di Balmer

R

(
1
32
− 1

n2

)
Serie di Paschen

(1.125)

R è una costante, la costante di Rydberg, comune alle due serie. Si tratta di vedere in
che senso queste due serie possono essere spiegate dall’introduzione di quanti di energia.
Analizzeremo la questione per passi successivi, cercando di mettere in luce quali sono le
ipotesi e i motivi che spingono a farle.

Ipotesi 1 Si assume il modello di Rutherford.Per l’atomo di idrogeno, o idrogenoide,
signica considerare un nucleo di massa molto grande, praticamente infinita rispetto all’e-
lettrone, e caricaZe. Classicamente si ha quindi una forza coulombiana fra nucleo ed
elettrone e conseguentemente stati legati del sistema descritti da orbite circolari ed ellitti-
che, esattamente come nell’analogo problema gravitazionale, si ha cioè un moto Kepleria-
no. Questo sistemàe ovviamente inconsistente dal punto di vista classico. Un elettrone in
un’orbita (per semplicit̀a circolare) di raggior ha un’accelerazionea = Ze2/mr2. Le ca-
riche accelerate emettono radiazione con una potenzaP = 2

3e2/c3a2. Quindi rapidamente
l’elettrone cade verso il nucleo: il sistemaè instabile, al passare del tempo l’energia tende
a−∞. Sappiamo, dall’esperienza con il corpo nero, che sicuramente le leggi classiche non
sono valide per quanto riguarda l’emissione e l’assorbimento della luce, diciamo quindi
per brevit̀a che le leggi dell’irragiamento classico devono essere modificate. Ma non pos-
siamo rinunciare a tutto l’elettromagnetismo altrimenti non avremmo nemmeno la legge di
Coulomb e non si avrebbe un sistema legato.

Ipotesi 2 I livelli energetici dell’atomo sono quantizzati, le transizioni elettromagnetiche
corrispondono a passaggi da un livello all’altro.

Ipotesi 3 Si suppone che l’emissione e l’assorbimento di radiazione elettromagnetica av-
venga attraversoquanti di energia, quindi non classicamente. Le transizioni sonomonocro-
matiche, avvengono ciòe ad una precisa frequenza. Si suppone invece che valgano, in for-
ma, le leggi classiche del moto per la parte non radiativa. Questa assunzioneè chiaramente
poco soddisfacente ma riflette il fatto che non si ha una teoria completa.

1.11.1 Motivazioni delle ipotesi di Bohr.

Prima analisi. Consideriamo per semplictà orbite circolari, di raggioa. Gli stati legati
del sistema hanno energie negative,E = −W . W è il lavoro minimo necessario per
estrarre l’elettrone dall’atomo in quello stato, cioè l’energia di ionizzazione a partire da
quello stato. Sappiamo anche che in un’orbita circolare l’energia cineticaè, uguale alla
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met̀a dell’energia potenziale, in modulo15. Quindi chiamatoT il periodo orbitale eν =
1/T la frequenza di rotazione, si hanno le relazioni

E = −W = Ecin + Upot = −Ecin =
1
2
Upot ⇒ Ecin = W

1
2
|Upot| = W

cioè
1
2
m(2πν)2a2 = W

Ze2

a
= 2W

Quindi

a =
Ze2

2W
ν =

1
π

√
2
m

W 3/2

Ze2
(1.126)

Le equazioni (1.126) esprimono i parametri dell’orbita tramite una quantità osservabile, il
potenziale di ionizzazione. Dato un valore perW viene fissata l’orbita. Se esistono delle
orbite quantisticamente stabili solo alcuni valori diW saranno permessi.

Pensiamo ora a come “costruire” un atomo nell’orbita descritta dalla (1.126): un elet-
trone, inizialmente fermo, viene attirato dal nucleo e finisce sull’orbita (1.126). In questo
processo si avrà emissione di radiazione. Questoè un punto cruciale: in questa transizione,
fra uno stato di elettrone “fermo” ed uno stato dell’atomo la radiazioneè emessa sotto for-
ma di quanti ed̀e monocromatica.L’ipotesi di monocromaticit̀a è naturale, nel senso che
lo stato di elettrone libero, e fermo, corrisponde al caso limite di uno stato legato con ener-
gia di legame tendente a zero, quindi quella considerataè solo una particolare transizione
fra stati atomici (corrisponde, in termini spettroscopici, alla frequenza limite di una serie
spettrale, come abbiamo visto). Per l’ipotesi 2) questa energia ha quindi la forma

W = τhνγ (1.127)

doveτ è un numero intero,νγ la frequenza della luce emessa. Il numero interoτ ha due in-
terpretazioni possibili:̀e il numero di quanti emessi, oppure si tratta di un singolo quanto di
frequenzaτ -volte una frequenza di baseνγ (l’analogo di una frequenza armonica classica).
Problema: che frequenzàe νγ? La configurazione iniziale noǹe periodica, quella finale
si, con frequenzaν data dalla (1.126).ν è l’unica frequenza in gioco, quindiè naturale
supporreνγ = Cν, doveC è una costante, anzi supponiamo che la frequenza sia diretta-
mente la media fra la frequenza iniziale, zero, e quella finaleν, cioè νγ = ν/2. Stiamo
solo verificando la consistenza delle ipotesi fra loro, quindi questa nonè una limitazione.
Sostituendo questoansatznella (1.127) ed usando la (1.126) si hanno le equazioni

ν = 2νγ = 2
W

τh
ν =

1
π

√
2
m

W 3/2

Ze2

e quindi si ricava perW

W =
2π2me4Z2

h2

1
τ2

=
1
2

Z2e2

aB

1
τ2

(1.128)

Abbiamo introdotto per brevità, e per usi futuri, una grandezza con le dimensioni di una
lunghezza,aB , il raggio di Bohr:

aB =
~2

me2
~ =

h

2π
(1.129)

Abbiamo ciòe ottenuto una serie discreta di livelli, un livello energetico per ogniτ . Il punto
importanteè cheτ ≥ 1 quindi il livello con il più grande livello di ionizzazione possibile,
cioè lo stato pìu legato, lo stato fondamentale del sistema, ha energiafinita:

W1 =
1
2

Z2e2

aB
≡ E (1.130)

15Per orbite ellittiche vale lo steso discorso per le energie medie,è il teorema classico del viriale.
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Inserendo i valori noti, anche nel 1913, per le costantie, e/m, h

e ' 4.8× 10−10 e

m
' 5.27× 1017 h ' 6.63× 10−27 unità CGS

otteniamo il valore diW1 ed il raggio dell’orbita corrispondente dalla (1.126)

a = aB = 0.53× 10−8 cm ν ' 6.2× 1015 sec−1 W

e
= 13.6 V W = 13.6 eV

(1.131)
Si è usata l’unit̀a di misura “eV” che corrisponde all’energia acquistata da un elettrone (di
caricae) che attraversa la differenza di potenziale di 1 V. I valori ottenuti per il raggio
atomico e la frequenza sono molto ragionevoli, e l’energia di ionizzazioneè dello stesso
ordine di quella misurata (in realtà è proprio quella misurata). Quindi la procedura sembra
ragionevole.

Per comodit̀a, e per vedere meglio le dimensioni in gioco, useremo d’ora in poi la
costanteE definita nella (1.130). In questo modo possiamo riscrivere le relazioni classiche
(1.126) nella forma

a =
Ze2

2W
hν =

2√
E

W 3/2 (1.132)

Seconda analisi. Supponiamo di seguire lo schema precedente. Qualunque livello deve
essere costruibile con la procedura vista: si parte da un elettrone libero, si emette radiazione
quantizzata e si arriva allo stato atomico finale. Alloratutti i livelli dell’atomo di idrogeno
devono avere energie date dalla (1.128).È naturale ora dire che i processi di emissione e
assorbimento corrispondano a passaggi fra un livello e l’altro, con conseguente emissione
di radiazione

hντ1,τ2 = Wτ1 −Wτ2 (1.133)

In questo modo si assume che le righe spettrali corrispondano all’emissione di un unico
quanto. Dalla (1.128) abbiamo allora

ντ1,τ2 =
1
2

Z2e2

haB

(
1
τ2
1

− 1
τ2
2

)
≡ E

h

(
1
τ2
1

− 1
τ2
2

)
(1.134)

Ma queste perτ1 = 2 e perτ1 = 3 hanno proprio la forma delle righe di Balmer e Paschen!
Sono in pìu predette molte altre serie, variandoτ1

16. Le transizioni per l’atomo do idrogeno
possono essere espresse ora attraverso un diagramma che lega la frequenza di transizione
ai livelli energetici dell’atomo, vedi fig.1.5.

Ora per̀o possiamopredire la costante di Rydberg, dalla (1.125) si ha

RZ =
1
2

Z2e2

haB
(1.135)

con i valori noti all’epoca per le costanti fondamentali Bohr trova (perZ = 1):

(R)th = 3.1× 1015 (R)exp = 3.290× 1015

L’accordoè molto buono, la discrepanza fra i valori era compatibile con l’incertezza sui
valori di e e dih.

Il progresso rispetto a quanto si sapeva primaè enorme:

1) Si è data una stima della grandezza degli atomi. Questo era stato fatto anche pre-
cedentemente, su basi più o meno dimensionali: si ha ora uno schema teorico per
questo calcolo dimensionale.

16Naturalmente queste serie sono state successivamente trovate,perτ1 = 1 si ha la serie di Lyman, e questo
naturalmente ha significato un grosso successo della teoria.
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Lyman

Balmer

Paschen
Brackett

n=1

n=2

n=3
n=4

Figura 1.5: Livelli energetici e serie spettrali per l’atomo di idrogeno.

2) Si è stabilito un criterio per la stabilità degli atomi: se si assumono le leggi quanti-
stiche si ottiene uno stato fondamentale per il sistema. La cosa nonè banale, anche
nell’ipotesi che esistano quanti di energia: l’elettrone potrebbe continuare a perdere
energia, seppure in forma quantizzata, e cascare sul nucleo.

3) Si è spiegata l’origine delle righe spettrali: sono transizioni monocromatiche, in
linguaggio moderno transizioni ad un fotone, tra livelli energetici discreti dell’atomo.

4) Si è affrancata la frequenza della luce emessa dalla frequenza propria del moto: le
frequenzeντ1,τ2 non sonole frequenze di rotazione degli elettroni in una qualche
orbita.

Resta da chiarire la sceltaνγ = ν/2 nella deduzione iniziale. La giustificazione di
questa scelta porterà un altro importante tassello al modello.

Abbiamo gìa detto che per ragioni puramente dimensionali, nel “costruire” l’atomo in
una data orbita, si deve averehνγ ∝ hν. Supponiamo in generale che si abbia una relazione
del tipo

hνγ = f(τ)hν (1.136)

Il calcolo dei livelli è identico al precedente, semplicemente dove era scritto1
2τ ora va

scrittof(τ), ovveroτ → 2f(τ). Si ottiene quindi per le righe spettrali

hντ1,τ2 =
1
2

Z2e2

aB

(
1

4f2(τ1)
− 1

4f2(τ2)

)
≡ E

(
1

4f2(τ1)
− 1

4f2(τ2)

)
(1.137)

Quindi se si vogliono ottenere delle serie come quella di Balmer, deve esseref = Cτ :

hντ1,τ2 =
1
2

Z2e2

aB

1
4C2

(
1
τ2
1

− 1
τ2
2

)
≡ E 1

4C2

(
1
τ2
1

− 1
τ2
2

)
(1.138)
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Se in pìu si vuole ottenere accordo con i dati sperimentali si deve avereC = 1/2. Il punto
seguentèe unpunto importante. Consideriamo una transizione fra due livelli contigui,
τ2 = τ1 + 1, per un livello di base con grande “numero quantico”,τ1 � 1. Per questi
livelli:

Wτ1 =
E

4C2τ2
1

Wτ2 =
E

4C2(τ1 + 1)2
(1.139a)

hντ1,τ2 = Wτ1 −Wτ2 = E 1
4C2

(
1
τ2
1

− 1
(τ1 + 1)2

)
' E 1

4C2

(
2
τ3
1

)
(1.139b)

Le frequenze classiche di rotazione, corrispondenti ai livelliWτ1 , Wτ2 , si ricavano dalla
(1.132):

hντ1 =
2√
E

W 3/2
τ1

hντ2 =
2√
E

W 3/2
τ2

' hντ1 (1.140)

cioè per grandi numeri quantici i periodi di rivoluzione prima e dopo l’emissione sono circa
uguali, ma questòe proprio quello che ci si aspetta per l’irragiamento classico in un moto
circolare. D’altronde in regime classico la frequenza della luce emessa deve essere proprio
la frequenza di rivoluzione del moto, quindi, in questo regime, deve essere

hντ1 = hντ1,τ2 ⇒ 2√
E

W 3/2
τ1

=
E

4C2

2
τ3
1

⇒ 2√
E

(
E

4C2τ2
1

)3/2

=
E

4C2

2
τ3
1

Da cui segueC = 1/2, cioè esattamente il valore precedente.
Il ragionamento che abbiamo usatoè una forma diprincipio di corrispondenza: per

grandi numeri quantici si deve riottenere la descrizione classica del processo.
Il lettore noter̀a la somiglianza col fatto che nello spettro di corpo nero per alte tempe-

rature si riotteneva il principio di equipartizione classico.
Resta un ultimo punto da interpretare. Nella formula iniziale (1.127),W = τhνγ ,

avevamo lasciato una ambiguità sul significato diτ , poteva indicare un numero di fotoni o
un’armonica della frequenzaνγ : è quest’ultima l’interpretazione consistente. Consideria-
mo infatti una transizione, nel regime quasiclassico, conτ2 = τ1 + n, n � τ1. In questo
caso, si hanno le formule analoghe alle (1.139), conC = 1/2:

Wτ1 =
E
τ2
1

Wτ2 =
E

(τ1 + n)2
(1.141a)

hντ1,τ2 = Wτ1 −Wτ2 = E
(

1
τ2
1

− 1
(τ1 + n)2

)
' E

(
2n

τ3
1

)
(1.141b)

Vediamo quindi che la frequenza di transizioneè un multiplo di quella precedente, cioè un
multiplo della frequenza di rivoluzione:

ντ1,τ2 = nντ1 (1.142)

Ricordiamo che le formule precedenti vanno considerate valide anche per i moti ellittici,
praticamente infatti non cambia nulla, il ruolo del raggioè svolto dal semiasse maggiore
dell’ellisse, le altre formule, come la connessione fra energia cinetica ed energia potenziale,
seguono dal teorema del viriale. I moti ellittici sono periodici ma non armonici, quindi
nello spettro della radiazione occorre trovare le armoniche della frequenza fondamentale,
vediamo quindi che nel regime “semiclassico” il prefattore numerico,n, alla frequenza
di rotazione dello stato indica un’armonica. Estendiamo questa interpretazione per tutti i
valori di τ nella (1.127), giustificando cosı̀ l’ipotesi di emissione di un singolo quanto nella
transizione.
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1.11.2 Formulazione alternativa della quantizzazione delle orbite.

Quanto visto nel paragrafo precedenteè a tutti gli effetti equivalente ad una dimostrazione
della forma dello spettro per l’atomo di idrogeno. Abbiamo seguito la procedura, piuttosto
involuta per certi aspetti, della derivazione originale di Bohr per mettere in luce la giustifi-
cazione di ogni ipotesi. Chiaramenteè possibile, a partire dalle ipotesi fattee dal principio
di corrispondenzaoperare una derivazione puramente deduttiva, che presentiamo qui di
seguito, e che Bohr nell’articolo[Boh13] dà per scontata.

Il punto di partenzàe che avendo a disposizione un’altra grandezza fondamentale,h,
è possibile costruire una quantità con le dimensioni di una lunghezza,aB , definito nella

(1.129): aB =
~2

me2
. È possibile quindi avere una energia tipica,e2/aB , per comodit̀a

prenderemo come energia tipica la quantità E definita nella (1.130), ripetiamo: la sceltaè
fatta solo per rendere semplice il confronto con le formule precedenti.

Punto 1 Se i livelli energetici sono quantizzati (ipotesi 2 del paragrafo 1.11) possiamo
sempre scriverli nella forma

En = −E 1
f(n)

≡ −Wn (1.143)

n è un numero intero ef una funzione per il momento incognita (quindi la fattorizzazione
di E , come predetto,̀e puramente formale). Il segno− nella (1.143)̀e dovuto al fatto che
stiamo considerando stati legati del sistema.

Punto 2 Se l’emissione avviene attraverso l’emissione di un quanto di radiazione (ipotesi
3 del paragrafo 1.11), si ha

hνn1,n2 = Wn1 −Wn2 = E
(

1
f(n1)

− 1
f(n2)

)
(1.144)

Punto 3 Se viene usata la meccanica classica ed il modello di Rutherford per determinare
i parametri delle orbite possibili (ipotesi 1 e 3 del paragrafo 1.11) la frequenza di rivoluzio-
neper l’orbita corrispondente al livello con energiaEn è data dalla formula classica (1.126),
che riscriviamo per comodità nella forma (1.132):

hνn =
2√
E

W 3/2
n (1.145)

Punto 4 Applichiamo ora il principio di corrispondenza. Consideriamo una transizione
n → n + 1, conn � 1. Per la frequenza della radiazione dalla (1.144) si ha, sviluppando
in serie la funzionef :

hνγ = E
(

1
f(n)

− 1
f(n + 1)

)
' E f ′(n)

f2(n)
(1.146)

Nel regime classico questa espressione deve coincidere con la (1.145), quindi

2√
E
E3/2

f3/2
= E f ′

f2
⇒ f ′ = 2

√
f ⇒ f(n) = n2 (1.147)

Otteniamo cos̀ı l’espressione del paragrafo precedente.
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1.11.3 Quantizzazione del momento angolare.

Per un’orbita circolare di raggioa possiamo scrivere il momento angolare in termini dei
potenzialiW , usando le (1.132):

L = mva = mωa2 = m2πνa2 = 2πm
Z2e4

4W 2

2
h
√
E

W 3/2 =
mZ2e4

h

1√
WE

Usando il valore quantizzato per l’energia ed il valore diE si ha

L = n~ = n
h

2π
(1.148)

Viceversa, assumendo la quantizzazione del momento angolare e le equazioni del moto si
ha:

mωa2 = n~ mω2a =
Ze2

a
⇒ a =

n2~2

Zme2
=

n2aB

Z
(1.149)

e quindi per l’energia:

En = −1
2

Ze2

a
= −1

2
Z2e2

aB

1
n2

(1.150)

cioè esattamente la formula precedente. Assumendo la quantizzazione del momento ango-
lare non occorre far uso del principio di corrispondenza.

L’idea di quantizzazione del momento angolare troverà la sua giustificazione nell’estensione dell’ana-
lisi di Planck sulla discretizzazione dello spazio delle fasi e su analoghe ricerche di Ehrenfest[Ehr13]
e successivamente di Sommerfeld, come vedremo nel prossimo paragrafo. Probabilmente una delle
prime proposte in tal sensoè stata fatta da Lorentz nelle discussioni del congresso di Solvay del 1911.
Se i fenomeni periodici hanno una quantizzazione, si può supporre che ci sia una quantizzazione
nell’energia di rotazione di un corpo:

1

2
Iω2 =

1

2
I(2πν)2 = Cnhν I(2πν) = 2C

h

2π

I indica il momento di inerzia. In particolare, in analogia con l’oscillatore armonico e con alcuni
modelli analoghi sviluppati da Planck, si può supporre che la differenza di energia fra due livelli
rotazionali sia legata all’emissione di un quanto di energia con frequenza media fra le due frequenze
in gioco:

1

2
I
(
ω2

n+1 − ω2
n

)
= ~ωn+1 + ωn

2
⇒ Iωn+1 = Iωn + ~ (1.151)

Dalla (1.151) segue, per il momento angolareIωn = n~. Nel modello proposto da Ehrenfest la
costanteC è introdotta dalla relazioneErot = nhν/2, ed il fattore 1/2 rispetto all’oscillatorèe
attribuito alla presenza della sola energia cinetica: nell’oscillatore armonico tale termine contribuisce
alla met̀a dell’energia totale.

In entrambe le interpretazioni la quantizzazione del momento angolare implica per i livelli ener-
getici:

En =
L2

2I
=

1

2I
~2n2 =

h2

8π2I
n2 (1.152)

e per le frequenze di transizione

En+1 − En = ~νn,n+1 =
h2

8π2I

(
(n + 1)2 − n2) =

h2

4π2I

(
n +

1

2

)
(1.153)

Lo spettro quindi consiste in righe equispaziate, un cosiddettospettro a bande, che effettivamentèe
quello osservato per molecole biatomiche. Dai dati sperimentaliè possibile valutareI e si trovano dei
numeri ragionevoli. Per inciso la quantizzazione del momento angolare automaticamente dà un’idea
del tipo di spettro: due nuclei di massaM = Amp e distanza relativad, dell’ordine diaB , o qualche
Å, hanno un momento di inerziaI ∼ Md2, quindi le frequenze caratteristiche sono dell’ordine di

ν ∼ L

I
∼ ~

Ma2
B

∼ 10−3

A2
sec−1 λ =

c

ν
∼ A2 · 3× 105 Å
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e la radiazione cade nella regione dell’infrarosso.
Modelli atomici in cui si prevedevano delle variazioni di~ in momento angolare nelle transizioni

erano stati precedentemente elaborati da Nicholson[Nich12].

Come vedremo nel seguito questo tipo di approccio può essere generalizzato e formalizzato
e dar̀a luogo ad una procedura di quantizzazione applicabile a molti sistemi.

L’uso del principio di corrispondenza richiede una analisi classica del problema e, so-
prattutto, bisogna capire come applicare questo principio, la seconda procedura inveceè
più formale. Il principio di corrispondenza ha trovato maggiore applicazione nella scuola
di Bohr a Copenhagen, mentre la procedura “canonica”è stata pìu sviluppata a Monaco da
Sommerfeld e Born a Gottinga.

1.11.4 Osservazioni e prime generalizzazioni.

È ovvio che la spiegazione dello spettro dell’idrogeno da parte di Bohr apre la porta al-
l’indagine della struttura atomica e molecolare. Vedremo alcuni degli sviluppi nei paragrfi
successivi. Qui vogliamo solo notare un paio di punti interessanti.

1) L’espressione per il raggio dell’orbita stazionaria, vedi es.(1.149), indica come la
grandezza effettiva di un atomo dipenda dal livello energetico. La rapida crescita
conn, spiega immediatamente alcuni aspetti qualitativi degli spettri. Abbiamo visto
cheaB ∼ 0.5 × 10−8 cm, quindi pern = 10 − 20 si raggiungono raggi dell’or-
dine di10−6 cm, abbastanza rilevanti. Questo spiega perchè righe corrispondenti a
transizioni verso stati molto eccitati si vedono solo in gas abbastanza rarefatti.

2) Un punto importantèe la dipendenza dam. Abbiamo fatto il calcolo nell’ipotesi di
massa infinita del nucleo.̀E chiaro, trattandosi di un problema a due corpi, che la
massa che determina i parametri dell’orbita classicaè la massa ridotta del sistema

µ =
mM

m + M
M = Massa del nucleo (1.154)

questo significa che i livelli precedentemente trovati, proporzionali am via la dipen-
denza1/aB , sono in realt̀a proporzionali aµ. In uno ione idrogenoide lo spettròe
allora scrivibile nella forma

νn1,n2 = Z2RM

(
1
n2

1

− 1
n2

2

)
RM =

M

m + M
R∞ R∞ =

1
2

me4

~2

(1.155)
Si usa il simboloR∞ per indicare la costante di Rydberg teorica relativa ad un nucleo
di massa infinita. La forma della (1.155)è stata uno dei primissimi grossi succes-
si della teoria di Bohr. In alcune atmosfere stellari si erano osservati degli spettri
praticamente identici ai termini della serie di Balmer ma leggermente spostati in fre-
quenza. Bohr correttamente li interpretò come dovuti ad una serie spettrale dell’elio
ionizzato. PerZ = 2 si pùo scrivere

νn1,n2 = RHe

(
1

( 1
2n1)2

− 1
( 1
2n2)2

)
(1.156)

da cui si capisce la quasi coincidenza dei termini pari con le serie dell’idrogeno.
Tuttavia la costante di Rydberg dell’elioè leggermente diversa da quella dell’idroge-
no, a causa della diversa massa del nucleo: l’espressione (1.156) era perfettamente
coincidente con i dati spetroscopici.

1.11.5 L’esperimento di Franck ed Hertz.

Un importante esperimento che diede la prima conferma non direttamente spettroscopica
dell’ipotesi di Bohr sui livelli atomici stazionari, fu quello compiuto nel 1914 da Frank ed



1.12. REGOLE DI QUANTIZZAZIONE. 53

Hertz[FrHe14]. Lo schema dell’esperimentoè mostrato in figura 1.6. Un fascio di elettroni
viene emesso da un catodo,C, tenuto a potenziale−x ed accelerato verso l’anodo,A,
collegato a terra, Un controcampo generato da una griglia a potenziale+0.5 volt impedisce
agli elettroni con energia minore di0.5 eV di essere rilevati dal galvanometroG.

C

- x volt

Gas
g

+0.5 volt

G

Terra

A

Figura 1.6: Diagramma schematico dell’esperi-
mento di Franck e Hertz.C è il catodo, la sor-
gente di elettroni,A l’anodo, collegato a terra.G
un galvanometro per misurare la corrente.g è una
griglia tenuta a+0.5 volt.

Figura 1.7: Risultati schemati-
ci dell’esperimento di Franck ed
Hertz sul Mercurio.

Il fascio elettronico atraversa un ambiente riempito di vapori di Mercurio. SianoE1, E2 . . .
gli stati stazionari dell’atomo. A temperatura ambiente praticamente tutti gli atomi sono
nello stato fondamentale.

L’energia degli elettroni pùo essere variata cambiando il potenzialex. A bassa energia
gli elettroni hanno urti elastici con l’atomo, poichè MHg � me non si ha praticamente
perdita di energia cinetica. All’aumentare dix aumenta la velocità degli elettroni e quindi
la corrente rilevata daG. Quando l’energia degli elettroni supera la soglia∆E = E2−E1,
è possibile un nuovo fenomeno: l’energia viene trasferita in energia interna dell’atomo,
cioè si ha un atomo eccitato, e quindi l’elettrone diminuisce la sua velocità. Per energia
immediatamente sopra la soglia l’elettrone perde praticamente tutta la sua energia cinetica
e la griglia impedisce la rilevazione. Si deve quindi osservare un brusco calo di corrente
in corrispondenza dell’energia elettronica, cioè del voltaggio,Ee = ex = ∆E. lo stesso
meccanismo funziona a energie2∆E, 3∆E etc., corrispondenti a urti multipli degli elet-
troni con il gas. Per il mercurioE2 − E1 ' 4.9 eV: il risultato dell’esperimento, mostrato
nella figura 1.7, conferma in pieno la teoria di Bohr.

1.12 Regole di quantizzazione.

Formulare delle regole di quantizzazione significa avere uno schema per l’introduzione del
concetto di quanto applicabile ad ogni sistema meccanico. Questo significa che occorre
porre la questione in termini delle variabili canonichep.q, in modo da avere uno strumento
valido per ogni sistema Hamiltoniano. La speranzaè che, una volte formulate, queste regole
permettano di calcolare i livelli energetici dei sistemi atomici, determinare gli spettri etc.

I primi passi in tal senso sono quelli fatti da Planck e sono quanto visto nel paragrafo
1.9: la quantizzazione può essere interpretata nello spazio delle fasi dell’oscillatore armo-
nico assegnando ad ogni cella dello spazio delle fasi un “volume”∆p∆q = h e asserendo
che l’area racchiusa dalla curva di fase

p2

2m
+

1
2
kq2 = E (1.157)
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racchiuda un numero intero di celle. Questo significa: fra tutte le traiettorie possibili nello
spazio delle fasi, ciòe fra tutte le ellissi del piano(p, q) descritte dalla (1.157)solo alcune
sono selezionate dal processo di quantizzazione, queste corrispondono agli stati stazionari
quantistici del sistema17. L’area racchiusa dall’ellisse (1.157) può essere scritta, usando il
teorema di Stokes, o semplicemente applicando la definizione di area, nella forma:

area=
∫

dpdq =
∮

pdq (1.158)

L’integrale nella (1.158)̀e effettuato sulla curva (1.157). Esplicitamente: si ricavap dalla
(1.157), che allora diventa una funzione diq edE, ed è questa funzione che viene usata
nella (1.158):

p = ±

√
2m

(
E − 1

2
kq2

)
Chiamateq1, q2 le due radici del radicando, cioè i punti i punti di inversione del moto, in
cui p = 0, si ha:

area= 2
∫ q2

q1

√
2m

(
E − 1

2
kq2

)
(1.159)

La regola di quantizzazione si scrive allora∮
pdq = nh (1.160)

La (1.160)selezionale traiettorie permesse quantisticamente. Se esprimiamoq, e quindi
p, tramite il tempo, che qui fa le veci di parametro della traiettoria, possiamo riscrivere la
(1.160) nela forma ∫ T

0

p
dq

dt
dt =

∫ T

0

2Ecin dt = nh

T indica il periodo del moto, ciòe il tempo necessario a percorrere l’intera orbita. Moltipli-
cando e dividendo perT ed usando la frequenzaν = 1/T si ha anche

T
1
T

∫ T

0

2Ecin dt =
1
ν

2Ecin =
E

ν
= nh (1.161)

La sopralineatura indica la media temporale. L’ultimo passaggio sfrutta il fatto che per un
oscillatoreEcin = E/218.

Si tratta ora di capire se una forma analoga alla (1.158) possa essere estesa ad altri
sistemi, ed in particolare a sistemi tridimensionali o con più gradi di libert̀a. La cosa pìu
ovvia sarebbe un’estensione del tipo∮

pidqi = nih (1.162)

a tutti i gradi di libert̀a del sistema. La (1.162) in generale non ha molto senso, e sulla stes-
sa scrittura (1.160) potrebbero essere espressi dei dubbi. Le obiezioni principali sorgono
già nel primo congresso di Solvay del 1911, a cui abbiamo già accennato. Proviamo ad
elencarle:

17Questa noǹe la motivazione dello studio di Planck, che era interessato di più agli aspetti statistici della
questione, qui riportiamo le conseguenze dell’analisi di Planck sul problema che stiamo trattando.

18La forma
∫ t
0 Ecindt = Cnh t è stata usata anche da Sommerfeld in una proposta di applicazionde della

legge di Planck a fenomeni non periodici, come l’emissione di raggi X durante negli urti di elettroni con un
metallo.
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1) La prima obiezione, dovuta a Poincaré,è che la connessione fra la relazione∆p∆q =
h e la (1.158) dipende dalla forma che si sceglie per le celle dello spazio delle fa-
si. Abbiamo discusso questo problema nel paragrafo 1.9, vedi discussione dopo
l’eq.(1.118).

2) La (1.162) nonè invariante per scelta delle coordinate canoniche e questo porta
a degli assurdi, obiezione sempre di Poincaré. Consideriamo infatti un oscillatore
isotropo tridimensionale, si avrebbero tre condizioni:∮

pxdx = nxh

∮
pydy = nyh

∮
pzdz = nzh (1.163)

connx, ny, nz interi. Se si considerano tre altri assi, ottenuti per rotazione da quelli
iniziali, si dovrebbero scrivere le analoghe condizioni con tre altri interi,n′x, n′y, n′z.
Ma ruotando le coordinate con una matriceR:∮

p′xdx′ =
∑
jk

R1iR1k

∮
pidxk

ed in generale, comèe facile verificare, questa espressione nonè un multiplo intero
di h, anche se valgono le (1.162). Il problema quindiè quali sono,se esitono, le
coordinate “giuste” su cui implementare le condizioni (1.162)?

3) Una terza osservazione, sempre sul tipo di scelta delle “celle” dello spazio delle fasi,
è posta da Einstein. Ci si aspetta che un oscillatore tridimensionale abbia il triplo
dell’energia termica di un oscillatore unidimensionale. Ora l’equazione (1.157) in
questo caso ha 6 variabili, 3 componenti dell’impulso e 3 coordianate. Riscalando
le variabili come nel caso unidimensionale la (1.157) descrive una sfera in 6 dimen-
sioni, di raggior ∝

√
E. L’area dell’ellisse qui va sostituita con l’elemento di

volume
d3pd3q ∝ r5dr ∝ E5/2dE1/2 ∝ E2dE

Il valor medio dell’energia nell’insieme canonicoè dato da:

〈E〉 =
∫
dE E3e−E/kT∫
dE E3e−E/kT

Assumendo semplicemente una quantizzazione dell’energia,E = nhν, l’integrale
si trasforma in una somma, ma il valor medio corrispondentenon è il triplo del
valor medio unidimensionale. I vari livelli di energia devono quindi avere un “peso
statistico” diverso, a differenza di quanto succede nel caso unidimensionale.È ciò
che si chiamadegenerazione del livello. La teoria deve essere capace di predire
questa degenerazione. Se valessero le (1.162,1.163) per le tre coordinate cartesiane la
degenerazione sarebbe dovuta al fatto che un dato interon può essere scritto in molti
modi nella forman = nx + ny + nz. Ma cos̀ı si dà di nuovo un ruolo privilegiato
alle coordinate cartesiane, e non se ne capisce il motivo.

5) Una quarta osservazione, più che un’obiezione, nasce da una discussione di Einstein
e Lorentz, sempre al congresso Solvay. La teoria di Planck ed Einstein sulla radiazio-
ne di corpo nero insegna che sicuramente la teoria elettromagnetica classica non può
essere usata nel descrivere l’interazione luce materia; la selezione di stati stazionari,
per l’oscillatore armonico, indica anche una deviazione dalla meccanica classica, ma
le orbite sono pur sempre scelte a partire da variabili canoniche classiche,p.q e dal
concetto classico di energia, come espresso nella (1.157). Ora l’energia classicamen-
te pùo cambiare, effettuando un lavoro dall’esterno sul sistema. In questo processo
possono cambiare i parametri del sistema, in particolare la frequenza di oscillazione.
Consideriamo ad esempio un pendolo di lunghezza`. Per piccole oscillazioni si ha
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un oscillatore armonico ideale con frequenza propria2πν =
√

g/`. Se si accorcia il
filo si compie un lavoro sul sistema, quindi l’energia cambia, ma nello stesso tempo
cambia anche la frequenza. Se anche il sistema inizialmente soddisfaceva la relazio-
ne di PlanckE = nhν comeè possibile che dopo il processo il rapporto fra la nuova
energiaE′ e la nuova fequenzaν′ sia ancora un multiplo intero dih? L’osservazione
di Einsteinè che per processilenti, in cui ciòe il filo si accorcia lentamente rispetto
alla frequenza di oscillazione,˙̀/` � ν, il rapportoE/ν rimane costante.Questo
tipo di processi lenti saranno chiamatiprocessi adiabaticie forniranno, soprattutto
per merito di Ehrenfest e dei suoi allievi, la chiave per capire quali integrali del tipo
(1.160) vanno considerati e perchè.

5) C’è infine un problema fondamentale: nella formula (1.160) l’integraleè esteso ad
un periodo, come si possono scrivere le condizioni di quantizzazione se il moto non
è periodico?

1.12.1 Invarianti adiabatici.

Chiariamo innanzitutto che tipo di problema vogliamo risolvere. Si tratta di avere un crite-
rio per la selezione di statidiscretizzatidi un sistema meccanico, usando lo schema concet-
tuale della meccanica classica, cheè l’unico a disposizione al momento, prima della formu-
lazione della meccanica quantistica. Questi stati devono avere delle energie discrete,En:
le eventuali transizioni elettromagnetiche fra questi stati avvengono tramite l’emissione o
l’assorbimento di luce (fotoni) con frequenza fissata dahν = En − Em. Di sicuro sappia-
mo che la meccanica classica non può essere usata per descrivere questo tipo di processi,
ma deve esserciuna qualche situazione in cui i ragionamenti classici valgono, altrimenti
non potremmo in alcuna circostanza neppure parlare di orbite, impulsi etc., e tutto l’ap-
proccio sarebbe privo di senso. L’osservazione di Ehrenfest, molto “moderna” dal punto di
vista di principio,è che un modo, l’unico in verità, per caratterizzare un sistemaè quello
di considerarlo accoppiato con l’“esterno”, cioè occorre trattare sisteminon isolati. For-
malmente questo significa che l’Hamiltoniana del sistema ha la forma genericaH(p, q, λ),
doveλ, funzione del tempo,̀e l’insieme dei parametri che descrivono l’accoppiamento.λ
può indicare qualunque cosa, ad esempio l’accoppiamento con un campo elettromagnetico,
ma soprattutto, ed̀e questo il punto interessante, possiamo pensare che l’azione dell’accop-
piamento si traduca in unavariazione dei parametridel sistema. Il lettore noterà la stretta
analogia con la definizione dei parametri termodinamici: il volume di un gas, ad esempio,
da un lato determina lo stato del gas, dall’altro la sua variazione può essere provocata da un
agente esterno (una forza che regola lo spostamento di una parete). Nonè nemmeno neces-
sario che la variazione dei parametri sia sperimentalmente fattibile, basta poterla pensare
come un esperimento concettuale: ad esempioè fattibile l’accorciamento di un pendolo
come visto nel paragrafo precedente, mentre non sarebbe facilmente realizzabile una va-
riazione continua della carica di un nucleo atomico che regola le orbite elettroniche (oggi
sappiamo che sarebbe impossibile).

Quello che sappiamo dall’esperienza con la radiazioneè che una variazione veloce dei
parametriλ, come quella del campo elettrico di un’onda elettromagnetica, provoca dei
“salti quantici” non descrivibili dalla meccanica classica. D’altronde l’esistenza stessa di
un quanto d’azione,h, implica che, ad esempio, i trasferimenti di energia devono essere
quantizzati, ed in generale la quantizzazione significa che le variazioni di certe grandezze
sono regolate da numeri interi, quindi non con continuità. Possiamo allora immaginare che
se consideriamo traformazioni molto lente dei parametri queste grandezze non possono va-
riare.Se esisteuna zona di “sovrapposizione” fra la meccanica quantistica e quella classica
queste grandezze, nelle stesse circostanze, devono essere costanti anche classicamente. Ri-
petiamo: se non esistesse nessuna circostanza in cui possiamo applicare la meccanica clas-
sica e la quantizzazione contemporaneamente tutto l’approccio non avrebbe senso. Queste
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grandezze esistono in meccanica classica, si chiamanoinvarianti adiabatici, e saranno
indicate con la letteraJ nel seguito.

Come vedremo fra poco, quando gli invarianti adiabatici esistonoè possibile scrivere
l’energia del sistema come una funzioneE(J). Questo fornisce un criterio ed una logica
alla quantizzazione. Partiamo dall’oscillatore armonico, di cui assumiamo di avere capi-
to la quantizzazione, (anche in tre dimensioni considerando il sistema come somma di tre
oscillatori indipendenti). Se abbiamo un altro sistema e troviamo una serie di Hamilto-
niane che al variare di un parametro connettono il nuovo sistema all’oscillatore armonico
abbiamo la quantizzazione del nuovo sistema. Ad esempio consideriamo le Hamiltoniane

Ht =
p2

2m
+

1
2
kq2 +

t

T

(
−e2

r
− 1

2
kq2

)
(1.164)

pert = 0 si ha l’Hamiltoniana di un oscillatore armonico, pert = T quella di un atomo di
idrogeno. Le energie dei due sistemi sono scritte nella forma

E0(J0), ET (JT )

DoveJ0, JT sono i due invarianti adiabatici iniziali e finali. Per trasformazioni lente, cioè
T grandi,J0 = JT quindi anche l’energia dell’atomo di idrogenoè quantizzata. In al-
tre parole qualunque sistema cheè connesso tramite una trasformazione adiabatica ad un
oscillatore armonico, o ad un insieme di oscillatori armonici,è quantizzabile.

NOTA Perch̀e questo ragionamento sia valido le HamiltonianeHt devono ammettere invarianti adia-
batici, per ogni valore dit. Questo puntòe stato particolarmente messo in luce da Fermi[Fer23]
e, sotto un altro punto di vista, da Einstein. Questa richiesta, come vedremo,è una delle cause di
incosistenza interna e del fallimento di tutta la procedura.

Se chiamiamo{Ji} la collezione di invarianti adiabatici del sistema, la procedura di
quantizzazione consisterà in pratica nel porreJi = nih, conni numeri interi.

Formalmente gli invarianti adiabatici si definiscono in questo modo. Supponiamo di
avere un parametro lentamente variabileλ(t), e supponiamo di considerare la variazione del
sistema in un tempoT = t2 − t1. Per ogni valore diλ possiamo definire le nostre variabili
dinamiche, e costruire delle grandezzeJ(λ) che dipendono dal parametro di controllo. Una
variabile dinamicaJ è un invariante adiabatico se

J2 − J1

λ̇
≡ J(t2)− J(t1)

λ̇
→ cost∼ λ̇T (1.165)

con: λ̇ → 0 ; T →∞ λ̇T → cost. (1.166)

J2−J1 è la variazione della nostra quantità,λ̇T è l’ordine di grandezza della variazione del
parametro, quindi la condizione imposta dice che il parametro varia, anche se lentamente.
Perλ̇ → 0 si ha quindi∆J → 0, cioè la quantit̀aJ resta costante19.

La richiesta (1.165) noǹe banale. È chiaro che seλ è costante la quantità J resta
costante e quindi la sua variazioneè proporzionale ȧλ, ma, in generale, si ha∆J ∝ ∆λ ∼
λ̇·(t2−t1). La richiesta (1.165) equivale a richiedere che il coefficiente diλ̇ nella variazione
di J restifinito per tempi infinitamente lunghi.

Per capire il significato fisico della (1.165) consideriamo ancora un generico oscillatore
armonico:

H = Ecin + Epot =
1
2
αp2 +

1
2
βq2 2πν =

√
βα (1.167)

19In alcune dimostrazioni che seguiranno si opereranno degli sviluppi in serie per la funzioneλ(t), se si vuole
valutare il resto in questi sviluppi, e quindi verificare rigorosamente la (1.165), occorre avere sotto controllo la
derivata seconda diλ, assumeremo senz’altro che la funzioneλ(t) sia doppiamente differenziabile con derivata
continua, ciòe di classeC2.
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Consideriamo oraα, β come parametri variabili, lentamente, nel tempo.ν in questo caso
è la “frequenza istantanea”, cioè la frequenza che avrebbe l’oscillatore seα, β fossero
costanti. Le equazioni di Hamilton per il sistema (1.167) sono sempre

ṗ = −∂H

∂q
= −βq q̇ =

∂H

∂p
= αp (1.168)

Il valore dell’Hamiltoniana invece (l’energia) nonè costante nel tempo, usando le (1.168):

dH

dt
=

∂H

∂t
= α̇

p2

2
+ β̇

q2

2

Quindi per la variazione di energia in un tempoT si pùo scrivere

∆E =
∫ T

0

dt

(
α̇

α
Ecin +

β̇

β
Epot

)
(1.169)

Il punto crucialeè il seguente: nell’integrando della (1.169) ci sono termini “veloci”,
Ecin, Epot che variano con un tempo dell’ordine del periodo di oscillazione del sistema,
e termini “lenti”, le variazioni dei parametriα, β. In ogni singolo periodo possiamo assu-
mere questi ultimi costanti e quindi, in ogni periodo, l’integrale della (1.169)è la media
dell’energia cinetica e dell’energia potenziale, queste sono la metà dell’energia totale, per il
teorema del viriale. Al primo ordine iṅα, β̇, i termini in α, β nella (1.169) possono essere
considerati costanti e quindi

∆E =
E

2

(
α̇

α
+

β̇

β

)
T +O(α̇2, β̇2) (1.170)

Comeè chiaro dalla (1.170),∆E è proporzionale alle velocità di variazione maE nonè un
invariante adiabaticoperch̀e il coefficiente delle velocità è proporzionale al tempo totale,
quindi diverge perT →∞.

Consideriamo d’altra parte la frequenza del sistema:

dν

dt
=

1
2
α̇α−1/2β1/2 +

1
2
β̇α1/2β−1/2 =

ν

2

(
α̇

α
+

β̇

β

)

Quindi al primo ordine nelle velocità di variazione

∆ν =
∫ t2

t1

dν

dt
dt = ν

(
α̇

α
+

β̇

β

)
T +O(α̇2, β̇2) (1.171)

Dalle (1.170),(1.171) segue, perα̇, β̇ → 0:

∆E

E
=

∆ν

ν
∆
(

E

ν

)
= 0 (1.172)

Quindi effettivamenteE/ν è un invariante adiabatico. Nel seguito daremo una dimostra-
zione un p̀o più rigorosa ma la cosa che il lettore deve apprezzareè la separazione fra moti
lenti e veloci. Chiaramente questa separazione cessa di valere seν → 0, e per frequenza
di oscillazione nulla il teorema non vale. Il lettore può trovare una dimostrazione molto
dettagliata ed istruttiva nel caso di un pendolo nel libro di Tomonaga[Tomonaga].

Non abbiamo fatto nessuna ipotesi sulla natura dell’oscillatore, se cioè descriveva la
piccola oscillazione di un pendolo, una molla o altro. In effetti Ehrenfest, nel suo primo
lavoro sull’argomento applica la relazione di adiabaticità appena trovata agli oscillatori
virtuali che descrivono il campo di radiazione in una cavità, ossia al corpo nero.
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La motivazione fisica di questa applicazione, e l’origine concreta dell’interesse per gli
invarianti adiabatici,̀e la seguente: nella derivazione della legge di Planck abbiamo usato
la legge di Wien, questa leggeè stata ricavata calcolando, in pratica, il lavoro effettuato
dalla radiazione su una parete mobile, applicando quindi le leggi della meccanica classica,
e la correttezza di questa procedura non può essere data per scontata. Ehrenfest dimostra
che in effetti la legge di Wien segue direttamente dall’ipotesi adiabatica.

Consideriamo infatti l’insieme degli oscillatori di campo in una cavità, per semplicit̀a
una cavit̀a cubica di latoL. Abbiamo visto che la distribuzione spettrale di energia si può
scrivere nella forma

uνdν = numero di modi× energia per modo=
8πν2

c3
dν Eν (1.173)

Eν è l’energia di un modo di oscillazione del campo elettromagnetico, cioè di un modo
della cavit̀a.

La cavit̀a sia isolata termicamente, l’unico parametro di controlloè allora il volume.
Consideriamo ora uno spostamentolento delle pareti della cavità. Questòe un processo
adiabatico (meccanicamente) quindi, per quanto vistoEν/ν deverimanere costante. Se si
suppone che esista una distribuzione spettraleEν , questa deve essere una funzione della
frequenza, e quindi ancheEν/ν: Eν/ν = f(ν). Questa funzione deve rimanere costante
nello spostamento. Supponiamo per fissare le idee che le pareti della cavità siano conduttri-
ci, in modo che il campo si annulli su di esse, allora sulla lunghezzaL devono trovare posto
un multiplo intero di semilunghezze d’onda,nλ/2 = L, cioè λ ∝ L e quindiν ∝ 1/L.
Quindi la quantit̀aνL rimane costante nell’espansione, allora:

Eν

ν
= f(νL) Eν = νf(νL) ⇒ uν =

8πν3

c3
dν f(νL) (1.174)

Notiamo cheνL = (c/2) · n quindi, a parte una costante fissa,è multiplo di un intero,̀e
cioè “quantizzato”, questòe il motivo per cuif(ν), non potendo cambiare con continuità,
resta costante.

La trasformazione considerata, oltre che essere lentaè anchereversibile, in effetti ab-
biamo visto che al variare lento dei parametri la variazione di energiaè proporzionale alla
velocit̀a, eq.(1.170), quindi cambiando segno alla velocità l’effetto si inverte e si ritorna alla
situazione precedente, sempre a meno di ordini superiori nella velocità. In trasformazioni
di questo tipo (il sistemàe isolato termicamente) l’entropia del sistema non cambia, quindi
la trasformazionèe adiabatica, in senso termodinamico. Per le trasformazioni adiabatiche
il secondo principio della termodinamica impone, vedi eq.(1.350),T ∝ V −1/3 ∝ 1/L
quindi la (1.172) prende la forma

uν =
8πν3

c3
dν f(

ν

T
) (1.175)

cheè proprio la legge di Wien.
Tornando al problema della quantizzazione, si tratta di trovare una procedura per clas-

sificare gli invariantiJi. Consideriamo dapprima il caso unidimensionale.

1.13 Moti periodici unidimensionali.

Consideriamo un motoperiodicounidimensionale. Sianop, q le coordinate canoniche e
H(p, q) l’Hamiltoniana, che supporremo indipendente dal tempo. SupponiamoH nella
forma

H(p, q) =
1

2m
p2 + U(q)

U è l’energia potenziale. Le equazioni di Hamilton si scrivono

ṗ = −∂H

∂q
q̇ = p (1.176)
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Un moto periodico si pùo manifestare in due modi apparentemente diversi:

1) Una rotazione. La variabileq aumenta di una quantità fissa dopo un periodo:q(t +
T ) = q(t)+δ. È il caso ad esempio di una rotazione, in cuiq rappresenta un angolo e
δ è2π. Usiamo il linguaggio degli angoli per essere concreti. Le variabili dinamiche
q, p, che si assumono ottenibili dalla posizione iniziale e velocità iniziale tramite la
soluzione delle equazioni del moto, sono periodiche di periodoT , quindi tutte le
variabili dinamichef(p, q) hanno la stessa proprietà. Formalmenteϕ = q ∈ R ma
le coordinateq e q + 2π corrispondono allo stesso punto fisico, quindi in realtà lo
spazio delle configurazioni, cioè l’insieme delleq, è un cerchio, ovvero un segmento
in cui le estremit̀a, diciamo0, 2π sono identificate: indicheremo tale insieme20 con
T .

2) Una librazione (oscillazione).Un moto di librazione consiste nell’oscillazione diq
fra due estremi,q1, q2 e durante il periodo del moto si ha, ad esempio,q1 → q2 → q1.
È il classico moto oscillatorio, come esempio si può considerare l’oscillazione di un
pendolo, un oscillatore armonico, etc. Formalmente in questo caso lo spazio delle
configurazionìe il segmento[q1, q2].

H è indipendente dal tempo, quindi l’energiaè conservata, ne segue che tutte le orbite,
anche quelle da “selezionare” per la quantizzazione, hanno energia costante. Consideriamo
le orbite possibili ad energia fissata. Si può scrivere allora:

H(p, q) =
1

2m
p2 + U(q) = E ⇒ p = ±

√
2m(E − U(q) (1.177)

Chiaramente la regione classicamente permessaè quella in cuiU(q) ≤ E. Bisogna ora
fare attenzione a cosa significa il segno± nella (1.177).

1) Il radicando nella (1.177) non ha radici, quindiè sempre positivo nella regione clas-
sicamente permessa.q può assumere qualunque valore, quindi siamo nel caso di un
moto rotazionale.U(q) deveessere una funzione periodica, perchè ad angoli che
differiscono di2π corrisponde lo stesso punto fisico, quindi anchep è periodico. La
(1.177) definisce allora 2 orbite distinte, nel senso che esistono due orbite distinte per
lo stesso valore dell’energia: l’orbita conp > 0 e quella conp < 0, corrispondenti
ai moti di rotazione orario e antiorario21. La funzionep(q) è una funzione periodica
quindi pùo essere utilmente pensata come una funzione definita sulcerchioT , per
motivi che saranno chiari in seguito si dice che definisce uncampo vettorialesuT .

2) Il radicando ha due radici,q1, q2 che corrispondono ai punti di inversione del moto e
sono i limiti di variazione per l’oscillazione. la radice ha quindi la forma√

f(q)(q − q1)(q2 − q) f(q) > 0

I segni± nella (1.177) corrispondono ai moti di “andata” e “ritorno” sulla stessa
orbita. Quindi vediamo che noǹe possibile in questo caso definire una funzione
univocap(q) sul segmento[q1, q2]. Ma il “trucco” per definire una funzione univoca a
partire da una funzione a più valori è ben noto, ed̀e la costruzione dell’analogo di una
superficie di Riemann. Qui basta raddoppiare il segmento cioè considerare lo spazio
delle configurazioni come l’unione[q1, q2] ∪ [q2, q1]: la determinazione+

√
è la

funzione definita sul primo segmento, la determinazione−
√

è definita sul secondo.
Nell’insieme considerato, il punto iniziale ed il punto finale sono identificati quindi si
ha ancora un cerchio,T , e la funzionep, per come l’abbiamo definita,è ora periodica
suT : nello stesso senso del caso precedente, definisce un campo vettoriale suT .

20Di solito si usa la notazioneS1 per un cerchio unidimensionale, non la usiamo per non creare confusione con
l’azioneS che introdurremo fra poco.

21Trascuriamo per semplicità il caso particolare in cuiE coincide con uno dei valori massimi o minimi della
funzioneU(q).
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Abbiamo fatto questa breve disamina geometrica perchè sar̀a utile per capire il caso con
più gradi di libert̀a.

Per un sistema con un solo grado di libertà esiste un integrale adiabatico edè dato,
come ci si aspettava, da

J =
∮

pdq (1.178)

Nella (1.178) la funzionep(q, E) è intesa come definita nella (1.177), con le specfiche fatte
sopra, quindi nel caso di un moto oscillatorio la (1.178) significa

J = 2
∫ q2

q1

pdq (1.179)

NOTA. Per fisso valore dell’energia, esistonodueorbite possibili nel caso rotatorio, corri-
spondenti alle due funzioni definite nella (1.177): in questo casoJ può assumere sia valori
positivi sia negativi:è l’area (con segno) delimitata dal grafico della funzionep(q, E) e
l’asse delleq nel piano(q, p). Nel caso oscillatorio i due segni nella (1.177) corrispondo-
no alle due determinazioni dellastessa funzione, cioè l’orbita è una sola eJ assume solo
valori positivi, è l’area delimitata della curva chiusaE = p2/2m + U , nel piano(q, p);
un’ellisse nel caso dell’oscillatore armonico.

È possibile dare una dimostrazione diretta del fatto cheJ definito dalla (1.178)̀e un inva-
riante adiabatico, vedi es.[Tomonaga], maè più utile seguire un’altra strada, generalizzabile
nel caso di pìu gradi di libert̀a. Indichiamo i passi della procedura, rimandando alla sezione
1.E le dimostrazioni, che richiedono un minimo di familiarità con i metodi della meccanica
analitica.

1) È possibile effettuare una trasformazione canonica di variabili(q, p) → (w, J) in
modo tale che l’Hamiltoniana, nelle nuove variabili, dipenda solo daJ . Ricordia-
mo che una trasformazione canonica lascia invariante la forma delle equazioni di
Hamilton. In queste nuove variabili le equazioni del moto si scrivono

J̇ = −∂H

∂w
= 0 ẇ =

∂H

∂J
(1.180)

Quindi le variabiliJ sonocostanti del moto, mentre le variabiliw si comportano
come angoli, crescono linearmente col tempo. La coppia di variabili(J,w) prende il
nome di coppia divariabili di azione-angolo.

2) La variabilew può essere scelta come una variabile di periodo 1, la grandezzaν = ẇ
è la frequenzadel moto, ciòe l’inverso del periodo. le variabili canonicheq, p sono
funzioni periodichedi w (nel caso di angoli gli angoli che differiscono di2π sono
identificati). In questa normalizzazione la variabileJ è data dalla (1.178).

3) La trasformazione di variabili può essere espressa da una funzione generatrice,S(q, J)
tale che

p =
∂S

∂q
w =

∂S

∂J
(1.181)

La (1.181) implica, per una hamiltoniana indipendente dal tempo, che la funzioneS
soddisfa l’equazione differenziale di Hamilton-Jacobi:

E = H(q, p) = H(q,
∂S

∂q
) (1.182)

4) La variabileJ è un invariante adiabatico. La procedura per calcolareJ è semplice:
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a) Si esprimep come funzione diq, E attraverso la (1.177).

b) Si calcola l’integrale (1.178) ottenendo cosı̀ J in funzione diE. La richiesta
p ∈ R o la natura angolare diq fissano i limiti di integrazione. Invertendo la
funzioneJ(E) si ottiene la nuova HamiltonianaE(J).

NOTA. Nel caso unidimensionale l’equazione di Hamilton-Jacobiè un’equazione diffe-
renziale ordinaria. La soluzione si ricava immediatamente dalla (1.181):

S(q, J) =
∫ q

0

pdq (1.183)

Una eventuale costante additiva nella (1.183)è inessenziale. Nella (1.183)p = p(q, E) ed
E è espresso in funzione diJ , quindiS è funzione diq e J . Notiamo anche che in questo
modo si ottiene subito

w =
∂S

∂J
=
∫ q

0

∂p

∂J
dq (1.184)

che esprimew in funzione diq, invertendo tale relazione di haq = q(w).

Procedura di quantizzazione. Le orbite quantisticamente permesse corrispondono a

J = nh n ∈ N (1.185)

Una volta fissatoJ , l’energiaè data daE = E(J), in questo modo si determinano i livelli
energetici del sistema e, via la relazionehνij = Ei − Ej le frequenze di transizione, cioè
lo spettro di emissione e assorbimento del sistema.

Osservazione. Se il sistema ammette un punto di equilibrio, la traiettoriap = 0, q = qeq

è classicamente permessa. La regola di quantizzazione

J =
∮

pdq = nh (1.186)

dice che questa stessa traiettoriaè quantisticamente permessa, e corrisponde al numero
quanticon = 0. QuindiE = Emin è in questo caso l’energia dello stato fondamentale del
sistema.

1.13.1 Esempi.

In questa sezione presentiamo, in modo succinto, alcuni applicazioni elementari dei con-
cetti espressi nel paragrafo precedente. Questi esempi dovrebbero chiarire alcuni punti
di interesse fisico, il lettore che voglia approfondire gli aspetti formali può consultare il
paragrafo 1.E.

Rotatore.

È il modello gìa visto per la schematizzazione di un tipo di rotazione per una molecola
biatomica, meccanicamente corrisponde ad una rotazione attorno ad un asse, l’assez per
convenzione, di un sistema rigido con momento di inerziaI, propriamenteIzz. L’energia
è puramente cinetica:

Ecin =
1
2
Iϕ̇2 ⇒ H =

1
2I

p2
ϕ pϕ = Iϕ̇ (1.187)
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ϕ indica l’angolo azimutale, ciòe descrive la rotazione attorno az. L’Hamiltonianaè ciclica
nella variabileϕ, quindipϕ è una costante del moto,è il momento angolare lungo l’assez.
La variabile d’azioneJ si calcola immediatamente:

J =
∮

pϕdϕ = 2πpϕ (1.188)

e la procedura di quantizzazioneè data da

J = nϕh pϕ = nϕ
h

2π
E =

~2

2I
n2

ϕ (1.189)

Come gìa accennato nel paragrafo 1.11.3 questi livelli energetici si accordano con l’eviden-
za sperimentale di uno spettro a bande per le molecole. Vogliamo qui sottolineare un punto:
la variabileϕ è un angolo, quindi il numero interonϕ può essere sia positivo che negativo,
ciò corrisponde al fatto che allo stesso valore dell’energia corrispondono, genericamente,
due orbite: la rotazione oraria e quala antioraria. Se chiamiamostato l’orbita quantistica
selezionata dalle regole di selezione, possiamo dire che ogni livello energetico (1.189)è
doppiamente degenere, cioè 2 stati corrispondono allo stesso livello, eccetto il livello con
nϕ = 0. La degenerazione,gn, del livello è importante perch̀e da una parte determina
l’equilibrio statistico via la distribuzione di Boltzmann:

pn = gne−En/kT

dall’altra, come vedremo, influenza l’intensità delle righe spettrali.
Classicamente ad ogni momento angolare si può associare un momento magnetico:

µ = kL (1.190)

quindi lo stesso sistema, immerso in un campo magneticoB diretto lungo l’assez, ha
un’Hamiltoniana

H =
1
2I

p2
ϕ − kBpϕ (1.191)

La variabilepϕ è ancora ciclica e, al primo ordine inB l’energiaè data da

E =
~2

2I
n2

ϕ − kB~nϕ (1.192)

Vediamo quindi che la degenerazione viene rimossa introducendo un campo magnetico,
ogni livello si scinde due livelli,E0

n±kB~|nϕ|. La scissione dei livelli e la corrispondente
modifica dello spettro prende il nome dieffetto Zeemaned avremo occasione di riparlarne
in seguito. La cosa importante per il momentoè notare che la degenerazione può essere ri-
mossa tramite l’introduzione di un campo esterno, quindi il numero di stati ha un significato
fisico.

Oscillatore armonico.

È un sistema che abbiamo analizzato più volte. L’Hamiltonianàe

H(q, p) =
p2

2m
+

1
2
mω2q2 (1.193)

Quindi
p = ±

√
2mE −m2ω2q2 (1.194)

Il moto è oscillatorio, i punti di inversione sono dati da

q1 = −
√

2E

mω2
q2 =

√
2E

mω2
|q1| = |q2| = qL = Ampiezza (1.195)



64 CAPITOLO 1. LA NASCITA DELLA MECCANICA QUANTISTICA.

Si ricava immediatamente

J = 2
∫ q2

q1

√
2mE −m2ω2q2dq = 4

E

ω

∫ +1

−1

√
1− x2dx =

2πE

ω
≡ E

ν
(1.196)

conν ≡ ω/2π. Segue l’ormai nota legge di quantizzazione

E = H(J) = νJ E = nhν n ∈ N, n ≥ 0 (1.197)

Notiamo che in questo cason ≥ 0, essendo il moto un’oscillazione.È facile anche scrivere
le soluzioni delle equazioni del moto

ẇ =
∂H

∂J
= ν w = νt + δ (1.198)

Dalle equazioni precedenti, vedi in particolare la (1.184), o semplicemente ricordando la
soluzione generale per un oscillatore armonico, si può ricavare:

q = qL cos(2πw) p = mωqL sin(2πw) (1.199)

Notiamo che dalla (1.197) e dalla (1.195) segue

qL =

√
J

πmω
⇒ q =

√
J

πmω
cos(2πw) (1.200)

Le (1.199) sono particolarmente interessanti perchè permottono di calcolare immediata-
mente le medie temporali delle variabili dinamiche, trasformando l’integrale sul tempo in
un integrale sulla variabile angolarew, o, come si usa dire, in un integrale sullefasi.

dw = νdt =
dt

T
⇒ f =

1
T

∫ T

0

f(q, p)dt =
∮

f(q, p)dw

In particolare si ha

q2 =
1
2
q2
L =

E

mω2
q4 =

3
8
q4
L =

3
2

E2

m2ω4
(1.201)

Oscillatore anarmonico.

Consideriamo ora il sistema descritto da un’Hamiltoniana

H =
p2

2m
+

1
2
mω2q2 + λq4 (1.202)

Questoè uno dei pìu semplici sistemi non armonici, nel senso che il periodo del moto
dipende dall’ampiezza di oscillazione, cioè dall’energia. Abbiamo

p = ±

√
2m

(
E − 1

2
mω2q2 − λq4

)
(1.203)

Il periodo, esatto, del sistemaè dato da

T =
∮

dq

v
= m

∮
dq

p
= 2m

∫ q2

q1

dq

p
(1.204)

doveq1, q2 sono i due zeri del radicando nella (1.203), cioè i punti di inversione del moto.
Proviamo a stimare, per piccoli valori diλ, la variazione dei livelli energetici. La

variabile di azioneJ è sempre data dalla (1.179)

J(E, λ) = 2
∫ q2(λ)

q1(λ)

p(E, λ)dq (1.205)
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Abbiamo indicato esplicitamente la dipendenza daλ. Per piccoliλ la variazione diJ è,
dalla definizione di integrale:

δJ ' 2 [p(q2)δq2 − p(q1)δq1] + 2
∫ q2

q1)

∂p

∂λ

∣∣∣∣
λ=0

λdq (1.206)

In questa espressioneq1, q2 etc. sono le espressioni calcolate conλ = 0. Il termine di
bordo, il primo, nella (1.206) si annulla, perchè nei punti di inversione l’impulsòe nullo,
quindi, effettuando la derivata rispetto aλ

δJ ' −2
∫ q2

q1

dq

p

1
2
2mλq4 = −λ

∮
dq

v
q4 = − λ

ν0
q4 (1.207)

ν0 = 1/T0 = ω/2π è la frequenza imperturbata dell’oscillatore armonico, che in questa
approssimazione può essere usata al posto del periodo vero, essendo l’espressione (1.207)
già di ordineλ. Usando la (1.201)

J =
E

ν0
+ δJ =

E

ν0
− 3

2
λ

ν0

E2

m2ω4

Invertendo questa relazione si ottiene, allo stesso ordine inλ,

E ' Jν0 +
3
2
λ

E2

m2ω4
' Jν0 +

3
2
λ

J2

(2πm)2ω2
(1.208)

I livelli quantizzati sono allora

En = nhν0 +
3
2
λ

n2h2

(2πm)2ω4
(1.209)

La (1.208)è il primo esempio non banale in cui la frequenza classica del moto, e quindi il
periodo, dipende daJ :

ẇ = ν =
∂H

∂J
= ν0 + 3λ

J

(2πm)2ω2
(1.210)

Il lettore pùo verificare che lo stesso risultato si può ottenere sviluppando l’espressione
(1.204).

Una generalizzazione del modello (1.202) suggerisce alcune interessanti osservazioni:

H =
p2

2m
+

1
2
mαq2 + λq4 (1.211)

Oraα è un parametro, positivo, negativo, o nullo.

Caso 1:α > 0. La situazionèe qualitativamente uguale a quella già vista.

Caso 2:α = 0. In questo caso i punti di inversione sono in±q0; q0 = (E/λ)1/4 e si ha

J = 2
√

2mE

∫ q0

q0

√
1−

(
q

q0

)4

dq = 4
√

2mE|q0|
∫ 1

0

√
1− x4dx = C1E

3/4 (1.212)

quindi per i livelli quantizzati:E ∼ n4/3, uno spettro completamente diverso dall’oscilla-
tore armonico.



66 CAPITOLO 1. LA NASCITA DELLA MECCANICA QUANTISTICA.

Caso 3:α < 0. Questòe un caso molto interessante.

Per α < 0 l’Hamiltoniana ammette due
punti stazionari di minimo, perλ > 0, l’e-
nergia potenziale ha la forma di una “dop-
pia buca”, come illustrato schematicamen-
te nella figura accanto. Quindi tutti i livel-
li energetici compatibili con la condizione
di quantizzazione e conE minore del mas-
simo locale della curva, sono doppiamente
degeneri, e corrispondono al fatto che ci so- -1.5 -1 -0.5 0 0.5 1 1.5
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no due orbite con la stessa energia, una descrive un’oscillazione attorno al minimo di
destra, l’altra un’oscillazione attorno al minimo di sinistra. La degenerazione deriva dal-
la simmetriaU(−x) = U(x) dell’energia potenziale. Che la degenerazione sia reale lo
si capisce dal fatto che se aggiungiamo un termine che rompe la simmetria, comekx,
evidentemente i livelli energetici delle due buche cambiano.

Le considerazioni svolte valgono in particolare per lo stato fondamentale, che, come
visto nella (1.186) corrisponde al valoreE = Emin. Quindi lo stato fondamentalèe dop-
piamente degenere. La situazione “sperimentale” quindi dovrebbe essere: si hanno dei
“doppietti” di stati, e in corrispondenza dei multipletti di righe spettrali, questi multipletti
collassano ad una singola riga in assenza di campi esterni che rompono la simmetria. Una
analoga situazione si presenta ovviamente in qualunque potenziale con minimi degeneri:
lo stato fondamentale in particolare dovrebbe essere degenere.

Una situazione assimilabile ad un potenziale del tipo descritto dalla Hamiltoniana (1.211)
si ha nella descrizione di alcune oscillazioni della molecola di ammoniaca, come vedremo
nello studio della meccanica quantistica. La situazione sperimentaleè completamente di-
versa: lo stato fondamentalenonè degenere, anche in assenza di campi esterni: si hanno
due livelli “vicini” e le transizioni al fondamentale danno luogo ad un doppietto di righe
spettrali. Come vedremo esiste un effetto tipicamente quantistico, dettoeffetto tunnel, che
permette un “passaggio” da una parte all’altra del potenziale, distruggendo la classifica-
zione classica delle orbite. Anche se all’epoca, 1913-1925, questo effetto non era ancora
stato messo in luce,̀e proprio la sua esistenza che sta alla base di molti “fallimenti” della
descrizione alla Bohr-Sommerfeld degli spettri, soprattutto quelli molecolari.

C’è un altro punto, pìu sottile ma fondamentale, che distinguerà la meccanica quanti-
stica dalla teoria incompleta che stiamo analizzando: in tutti i modelli che abbiamo visto
l’energia dello stato fondamentale corrisponde al minimo classico dell’energia. Come ve-
dremo in meccanica quantistica si ha normalmente una “energia di punto zero” diversa da
quella classica. Modelli più o meno giustificati che suggerivano un’energia di questo tipo
si trovano gìa in uno dei modelli di Planck, in cui si scrive l’energia di un oscillatore22 nella
formaEn = (n + 1

2 )hν. La ragione profonda che fissa l’energia dello stato fondamenta-
le sar̀a data solo dalla meccanica quantistica attraverso il principio di indeterminazione di
Heisenberg.

1.14 Moti quasi periodici.

La generalizzazione dell’analisi precedente al caso di più gradi di libert̀a presenta molti
problemi, sia pratici sia di principio.

Il contenuto di questo paragrafoè leggermente più astratto rispetto al resto della trattazione e pratica-
mente nessuno dei risultati riportatiè provato. L’unico risultato che useremo nel prossimo paragrafo

22Lo zero dell’energia di un sistemi di oscillatori ha importanza perchè contribuisce, ad esempio, al calore di
vaporizzazione in un solido, quindi la questione nonè accademica.
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è il risultato:

Ji =

∮
dqipi(qi, F ) (1.213)

che indica le variabili da quantizzare, per i sistemi che prenderemo in esamo. Sono proprio gli
integrali di Sommerfeld che abbiamo già incontrato.F sono costanti del moto.

Il lettore che voglia approfondire l’argomento può consultare dei manuali di meccanica analitica
e i libri riportati in bibliografia [Born25, Arnold, FaMa, Gal86, Graffi]. Il libro di Born in particolare
è interamente dedicato alla vecchia teoria dei quanti nella formulazione di Bohr-Sommerfeld. Un
articolo utile da consultarèe quello di Einstein[Ein17b].

Innanzitutto dobbiamo avere almeno un’idea dicosapossiamo identificare con uno sta-
to atomico stazionario. Nel caso unidimensionale un sistema “legato” era automaticamente
periodico, quindi era naturale cercare fra le orbite periodiche quelle da selezionare come
stati quantistici stabili. Un sistema con più di un grado di libert̀a in generale noǹe perio-
dico, ciòe l’orbita classica noǹe una curva chiusa, quindi questo criterio viene a cadere.
Prima di presentare una soluzione cerchiamo di farci un’idea intuitiva della cosa utilizzan-
do il principio di Ehrenfest. Consideriamo un oscillatore tridimensionale o in generale un
sistema di oscillatori coǹgradi di libert̀a:

H =
∑̀
i=1

Hi(pi.qi) ; Hi(pi.qi) =
1

2mi
p2

i +
1
2
miω

2
i q2

i (1.214)

Il sistema (1.214)̀e semplicemente una “copia” di quello unidimensionale, quindi per i
singolioscillatori possiamo introdurre delle variabili azione angoloJi, wi e scrivere

Ji =
∮

pidqi (1.215)

La posizione (1.215) ha ora però un significato alquanto diverso da quella unidimensionale:
ad una variazione ciclica della coordinataqi non corrisponde più un periodo del moto.

La soluzione delle equazioni del moto del sistema (1.214)è notoriamente:

qi = Ai

(
ei(ωit+δi) + e−i(ωit+δi)

)
(1.216)

Se le frequenzeνi = ωi/2π non sono relativamente razionali il motononè periodico, si ha
l’analogo multidimensionale delle note figure di Lissajous per un oscillatore planare.

Consideriamo le fasi, in unità di2π, dell’espressione (1.216): sono le variabili angolariwi. Per ogni
variabilewi, i puntiwi ewi +1 sono identificati, rappresentano infatti la stessa variabileqi. In queste
variabili il moto si svolge su un ipertoroT `, ad esempio in due dimensioni su un quadrato di lato 1
con i lati opposti identificati. L’evoluzionèe data da:

wi = wi(0) + νit i = 1, . . . , ` (1.217)

Consideriamo come esempio il caso` = 2. Se almeno una delle due frequenzeè nulla il moto
chiaramentèe periodico. Se nessuna delle due frequenze si annulla si possono avere due casi:

a) Il rapportoν2/n1 è un numero razionale, diciamok2/k1, alloraè chiaro che dopo un tempo
t = k1/ν1 si ha

ν1t = k1 ∈ N ν2t =
ν2

ν1
k1 = k2 ∈ N

quindi il motoè periodico.

b) Il rapportoν2/n1 non è un numero razionale. In questo caso dopo ogni periodo della prima
variabile,T1 = 1/ν1, la variabilew2 prende valoriw2 = kν2/ν1, maè ben noto dall’analisi
che l’insieme{[kα]} ([x] ≡ parte frazionria dix) è denso in[0, 1], seα è irrazionale. Quindi
l’orbita “riempie” tutto il quadrato[0, 1]× [0, 1].
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La situazionèe schematizzata nella figura 1.14. Nel caso generaleè ovvio che se il motòe periodico
esiste una sola frequenza “vera” quindi ci devono essere` − 1 relazioni fra le` frequenzeνi, se ci
sono` − k relazioni solok frequenze saranno indipendenti. Si può dimostrare il seguente teorema,
vedi es.[FaMa] Chiamiamomodulo di risonanza,Mν l’insiemek ∈ Z` (cioè vettori con componenti
intere) tale chek · ν = 0. Allora

1) L’orbita è periodica se e solo se dimMν = `− 1, esistono ciòe `− 1 relazioni indipendenti,
suZ, fra le frequenze. in questo caso si parla di risonanza completa.

2) Se dimMν = 0, cioè senon esistonorelazioni razionali fra le frequenze, l’orbitàe densa in
T `.

3) Sed = dimMν , 0 < d < `− 1, l’orbita è densa su un toro di dimensione`− d immerso in
T `.
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Figura 1.8: Triettorie con frequenzeν1, ν2) rispettivamente(1, 1/1.4) e (1, 1/
√

2) dise-
gnate per un tempo totale dit = 50. L’asterisco indica il punto iniziale delle traiettorie. Si
ha periodicit̀a nel primo caso, non periodicità nel secondo.

Una generelazzazione del sistema (1.214)è data dai sistemi conHamiltoniana sepa-
rabile, cioè della forma (1.214), anche se non si tratta di un oscilatore armonico. L’unica
differenzaè che in questo caso le variabili dinamiche, ed in particolare leq, p non sono
funzioni armoniche delle variabiliwi, esattamente come accadeva nel caso unidimensio-
nale. Una qualunque variabile dinamicaè per̀o una funzioneF (w1, . . . , wn), periodica in
queste variabili, essendo periodiche le variabiliqi, pi. Esiste allora uno sviluppo in serie di
Fourier multipla, del tipo

F (J ,w) =
∑
τ

Fτ (J)ei(τ ,w) τ = (τ1, . . . τ`) ∈ Z` (1.218)

Nella (1.218) sìe posto(τ ,w) = τ1w1 + . . . + τ`w`. Funzioni del tipo (1.218) prendono
il nome di funzioni multiperiodicheo condizionatamente periodiche23. Per Hamiltoniane
separabili, come la (1.214) le singole variabiliqi sono periodiche inwi, quindi la scrittura
(1.215)è ben definita, il ciclo si riferisce ad un ciclo della variabileqi, o. il cheè lo stesso,
ad un periodo della variabilewi.

È allora naturale, sempre seguendo il principio di Ehrenfest, assumere come sistemi
“quantizzabili”, in cui ciòe sia possibile identificare stati stazionari quantistici, sistemi de-
scritti da una dinamica multiperiodica, in cui esistono cioè delle variabiliwi periodiche, ed
i corrispondenti momenti coniugati, le azioniJi.

23Per maggiori dettagli possono essere consultati i testi [Born25, FaMa]
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Una classe un p̀o più vasta dei modelli con Hamiltoniana separabile si ottiene ricordan-
do la definizione della funzione di trasformazione di Hamilton-Jacobi. Quello che occorre
trovare, per definire delle variabiliwi, Ji, è un integrale completo della associata equazione
di Hamilton-Jacobi24:

H

(
qi,

∂S

∂qi

)
= E (1.219)

Le nuove variabili canoniche saranno definite esattamente come nel caso unidimensionale

pi =
∂S

∂qi
wi =

∂S

∂Ji
(1.220)

Supponiamo che l’equazione (1.220) ammetta una soluzione del tipo

S =
∑̀
i=1

Si(qi,F ) F1 . . . F` = costanti (1.221)

ammetta ciòe una soluzione per separazione di variabili. In questo caso

pi =
∂S

∂qi
=

∂Si

∂qi
= p(qi,F ) (1.222)

Le funzionipi sono ancora funzioni di una singola variabile, questa variabileè multiperio-
dica nellewi, ma ha ancora senso considerare la variabile canonicaJ , ed anche in questo
caso si pùo dimostrare che

Ji =
∮

pidqi (1.223)

Il caso di un’Hamiltoniana separabileè un caso particolare di quanto visto ora, leSi in quel
caso possono essere considerate soluzioni delle` equazioni distinte:

Hi

(
qi,

∂Si

∂qi

)
= Fi E =

∑
Fi

Ciò che dovrebbe trasparire dagli esempi precedentiè che una possibilità per realizzare
un moto condizionatamente periodico con` gradi di libert̀a è avere uno spazio delle con-
figurazioni, variabiliwi, con la topologia di un ipertoro,T `, e ` costanti del motoJi, che
possano fungere da variabili canonicamente coniugate.

Un importante esempio di sistemi di questo tipo, in meccanica classica,è quello dei
sistemi integrabili canonicamenteche sono per la precisione individuati dal teorema di
Liouville-Arnold, vedi ad esempio le referenze[Arnold, FaMa, Gal86, Graffi].

Teorema SiaH(p, q) un’Hamiltoniana coǹ gradi di libert̀a canonici. Supponiamo che:

1) Il sistema abbià integrali primi del moto,Fi(p, q) indipendenti e in involuzione,
cioè con parentesi di Poisson nulla{Fi, Fj} = 0.

2) Le superfici di livello
Fi(p, q) = Ji (1.224)

siano variet̀a compatte, connesse e senza bordo.

Allora:
È possibile associare ad ogni integrale primoFi una variabile angolo,wi in modo tale che:

24Si chiama integrale completo di un’equazione differenziale del primo ordine in` variabili una soluzione che
dipende dà costanti arbitrarie.
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a) Le variabili(w,J) sono canoniche e sono legate alle(p, q) da una trasformazione
canonica.

b) L’Hamiltoniana, dopo la trasformazioneè della formaH = H(J).

Prima di andare avanti sottolineiamo che fino agli anni attorno al 1960 i soli sistemi inte-
grabili esplicitamente conosciuti erano quelli a variabili separabili, questo in qualche modo
spiega perch̀e in (quasi) tutti i lavori sulla quantizzazione si siano trattati solo questo tipo
di sistemi.

La procedura di quantizzazione può essere sintetizzata in questo modo.

Quantizzazione. La quantizzazione di Bohr-Sommerfeld consiste nel restringere la va-
riazione delle variabili di azione a multipli interi dih, cioè

Ji = nih ⇒ E = E(nih) (1.225)

Non è detto che le regole di quantizzazione (1.225) siano tutte indipendenti, e questa
situazioneè la generalizzazione del caso di degenerazione riscontrato per gli oscillatori
armonici. Le frequenze di oscillazione del sistema sono al solito definite da

νi = ẇi =
∂H

∂Ji
(1.226)

Supponiamo che esistano`− r relazioni del tipo

(k,ν) = 0 k ∈ Z` (1.227)

alloraè possibile, tramite una trasformazione canonica, eliminare`− r variabili J dall’Ha-
miltoniana, che cosı̀ risulta funzione di solor variabili, solo queste quindi forniscono un
insieme indipendente di quantizzazioni. In pratica comunqueè più semplice quantizzare
tutte le variabiliJ e eliminare a posteriori quelle superflue, degli esempi saranno forniti in
seguito.

Per completezza e per uso futuro notiamo che in generale le frequenzeν sono funzioni
delle variabiliJ . Se la relazione (1.227) avviene identicamente, cioè per ogni valore delle
variabili J si parla didegenerazione intrinseca, se avviene solo per particolari valori diJ
di degenerazione accidentale.

È utile infine esprimere le variabiliJ in termini delle variabili di partenzap, q. La
costruzionèe puramente geometrica, ne diamo un accenno. Consideriamo la forma diffe-
renziale

Ω =
∑

i

pidqi (1.228)

questàe una formachiusaedè invariante sotto trasformazioni canoniche,è un caso parti-
colare della forma di Poincaré-Cartan. Per i nostri scopi attuali basta notare che se esiste la
trasformazione canonica che porta dalle variabilip, q alle variabiliJ,w, significa che esiste
una funzioneS(q, J) tale che ∑

i

pidqi =
∑

i

∂S

∂qi
dqi (1.229)

quindi laΩ è un differenziale totale e, per il teorema di Stokes, l’integrale lungo due curve
chiuse qualunqueγ1, γ2 deformabili l’una nell’altràe lo stesso∮

γ1

∑
i

pidqi =
∮

γ2

∑
i

pidqi (1.230)

Quindi l’integrale su tutte le curve contraibili ad un puntoè nullo. Le curve chiuse corri-
spondono per̀o a cammini chiusi sullo spazio dellew, cheè un toro. Su un toro esistono
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cammini chiusi chenon sonocontraibili, sono tutti quelli che si “avvolgono” sui cerchi
T che definiscono le singole variabiliwi. Esistonò (r < ` nel caso di degenerazione)
cammini indipendentiγi, corrispondenti allè variabili wi, e si ha

Ji =
∮

γi

∑
j

pjdqj cammino:

{
0 ≤ wi ≤ 1
wj = cost. perj 6= i

(1.231)

Nel caso pìu semplice di variabili separabili la (1.231) si riduce a

Ji =
∮

dqipi(qi,F ) (1.232)

perch̀e ogni variabileqi dipende dalla sola variabilewi. Notiamo che, come probabilmente
il lettore gìa s̀a dagli studi di meccanica analitica, la scrittura (1.231)è invarianteper tra-
sformazioni canoniche, mentre la (1.232) no, vale appunto solo in un sistema di coordinate
in cui l’equazione di Hamilton-Jacobiè separabile. L’affermazione (1.231) quindi risponde
alla critica di Poincaŕe sollevata durante il congresso Solvay dal 1911 e a cui abbiamo fatto
cenno nel paragrafo 1.12. Il primo ad avere scritto la più generale (1.231) al posto della
(1.232)è stato Einstein[Ein17b].

1.14.1 Invarianza adiabatica.

La dimostrazione dell’invarianza adiabatica delle quantitàJi nel caso multiperiodicòe piut-
tosto delicata. Una dimostrazione parziale, sulla linea di quella delineata per sistemi perio-
dici nel paragrafo 1.E.1, può essere trovata nel libro di Born[Born25], o nel testo[FaMa],
dove vengono fornite referenze per una dimostrazione completa. Qui vogliamo solo sotto-
lineare alcuni aspetti fisici della questione.

Per avere invarianza adiabatica il sistema deve “seguire” la variazione dei parametri
esterni, nel senso che istante per istante le variabiliJi devono essere quelle di “equilibrio”,
cioè per parametri esterni fissi, a meno di correzioni trascurabili. Per usare una immaginifi-
ca rappresentazione di Bohr, i parametri esterni devono variare lentamente in modo da dare
al sistema il tempo di “visitare” tutti i punti dell’orbita rilevanti per il calcolo degli integrali
di azione come quelli nelle equazioni (1.231),(1.232). Un modo alternativo di dire la stessa
cosaè affermare che i modi del sistema devono essere veloci rispetto a quelli lenti della
variazione dei parametri. Nel caso unidimensionale questo significava che la frequenza di
oscillazione doveva essere non nulla, in modo da rendere il periodo del moto piccolo ri-
spetto al tempo caratteristico di variazione dei parametri. Questo, a maggior ragione, deve
valere nei moti a pìu gradi di libert̀a, con la complicazione che ci sono molti modi per pro-
durre moti “lenti”. In particolare quando siè in condizioni di degenerazione(k,ν) = 0,
sicuramente esiste un modo a frequenza nulla, quello appunto corrispondente alla combina-
zione degenere delle frequenze. Questo significa che nella variazione dei parametri esterni
non bisognapassare attraverso regioni di degenerazione, altrimenti di sicuro il principio
adiabatico di Ehrenfest viene a cadere.

Questo fatto nel caso multiperiodico ha importanti conseguenze fisiche. Consideriamo
un sistema, ad esempio un atomo di idrogeno, immerso in un campo magnetico diretto
lungo l’assez. Come vedremo in assenza di campo magnetico il sistemaè degenere, la
degenerazione viene rimossa dal campo magnetico e questo porta alla quantizzazione, con
certe variabili azione angolo etc. Questa procedura implica una separazione di variabili
connessa all’assez, la direzione del campo. Per una direzione diversa le variabili sareb-
bero diverse e corrispondentemente gli “stati”, cioè le orbite classiche selezionate quanti-
sticamente, sarebbero diversi. Possiamo ora immaginare di diminuire il campo magnetico
fino a renderlo nullo e quindi farlo crescere nuovamente ma in una direzionen′ diversa da
quella precedente. Per quanto detto gli stati quantistici del sistema sono cambiati, e questo
senza far intervenire processi di emissione o assorbimento di radiazione. Il motivo per cui
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questa transizione fra stati può avvenireè il fatto che all’annullarsi del campo il sistema
diventa degenere, quindi la variazione del campo non può più considerarsi una variazione
adiabatica.

Al solito il meccanismo di cambiamento dello stato nonè descritto dalla dinamica che
stiamo formulando, ma, a differenza delle transizioni di tipo elettromagnetico, qui non si
può attribuire l’incompletezza della descrizione all’ignoranza del meccanismo di interazio-
ne materia-radiazione: il processoè puramente meccanico, nonostante ciò la transizione di
stato noǹe spiegata.

Vedremo in seguito che meccanismi analoghi provocheranno vere e proprie inconsi-
stenze nella teoria.

1.15 Sistemi integrabili: oscillatore.

In questo paragrafo daremo un paio di esempi espliciti di sistemi integrabili su cui appli-
care le tecniche viste nel paragrafo 1.14. Indicheremo quando possibile le conclusioni che
possono essere estese a tutti i sistemi dello stesso tipo.

Cominciamo da un esempio molto semplice che dovrebbe chiarire la relazione fra dege-
nerazione, numero delle condizioni di quantizzazione etc.: un oscillatore bidimensionale,
cioè con due gradi di libertà,` = 2. In coordinate cartesiane l’Hamiltoniana ha la forma

H =
1

2m
p2

x +
1
2
mω2

1x2 +
1

2m
p2

y +
1
2
mω2

2y2 (1.233)

Questo sistema ha due costanti del moto ovvie:

Hx =
1

2m
p2

x +
1
2
mω2

1x2 Hy =
1

2m
p2

y +
1
2
mω2

2y2 (1.234)

e si dimostra subito che sono in involuzione, cioè {Hx,Hy} = 0. Questàe una propriet̀a
valida per qualunque sistema con Hamiltoniana separabile:

H =
∑̀
i=1

Hi(pi, qi) ⇒ Hi costanti del moto

Le equazioniHx,Hy = cost. descrivono delle ellissi, quindi sono superfici compatte e
senza bordo. Il sistema (1.233)è quindi integrabile. La soluzionèe naturalmente quella già
vista per il singolo oscillatore, v. paragrafo 1.13.1, che riportiamo qui per comodità:

Hx = νxJx x =
√

Jx

πmωx
cos(2πwx) wx = νxt + δx (1.235a)

Hy = νyJy y =

√
Jy

πmωy
cos(2πwy) wy = νyt + δy (1.235b)

E = Hx + Hy quantizzazione: Jx = hnx Jy = hny (1.235c)

Le variabili angolariwx, wy descrivono il toroT 2 di cui si parla nel teorema di Liouville-
Arnold.

Seνx, νy non sono relativamente razionali questo sistemanon ha altre costanti del
moto continue, a parte le funzionif(Jx, Jy). Infatti una qualunque variabile dinamicaè
del tipof(J ,w). Una costante del moto, per definizione,è costante sulle orbite. Siccome le
variabili di azioneJ sono costanti del moto possiamo considerarle costanti come argomenti
di f . Allora l’integrale del motof deve essere una funzione delle variabili angolariw.
Ma l’orbita del sistema, come abbiamo già visto, è densa sul toro, quindi se la funzione
continuaf è costante sull’orbita deve essere costante su tutto lo spazio, il che significa che
dipende solo daJ .
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Le equazioni del moto del sistema sono quattro equazioni differenziali del primo ordine, quindi per
ogni traiettoria esistono di sicuro 4 costanti del moto, corrispondenti ai valori iniziali delle variabili
q, p. Una delle costanti pùo essere riassorbita nella scelta dell’origine dei tempi, ne restano 3. Qualè
la terza costante nel nostro caso? Il ragionamneto appena fatto dimostra che questa costante nonè
un integrale primocontinuoe definito sul toroT 2. Il lettore pùo provare a scrivere questa costante.
Il discorso vale in generale: in un sistema meccanico esistono2` − 1 costanti del moto, nei sistemi
integrabili si hannò integrali primi, in situazione generica, in assenza cioè di risonanze, le altre
costanti del moto non sono integrali primi (continui), o meglio uniformi (cioè a un sol valore) sul
toro.

Caso degenere. Supponiamo che le due frequenzeνx, νy siano uguali, e indichiamo il
loro valore comune conν. In questo caso ovviamente si ha una dipendenza razionale fra le
frequenze

νx − νy = 0 (1.236)

e quindi si ha una degenerazione. Questo si manifesta in diversi modi, normalmente:

a) Una degenerazione intrinseca, indipendente dal valore delle azioni (come in questo
caso)è indice della presenza di una simmetria e di altre costanti del moto associate a
questa simmetria.

b) Esitono diversi sistemi di coordinate in cui l’equazione di Hamilton-Jacobiè separa-
bile.

c) Le variabili di azione compaiono nell’Hamiltoniana in una combinazione razionale.

Partiamo dall’ultimo punto. Dalla (1.235c) si ha, in questo caso:

H = ν(Jx + Jy) ⇒ ẇx = ν ẇy = ν (1.237)

Quindi anche se non lo avessimo saputo, dalle equazioni del moto discente direttamente
per le frequenze (che qui coincidono proprio con le frequenze proprie degli oscilatori):

νx − νy ≡ ẇx − ẇy = 0

cioè una relazione razionale. Vediamo che effettivamente possiamo eliminare una delle
varabili. Se effettuiamo la trasformazione canonica, che, cioè, lascia invariante le parentesi
di Poisson,

J̃1 = J1 + J2; J̃2 = J2; w̃1 = wx; w̃2 = −wx + wy (1.238)

l’Hamitoniana e le equazioni di evoluzione diventano rispettivamente

H = νJ̃1
dw̃1

dt
= ν

dw̃2

dt
= 0 (1.239)

Vediamo quindi che il toroT 2 si è ridotto ad un cerchio, quello descritto dalla variabilew̃1,
l’altra variabileè fissa. L’invariante rimasto,̃J1 è proprio

J̃1 = J1 + J2 =
∮

(pxdx + pydy) =
∫ 1

0

dw̃1

(
px

dx

dw̃1
+ py

dy

dw̃1

)
(1.240)

cioè proprio l’integrale della forma di Poincaré-Cartan sull’unico ciclo invariante rimasto,
cioè l’integrale suw̃1.
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Il lettore pùo constatare che le trasformazioni che permettono di eliminare le variabili ridondanti
possono essere cercate come trasformazioni canoniche generate da una funzione di trasformazione
F = AαβwαJ̃β , con le conseguenti leggi di trasformazione

Ji =
∂F

∂wi
w̃i =

∂F

∂J̃i

Già il fatto che con una trasformazione canonica si sia eliminata una delle due variabi-
li di azione dovrebbe essere un motivo sufficiente per capire che l’orbita quantistica va
selezionata con l’invariantẽJ1, mentre le singole azioniJx, Jy non hanno alcun signi-
ficato intrinseco. Se non bastasse possiamo sfruttare il punto b) nell’elenco precedente.
L’Hamiltoniana e l’equazione di Habilton-Jacobi hanno la forma

H =
1

2m
(p2

x + p2
y) +

1
2
mω2(x2 + y2)

E =
1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2
]

+
1
2
mω2(x2 + y2)

In entrambe le formèe ovvio che si ha invarianza sotto rotazioni e quindi si ha ancora un
sistema separabile dopo aver fatto la rotazione (cheè una trasformazione canonica){

x′ = x cos α + y sinα

y′ = −x sinα + y cos α

{
p′x = px cos α + py sinα

p′y = −px sinα + py cos α
(1.241)

Il lettore pùo facilemente verificare che con questa trasformazione

J ′x = cos2 αJx + sin2 αJy J ′y = cos2 αJy + sin2 αJx

quindi non ha alcun senso attribuire dei valori interi alle variabiliJx, Jy separatamente.
Jx + Jy, invece, resta invariante per rotazioni. Notiamo comunque che se si ha un sistema
per rompere la degenerazione con un campo esterno, che quindi obbligatoriamente nonè
invariante per rotazioni, ha senso scegliere delle direzionix, y in funzione dell’orientazio-
ne delle rottura della simmetria, in modo da avere dei “buoni numeri quantici” da usare
nel caso non degenere. Possiamo ad esempio immaginare un campo lungo l’assex che
cambi la frequenzaνx. Qui siamo proprio nella situazione adombrata nel paragrafo 1.14.1:
se cambiamo la direzione del campo esterno facendolo passare per lo zero abbiamo una
“transizione” non elettromagnetica fra stati quantistici. C’è per̀o un punto importante da
sottolineare: se rompiamo completamente la degenerazione ogni livello darà origine ad un
insieme di sottolivelli, questo numeronon deve dipenderedalle coordinate che abbiamo
usato per descrivere la situazione degenere, in altre parole la degenerazione del livello ha
un significato fisico, indipendente dalle coordinate usate. Nel nostro caso la quantizzazio-
ne di J̃1 dà luogo a dei livelli energetici della formaEn = hνn. Se usiamo le coordinate
cartesianex, y si han = nx + ny. la degenerazionèe allora data dal numero di modi in
cui un numero intero positivo o nullo può essere scritto come somma di due numeri dello
stesso tipo.nx può assumere i valorin− k conk = 0 . . . n, in corrispondenza il valore di
ny è fissato:ny = k, quindi la degenerazionèe

g(2)
n =

n∑
k=0

1 = n + 1 (1.242)

In modo analogo il lettore pùo verificare che nel caso tridimensionale

g(3)
n =

n∑
k=0

g
(2)
k =

(n + 1)(n + 2)
2

(1.243)
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Consideriamo ora il sistema degenere da un altro punto di vista, che metterà meglio
in luce le simmetrie del problema. Usiamo coordinate polarir, ϕ. Dall’espressione di
distanza infinitesimads2 = dr2 + r2dϕ2 segue che la lagrangiana del sistema si scrive

L =
1
2
m(ṙ2 + r2ϕ̇2)− U ⇒ pr =

∂L
∂ṙ

= mṙ pϕ =
∂L
∂ϕ̇

= mr2ϕ̇

da cui discende l’Hamiltoniana25:

H =
1

2m
p2

r +
1

2mr2
p2

ϕ +
1
2
kω2r2 (1.244)

L’Hamiltoniana (1.244) noǹe separata, ciòe somma di Hamiltoniane indipendenti, ma
l’equazione di Hamilton-Jacobi

E =
1

2m

[(
∂S

∂r

)2

+
1
r2

(
∂S

∂ϕ

)2
]

+
1
2
mω2r2 (1.245)

è separabile. Cerchiamo infatti una soluzione nella forma

S = Sr(r) + Sϕ(ϕ) ⇒ E =
1

2m

[(
∂Sr

∂r

)2

+
1
r2

(
∂Sϕ

∂ϕ

)2
]

+
1
2
mω2r2 (1.246)

La variabileϕ è ciclica, quindi tutta la dipendenza daϕ nella (1.246)è contenuta nella
derivata diSϕ, che quindi deve essere costante. D’altronde

∂Sϕ

∂ϕ
= pϕ (1.247)

cheè in effetti costante per le equazioni del moto. In generale se una variabileφ è ciclica,
l’azione dipende daφ nella formaφpφ. La variabile di azione associataè quindi

Jϕ =
∮

dϕpϕ = 2πpϕ (1.248)

come nel caso del rotatore che abbiamo già incontrato nel paragrafo 1.13.1. Con la soluzio-
ne (1.247) l’equazione di Hamilton-Jacobi si riconduce ad un’equazione unidimensionale
per la variabiler:

∂S

∂r
= pr = ±

√
2mE −

p2
ϕ

r2
−m2ω2r2 (1.249)

Si pùo calcolare alloraJr

Jr =
∮

prdr =
πE

ω
− π|pϕ| =

E

2ν
− |Jϕ|

2
⇒ E = ν(2Jr + |Jϕ|) (1.250)

Il calcolo dell’integrale (1.250)̀e indicato nel paragrafo 1.F.
Il momento coniugato aϕ, pϕ, nonè altro che la componentez del momento angolare,

cioè
pϕ = xpy − ypx (1.251)

Usando le (1.235) si pùo calcolareJϕ in termini diJx, Jy:

Jϕ =
2
ν

√
JxJy sin(wx − wy)

25Lo stesso risultato, come il lettore può verificare si pùo anche ottenere con una trasformazione canonica di
coordinate direttamente dalla Hamiltoniana scritta in coordinate cartesiane.
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il che conferma ancora una volta che assegnare un significato particolare ai singoliJ nel
caso degenere non ha senso, seJx, Jy sono interi, non lòeJϕ.

È interessante comunque controllare la degenerazione dello stato, che come abbiamo
detto non deve dipendere dalle coordinate scelte.ϕ è un angolo, quindiJϕ può assumere
valori sia positivi che negativi. InveceJr ≥ 0. Consideriamo ora

En = nhν = hν(2nr + nϕ)

si hanno due casi

a) n pari,n = 2k, alloranϕ deve essere pari.nr può assumere tutti i valori0, 1, . . . k,
corrispondentemente si hanno i valori dinϕ, tutti con molteplicit̀a 2 ( compare|nϕ|),
eccettonϕ = 0, quindi la molteplicit̀a è

2× (#nr 6= 0) + 1 = 2k + 1 = n + 1

b) n dispari,n = 2k+1, corrispondentementenϕ deve essere dispari.nϕ può assumere
i valori 1, 3, . . . , 2k + 1, cioè (k + 1) valori ognuno con molteplicità 2. nr è fissato
di conseguenza. La molteplicità è dunque

2(k + 1) = (2k + 1) + 1 = n + 1

Il conteggioè quindi consistente con quanto ottento usando le coordinate cartesiane. Il
punto interessantèe che per gli stati pari si hanno solonϕ pari, per quelli dispari solonϕ

dispari. Come vedremo studiando le rappresentazioni del gruppo delle rotazioni, questoè
dovuto alla invarianza del sistema sotto inversione spaziale.

Notiamo infine che, comèe ben noto dalla meccanica analitica,pϕ è un generatore di
simmetria,è il generatore delle rotazioni attorno all’assez. È facile verificare, usando ad
esempio le espressioni esplicite diHx,Hy, pϕ in coordinate cartesiane, che

{pϕ,Hx} 6= 0 {pϕ,Hy} 6= 0 (1.252)

cioè la costante del motoJϕ nonè in involuzione con le costantiJx, Jy. Questòe proprio
il motivo per cui l’orbita non riempie in modo denso il toroT 2: il moto si deve svolgere
sulla supeficiepϕ = cost., chèe una superficie regolare, questa superficie, interseca le altre
due superficiJx = cost. eJy = cost., l’intersezione di tre (iper)superfici nello spazio delle
fasi a 4 dimensioni avviene su una curva regolare. Il fatto di non essere in involuzione con
le altre costanti del moto significa geometricamente che la superficiepϕ = cost. “taglia”
tasversalmente le altre due.

1.16 Sistemi integrabili: atomo di idrogeno.

In questo paragrafo studieremo la quantizzazione di un sistema composto da un elettrone
che si muove in un campo centrale di forze, in particolare un campo di forze coulombiano.

Per avere un modello fisico concreto possiamo pensare ad un nucleo di massa infinita,
eventualmente circondato da un “nuvola di elettroni” che creano uno schermo a simmetria
sferica alla carica: l’elettrone che stiamo considerando si muove in questo campo di forze.
Discuteremo pìu avanti le approssimazioni fisiche del modello.

L’Hamiltoniana si scrive:

H =
1
2µ

p2 + U(r) (1.253)

Abbiamo indicato la massa conµ, in un sistema a due corpi rappresenterà la massa ridotta
del sistema, in ogni caso usiamo questa notazione perchè riserveremo la letteram per
indicare un particolare numero quantico relativo al momento angolare.
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Questo sistemàe invariante per rotazioni, la forzaè centrale e, comèe sicuramente noto
al lettore, il momento angolare rispetto al centro di forzaè conservato:

dL

dt
= r ∧ F = 0 ⇒ L = r ∧ p = cost. (1.254)

Quindi l’orbita si svolge su un piano, quello perpendicolare al vettoreL, cheè una costante
del moto. Possiamo scegliere un sistema di riferimento in modo che l’orbita giaccia su un
piano coordinato, ad esempio il pianox, y. Questo ci basta per ricavare l’energia del siste-
ma ed i livelli energetici, ma in questo modo perdiamo l’informazione sulla direzione del
vettoreL nello spazio. Come abbiamo visto negli esempi precedenti una simmetriaè nor-
malmente legata ad una degenerazione dei livelli, e questa viene rimossa dall’introduzione
di campi esterni. Se, ad esempio, introduciamo un campo elettrico lungo l’assez, per de-
scrivere il sistema dobbiamo avere un’informazione sull’inclinazione del piano dell’orbita
rispetto a questo asse, se usiamo delle coordinate “adattate” all’orbita questa informazione
viene persa. Logicamente si avrebbe lo stesso tipo di situazione se si trattasse il moto di
più di un elettrone: noǹe detto che le orbite delle due particelle siano coplanari. Per questo
motivo scegliamo un sistema di riferimento arbitrario, in modo da lasciare l’inclinazione
dell’orbita come un parametro libero. L’origine del sistema di riferimentoè comunque scel-
ta coincidere con il nucleo. Scegliamo coordinate polari, perchè come vedremo in queste
coordinatèe possibile la separazione delle variabili.

Scrivendo lo spostamento infinitesimo in coordinate polari:

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2

si deduce che la lagrangianaè scrivibile come

L =
1
2µ

(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
− U(r) ⇒



pr =
∂L
∂ṙ

= µṙ

pθ =
∂L
∂θ̇

= µr2θ̇

pϕ =
∂L
∂ϕ̇

= µr2 sin2 θϕ̇

e quindi l’Hamiltoniana in coordinate polariè

H =
1
2µ

(
p2

r +
1
r2

p2
θ +

1
r2 sin2 θ

p2
ϕ

)
+ U(r) (1.255)

Dalla (1.255) si ha che la coordinataϕ è ciclica, quindipϕ è una costante del moto.
L’equazione di Hamilton-Jacobi relativa alla Hamiltoniana (1.255)è:(

∂S

∂r

)2

+
1
r2

(
∂S

∂θ

)2

+
1

r2 sin2 θ

(
∂S

∂ϕ

)2

+ 2µ (U(r)− E) = 0 (1.256)

Proviamo a vedere se l’equazioneè separabile scrivendo:

S = Sr(r) + Sθ(θ) + Sϕ(ϕ) (1.257)

La variabileϕ compare solo in∂Sϕ/∂ϕ, quindi questo termine deve essere costante, chia-
miamoAϕ la costante, che coincide conpϕ naturalmente. Dopodichè la dipendenza daθ è
solo nel termine (

dSθ

dθ

)2

+
A2

ϕ

sin2 θ
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che quindi dev’essere anch’esso costante, diciamoA2
θ. La parte restante dipende solo dar

e d̀a luogo ad una equazione ordinaria. Riassumendo:

dSϕ

dϕ
= Aϕ (1.258a)(

dSθ

dθ

)2

+
A2

ϕ

sin2 θ
= A2

θ (1.258b)(
dSr

dr

)2

+
A2

θ

r2
+ 2µ (U(r)− E) = 0 (1.258c)

Quindi l’equazionèe separabile. Si hanno tre costanti del moto,Aϕ, Aθ, E, quindi il pro-
blemaè integrabile nel senso canonico ed la soluzione delle equazioni (1.258) fornisce
appunto l’integrazione.

Il significato delle costanti del motòe trasparente se si scrivono esplicitamente:

Aϕ = pϕ = µr2 sin2 θϕ̇ = Lz (1.259a)

Aθ =

√
p2

θ +
p2

ϕ

sin2 θ
= µr

√
(rθ̇)2 + (r sin θϕ̇)2 = µ|r ∧ v| = L (1.259b)

QuindiAϕ = pϕ è la proiezione del momento angolare lungo l’assez, mentreL è il modulo
del momento angolare.

Con la procedura ormai nota possiamo scrivere le variabili d’azione:

Jϕ =
∮

pϕdϕ =
∮

dSϕ

dϕ
dϕ = 2πAϕ = 2πLz (1.260a)

Jθ =
∮

pθdθ =
∮

dSθ

dθ
dθ =

∮ √
L2 − L2

z

sin2 θ
= 2π(L− |Lz|) (1.260b)

Jr =
∮

prdr =
∮

dSr

dr
dr =

∮
dr

√
2µ(E − U)− L2

r2
=

=
∮

dr

√
2µ(E − U)− (Jθ + |Jϕ|)2

4π2r2
(1.260c)

Limiti sul momento angolare e quantizzazione.

La variabileϕ è una variabile angolare, quindiLz può essere sia positivo che negativo. La
variabileθ è una variabile di librazione, come si vede nella (1.260b) si ha un minimo ed un
massimo valore possibile perθ. Il radicando della (1.260b) deve essere positivo, i limiti di
integrazione si ottengono da

L2 sin2 θ = L2
z ⇒ |Lz| ≤ L (1.261)

Il limite (1.261) è ovviamente consistente col fatto che il modulo della proiezione di un
vettore su un asse deve essere minore del modulo del vettore.

La procedura di quantizzazione consiste nel porre

Jϕ = mh m = 0,±1,±2 . . . Lz = m
h

2π
(1.262a)

Jθ = k′h k′ = 0, 1, 2 . . . L = k′
h

2π
+ |Lz| = (k′ + |m|) h

2π
≡ k

h

2π
(1.262b)

visto il significato fisico conviene porre l’attenzione suk = k′ + |m|. Il vincolo (1.261)
impone

|m| ≤ k ⇒ −k ≤ m ≤ +k (1.263)
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Osservazioni.

1) Il modulo del momento angolare,L, è quantizzato in unità di h/2π, come nei casi
già visti.

2) Fissato il momento angolare, cioèk, la proiezioneLz del momento angolarèe quan-
tizzata. OraLz/L è legato all’angolo di inclinazione,ι, dell’orbita rispetto al piano
xy, o se vogliamo diL, perpendicolare all’orbita, rispetto all’assez

cos ι =
Lz

L
=

m

k
(1.264)

Questo significa che soloalcune inclinazioni sono permesse. Notiamo che la dire-
zione dell’assez è stata scelta arbitrariamente. possiamo pensare di averlo scelto in
modo da indicare, sèe presente, un campo magnetico, e in tal caso si avrebbe che so-
lo alcune inclinazioni del momento magnetico, proporzionale aL, sono ammissibili
quantisticamente.̀E naturale chèe difficile “credere” ad affermazioni cosı̀ contrarie
al senso comune, ed in effetti nei primi anni della formulazione della vecchia teoria
dei quanti, si pensava a questo risultato più che altro come ad un artificio matemati-
co. Cìo non toglie che furono fatti esperimenti per verificare in modo diretto questa
“quantizzazione delle direzioni”: l’esperimento di Stern e Gerlach, di cui parleremo
in seguito, conferm̀o che in effetti questa quantizzazione era reale.

3) Per ogni valore dik, il numero quanticom, detto numero quantico azimutale, può
assumere2k + 1 valori. Come si vede dalla (1.260c),qualunque sia il potenziale
centraleU , l’energia dipende solo dalla combinazioneJθ + |Jϕ|, cioè proprio da
L ( cioè dak), quindi in un potenziale centrale ogni livellòe almeno2k + 1 volte
degenere. Questaè una conseguenza dell’invarianza sotto rotazioni, che ha permesso
la separazione di variabili nella forma della (1.260).

4) Il numero quanticok a priori potrebbe assumere tutti i valori positivi o nulli. Spe-
rimentalmente, analizzando le linee spettrali, si vede che il valorek = 0 non esiste.
Questoè facilmente comprensibile: classicamente corrisponderebbe ad avere orbi-
te passanti per il centro,dette orbite pendolari, queste orbite sono escluse su base
fisica:

k ≥ 1 (1.265)

Questa conclusione vale per potenziali come quello atomico, in cui si suppone che
a piccole distanze dal nucleoU ∼ −Ze2/r, quindi r = 0 è una singolarit̀a del
potenziale e l’azioneSr avrebbe una singolarità ser = 0 fosse incluso, anche come
punto limite, nello spazio delle configurazioni. Per l’oscillatore armonico, in cui il
potenzialèe regolare nell’origine, non si hanno queste limitazioni.

NOTA. Il lettore consideri conmolta precauzionel’assegnazione dei numeri quantici fatta in questo
paragrafo. In particolare l’identificazione dik con il momento angolare valesoloper grandi numeri
quantici. Gli stati quantistici conL = 0 sono permessied il concetto di orbita “pendolare”, pura-
mente classico, non ha molto senso.È vero, comunque, che si ha una degenerazione2L + 1 per ogni
livello con momento angolareL.

Livelli energetici.

Il calcolo diJr dipende dal tipo di potenziale. Per un potenziale coulombiano:

U(r) = −Ze2

r
(1.266)
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l’integrale si svolge analiticamente, vedi eq.(1.458), fornendo

Jr = 2π

√
µZe2

√
−2E

− Jθ − Jϕ (1.267)

L’energia del sistema si scrive perciò

E = − 2π2µe4Z2

(Jr + Jθ + Jϕ)2
≡ −2π2µe4Z2

J2
1

(1.268)

La quantizzazione discretizza i valori diJr:

Jr = nrh nr = 0, 1 . . . J1 = (nr + k)h ≡ nh n = 1, 2, . . . (1.269)

n prende il nome dinumero quantico principale.I livelli energetici sono:

En = −2π2µe4Z2

h2

1
n2

= −1
2

Z2e2

aB
aB =

~2

µe2
=

h2

4π2µe2
(1.270)

che coincide con la formula di Bohr (1.128). Analizziamo più in dettaglio questo risulta-
to. Innanzitutto il vincolok ≥ 1, imponen ≥ 1, quindi lo stato fondamentalèe limitato
inferiormente. In secondo luogo vediamo che la degenerazione nel caso coulombianoè
maggiore di quella presente in un generico potenziale centrale: compare solo la combi-
nazioneJ1 = Jr + Jθ + Jϕ. Operando come nell’oscillatore armonico possiamo fare il
cambiamento di variabili:

w1 = wr J1 = Jr + Jθ + Jϕ

w2 = wθ − wr J2 = Jθ + Jϕ

w3 = wθ − wϕ J3 = Jϕ

(1.271)

In generale l’energiàe una funzione di due variabili d’azione,E(J1, J2), nel caso partico-
lare del campo coulombianòe funzione solo diJ1, E = E(J1).

NOTA. Ripetiamo ancora una volta che l’assegnazione dei numeri quanticiè corretta solo nel limite
semiclassico, ciòe per grandi numeri quantici. In particolare la degenerazione dei livelli per l’atomo
di idrogeno noǹe quella corretta. Per confrontare le degenerazione teorica con ciò che si osserva
bisogna spiegare la struttura fine dei livelli e l’effetto Zeeman, che serve a rimuovere la degenerazione
sulle orientazioni dell’orbita: la teoria sostanzialemente fallisce in questo tentativo, anche per la non
considerazione dello spin elettronico (il momento angolare intrinseco dell’elettrone) quindi non ci
soffermiamo su questa questione.

Per completezza diamo senza dimostrazione l’interpretazione degli angoliw1, w2, w3:

1) 2πw1 è, a parte una costante additiva, ciò che in astronomia si chiamaanomalia
media: la distanza angolare, sull’orbita, dal perielio per un punto immaginario che
ha la stessa velocità del punto materiale nel passaggio al perielio, in pratica, per
un’orbita kepleriana,2πw1 = t/T . La definizione pìu sofisticatàe dovuta al fatto
che nel caso generico l’orbita nonè periodica,T è il periodo che avrebbe il corpo
se percorresse un’ellissi kepleriana con perielio e velocità identiche a quelle vere nel
perielio.

2) 2πw2 è, a parte una costante additiva, la distanza angolare del perielio dalla linea dei
nodi, ciòe dall’intersezione dell’orbita col pianoxy, nel caso planetario il pianoxy è
il piano dell’eclittica.2πν2 = 2πẇ2 è quindi la velocit̀a di precessione del perielio.

3) 2πw3 è, a parte una costante additiva, la coordinata azimutale della linea dei nodi.
Quindi2πν3 = 2πẇ3 è la velocit̀a di precessione della linea dei nodi.

Nel caso generale di un moto in campo centrale vediamo cheẇ3 = 0, cioè non si ha
precessione dei nodi, mentre nel caso particolare del campo coulombiano si ha ancheẇ2 =
0, cioè non si ha precessione del perielio e l’orbita risulta chiusa.

Il lettore che voglia approfondire la trattazione “semiclassica” dei sistemi atomici e del-
la loro perturbazione con campi elettrici e magnetici può utilmente consultare il libro[Born25].
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1.17 Esperimento di Stern e Gerlach.

Come abbiamo visto una delle previsioni più “strane” della quantizzazione alla Bohr -
Sommerfeld̀e la quantizzazione delle direzioni, eq.(1.264):

cos θ =
Lz

L
=

m

k
|m| ≤ k (1.272)

O. Stern e W. Gerlach hanno condotto una serie di esperimenti con l’intento di verificare o
meno questa quantizzazione, e, nel 1921, hanno ottenuto una spettacolare conferma della
teoria quantistica, e nello stesso tempo hanno realizzato la prima esperienza “meccanica”
che era assolutamente incomprensibile sia dalla teoria classica sia, malgrado il risultato,
dalla teoria di Bohr-Sommerfeld.

L’idea è (relativamente) semplice: il momento angolare atomicoè dovuto al moto
degli elettroni, le orbite elettroniche sono la realizzazione microscopica delle “correnti
Ampèriane, e devono dar luogo ad un momento magnetico. In effetti classicamente vi
è la relazione

µ = g
e

2mc
L (1.273)

g è un fattore numerico, chiamatofattore giromagnetico,che classicamentèe 1. SeL è
quantizzato in unit̀a dih/2π, lo è anche il momento magnetico, e il “magnetone elementa-
re”

µB =
e

2mc

h

2π
≡ e~

2mc
(1.274)

è dettomagnetone di Bohr.Se le direzioni diL sono quantizzate allora lo sono anche quelle
di µ e queste possono essere messe in evidenza accoppiandoµ con un campo magnetico.

L’idea è quella di inviare un fascio atomico in una zona con un campo magnetico
fortemente disomogeneo, come schematicamente illustrato in figura 1.17.

0

S

Ag

source

Figure 7

dots at the other end. This experiment, besides proving that the silver atom carry magnetic
moment with two possible orientations, is also absolutely fundamental because it leads to a
complete revision of our ideas on what things are observables and how they can be observed. I
shall come back on this later.

3 Spin after the birth of “modern” quantum mechanics

When new quantum theory was born? In 1925 with Heisenberg’s matrix mechanics or in fact
before, with the famous equation of Louis de Broglie (1924) giving the wave length associated
to a particle:

λ =
h

p
=

h

mv
(in the non− relativistic case) . (13)

Anyway, shortly after the work of Heisenberg, Pauli at the end of 1925, succeeded in getting
the energy levels of Hydrogen, by purely algebraic methods, using matrix mechanics.

However, the news of De Broglie’s relation (which Langevin had agreed to present at the
French Academy of Sciences after consulting Einstein) was carried to Zürich by a chemist named
Victor Henry (information from David Speiser, son in law of Hermann Weyl). Debye then told
Schrödinger: “you should find an equation for these waves”’. He did, in 1926! Schrödinger
and others proved the equivalence of the Schrödinger approach and of Heisenberg’s approach.
Schrödinger too found the energy levels of hydrogen using properties of “special functions’”.

The Schrödinger equation (with units such that h/=1) looks like:

− 1

2m
∆ψ + (V − E)ψ = 0 ,

which, for a central potential in polar co-ordinates gives

− 1

2m

1

r2

d

dr
r2 d

dr
ψ

8

Figura 1.9: Schema dell’esperimeno di Stern e Gerlach.O è un forno, sorgente del fascio
atomico.S è lo schermo.

L’interazione del dipolo col campoB è U = −µ ·B, quindi la forza a cui un atomo
è sottoposto in questo campoè F = −∇U = ∇(µB). Sia orax l’asse del fascio,
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z la direzione che va da un polo all’altro del magnete ey la direzione “orizzontale” in
figura 1.17. Un atomo che attraversa il dispositivo risente di una forza verticale, lungo
l’assez:

Fz =
∂

∂z
(µxBx + µyBy + µzBz)

Il dispositivoè omogeneo lungo l’assex, quindi il sistemàe praticamente bidimensionale
eBx ' 0. Inoltre nel vuoto fra i due poli magnetici:

∂

∂z
By =

∂

∂y
Bz

La disomogeneit̀a diBz lungo l’assez è molto maggiore di quella nella direzione trasversa,
vista la geometria dell’apparato, quindi

Fz ' µz
∂

∂z
Bz = µ

∂Bz

∂z
cos θ (1.275)

doveθ è l’angolo fraµ e B. Quindi ogni atomòe sottoposto ad una forza, praticamente
costante, nell’attraversare l’apparato e riceve un impulso verso l’alto o verso il basso a
seconda a seconda che il suo momento magnetico sia parallelo o antiparallelo al campo. Se
v è la velocit̀a del fascio eL la lunghezza del dispositivo:

∆pz = Fz∆t = Fz
L

v
= µ

∂Bz

∂z

L

v
cos θ (1.276)

Una volta uscito dall’apparato l’atomo prosegue la sua corsa e colpisce lo schermoS, in
punti diversi a seconda dell’angoloθ.

Le previsioni del risultato in meccanica classica e quantistica sono diametralmente
opposte:

a) In meccanica classica il momento magnetico ha un’orientazione casuale, quindi la
densit̀a di probabilit̀a che abbia un angoloθ con il campòe, vista la simmetria attorno
az:

dP = 1
4π dΩ = 1

2 sin θdθ (1.277)

Questa distribuzionèe massima perθ = π/2, cioè perµ ortogonale al campo, e
descresce allontanandosi da questo valore, quindi si deve osservare sullo schermo
una immagine del fascio leggermente allargata, in virtù della deviazione (1.276), ma
concentrata nel centro.

b) In meccanica quantistica ci sono2s + 1 valori possibilidiscreti per Lz, doves è
definito daL = s ·h/2π, quindi2s + 1 deviazioni possibili; si devono vedere2s + 1
“macchie”simmetrichesullo schermo.

L’esperimento, effettuato su un fascio di atomi di argento, mostrò 2 macchie simmetriche,
e niente in mezzo:una clamorosa evidenza della discretizzazione delle direzioni. In più,
dalla misura del gradiente diB e dalla separazione delle macchieè possibile dedurre il
valore diµ, il valore trovato fuµB , cioè un magnetone di Bohr.

Come si vedr̀a nello studio della meccanica quantistica l’argento ha un momento ango-
lare1/2 · ~ dovuto all’elettrone pìu “esterno” e, quantisticamente, il fattore giromagnetico
g che compare nella eq.(1.273) vale 2, quindi in questo esperimento viene misurata la
quantizzazione del momento angolare intrinseco dell’elettrone, lo spin appunto.

A parte l’importantissima conferma della quantizzazione delle direzioni, l’interpreta-
zione del risultato non era molto chiara. Innanzitutto notiamo che nella teoria “canonica”
alla Bohr il momento angolare dovrebbe essere un multiplointero di ~, quindi 2s + 1
dovrebbe essere un numero dispari, si dovrebbero vedere cioè 3 macchie sullo schermo,
corrispondenti ad un momento magneticoµ = 1 × µB . Quindi sarebbe naturale, oggi,
pensare che da questo esperimento si fosse dedotto il fatto che lo spin elettronicoè1/2×~,
ma non fu cos̀ı. Vi erano all’epoca due scuole di pensiero:
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a) Alcuni, come Sommerfeld, Landè ed Heisenberg, per spiegare l’effetto Zeeman e la
struttura fine delle righe spettrali, avevano introdotto il concetto di numero quantico
semintero, attribuendolo però agli elettroni del “core” atomico. In questa interpreta-
zione era il core a contribuire al momento magnetico. Le regole elaborate, che nonè
il caso di presentare, prevedevano che per una struttura fine costituita da un doppietto
si dovesse averes = 1/2, siccome l’argento ha un doppietto di struttura fine, questo
spiegava il fatto che2s+1 = 2. Il fattore giromagnetico naturalmente doveva essere
2.

b) Altri, sostanzialmente Bohr, i suoi collaboratori a Copenaghen e, almeno inizialmen-
te, Pauli26 sostenevano la necessità di avere numeri quantici interi, ma nei modelli
atomici elaborati da questa scuola per l’effetto Zeeman alcune delle orbite erano
vietate, per ragioni di stabilità, in particolare erano vietate quelle in cui il campo
magnetico giaceva sull’orbita, quindi il momento angolare dell’orbita era perpendi-
colare al campo, il casoLz = 0. Quindi anche per questa interpretazione dei tre
valori possibili diLz solo 2 erano permessi, e si dovevano osservare due macchie. Il
fattore giromagnetico in questo caso era quello classico, cioè 1.

L’osservazione pìu importante comunque fu quella avanzata da Einstein ed Ehrenfest
nel lavoro[Ehr21]:come f̀a il momento magnetico ad “allinearsi” col campo?

Ricordiamo che nella teoria di Bohr-Sommerfeldè assunta la validità della meccanica
classica per la determinazione degli stati, mentre le transizioni, quantistiche, sono dovute
all’interazione con la radiazione elettromagnetica.

Il fascio atomico usato da Stern e Gerlach era composto da atomi d’argento prodotti
da una fornace a1000oC, con una velocit̀a media dell’ordine di5 · 104cm/sec. L’apparato
era lungo circa3cm ed il gradiente di campo di104gauss/cm. Il tempo di attraversamento
dell’apparato era quindi dell’ordine di10−4 sec. All’uscita dal forno sicuramente la dire-
zione del momeno magnetico atomicoè casuale, come fa ad allinearsi? Classicamente un
momento magnetico in campo esterno precede attorno al campo, con una frequenza che,
quantisticamente,̀e

ν =
µBB

h
(1.278)

corrispondente alla quantizzazione diLz. La precessione classica nonè sufficiente: per
avere due macchie distinte il dipolo magnetico si deve proprio allineare, cioè essere in
uno stato quantico ben definito, o con proiezione1 o con prioezione−1 rispetto all’asse
z. Secondo la versione pre-meccanica quantistica la transizione fra uno stato allineato
in una direzione qualunque ed uno stato allineato lungoz può avvenire solo per effetto
radiativo. Per un dipolo magneticoè semplice calcolare un tempo caratteristico per questo
“rilassamento” verso l’assez. La potenza emessa da un dipolo magnetico oscillante, uguale
ad un magnetone di Bohr,è

I =
2

3c3
µ̈2 =

2
3c3

ω4µ |µ| = µB ; ω = 2πν =
µBB

~

L’energia in giocòeµBB quindi il tempo caratteristico, per un campo tipico di104gauss̀e

τ =
µBB

I
∼ 1011 sec

molto più grande del tempo di passaggio, dell’ordine di10−4 sec. Il possibile effetto della
radiazione termica ambiente non modifica di molto la stima: il problemaè che l’emissione

26La posizione di Paulìe molto particolare: inizialmente era contrario all’introduzione di numeri seminteri per
la buona ragione che. una volta accettata la frazione 1/2, niente a priori ostava il comparire di frazioni diverse che
avrebbero tolto qualunque significato al concetto di quantizzazione. Una volta accettato il fatto che effettivamente
occorreva usare numeri seminteri per la descrizione dell’effetto Zeeman, dimostrò comunque la non validità del
modello a core degli atomi ed elaborò, inventando il principio di esclusione, la prima assegnazione corretta dei
numeri quantici, e quindi il primo modello atomico realistico.
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di dipolo magnetico ha un tempo caratteristico estremamente lungo per frequenze di tran-
sizione come quelle in gioco.̀E quindi escluso che la transizione possa avvenire per via
radiativa. Quindi comèe possibile descrivere l’allineamento? La risposta, come si vedrà
studiando il formalismo della meccanica quantistica,è chenon è possibiledescrivere in
termini classici questo effetto,è il prototipo di unamisura quantistica.L’apparato di Stern
e Gerlach funge da apparato classico: la selezione delle orbite misura in effetti lo spin e
provoca un “collasso della funzione d’onda” in un autostato disz, la componente dello spin
lungo l’assez. Questa terminologia diverrà più chiara in seguito, per ora ci basta osserva-
re che, come osservato nel lavoro [Ehr21] l’esperimento di Stern e Gerlach richiede una
qualche modifica fondamentale alla teoria di Bohr Sommerfeld.

1.18 Conferme e smentite del modello.

Il modello di Bohr e le regole di quantizzazione di Bohr Sommerfeld hanno avuto sicu-
ramente il grande merito di offrire il primo schema interpretativo dei fenomeni atomici,
ma era ben chiaro, ed esplicitamente dichiarato nei lavori dell’epoca, che questo schema
doveva essere solo un primo passo verso l’elaborazione di una nuova meccanica.È quindi
utile avere almeno un’idea sommaria delle questioni lasciate irrisolte da questa teoria.

L’enorme passo in avanti del modelloè quello di avere introdotto il concetto di “stati
stazionari”, e collegato la frequenza delle righe spettrali alladifferenzadi energia fra gli
stati, separando cosı̀ la frequenza della luce dal periodo classico di oscillazione, o rotazione,
del sistema: il lettore deve avere ben chiaro che questoè un completo allontanamento
dalla teoria classica dell’irraggiamento, in cui la frequenza della luce emessaè direttamente
connessa alla frequenza meccanica. L’introduzione di stati stazionariè chiaramente anche
una rinuncia alle leggi della meccanica e dell’elettromagnetismo classico. Il sottile filo di
collegamento che permette, a questo stadio, di fare della fisica microscopicaè il postulato
di quantizzazione ed il principio di corrispondenza. Il primo ci dà un criterio per stabilire
quali sono gli stati stazionari di un sistema, il secondo ci permette di esprimere le grandezze
osservate in termini quasi classici e, in alcuni casi, di fare delle previsioni. Forse l’aspetto
più appariscente dell’ultima affermazione si ha proprio in relazione alle righe spettrali.
Dall’analisi degli spettri discende che non tutte le transizioni fra due livelli energetici sono
visibili. Ad esempio per spettri attribuibili a transizioni di un solo elettrone, come nei
metalli alcalini, solo le transizioni corrispondenti a cambiamenti∆k = ±1 sono permesse,
k è il numero quantico legato al momento angolare introdotto nel paragrafo 1.16: questo
discende dallo studio semiclassico dell’ampiezza di transizione, un’oscillazione dipolare,
fra gli stati in questione. Non ci addentriamo in questa analisi perchè l’assegnazione dei
numeri quantici nella vecchia teoria dei quanti e nella meccanica quantisticaè leggermente
diversa, non vorremmo quindi suggerire idee sbagliate sulle regole di selezione, argomento
che verr̀a trattato nel seguito del libro.

Questi principi base, ciòe stati stazionari e principio di corrispondenza, vengono uti-
lizzati tramite il principio adiabatico di Ehrenfest per l’indagine sistematica dei sistemi
microscopici: se un sistemaè ottenibile da un altro con una trasformazione adiabatica pos-
siamo avere un’idea di come quantizzare il nuovo sistema a partire dal vecchio. In questo
modo, ad esempio, Bohr propone i primi modelli atomici, in cui ogni elettroneè “aggiunto”
ad un sistema di tipo idrogenoide.È da sottolineare che in questo modo si incominciano
ad associare le proprietà chimiche degli elementi al numero di elettroni periferici del siste-
ma, iniziando a spiegare la tavola periodica di Mendeleev. Il problema principale di questi
modelli era spiegare come mai non tutti gli elettroni occupavano l’orbita di minore energia
del sistema. La soluzionèe dovuta a Pauli[Pau25, Pau45] che enuncia il principio di esclu-
sione, questo sostanzialmente afferma che due elettroni non possono possedere gli stessi
numeri quantici. Ai numeri quantici conosciuti, ricavati ad esempio dall’esame dell’atomo
di idrogeno, Pauli aggiunge un nuovo numero quantico che può avere due soli valori, la cui
origine, si scoprir̀a in seguito,̀e legata allo spin dell’elettrone.
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Per quanto riguarda la descrizione degli spettri atomici, cioè almeno la corretta identifi-
cazione dei numeri quantici dei livelli energetici, la situazione si fa estremamente comples-
sa. La ragionèe ben descritta da Pauli nella lezione tenuta in occasione del conferimento del
premio Nobel: da un lato non era chiaro come applicare la teoria a sistemi complessi come
quelli atomici, per ragioni che esamineremo fra breve, dall’altro lo stesso modello mec-
canico usato, cariche in interazione elettrostatica, era insufficiente: mancava un elemento
essenziale, lo spin dell’elettrone ed il connesso momento magnetico. I problemi principali
erano due, collegati fra loro: l’effetto Zeeman e la struttura fine delle righe spettrali. In pre-
senza di campo magnetico esterno si ha, come già visto in alcuni esempi elementari, una
rimozione della degenerazione dei livelli atomici e, sperimentalmente, una divisione delle
righe spettrali in componenti diverse. Questoè un effetto spiegato già da Lorentz per un
oscillatore classico ed il lettore troverà una discussione del fenomeno, classico e quantisti-
co, nel capitolo dedicato alla teoria perturbativa. Il punto che qui interessa mettere in luceè
che classicamente ogni riga spettrale dovrebbe dividersi in un tripletto e a questa stessa con-
clusione si arriva nella teoria di Bohr Sommerfeld “canonica”, cioè come l’abbiamo vista
finora. Sperimentalmente invece si trova una varietà di casi, la suddivisione in multipletti
diversi da trèe molto comune e prende il nome di “effetto Zeeman anomalo”. Per spiegare
questo tipo di suddivisione siè costretti a introdurre numeri quantici seminteri, estranei alla
teoria di Bohr Sommerfeld: solo con la scoperta dello spin elettronico siè potuta capire l’o-
rigine di tali numeri quantici. Una situazione per certi versi analoga si presenta per le righe
spettrali in assenza di campo esterno. Siè subito osservato che in realtà le righe spettrali
hanno una struttura fine, con una separazione in frequenza dell’ordine di∆ν/ν ∼ 10−5.
In effetti uno dei maggiori successi del modello di Bohr Sommerfeld era stata proprio la
spiegazione della struttura fine delle righe dell’idrogeno, ottenuta da Sommerfeld calcolan-
do la correzione relativistica alla quantizzazione vista nel paragrafo 1.1627. Questo tipo di
spiegazione però non funziona per gli altri atomi: anche in questo caso, come nell’effetto
Zeeman, le righe si presentano in diversi tipi di multipletti, la cui molteplicità è legata in
modo complicato al numero di sottolivelli Zeeman generati da un campo magnetico. In
analogia al caso magnetico questi multipletti vengono imputati ad un momento magnetico
degli elettroni pìu interni all’atomo, “core” elettronico, che provoca una sorta di effetto
Zeeman “interno” sull’elettrone ottico. Anche in questo caso siè costretti a introdurre dei
numeri quantici seminteri.

Anche da questo breve e sommario elenco dovrebbe essere chiaro che l’evoluzione
della comprensione dello spettro atomicoè piuttosto complicata e per darne conto occor-
rerebbe un intero capitolo, il lettore interessato alla nascita e allo sviluppo delle idee e dei
modelli nati in questo periodo può trovare molto materiale interessante nelle opere[Mehra,
Jammer].

Le difficoltà elencate finora sono in massima parte dovute alla non conoscenza dello
spin elettronico, ci sono però altre difficolt̀a più intimamente connesse alla formulazione
stessa del modello di Bohr. L’atomo di elioè l’atomo pìu semplice dopo quello di idrogeno.
Dal punto di vista meccanico si tratta di un problema a tre corpi che ha tutti i problemi del-
l’analogo problema a tre corpi gravitazionale. Un noto teorema di Burns e Poincaré, vedi
es.[Whitt] afferma la non esistenza di altri integrali primi, oltre all’energia ed al momento
angolare, quindi il sistema sicuramente nonè integrabile in senso canonico. Per fissare le
condizioni di quantizzazione si ricorre allora alla teoria perturbativa, mutuata dalla teoria
delle perturbazioni secolari in meccanica celeste. Sulla teoria perturbativa però incombe
ancora un macigno: sempre Poincaré ha mostrato che la serie perturbativaè sicuramente
divergente, quindìe abbastanza problematico fondare la teoria su queste basi. Sottolineia-
mo che il tipo di difficolt̀a di cui stiamo parlandòe qualitativamente diverso dall’analoga
difficoltà in meccanica celeste

1) In meccanica celeste la serie perturbativa nonè convergente, ma, come giustamente

27In seguito si capir̀a che l’accordo con i dati della teoria di Bohr Sommerfeldè abbastanza fortuito, mancando
appunto il contributo dello spin elettronico.
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sottolineato da Poincaré stesso, questo non significa sia inutile, come del resto di-
mostrano le eccellenti previsioni fatte usando questa tecnica: la serie, in pratica,è
una serie asintotica, che benchè non convergente dà una buona approssimazione del-
la soluzione28. Il problema teorico in meccanica classica sorge quando si vogliono
fare delle previsioni di tipo asintotico, ad esempio sulla stabilità a grandi tempi di un
sistema, ad esempio il sistema solare.

2) Nella teoria di Bohr la questionèe più delicata. Innanzitutto, prendendo ad esempio
l’elio, l’interazione elettrone-elettrone nonè affatto “piccola” in confronto all’intera-
zione elettrone nucleo. In secondo luogo i periodi tipici di rivoluzione sono dell’or-
dine di10−13 − 10−15 sec., quindi se si vuole parlare di livelli atomici “stabili” su
tempi macroscopici sìe automaticamente in un regime asintotico. Infine nonè affatto
ovvio che i moti multiperiodici necessari per poter definire la stessa quantizzazione
esistano; il teorema di Poincaré afferma appunto che non c’è nessun dominio (aperto
nello spazio delle fasi) in cui le orbite siano del tipo voluto.È notevole che questa
problematica abbia avuto uno sviluppo moderno molto importante, almeno sul ver-
sante della dinamica classica: il teorema KAM (Kolmogorov, Arnold, Moser) dice
che per piccole perturbazioni esistono ancora dei tori invarianti (che sono le strutture
necessarie per scrivere le condizioni di quantizzazione), attorno ad un sistema inte-
grabile, mentre per grandi perturbazioni, normalmente, si entra in un regime caotico,
in cui ovviamente qualunque tentativo di scrivere una condizione di quantizzazione
non ha molto senso. Quantisticamente il problemaè rilevante perch̀e la sua com-
prensionèe alla base del delicato passaggio da regime quantistico a regime classico,
che a tutt’oggi noǹe affatto chiaro.

Sottolineiamo quindi che il problema nonè tanto quello di usare una serie asintotica
per approssimare un risultato, quanto il fatto che non si sa se il risultato possa o no
esistere.

In mancanza di alternative, ovviamente, la cosa migliore da fareè comunque usare la teo-
ria perturbativa per studiare l’atomo (di elio) e confrontare i risultati con l’esperimento.
Questo atomo presenta sperimentalmente due serie di spettri, tanto che all’nizio si pensava
ci fossero due diversi tipi di elio, ilparaelio e l’ortoelio, che hanno, fra l’altro, strutture
fini e livelli Zeeman diversi. Malgrado tutti gli sforzi fatti questo tipo di struttura restava
sostanzialmente inspiegata nella vecchia teoria dei quanti, anche se si intuiva che dovesse
corrispondere a due tipi diversi di orbite29. Vari lavori di Kramers a Copenhagen e degli
allievi di Sommerfeld a Monaco, fra cui citiamo Pauli e Heisenberg, etc. non avevano
prodotto risultati ragionevoli. Il risultato finale che in qualche modo segna la fine della
vecchia teoria dei quantiè un lavoro di Born e Heisenberg i quali non calcolano solamente,
tramite la tecnica perturbativa, gli stati di bassa energia dell’atomo, calcolano invece anche
le energie corrispondenti ad un elettrone vicino al nucleo ed un elettrone in un’orbita molto
periferica, ciòe stati molto eccitati del sistema: in questa zona, di “grandi numeri quantici”
la teoriadevefunzionare. Invece non funziona, i risultati sono in completo disaccordo con
i dati sperimentali. Per rendere l’idea dello stato delle cose riportiamo la traduzione della
conclusione del libro di Born[Born25], cheè praticamente la “summa” delle conoscenze in
materia attorno al 1924-1925:

Possiamo quindi concludere che l’applicazione sistematica dei principi della
teoria dei quanti stabiliti nel Cap.2, cioè il calcolo del moto secondo le leggi
della meccanica classica e la scelta degli stati stazionari a partire dai moti clas-
sici attraverso la determinazione delle variabili d’azione come multipli interi
della costante di Planck conduce all’accordo con l’esperienza solo nei casi in

28Il lettore interessato a questa questione troverà una discussione del problema nel capitolo dedicato alla serie
perturbativa in meccanica quantistica.

29Il paraelio corrisponde a due elettroni con spin totale nullo, l’ortoeleio invece ha spin totale uno: questo in
meccanica quantistica influenza la simmetria del sistema.
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cui si tratta del moto di un singolo elettrone; essa fallisce subito appena si passi
alla considerazione del moto di ambedue gli elettroni nell’atomo di elio.

Questo non deve sorprendere perchè i principi usati non sono in realtà con-
sistenti; da una parte le equazioni differenziali classiche per la descrizione
dell’interazione di un atomo con la radiazione sono rimpiazzate da differenze
finite, nella forma della condizione di Bohr sulle frequenze, dall’altra relazioi-
ni di tipo differenziale continuano ad essere usate nella trattazione dell’inte-
razione di molti elettroni. Una completa e sistematica trasformazione della
meccanica classica in una meccanica discontinua dell’atomoè lo scopo verso
cui deve tendere una teoria quantistica.

Alle difficolt à dell’atomo di elio occorrerebbe aggiungere quelle con la molecola di
idrogeno ionizzato, con la molecola di idrogeno, quelle relative all’effetto di un campo
magnetico e di un campo elettrico simultanei sull’atomo di idrogeno etc. Crediamo co-
munque di aver dato un’idea, almeno vaga, delle problematiche. Per motivi di spazio e di
opportunit̀a didattica non ci soffermeremo ulteriormente sulla questione, ma, nel prossimo
paragrafo, analizzeremo l’ultimo e decisivo passo verso la meccanica quantistica: la teoria
della dispersione della luce.

1.19 Interazione luce materia.

Nei paragrafi precedenti abbiamo sommariamente discusso come le regole di quantizzazio-
ne di Bohr-Sommerfeld ed il principio di corrispondenza costituiscano uno schema inter-
pretativo che, benchè incompleto, lascia comunque intravedere alcune delle caratteristiche
che deve necessaiamente possedere una dinamica microscopica consistente. Il passo de-
cisivo per la costruzione della nuova meccanica, ed al tempo stesso “il canto del cigno”
della vecchia teoria dei quanti, si ha nello studio del problema che aveva dato origine alle
considerazioni di Planck e di Einstein: l’interazione luce-materia.

La limitazione pìu evidente della teoria, dal punto di vista sperimentale,è l’incapacit̀a
di predire in modo consistente e completo gli spettri atomici e la polarizzazione della radia-
zione nei “salti quantici”. Le uniche affermazioni certe al riguardo sono le considerazioni
di Einstein sui processi di emissione e assorbimento, ed in particolare l’introduzione dei
coefficientiA e B che abbiamo visto30 nel paragrafo 1.5. In particolare il coefficiente di
emissione spontaneaAu→d descrive la probabilit̀a di decadimento al secondo per il decadi-
mentou → d in un sistema atomico. Da questo coefficiente possono essere dedotti i coef-
ficientiB che descrivono l’emissione indotta e l’assorbimento, vedi paragrafo 1.5. Occorre
quindi capire come questi coefficienti siano legati alla dinamica ed alla quantizzazione.

L’analogo classico dell’emissione spontaneaè fornito dalla trattazione classica dell’ir-
raggiamento di un oscillatore. Sappiamo che la potenza media irragiata, in approssimazio-
ne di dipolo, da una carica accelerataè

I =
2e2

3c3
a2 (1.279)

dovea indica l’accelerazione. La (1.279)è importante anche perchè fa capire come la
spiegazione quantistica dell’intensità I implica una comprensione dell’accelerazionea, e
quindi della dinamica del sistema.

Consideriamo un oscillatore armonico unidimensionale, con frequenza propriaν0 ed
ampiezza di oscillazione|C|. In questo caso si ha

x = |C| cos(2πν0t + γ) = Re
(
Cei2πν0t

)
γ = arg(C) (1.280)

a = −(2πν0)2|C| cos(2πν0t + γ)

30Usiamo qui la notazioneA,B perch̀e useremo la letteraA per indicare un’altra quantità.
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e quindi, usando per la media su un periodo il risultatocos2(x) = 1/2:

I =
e2

3c3
(2πν0)4|C|2 (1.281)

In generale un sistema periodico, con frequenzaν0, ha un moto non armonico

x =
∑

τ

|Cτ | cos(2πτν0t + γτ ) = Re

(∑
τ

Cτe2πτν0t

)
τ = 1, 2, . . . (1.282)

e l’oscillazione descritta dalla (1.282) dà luogo a radiazione emessa con frequenze date
dalle armoniche del moto,ν = ν0τ :

Iν ≡ Iτ =
e2

3c3
(2πν)4|Cτ |2 =

e2

3c3
(2πτν0)4|Cτ |2 (1.283)

Quantisticamente l’intensità della luce emessa in una transizionen′ → n′′ è data dai
coefficienti di Einstein

In′→n′′ = energia del fotone× prob. di emissione= hνn′

n′′An′→n′′ (1.284)

dove
hνn′

n′′ = En′ − En′′ (1.285)

è la frequenza associata alla transizione. Naturalmente si tratta ora di calcolare i coefficienti
An′→n′′ .

Descriviamo le transizioni quantistiche in modo analogo a quelle classiche, usando
delle “ampiezze”An′

n′′ per caratterizzare la transizione tra uno staton′ ed uno staton′′.
Possiamo immaginare di associare un “oscillatore virtuale” ad ogni transizione, e questa
è la motivazione originaria dell’introduzione di queste grandezze, maè più ragionevole
considerare queste ampiezze semplicemente come un modo per descrivere la transizione e
scrivere

In′→n′′ =
e2

3c3
(2πνn′

n′′)4|An′

n′′ |2 (1.286)

La (1.286) non dice molto per il momento, ma permette di capire acosabisogna applicare
il principio di corrispondenza per stimare le intensità di radiazione. Il principio di corri-
spondenza afferma che per transizioni fra due statin′, n′′ conn′, n′′ � 1 e n′ − n′′ = τ
si deve riottenere la descrizione classica della transizione, corrispondente all’emissione
dell’armonicaτ . Per le frequenze si ha allora

νn′

n′′ ∼ τν0 (1.287)

quindi dobbiamo aspettarci

An′

n′′ ∼ Cτ ≡ Cn′−n′′ (1.288)

La (1.288) in linea di principio ci permette di stimare le ampiezze dalla conoscenza del
motoclassicodel sistema, dalla (1.282). Questo tipo di informazioneè stata essenziale fin
dalle prime applicazioni della vecchia teoria dei quanti, in effetti dei vincoli sulle compo-
nenti classiche del moto,Cτ , possono venire tradotte, almeno ipoteticamente, ad analoghi
vincoli sulle ampiezze quantistiche. L’esempio più semplicèe proprio l’oscillatore armoni-
co. In un moto armonicòe presente solo un’armonica, quella conτ = 1, quindi la (1.288),
estesa come vincolo a tutte le transizioni, afferma che sono possibili solo le transizioni in
cui il numero quanticon cambia di uno. Questo tipo di regole di selezione, nel caso di più
gradi di libert̀a, d̀a luogo, ad esempio, alla regola∆k = ±1 di cui si è parlato al paragrafo
precedente. Ci sono due problemi da affrontare:
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a) Capire se la identificazione delle ampiezzeAn′

n′′ come variabiliè significativa oè
solo una parametrizzazione dell’intensità di emissione. Il limite semiclassico (1.288)
sembra indicare che leAn′

n′′ abbiano un significato, essendo legate alle coordinate del
sistema via la relazione (1.280).

b) Supponendo che leAn′

n′′ abbiano un significato, comèe possibile calcolarle al di là
del limite semiclassico (1.288)?̀E chiaro che la soluzione di questo problema signi-
ficher̀a calcolare le coordinate del sistema in modo “quantistico” e quindi formulare
una nuova meccanica.

1.19.1 Diffusione della luce e legge di dispersione.

Per illustrare il punto a) del paragrafo precedente studiamo più in dettaglio l’interazione
luce-materia.

In approssimazione di dipolo, sufficiente per i nostri scopi, l’interazione luce-materia
ha luogo perch̀e il campo elettrico della radiazione induce un’oscilazione sulle cariche ele-
mentari, gli elettroni. Questa oscillazione, a sua volta, produce un’onda elettromagnetica.
La radiazione viene assorbita da questi “oscillatori elementari” e viene riemessa dando
luogo ad una diffusione della luce incidente. Le proprietà di diffusione di una data sostan-
za cambiano al variare della lunghezza d’onda della luce incidente:è il fenomeno noto
comedispersione. Consideriamo per fissare le idee un gas. Il campo elettrico dell’onda
elettromagnetica induce una polarizzazione macroscopicaP (t) che, in un gas,̀e data da:

P = Nd = NαE (1.289)

DoveN è il numero di atomi per cm3, α la polarizzabilit̀a atomica, ciòed = αE è il dipolo
indotto dal campo esternoE. Tutta l’informazione sull’interazione luce-atomoè contenuta
in α, in particolare la struttura delle righe spettrali.

Sperimentalmentèe noto che una buona descrizione della variazione diα con la fre-
quenzàe data da

α =
e2

4π2m

∑
i

fi

ν2
i − ν2

(1.290)

νi sono le frequenze di risonanza del sistema, cioè le frequenze dello spettro. La relazione
(1.290)è verificata nelle regioni non coincidenti con le frequenze di risonanza. La spiega-
zione classica della (1.290), all’interno della teoria degli elettroni di Lorentz,è abbastanza
naturale. Consideriamo per semplicità il caso unidimensionale, siax lo spostamento del-
l’elettrone,E il campo elettrico incidente, diretto anch’esso lungo l’assex. Consideriamo
la componente del campo a frequenzaν

E = E0 cos(2πνt) ≡ Re e−iωt ω = 2πν (1.291)

Per piccole oscillazioni

ẍ + γẋ + ω2
0x =

e

m
E =

e

m
E0Ree

−iωt ω0 = 2πν0 (1.292)

ν0 indica la frequenza propria dell’oscillatore, una delle frequenzeνi nella (1.290).γ è il
coefficiente di smorzamento dell’oscillazione: supponiamo per semplicità che sia dovuto
solo alla reazione di frenamento per emissione di radiazione, vedi eq.(1.279). In questo
casoè noto che

γ =
2
3

e2ω2
0

c3
(1.293)

La relazione (1.293)̀e gìa stata sfruttata nell’analisi dell’assorbimento di un oscillatore
nella teoria del corpo nero, per una dimostrazione si veda il paragrafo 1.C, eq.(1.406). La
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soluzione “a regime” della (1.291)è immediata31

x =
e

m
E0Re

[
1

(ω2
0 − ω2)− iωγ

e−iωt

]
(1.294)

Il dipolo del sistemàeex. Lontano dalle risonanze il termine inγ è trascurabile e si ha

d = ex = αE α =
e2

m

1
ω2

0 − ω2
=

e2

4π2m

1
ν2
0 − ν2

(1.295)

Quindi la (1.290)è interpretata dicendo che ci sonofi elettroni effettivi per grado di
oscillazione, modernamente i fattorifi prendono il nome di “forza di oscillatore”.

i coefficientifi sono direttamente collegati all’intensità delle linee spettrali. Conside-
riamo infatti l’energia assorbita al secondo da un oscillatore, uguale al lavoro effettuato
sull’oscillatore dal campo esterno. Dalla (1.294):

v = ẋ =
e

m
E0

1
(ω2

0 − ω2)2 + ω2γ2

[
−ω(ω2

0 − ω2) sin(ωt) + ω2γ cos(ωt)
]

quindi, usandocos2(x) = 1
2 , cos(x) sin(x) = 0:

L(1)
ν = eEv =

e2

2m
E2

0

ω2γ

(ω2
0 − ω2)2 + ω2γ2

(1.296)

L’onda elettromagnetica noǹe in generale perfettamente monocromatica maè una somma
di campi a diverse frequenze

E =
∫

dω

2π
Eνe−iωt

il campoE0 che compare nelle dormule precedentiè la componente a frequenzaν. As-
sumendo che la radiazione abbia una distribuzione spettrale larga rispetto alla “larghezza
di riga” γ, l’assorbimentòe dato dall’integrale della (1.296) in cuiE0 si pùo supporre co-
stante. L’integralèe dominato dalla zona in cuiω ∼ ω0, quindi, scrivendo(ω2

0 − ω2) '
(ω0 − ω)2ω0:

L(1)
ν = eEv =

e2

2m
E2

0

ω2
0γ

4ω2
0

∫
dω

2π

1

(ω − ω0)2 +
γ2

4

=
1
8

e2

m
E2

0 (1.297)

Per una radiazione isotropa, come supporremo,

I =
1
4π

E2 =
3
4π

Ex
2 =

3
4π

E0
2 cos2(ωt) =

3
8π

E2
0 (1.298)

Quindi, per la componente a frequenzaν e perfi oscillatori effettivi:

L(1)
ν =

π

3
e2

m
Iν ⇒ Lν =

π

3
e2

m
fiIν (1.299)

La grandezzaLν è l’energia assorbita al secondo dal sistema atomico, quindi direttamente
misurabile.

Il punto da chiarirèe come la teoria dei quanti descrive il fenomeno della dispersione.
Consideriamo un atomo in un dato stato.

Per sistemi quantistici l’energia assorbita al secondo dalla radiazione in un processo
n′′ → n′ è descritta dal coefficiente di EinsteinBn′′→n′ . Supponendo per semplicità che
tutti i pesi statistici in gioco siano 1:

Lν = prob. di assorbimento× energia di un fotone= (Bn′′→n′Iν)× (hνn′

n′′)
31A regime significa dopo chèe passato un transiente in cui la soluzione dell’equazione omogenea

proporzionale a∼ e−γt/2 diventa trascurabile.
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e utilizzando le relazioni di Einstein:

Lν = (hνn′

n′′)Bn′→n′′Iν =
c3

8πh(νn′
n′′)3

An′→n′′(hνn′

n′′) =
c3

8π(νn′
n′′)2

An′→n′′ (1.300)

La cosa pìu sempliceè identificare la formula di assorbimento classica con l’energia as-
sorbita quantisticamente nelle transizioni indotte da fotoni[Ladenburg]. Se identifichiamo
l’espressione classica (1.299) con quella quantistica (1.300) abbiamo

An′→n′′ =
8π2

3
e2

mc3
(νn′

n′′)2 fi (1.301)

Notiamo che la combinazione che moltiplicafi nella (1.301)̀e esattamente l’analogo della
“larghezza”γ introdotta classicamente. Ora noi sappiamo esprimere i coefficienti di Ein-
stein tramite le “ampiezze”An′

n′′ e quindi possiamo colegare queste ultime direttamente alla
formula di dispersione e quindi ai dati sperimentali. Dalla (1.284) e dalla (1.286) segue

An′→n′′ =
16π4

3
e2

hc3
(νn′

n′′)3
∣∣∣An′

n′′

∣∣∣2
e quindi

fi =
2mπ2

h
νn′

n′′

∣∣∣An′

n′′

∣∣∣2 (1.302)

e per la relazione di dispersione, relativa alla costanti di polarizzazione nello staton′:

αn′ =
e2

2h

∑
n′′

∣∣∣An′

n′′

∣∣∣2 νn′

n′′

(νn′
n′′)2 − ν2

(1.303)

Il punto interessantèe che la (1.303)non può essere vera.Il motivo è che non soddisfa
al principio di corrispondenza, infatti sen′, n′′ � 1 e h → 0 la (1.303) non pùo avere
un limite classico, perch̀eAn′

n′′ dovrebbe tendere ad un’ampiezza classica ed il fattore1/h
rende divergente l’espressione. C’è anche un altro motivo, che dà la chiave per la modifica
della (1.303) in un’espressione corretta. Le quantità An′

n′′ , bench̀e ancora non sappiamo
come calcolarle, descrivono un’ampiezza di oscillazione per un oscillatore in assenza di
campo, infattiα è calcolata all’ordine più basso inE0, ma classicamente il dipolo indotto
non dipendedall’ampiezza di oscillazione imperturbata, come si vede molto chiaramente
dalla (1.294).

La soluzione del paradosso si trova nella formulazione di Kramers della relazione di
dispersione e si basa sul fatto che quantisticamente in presenza della radiazione incidente
esistonodue tipi di processi che possono dar luogo alla polarizzazione

a) L’atomo assorbe un fotone a passa dallo staton′ allo staton′′, conEn′′ > En′ quindi
riemette un fotone passando dallo staton′′ allo staton′.

b) L’atomoemette un fotone per emissione indottapassando ad uno staton′′ conEn′′ <
En′ , dopodich̀e assorbe un fotone e ritorna allo stato di partenza.

Il processo di emissione indotta, come abbiamo già fatto notare nella discussione sui coef-
ficienti di Einsteinè proprio la cosa che caratterizza l’interazione quantistica con la radia-
zione dall’interazione classica.

Notiamo che sia nel processo a) che in quello b) nonè detto che l’atomo nello stato finale si trovi di
nuovo nello stato di partenza, potrebbe risultare in un altro stato, questo significa, per la conservazione
dell’energia, che il fotone diffuso ha energia, cioè frequenza, diversa da quella iniziale;è il fenomeno
della diffusione Raman, scoperto proprio proprio nello stesso periodo. Nella formula classica (1.290)
non c’̀e traccia di questo effetto, mentre quantisticamenteè un effetto previsto. nel seguito comunque,
per semplicit̀a, ci limiteremo al caso in cui non si abbia cambiamento di frequenza.
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Il processo di emissione indottaè molto peculiare: l’atomo emettendo un fotoneaumenta
l’energia della radiazione, mentre il processo di assorbimento la fa diminuire: solo que-
st’ultimo è quello previsto classicamente. Si ha allora una sorta di “assorbimento negativo”
e la proposta di Kramers̀e appunto quella di modificare la (1.303) nella forma

αn′ =
e2

2h


∑

n′′,En′>En′′

∣∣∣An′

n′′

∣∣∣2 νn′

n′′

(νn′
n′′)2 − ν2

−
∑

n′′,En′<En′′

∣∣∣An′

n′′

∣∣∣2 νn′′

n′

(νn′
n′′)2 − ν2

 (1.304)

In termini di coefficientifi:

α =
e2

4π2m

∑
i,ass.

fi

ν2
i − ν2

−
∑
i,em.

fi

ν2
i − ν2

 (1.305)

Le abbreviazioniass., em. stanno per assorbimento ed emissione.

1.19.2 Relazione di Thomas e Kuhn.

I coefficientifi soddisfano un’importante regola di somma, stabilita da Kuhn e Thomas[Thomas,
Kuhn]. Consideriamo un’onda elettromagnetica a frequenzaν molto più grande di tutte le
frequenze proprie del sistema. In questo regime gli elettroni possono essere considerati
come elettroni liberi. Per un elettrone libero l’energia irraggiata, e quindi persa dalla radia-
zione incidente, si scrive facilmente. L’equazione del motoè ma = eE quindi, usando la
(1.279):

I =
2e2

3c3
a2 =

2e4

3m2c3
E2 =

e4

3m2c3
E2

0 (1.306)

Al solito il campo elettricòe stato scritto nella formaE = E0 cos(2πνt).
D’altronde sempre la (1.279) si può riscrivere nella forma

I =
2

3c3
d̈2 (1.307)

doved è il dipolo elettrico del sistema. Perν � νi si ha, dalla

α → − e2

4π2m

1
ν2

∑
i,ass.

fi −
∑
i,em.

fi

 ≡ − e2

4π2m

1
ν2

∑′

i

fi

quindi

d = αE = αE0 cos(2πνt) d̈ =
e2

m

(∑′

i

fi

)
E

e per la perdita di energia

I =
2

3c3

e4

m2

(∑′

i

fi

)2
E2

0

2
=

1
3c3

e4

m2

(∑′

i

fi

)2

E2
0

Supponendo per semplicità che ci sia un solo elettrone irraggiante per atomo dal confronto
con la (1.306) si deve allora avere la relazione:∑

i,ass.

fi −
∑
i,em.

fi

 = 1 (1.308)
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ovvero, in termini delle ampiezzeAn′

n′′ :

2mπ2

h

 ∑
n′′,En′>En′′

∣∣∣An′

n′′

∣∣∣2 νn′

n′′ −
∑

n′′,En′<En′′

∣∣∣An′

n′′

∣∣∣2 νn′′

n′

 = 1 (1.309)

1.19.3 Principio di corrispondenza.

Per completare l’analisi dell’interazione luce-materia nell’ambito della vecchia teoria dei
quanti possiamo fare vedere esplicitamente che la formula di dispersione di Kramers e la
relazione di somma di Thomas e Kuhn si possono inferire dal principio di corrispondenza,
in una versione più sofisticata, formulata essenzialmente da Born[Born24].

Il principio di corrispondenza asserisce che la frequenza relativa ad una transizione che
avviene fra stati con grandi numeri quantici deve essere approssimata da un’armonica della
frequenza classica del moto. Consideriamo per fissare le idee un moto periodico in cui siè
operata la quantizzazione con la regolaJ = nh. L’energia in generalèe una funzione diJ
ed il principio di Bohr per le frequenze di transizione si scrive

νn,n−τ =
E(nh)− E((n− τ)h)

h
' τ

dE(n)
dn

=
1
h

τ
dEcl(J)

dJ
(1.310)

Ricordiamo chedEcl(J)
dJ è proprio la frequenza classica del moto riferita ad una variabile di

azioneJ , quindi la (1.310) esprime correttamente il principio di corrispondenza.
L’ipotesi di Bornè quella di estendere il tipo di relazione (1.310) a qualunque quantità

che si riferisca ad uno stato stazionario, e quindi dipendente solo dan:

τ
dΦ(n)

dn
↔ Φ(n)− Φ(n− τ) ovvero

1
h

(Φ(n)− Φ(n− τ)) ↔ τ
dΦ(J)

dJ
(1.311)

Si tratta ciòe didiscretizzarele derivate.
Una immediata generalizzazione, che ci servirà in seguito,è la “quantizzazione” di

quantit̀a che si riferiscono in modo più complicato allo stato. Consideriamo la frequenza di
transizione classica corrispondente alla armonicaτ -esima

νcl(n, τ) = τ
dEcl(J)

dJ

si ha, sempre sfruttando la (1.310):

τ
νcl(n, τ)

dn
= τ

d

dn

[
1
h

τ
dE

dn

]
cioè laderivata secondadella grandezzaE, vale a dire, sempre per discretizzazione

τ
dνcl(n, τ)

dn
↔ 1

h
[(E(n + τ)− E(n))− (E(n)− E(n− τ))] = νn+τ,n − νn,n−τ

che generalizzeremo nella forma

τ
dΦcl(n, τ)

dn
= Φ(n + τ, n)− Φ(n, n− τ) (1.312)

Consideriamo ora un sistema atomico, che schematizziamo come un sistema sempli-
cemente periodico, interagente con un’onda elettromagnetica esterna. L’Hamiltoniana del
sistemàe scrivibile, in approssimazione di dipolo, nella forma

H = H0 − d · E E = E0 cos(2πνt) (1.313)
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In assenza di interazione si hanno coordinate canonichew0, J0 ed il dipolo, genericamente,
ha un’espressione del tipo

d0 = e
1
2

∑
τ

Cτei2πw0τ d reale ⇒ C−τ = C∗
τ (1.314)

La normalizzazione usata per scrivere la (1.314)è la stessa usata classicamente nelle equa-
zioni (1.280) e (1.282). Tenendo conto della perturbazione dovuta al campo esterno il
dipolo subisce un cambiamento, scrivibile, al primo ordine perturbativo inE0 nella forma

d = d0 + d1 d1 ∝ E0

d1 è il dipolo indotto nel sistema può essere facilmente calcolato per mezzo della teoria
perturbativa classica:

d1(ν) =
e2E0

2
cos(2πνt)

∑
τ>0

τ
∂

∂J

|Cτ |2τν0

(ν0τ)2 − ν2
(1.315)

il lettore pùo trovare una dimostrazione del risultato (1.315) nell’appendice 1.G. La (1.315)
dice che la polarizzazione classicaè

α =
e2

2

∑
τ>0

τ
∂

∂J

|Cτ |2τν0

(ν0τ)2 − ν2
(1.316)

L’argomento della derivata nell’espressione (1.316) si riferisce ad una transizionen →
n + τ e ν0τ è l’armonicaτ -esima della frequenza fondamentale, quindi quantisticamente
va interpretato come

|Cτ |2τν0

(ν0τ)2 − ν2
↔ |A(n + τ, n)|2νn+τ,n

ν2
n+τ,n − ν2

(1.317)

DoveA è il corrispettivo quantistico dell’ampiezza classicaC. Applicando ora la regola di
corrispondenza (1.311) si ottiene

α =
e2

2h

∑
τ>0

{
|A(n + τ, n)|2νn+τ,n

ν2
n+τ,n − ν2

− |A(n, n− τ)|2νn,n−τ

ν2
n,n−τ − ν2

}
(1.318)

che coincide, a parte le notazioni leggermente diverse, con la relazione di Kramers (1.304).

1.20 La transizione alla meccanica quantistica.

Dai paragrafi precedenti dovrebbe ormai risultare chiaro che il problema centraleè il cal-
colo delle ampiezze di transizioneA(n + α, n) analoghe alle ampiezze classicheCα. È
questo il problema affrontato e risolto da Heisenberg nel fondamentale lavoro[Heis25].

Consideriamo per semplicità un sistema periodico, unidimensionale, ad esempio un
oscillatore anarmonico. Classicamente le grandezzeCα sono definite dalla soluzione delle
equazioni del moto:

ẍ = f(x) (1.319)

dovef(x) è, ad esempio, un polinomio inx. La soluzione classica ha la forma

x =
1
2

∑
α

Cαei2πανt (1.320)

La notazionèe identica a quella usata nella (1.314), ora indichiamo conν le frequenze
esatte del sistema. Usiamoα, β . . . come interi al posto diτ per evitare confusioni tipo-
grafiche con il tempot. Classicamenteαν è la fequenza che corrisponde al salto quantico
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n → n + α, qundi scriviamolaνcl(n, α). A questa frequenza corrisponde una frequen-
za quantistica, tramite la regola di Bohr,ν(n, α). L’idea usata nei paragrafi precedenti
è di fare corrispondere aCα una “ampiezza quantistica”A(n, n − α) e quindi scrivere,
quantisticamente

q(t) =
1
2

∑
α

A(n, n− α)ei2πν(n,n−α)t ≡
∑
α

q(n, n− α)ei2πν(n,n−α)t (1.321)

Questoè molto ragionevole dal punto di vista fisico: le quantità osservate, via ad esempio
la relazione di dispersione, sono le quantità A(n, n − α) edè quindi giusto concentrare la
nostra attenzione su queste quantità. Un sistema come l’oscillatore anarmonicoè perio-
dico, quindi nel linguaggio classicòe integrabile ed ha solo stati stazionari. Limitiamoci
a questo tipo di sistemi per semplicità. In questo caso qualunque dipendenza temporale,
perqualunque osservabiledeve corrispondere a transizioni fra stati stazionari, cioè la pìu
generale dipendenza temporaleè proprio della forma (1.321):

Q(t) =
∑
α

B(n, n− α)ei2πν(n,n−α)t (1.322)

possiamo quindi dire che qualunque osservabile deve essere rappresentabile da coefficienti
del tipoB(n, n− α).

Torniamo ora al problema di determinare i coefficientiA(n, n − α) per la variabileq.
In linea di principio basta sostituire l’espressione (1.321) nella (1.319), riscritta perq, ed
avere delle equazioni perA. Ma c’è un grosso problema. Se, ad esempio,f(x) = x2 cosa
si sostituisce al posto diq2? Qual’̀e ciòe la regola per costruire i “coefficienti”B perq2 se
si conoscono quelli,A, perq? Consideriamo proprio il casof(x) = x2. Si avr̀a

q2 =
1
4

∑
α

B(n, n− α)ei2πν(n,n−α)t ≡
∑
α

[q2](n, n− α)ei2πν(n,n−α)t (1.323)

NOTA: attenzione a non confondere[q2](n, n − α) che indica il rappresentante della quantità q2

con l’espressione(q(n, n− α))2 cheè il quadrato del numeroq(n, n− α).

Qui si coglie un primo punto importante: se si deve soddisfare un’equazione come la
(1.319) si avranno relazioni del tipo

A(n, n− α) ∼ B(n, n− α)

il che significa che non solo il modulo, ma anchela fasedei coefficientiA(n, n − α) è
importante, perch̀e naturalmente si deve avere uguaglianza anche in fase. Questo ci aiuta
a capire la situazione. La fase dei coefficienti si comporta come la dipendenza temporale.
Ora per le frequenze classiche si ha

νcl(n, α) + νcl(n, β) = νcl(n, α + β) (1.324)

trattandosi di armoniche. Quantisticamente invece la legge di Bohr sulle frequenze, o se
vogliamo il principio di combinazione di Ritz, ci dice che deve valere

ν(n, n− β) = ν(n, n− α) + ν(n− α, n− β) ∀α (1.325)

Classicamentèe chiaro come costruirex2, basta fare il prodotto di due serie di Fourier, che
sono serie di potenze,

x2 =
1
4

∑
β

∑
α

CαCβ−αei2πνβt =
1
4

∑
β

∑
α

CαCβ−αei2πνcl(n,n−β)t
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Cioè classicamente laβ-sima componente di Fourierè

(x2)β =
1
4

∑
α

CαCβ−αei2πνcl(n,n−β)t (1.326)

cheè ovviamente compatibile con la legge di composizione (1.324) per le frequenze:

ei2πtνcl(n,α)ei2πtνcl(n,β−α) = ei2πt(νcl(n,α)+νcl(n,β−α)) = ei2πtνcl(n,β)

La legge di composizione quantistica (1.325) invece, scritta per le fasi, diventa

ei2πν(n,n−β)t = ei2πt(ν(n,n−α)+ν(n−α,n−β)) = ei2πtν(n,n−α)ei2πtν(n−α,n−β) (1.327)

Visto che le fasi dei coefficientiA(n, n − α) devono combinarsi come le fasi temporali
esplicite deve allora valere, quantisticamente

[q2](n, n− β) =
∑
α

q(n, n− α)q(n− α, n− β) (1.328)

Ponendon = i, n − α = k, n − β = j il lettore riconoscer̀a nella (1.328) la legge di
moltiplicazione di due matrici:

(q2)ij =
∑

k

qikqkj (1.329)

Notiamo anche che la relazione di Bohr fra frequenze di transizione e livelli atomici dà:
ν(n, n− α) = −ν(n− α, n), quindi per le fasi si ha

ei2πν(n,n−α)t = e−i2πν(n−α,n)t =
[
ei2πν(n−α,n)t

]∗
Imponendo di nuovo che le quantitàA(n, n− α) si trasformino come le fasi temporali

A(n, n− α) = [A(n− α, n)]∗ (1.330)

che sostituisce la relazione classicaCα = C∗
−α.

È chiaro che rappresentare una coordinata classica con un oggetto che non soddisfa ad
un’algebra commutativa, una matrice,è una cosa piuttosto lontana dalla intuizione classica
ma questo punto verrà discusso più ampiamente nel resto del libro. Diamo ora per buo-
na la prescrizione (1.329) e la sua ovvia generalizzazione a potenze superiori, in linea di
principio possiamo ora sostituire nella (1.319) e ottenere un’equazione per le grandezze
q(n, n − α). Ma resta un problema: nella vecchia teoria fra le infinite soluzioni classiche
dell’equazione differenziale (1.319) ne venivano selezionate alcune tramite la scelta delle
costanti del moto, o meglio degli invarianti adiabaticiJ . Cosa prende il posto di questa
procedura?

Nel caso in esame la condizione di Bohr-Sommerfeld si può riscrivere nella forma

J = nh =
∮

pdq =
∫ 1/ν

0

dtmẋ2 (1.331)

Dalla (1.320) si ha
ẋ = iπ

∑
α

(αν)Cαei2παν

e quindi, effettuando l’integrale che compare nella (1.331)

nh = mπ2
∑
α

(αν)2CαC−α
1
ν

= mπ2
∑
α

α(αν)|Cα|2 = 2mπ2
∑
α>0

α(αν)|Cα|2

(1.332)
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Per tradurre questa relazione in un’affermazione “quantistica”, usiamo la procedura di Born
vista nel paragrafo precedente, operando una derivata rispetto adn:

h = 2mπ2
∑
α>0

α
d

dn

[
|Cα|2(αν)

]
(1.333)

Questa espressione ha esattamente la forma che abbiamo già visto nell’analisi della formula
di Kramers, quindi possiamo scrivere immediatamente la trascrizione tramite la procedura
di Born:

h = 2mπ2
∑
α>0

[
|A(n + α, n)|2ν(n + α, n)− |A(n− α, n)|2ν(n, n− α)

]
(1.334)

ma questàe esattamente la relazione di Thomas e Kuhn (1.309), chedeveessere soddisfatta
come regola di somma. Quindi da un lato abbiamo verificato che la (1.309) discende di-
rettamente dal principio di corrispondenza esteso nella maniera di Born, dall’altra abbiamo
trovato un vincolo che sostituisce la relazione semiclassica (1.331). Notiamo che, usando
la relazioneν(n, n− α) = −ν(n− α, n), la (1.334) pùo essere scritta più semplicemente
nella forma di una serie non vincolata:

h = 2mπ2
∑
α

|A(n + α, n)|2ν(n + α, n) (1.335)

A questo punto il problemàe ben definito. Nel lavoro[Heis25] Heisenberg sfrutta questa
relazione e le equazioni del moto per risolvere il problema dell’oscillatore armonico32 e d̀a
una trattazione perturbativa di quello anarmonico. In breve tempo Born e Jordan[BoJo25]
riconoscono nel formalismo di Heisenberg la struttura di algebra delle matrici e fanno
vedere che la relazione (1.334) corrisponde alla regola di commutazione

[q, p] = i
h

2π
(1.336)

Dalla relazione (1.321) segue

p = mq̇ = iπ
∑

α

A(n, n− α)ν(n, n− α)ei2πν(n,n−α)t ≡
∑

α

[p](n, n− α)ei2πν(n,n−α)t

(1.337)
La regola di moltiplicazione (1.328) impone

{qp}(n, n− β) =
∑

α

q(n, n− α)p(n− α, n− β) =
imπ

2

∑
α

A(n, n− α)A(n− α, n− β)ν(n− α, n− β)

{pq}(n, n− β) =
∑

α

p(n, n− α)q(n− α, n− β) =
imπ

2

∑
α

A(n, n− α)ν(n, n− α)A(n− α, n− β)

Il termine “diagonale”,β = 0, delle relazioni precedenti dà:

{qp− pq} (n, n) =
imπ

2

∑
α

(
|A(n, n− α)|2 ν(n− α, n)− |A(n− α, n)|2 ν(n, n− α)

)
= imπ

∑
α

|A(n + α, n−)|2 ν(n + α, n) (1.338)

Nell’ultimo passaggio abbiamo cambiato l’indice di sommaα → −α. Usando la (1.335) si ha

{qp− pq} (n, n) = imπ · h

2mπ2
= i

h

2π
(1.339)

32Il lettore è invitato a leggere almeno per sommi capi il lavoro in questione. Alcune parti, quell relative allo
sviluppo perturbativo, saranno riviste nel capitolo sulla teoria perturbativa.
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cheè esattamente il termine diagonale della (1.336). Nell’articolo[BoJo25] si fa vedere che i termini
non diagonali sono nulli.

Subito dopo in un famoso articolo Born, Heisenberg e Jordan[BoHeJo25] forniscono diver-
se applicazioni del formalismo e sviluppano la teoria perturbativa. A brevissima distanza
compare una formulazione completamente diversa della teoria, quella di Schrödinger, che
verr̀a trattata pìu diffusamente nel testo principale del libro. In pochi mesi, fra il 1925 e il
1926, si ha la transizione dalla vecchia alla nuova meccanica.

Breve nota bibliografica.

Alla fine del capitolo si trova un breve elenco delle opere e degli articoli citati nel testo e
nelle appendici. Abbiamo cercato, quando possibile, di fornire l’indicazione di versioni in
lingua italiana o inglese degli articoli originali.

Fra i testi citati vogliamo qui segnalare i libri di M. Born[Born32] e quello di S.
Tomonaga[Tomonaga], dove il lettore può trovare un’esposizione molto chiara, tra le altre
cose, degli argomenti trattati in questo capitolo.

Per il lettore che voglia approfondire la parte storica consigliamo i testi di J. Mehra e
H. Rechenberg[Mehra], di M. Jammer[Jammer] e di A. Pais[Pais1, Pais2]. In questi testi,
fra l’altro, il lettore pùo trovare un’ampia bibliografia.

Gli articoli di Einstein citati nel testo si possono reperire tradotti in inglese nei “Col-
lected Papers”[Einstein]. Alcuni articoli tradotti in italiano si possono trovare, ad esempio,
in[Einstein2].



Appendici e Complementi

1.A Termodinamica del corpo nero.

Consideriamo alcuni semplici aspetti termodinamici della radiazione di corpo nero. Il
lettore che voglia approfondire l’argomento può consultare il testo di Planck[Pla-H.R.].

Consideriamo un corpo a temperaturaT in equilibrio termico con la radiazione. Una
situazione di questo tipo può essere idealizzata come una cavità con pareti riflettenti33.

Dall’elettromagnetismo sappiamo che possiamo definire una densità di energia,u, ed
una densit̀a di impulso,g = u/c. In termini del vettore di PoyntingS, si hag = S/c2.

È allora immediato calcolare la quantità di
energia che arriva al secondo su una super-
ficie dS, da un angolo solidodΩ in direzione
θ, in un tempodt (vedi figura), e la quantità
di impulso, sempre nella direzioneθ:

δE = u
dΩ
4π

[cdtdS cos θ] (1.340a)

δP =
u

c

dΩ
4π

[cdtdS cos θ] (1.340b)

dΩ

θ

dS
Nella cavit̀a la radiazionèe isotropa, ciòe u non dipende daθ. Dalla (1.340b) si pùo cal-
colare la pressione di radiazione: in una riflessione su una parete l’impulso trasferito in
direzione ortogonale alla pareteè2δP cos θ quindi per la pressione si ha:

p =
∫

2δP cos θ

dtdS
=
∫

2u
dΩ
4π

cos2 θ =
u

3
(1.341)

l’integraleè stato fatto sull’angolo azimutale,0 ≤ ϕ ≤ 2π, e sulla parte interna alla cavità,
0 ≤ θ ≤ π/2. D’ora in poi indicheremo questo tipo di integrale con la notazione∫

<

dΩ ≡
∫ 2π

0

dϕ

∫ π/2

0

sin θdθ

Teorema di Kirkhhoff. La densit̀a di energiau dipende dalla temperatura. La sua com-
posizione spettralèe definita come l’energia per unità di volume con frequenza compresa
nell’intervalloν, ν + δν, e indicata conuν(ν, T )δν. In ternmini della funzioneuν(ν, T ) si
ha:

u(T ) =
∫ ∞

0

uν(ν, T ) dν ≡
∫ ∞

0

uν dν (1.342)

33Per pareti perfettamente riflettenti la radiazione riflessa ha la stessa frequenza della radiazione incidente e
quindi non si potrebbe raggiungere l’equilibrio termodinamico a partire da una situazione generica. Possiamo
pensare di aggiungere un “granello di polvere” che assorbendo e riemmettendo radiazione catalizzi il processo di
equilibrio: è lo stesso procedimento che si utilizza quando si tratta un gas perfetto in una scatola con pareti liscie.
Il granello di polvere chiaramente non ha influenza sulle funzioni termodinamiche.
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Il primo risultato importante, dovuto a Kirkhhoff,è che la funzioneuν(ν, T ) non dipende
dal tipo di cavit à. Supponiamo infatti di avere due cavità,A,B se la funzione noǹe uguale,
allora una delle due, ad esempioA, ha, in un certo intervallo di frequenza, una densità di
energia maggiore:uA(ν, T ) > uB(ν, T ). Consideriamo ora una fibra ottica di sezioneS
che lasci passare solo l’intervallo di frequenza in questione e connetta le due cavità. I flussi
di energia daA versoB e viceversa, in un tempodt, sono, dalla (1.340a):

ΦA→B =
∫

<

uA(ν, T )
dΩ
4π

[cdtS cos θ] ΦB→A =
∫

<

uB(ν, T )
dΩ
4π

[cdtS cos θ]

Nelle ipotesi fatteΦA→B > ΦB→A.
Si ha quindi un flusso di energia daA a B: la seconda cavità allora aumenta la sua

temperatura in modo da equilibrare il flusso. La differenza di temperatura ottenuta si può
utilizzare in una macchina termica funzionante fino a portareB alla temperatura originaria.
In questo modo si sarebbe ottenuto lavoro a partire da una sola sorgente,A, senza altri cam-
biamenti, e cìo contraddice il secondo principio della termodinamica, quindi deve essere
uA(ν, T ) = uB(ν, T ).

Definizione di corpo nero. Consideriamo ora un qualunque corpo a temperaturaT , e
supponiamo che emetta radiazione in modo dipendente soltanto dalla temperatura34. Chia-
miamo J(ν, θ) l’energia emessa al secondo per intervallo di frequenza e di superficie
nell’angolo solidodΩ:

δWem

dΩdν
= J(ν, θ)dS (1.343)

Il coefficienteJ si chiama coefficiente di emissione35. Questo stesso corpo, sottoposto a
irragiamento, pùo assorbire una certa percentuale della radiazione incidente. SeIν(θ) è
la densit̀a spettrale della radiazione incidente per unità di angolo solido, ragionando come
nella (1.340a) si ha che l’energia al secondo incidente dall’angolo solidodΩ sull’unità di
superficièe

δWinc

dνdS
= cIν cos θ

dΩ
4π

(1.344)

di questa una frazioneA(ν, θ) sar̀a assorbita. Il coefficienteA si chiama coefficiente di
assorbimento.

I coefficientiJ,A dipendono dal corpo chiaramente. Supponiamo per semplicità che
il corpo non sia fluorescente, e che tutta la radiazione incidente venga assorbita o rifles-
sa. In questa situazione all’equilibrio termico per ogni angolo solido e per ogni interval-
lo di frequenza si deve avere un bilanciamento fra energia assorbita e energia riemessa.
All’equilibrio termico la radiazione ambientèeuν , isotropa, quindi si deve avere

J(ν, θ) = A(ν, θ) · c

4π
uν cos θ

J(ν, θ)
A(ν, θ)

=
c

4π
uν cos θ (1.345)

cioè il rapporto fra il coefficiente di emissione e quello di assorbimentoè universale, non
dipende dal corpo ma solo dalla densità spettrale della radiazione all’equilibrio termico,
uν(T ). Questòe il contenuto di un secondoteorema di Kirchhoff (1859).Si definiscecorpo
nero un corpo che assorbe tutte le frequenze, in cui cioè A = 1. uν è quindi direttamente
connessa al coefficiente di emissione di un corpo nero.

34Il caso pìu sempliceè quello in cui il corpo non cambia durante l’emissione, ma possono anche avvenire
reazioni chimiche, purch̀e la temperatura sia l’unico parametro di regolazione.

35Spesso si usa la notazioneJ = K cos θ.
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È istruttivo presentare una deduzione elementare
della (1.345), chèsostanzialmente la prima dimo-
strazione di Kirchhoff. Consideriamo una situa-
zione come quella illustrata in figura.S1, S2 sono
due specchi perfettamente riflettenti.K1, K2 sono
due corpi trasparenti a tutte le frequenze eccetto
quelle comprese nell’intervallo(ν, ν + dν). Pos-
sono emettere o assorbire luce in questo intervallo
di frequenza attraverso le superfici tratteggiate in
figura. S1 S2K1 K2

A B C

I poteri emissivi ed assorbenti sono(e, a) e (E, A) rispettivamente. SianoI(A)
L , I

(A)
R le intensit̀a

luminose, nell’intervallo considerato in frequenza, che si propagano verso sinistra e verso destra nella
regioneA. Grandezze analoghe siano definite nelle regioniB, C.

All’equilibrio deve essereI(A)
L = I

(A)
R e l’intensit̀a verso sinistra inA è quella non assorbita

proveniente dalla regioneB, cioèI
(A)
L = I

(B)
L (1−a). Lo stesso ragionamento vale nella ragioneC,

si hanno dunque le relazioni{
I
(A)
L = I

(A)
R

I
(A)
L = I

(B)
L (1− a)

{
I
(C)
L = I

(C)
R

I
(C)
R = I

(B)
R (1−A)

Nella zonaB il corpoK1 emette radiazione verso destra e quelloK2 verso sinistra, inoltrèe presente
la radiazione proveniente dalle zoneA, C:{

I
(B)
R = e + I

(A)
R = e + I

(B)
L (1− a)

I
(B)
R = E + I

(C)
L = E + I

(B)
R (1−A)

All’equilibrio i corpi devono emettere la stessa quantità di energia che assorbono, quindi

e = aI
(B)
L E = AI

(B)
R

Sostituendo nelle relazioni precedenti si ottiene

e

a
=

E

A

che esprime appunto l’universalità del rapportoe/a.

L’energia totale emessa dall’unità di superficie di un corpo nero al secondo,è

W =
∫ ∞

0

dν

∫
<

dΩ J(ν, θ) =
∫

<

dΩ
c

4π
u cos θ =

c

4
u (1.346)

Sperimentalemente Stefan, nel 1879, ha trovato che (legge di Stefan)

W = σT 4 (1.347)

Il valore attuale diσ è

σ = 5.670400(40)× 10−5 erg
sec cm2 K4 = 5.670400(40)× 10−8 W

m2 K4

Questa leggèe stata dedotta teoricamente da Boltzmann (1884) edè quindi nota come
legge di Stefan-Boltzmann, la costanteσ si chiama costante di Stefan-Boltzmann, e, come
vedremo,̀e deducibile da altre costanti fondamentali.

Il secondo principio della termodinamica, cioè l’esistenza dell’entropia, applicato alla
radiazione, si scrive

TdS = dU + pdV

U = uV è l’energia interna. Utilizzando l’equazione di stato (1.341) e ricordando cheu è
una funzione solo diT :

dS =
1
T

(V du + udV ) +
1
T

u

3
dV =

V

T
du +

4
3

u

T
dV =

V

T
u′(T )dT +

4
3
udV
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Imponendo chedS sia un differenziale esatto:

∂

∂V

(
V

T
u′
)

=
4
3

∂

∂T

( u

T

)
⇒ 1

3
u′

T
− 4

3
u

T 2
= 0

da cui, imponendou(0) = 0:
u = aT 4 (1.348)

Dalla (1.346) segue

σ =
c

4
a ⇒ a =

4
c
σ (1.349)

Sostituendo nella definizione diS:

dS =
4
3
aT 3 + 4aT 2V dT ⇒ S =

4
3
aT 3V (1.350)

La (1.350) esprime il fatto, probabilmente noto al lettore, che in un’espansione adiabatica la
temperatura decresce comeV −1/3, cioè con le dimensioni lineari del sistema, fatto questo,
ad esempio, all’origine del “raffreddamento” della radiazione fossile dell’universo.

Il secondo principio della termodinamica implica anche un importante risultato sulla
distribuzione spettraleuν(ν, T ), la legge di Wien (1893).

1.A.1 Legge di Wien.

Legge di Wien: La forma generale della funzioneuν(ν, T ) è data da

uν(ν, T ) = ν3f
( ν

T

)
(1.351)

In questo capitolo daremo tre diverse dimostrazioni di questa legge, ognuna metterà in
luce aspetti diversi del problema. La prima dimostrazioneè quella classica di Wien, vedi
ref.[Pla-H.R.].

Consideriamo una cavità a temperaturaT , con pareti perfettamente riflettenti, e suppo-
niamo di comprimere lentamente, con velocitàVP una delle pareti, di areaA. Per velocit̀a
VP infinitesime questa compressioneè adiabatica, perchè non c’̀e scambio di calore, e
reversibile36.

Consideriamo un singolo raggio di luce che incide sulla parete mobile con un angolo
θ. Nel processo di riflessione avvengono due fenomeni: la frequenza della luce cambia per
effetto Doppler e l’energia del raggio cambia. Possiamo pensare alla luce riflessa come
proveniente da una sorgente virtuale posta al di là della parete, se la sorgente realeè a
distanzax dalla parete la distanza fra la sorgente virtuale e quella realeè 2x, quindi al
muoversi della parete la velocità è 2 dx/dt = 2VP e l’effetto Doppler al primo ordine
fornisce per la frequenza della luce riflessa

ν′ = ν

(
1 + 2

VP

c
cos θ

)
(1.352)

Una dimostrazione alternativa si può ottenere passando al sistema di riferimento solidale
alla parete. In questo sistema la luce riflessa e quella incidente hanno la stessa frequenza.
Effettuando la trasformazione di coordinate dal laboratorio al sistema mobile e viceversa,
prima e dopo la riflessione si riottiene il risultato (1.352).

36Non tutte le trasformazioni lente sono necessariamente reversibili, in questo casoè abbastanza ovvio che la
trasformazione pùo essere pensata avvenire attraverso stati di equilibrio, la forza esterna che spinge la pareteè in
equilibrio con la pressione di radiazione all’interno della cavità. Una dimostrazione formale di questo fatto si può
trovare nel testo di Planck, noi verificheremo la cosa a posteriori.
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Consideriamo ora l’energia di un singolo raggio. La quantità di energia che incide da
un angoloθ con frequenzaν sull’areaA in un tempodt è

I(ν, θ)dνdt = uν
dΩ
4π

[Acdt cos θ]dν (1.353)

Quindi Idν è l’energia al secondo che incide sulla parete e corrispondentementeIdν/c è
l’impulso. Per la conservazione dell’energia, l’energia riflessa sarà data da quella incidente
più il lavoro della forza esterna. La forza corrispondente ad una trasformazione quasi-
staticaè la stessa della forza di equilibrio (si pensi ad una compressione lenta di un gas,
la forzaè pA dovep è la pressione di equilibrio). Come abbiamo visto nel calcolo della
pressione di radiazione l’impulso incidenteIdν/c, in condizioni di equilibrio, d̀a luogo ad
una variazione di impulso al secondo, cioè ad una forza

F = 2
Idν

c
cos θ

ed un corrispondente lavoroL = FVP dt. Quindi l’energia riflessa in un tempodt in
seguito all’incidenza del raggio (1.353)è

I(ν, θ)dνdt + 2
Idν

c
cos θVP dt = I(ν, θ)dν

(
1 + 2

VP

c
cos θ

)
dt (1.354)

In una trasformazione adiabatica si ha perciò un travaso di energia fra le diverse compo-
nenti spettrali della radiazione. Quello che vogliamo scrivereè appunto il bilancio energe-
tico del processo, calcolare cioè il cambiamento dell’energia della componente spettraleν,
δ(uνV )dν.

Tutta l’energia che incide sulla parete viene rimossa, a causa dell’effetto Doppler, dalla
componente in esame, si ha cioè una perdita:

Φ− =
∫

<

I(ν, θ)dt (1.355)

dove al solito l’integralèe fatto per raggi incidenti, quindiθ ≤ π/2.
Si ha poi un guadagno dovuto al travaso da modi di energia diversa, sempre per effet-

to Doppler. Consideriamo una incidenza ad angoloθ (che non ha niente a che fare con
l’angolo di incidenza considerato prima, quiθ è un angolo generico su cui integreremo).
Le frequenze che dopo riflessione diventanoν sono date, al primo ordine inVP /c dalla
relazione inversa alla (1.352)

ν1 = ν

(
1− 2

VP

c
cos θ

)
(1.356)

Il guadagno in energia in questo processo si legge direttamente dalla (1.354)

Φ+ =
∫

<

I(ν1, θ)dν1

(
1 + 2

VP

c
cos θ

)
dt '

∫
<

I(ν1, θ)dνdt (1.357)

Abbiamo sfruttato il fatto che al primo ordine inVp

dν1

(
1 + 2

VP

c
cos θ

)
= dν

(
1− 2

VP

c
cos θ

)(
1 + 2

VP

c
cos θ

)
' dν

Sviluppando in serie di Taylor

I(ν1, θ) ' I(ν, θ) +
∂uν

∂ν

(
−2

VP

c
cos θ ν

)
dΩ
4π

[Acdt cos θ]
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Usando ∫
<

dΩ
4π

cos2 θ =
1
6

si ha allora

Φ+ = Φ− −
∂uν

∂ν

1
3
[AVP dt]dν = Φ− +

∂uν

∂ν
ν

1
3
dV dν (1.358)

dV = −[AVP dt] è la variazione di volume, il segno menoè dovuto al fatto che stiamo
considerando una compressione.

Quindi la variazione di densità spettrale di energiàe

δ(uνV ) =
1
3

∂uν

∂ν
νδV ⇒ ∂ uνV

∂V
=

1
3

∂uν

∂ν
ν ⇒ V

∂ uν

∂V
=

ν

3
∂uν

∂ν
− u (1.359)

La (1.359)è lineare inδV , quindi in δt, cioè cambiando il segno del tempo l’effetto cam-
bia segno, si ha quindi in effetti un processo reversibile. La (1.359)è una equazione
differenziale peru intesa come funzione diν eV . È immediato verificare che la posizione

uν(ν, V ) = ν3f1(ν3V )

fornisce la soluzione. In una trasformazione adiabatica reversibile, vedi (1.350),V T 3 =
cost., quindi al posto diV possiamo sostituireT−3 ed ottenere infine

uν(ν, T ) = ν3f(ν/T ) (1.360)

cioè la legge di Wien (1.351).

Particelle a massa nulla. Come probabilmente il lettore già s̀a, uno dei principali risultati
che otterremo nello studio della meccanica quantisticaè la descrizione della radiazione
elettromagnetica attraverso particelle a massa nulla, i fotoni, con energia data daE = hν
ed impulsop = E/c = hν/c. In vista di questo risultato facciamo vedere come la legge
di Wien si possa ottenere in modo elementare con un procedimento noto dallo studio delle
trasformazioni adiabatiche di un gas perfetto.

NOTA. Il lettore intenda la trattazione seguente come una trattazione puramente euristica dell’ar-
gomento. I fotoninon sono trattabilicome particelle statisticamente indipendenti nel senso della
statistica di Boltzman. Il motivo per cui i risultati seguenti danno il risultato correttoè che in realt̀a
tutte le relazioni sono basate sulle proprietà della densit̀a di energia, il numero di fotoniè una quantit̀a
puramente ausiliaria definita fra qualche riga.

Consideriamo un gas di particelle a massa nulla. Sian(E)dE il numero di particelle
per unit̀a di volume con energia compresa fraE e E + dE. Supponiamo la distribuzione
isotropa, comèe ovvio. In questo linguaggio la densità di energia e la densità spettrale sono
date da

u =
∫

dEn(E)E =
∫

dEu(E) u(E) = En(E) (1.361)

Il lettore esperto avrà notato che assumere l’esistenza di una funzionen(E)dE per il nu-
mero di particellèe un’ipotesi piuttosto azzardata, nel senso che in generale il numero di
particelle per unit̀a di volume dipende anche dal numero totale di particelle, ad esempio.
Nei calcoli seguenti l’unica grandezza che entrerà in giocoè u(E), la densit̀a di energia,
quindi si pùo consideraren(E) come una variabile ausiliaria, in effettin(E) = U(E)/E
per definizione. Commenteremo in seguito cosa succede per un gas composto da particelle
diverse dai fotoni.

Con un procedimento ben noto dallo studio di un gas perfetto, il numero di urti di
particelle provenienti da un angoloθ su un’areadA è

N (E, θ)dEdt = n(E)dE
dΩ
4π

[dAcdt cos θ]
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Per urto elastico contro una parete si ha un trasferimento di impulso2E
c cos θ e quindi si

ha una pressione

p =
∫

dE

∫
<

n(E)dE
dΩ
4π

c cos θ · 2E

c
cos θ =

u

3
(1.362)

Quindi questo gas soddisfa alla stessa equazione di stato della radiazione.
Passiamo ora alla legge di Wien. L’urto elastico contro una parete riflettente mobile

porta ad un cambiamento di energia

E′ = E

(
1 +

2VP

c
cos θ

)
(1.363)

Basta ragionare come per la radiazione: nel sistema di quiete della parete l’energia nell’urto
resta invariata, effettuando la trasformazione di Lorentz segue la (1.363).

L’energia dei fotoni “persi”̀e, come nel calcolo precedente:

Φ− =
∫

<

N (E, θ)dtdE · E (1.364)

I fotoni che, dopo riflessione, hanno energiaE provengono da energie:

E1 = E

(
1− 2VP

c
cos θ

)
Quindi il guadagno di energiàe, usando la (1.364):

Φ+ =
∫

<

N (E1, θ)dtdE1 · E1 ·
(

1 +
2VP

c
cos θ

)
(1.365)

Di nuovodE1(1 + 2VP

c cos θ) = dE e quindi

Φ+ =
∫

<

N (E1, θ)dtdE · E1 (1.366)

Usando ora la definizioneu(E) = n(E)E si ricava di nuovo la (1.359):

δ(u V ) =
1
3
E

∂u

∂E
EδV ⇒ u(E, T ) = E3f(E/T ) (1.367)

Quindi la legge di Wieǹe consistente con un gas di particelle a massa nulla di energia
proporzionale alla frequenza.

Torniamo ora al punto segnalato all’inizio del paragrafo. Per particelle materiali la densità spettrale
dipende anche dalla densità di materia, in generale, quindi conclusioni analoghe alla (1.367) non
sono ottenibili. Un caso in cui ciò si pùo fareè quando il numero di particellèe semplicemente un
fattore moltiplicativo per tutte le quantità, in altre parolèe come ragionare con una sola particella
moltiplicando alla fine perN , numero di particelle, i risultati per quantità estensive. Questòe vero
nell’ipotesi di indipendenza statistica, cioè nel caso della statistica di Maxwell-Boltzmann. Come il
lettore sapr̀a per gas quantistici degeneri di Bose o Fermi non valgono relazioni del tipoU(N, T ) =
NU(1, T ) per l’energia, si hanno quindi delle correlazioni fra le varie particelle. Questo discorso
apparir̀a più chiaro quando si studierà la meccanica quantistica di particelle identiche.

Consideriamo comunque per esercizio il caso di particelle con massa, non relativistiche per
semplicit̀a. Il numero di urtìe, in ogni caso

N (E, θ)dEdt = n(E)dE
dΩ

4π
[dAvdt cos θ] E =

mv2

2
(1.368)

Il trasferimento di impulso in un urtòe2mv cos θ e si ricava facilmente per la pressione

p =

∫
ndE

dΩ

4π
2mv2 cos2 θ =

2

3
u =

2

3

U

V
(1.369)
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cheè l’usuale relazione fra energia e pressione per un gas perfetto. Nel caso di Boltzmann si può
andare un p̀o oltre. Sappiamo che la distribuzione deve risultare:

d3ve−E/kT ⇒ E1/2dEe−E/kT ⇒ u(E)dE ∼ E3/2e−E/kT dE

Consideriamo di nuovo una compressione adiabatica reversibile. In un urto elastico contro la parete
mobile si ha una variazione di energia

E′ = E + 2mvVP cos θ (1.370)

e questo meccanismo fornisce il meccanismo di bilanciamento fra le varie componenti spettraliu(E),
come nel caso radiativo. La “perdita” di energia negli urtiè, usando la (1.368)

Φ− =

∫
<

E · n(E)dE
dΩ

4π
[dAvdt cos θ] (1.371)

Per il calcolo del guadagno notiamo che dalla (1.370) segue che le particelle che dopo l’urto hanno
energiaE devono avere, prima dell’urto, una energia

E1 = E − 2mvVP cos θ = E

(
1− 2mv

E
VP cos θ

)
(1.372)

Segue

v1 =

√
2E1

m
' v

(
1− mv

E
VP cos θ

)
(1.373a)

dE1 = dE
(
(1− mv

E
VP cos θ

)
(1.373b)

E′
1 = E ' E1

(
1 +

2mv

E
VP cos θ

)
(1.373c)

Il guadagno di energiàe

Φ+ =

∫
<

E′
1 · n(E1)dE1

dΩ

4π
[dAv1dt cos θ] (1.374)

ed usando le (1.373)

Φ+ =

∫
<

(E1 · n(E1))dE
dΩ

4π
[dAvdt cos θ] (1.375)

Lo sviluppo di Taylor diu(E) in questo caso d̀a

u(E1) = E1 · n(E1) ' u(E) +
∂u

∂E
(−2mvVP cos θ)

e quindi per il bilancio energetico si ha

δ(uV ) =
1

3
mv2 ∂u

∂E
dV =

2

3
E

∂u

∂E
dV

e l’equazione differenziale

V
∂u

∂V
=

2

3
E

∂u

∂E
− u (1.376)

Supponendo cheu dipendasolodaE, V la soluzione della (1.376)̀e

u(E) = E3/2f1(V E3/2)

In una trasformazione adiabaticaTV 2/3 = cost., come il lettore ricorder̀a dalla teoria elementare
dei gas perfetti, quindi al posto diV si pùo sostituireT−3/2 ed ottenere

u(E) = E3/2f(E/T ) (1.377)

cheè il risultato aspettato.
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1.A.2 Entropia e spettro.

Consideriamo una cavità riflettente ideale. Per riflessione la luce non cambia frequenza,
quindi, in assenza del “granello di polvere” introdotto all’inizio del capitolo, non si hanno
processi di termalizzazione. Continuiamo a supporre una radiazione omogenea ed iso-
tropa, in modo che l’unico parametro macroscopico che descrive il sistemaè la densit̀a
spettrale~uν . Dalla meccanica statistica sappiamo che in ogni casoè possibile definire una
entropia, anche per stati di non equilibrio, tramite la formula di Boltzmann,S = k log W ,
dove oraW rappresenta il numero di microstati corrispondenti alla realizzazione dello stato
macroscopico, non di equilibrio. Per ogni intervallo di frequenza avremo allora una cor-
rispondente entropia. L’omogeneità del sistema implica sempre che questa entropiaè una
quantit̀a estensiva, quindi in termini della variabile intensiva~uν si potr̀a scrivere:

S = V

∫ ∞

0

sν(~uν , ν) dν (1.378)

La distribuzione di equilibrio termico, per questo sistema, quindi con data energia totaleU ,
corrisponder̀a alla situazione di massima entropia:

massimo(S) U fisso

Il punto di massimo deve essere perciò invariante rispetto a cambiamenti di~u, a fissa energia
totale. Introducendo il vincolo con un moltiplicatore di Lagrange:∫ ∞

0

[
∂sν

∂~uν
δuν − λδuν

]
dν = 0 (1.379)

La distribuzione di equilibrio,~uν = uν deve soddisfare la (1.379) per ogni valore diδuν ,
deve quindi essere

∂sν

∂uν
= λ (1.380)

cioè all’equilibrio la derivata della densità di entropia rispetto alla densità di energia deve
essere indipendente dalla frequenza. Per determinare questa costante, consideriamo una
piccola variazione di temperatura, reversibile, del sistema. In questo processo la distribu-
zione di equilibrio subir̀a una variazione,∆uν . La corrispondente variazione di entropia
è

∆S = V

∫ ∞

0

[sν(uν + ∆uν , ν)− sν(uν , ν)] dν ' V

∫ ∞

0

∂sν

∂uν
∆uνdν

Usando il fatto che la derivatàe costante nella frequenza

∆S = V
∂sν

∂uν

∫ ∞

0

∆uνdν =
∂sν

∂uν
∆U (1.381)

Per questa trasformazione isocora il secondo principio della termodinamica si scriveTdS =
dU , quindi la (1.380) implica

∂sν

∂uν
=

1
T

(1.382)

Notiamo cheè possibile formalmente definire una “temperatura” per qualunque distribu-
zione spettrale, questa dipenderà in generale dalla frequenza:

∂sν

∂uν
=

1
Tν

Si ha equilibrio termico, ciòe una radiazione di corpo nero, quando tutte le temperature
Tν sono uguali.È l’analogo del fatto che sistemi diversi, qui le varie bande in frequenza,
all’equilibrio termico hanno la stessa temperatura.
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1.B Fluttuazioni classiche del campo di radiazione.

La fluttuazione dell’energia in un intervallo di frequenzaδν è data dalla equazione (1.69a):

〈∆E2〉 =
〈E〉2

vδνZ(ν)
+ hν〈E〉 ≡

(
hνuν +

c3

8πν2
u2

ν

)
vδν (1.383)

Nel paragrafo 1.6 abbiamo dato una motivazione intuitiva del primo termine ed abbiamo
accennato al fatto che potrebbe essere ottenuto calcolando la fluttuazione nell’ambito della
teoria classica del campo elettromagnetico. Vogliamo qui delineare brevemente una pro-
va di questa affermazione. La prima dimostrazione completaè dovuta a Lorentz[Lor16].
La prima trattazione quantistica di un modello semplificato (unidimensionale) del proble-
ma dal punto di vista ondulatoriòe contenuta in[BoHeJo25] e nel libro[Heis], la versione
classica corrispondente si trova, ad esempio, nel testo [Tomonaga].

La densit̀a di energia elettromagnetica si scrive

1
8π

(E2 + B2) per la radiazione:
1
4π

E2

Consideriamo una cavità riempita di radiazione termica a temperaturaT . Il calcolo che
faremo si riferisce ad un piccolo volume contenuto nella cavità, abbastanza grande per par-
lare di energia macroscopica ma lontano dal bordo. La termodinamica e le fluttuazioni di
questo volume non dipendono dalle condizioni al bordo della cavità, quindi per semplictà
assumiamo condizioni al contorno periodiche per il campo elettromagnetico37. Conside-
riamo per comodit̀a una cavit̀a di forma cubica, con latoL. Il campo elettricoè allora
scrivibile in serie di armoniche nella forma

E =
∑

k

Ckeikx

dove

k =
2π

L
(nx, ny, nz) nx, ny, nz : interi positivi e negativi (1.384)

Poich̀eE soddisfa l’equazione delle onde, i vettoriCk devono soddisfare a

C̈k + ω2
kCk = 0 ωk = c|k|

sono ciòe funzioni armoniche. Si pùo allora considerare lo sviluppo in termini di onde
progressive

E =
√

4π
∑
n

(
akeikx + a∗ke−ikx

)
(1.385)

Il fattore
√

4π è introdotto per comodità. I fattori ak dipendono dal tempo cone−iωkt.
ChiaramenteCk ∝ ak + a∗−k.

I vettori k sono i numeri d’onda, più volte usati nel testo. La sommaè intesa sui modi
nx, ny, nz. Per una cavit̀a grande si pùo sostituire la somma con un integrale e usare

∆nx∆ny∆nz = L3 d3k

(2π)3
= L3dΩ

ν2

c3
dν ω = c|k| = 2πν (1.386)

Noi vogliamo scrivere la densità di energia spettrale, attorno ad una frequenzaν, del-
l’energia contenuta in un piccolo volumev : dobbiamo ciòe considerare un elemento infi-
nitesimo dello spazio dei vettori d’onda, e integrare sull’angolo solido. In pratica stiamo
considerando una sottile corona sferica di raggio|k|. D’ora in poi le somme sui vettori

37Il lettore pùo provare facilmete che usando le più consuete condizioni di annullamento al bordo del campo
non cambiano i risultati.
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d’onda saranno estesesoloa questo dominio. Useremo la stessa notazione per l’integrale
nel piccolo volumev . La quantit̀a che ci interessàe allora

E =
1
4π

∑
x

E2 =
∑
x

∑
k,q

(
akeikx + a∗ke−ikx

) (
aqeiqx + a∗qe−iqx

)
(1.387)

La radiazione ha due polarizzazioni, che possiamo considerare statisticamente indipenden-
ti. Quindi per semplicit̀a nel seguito considereremo una sola polarizzazione, alla fine del
calcolo sar̀e evidente come inserire l’altra polarizzazione. Avendo un solo grado di libertà
considereremo tutte le quantità come se fossero scalari. Indicheremo alla fine una traccia
che il lettore pùo seguire per fare il calcolo direttamente in forma vettoriale e tenendo conto
nei passaggi intermedi della polarizzazione.

Notiamo un punto essenziale per il seguito. Nella (1.387) tutte le frequenze sono vici-
ne, visto l’intervallo di integrazione. Nei prodotti ci sono dei termini rapidamente variabili,
a · a, a∗ · a∗, e dei termini variabili lentamente,a · a∗. Per parlare di una quantità termodi-
namica dobbiamo fare la media sui termini variabili rapidamente, altrimenti non possiamo
in nessun senso considerare una quantità di equilibrio o di quasi equilibrio macroscopica.
I termini rapidamente oscillanti hanno media nulla, quindi la quantità macroscopica di cui
considereremo le fluttuazioni si riscrive, usando la simmetria ink, q:

E =
∑
x

∑
k,q

2aka∗qei(k−q)x (1.388)

Ora si pùo procedere in due modi:

• Si fa la media sui tempi lunghi, quindi la media temporale dell’espressione (1.388).
A noi interessa la media statistica, cosı̀ facendo assumiamo che la media temporale
e quella statistica coincidano.

• Si assume che le fasi dei numeriak siano casuali. Questòe una forma molto sem-
plificata del criterio di Boltzmann di equiprobabilità dei microstati.̀E un’assunzione
naturale visto che abbiamo di principio integrato sui tempi veloci, ed infine senza
questa ipotesi sarebbe difficile comprendere la equivalenza fra media statistica e me-
dia temporale. Questa ipotesi, in concreto,è ciò che si intende classicamente per
radiazione casuale, e la radiazione termicaè casuale.

Noi adotteremo il secondo criterio, la media statistica quindi consisterà in una media sulle
fasi, ciòe in un integrale della fase fra0, 2π.

Per una qualunque faseα
1
2π

∫ 2π

0

eiαdα = 0

quindik 6= q la media del prodottoaka∗q è nulla, mentre sek = q le due fasi si cancellano,
si ha percìo:

aka∗q = |ak|2δk,q (1.389)

In questo modo nella somma (1.388) sopravvivono solo i termini conk = q e si ha

〈E〉 =
∑
x

∑
k

2|ak|2 (1.390)

L’isotropia della radiazione implica che|ak| dipende solo dal modulo dik, cioè dalla
frequenza. Essendo l’intervallo di integrazione a frequenza fissata, entroδν, possiamo
considerare questo fattore costante e portarlo fuori dalla somma, ottenendo:

〈E〉 = 2|aν |2
∑
x

∑
k

1 = 2|aν |2vL34π
ν2

c3
δν (1.391)
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La quantit̀aΩF , definita da:

ΩF = v4π
ν2

c3
δν

∑
x

∑
k

1 = L3ΩF (1.392)

è in pratica la fetta di spazio delle fasi che stiamo considerando (ricordiamo che stiamo
considerando una sola polarizzazione).

Passiamo ora al calcolo della fluttuazione〈E2〉 − 〈E〉2.
Abbiamo, dalla (1.388):

E2 = 4
∑
x,y

∑
k,q

∑
k′,q′

aka∗qei(k−q)xak′a∗q′ei(k′−q′)y (1.393)

Nella media sulle fasi ci sono solo due casi in cui il risultatoè non nullo:

(k = q,k′ = q′) oppure (k = q′,k′ = q)

Due delle quattro somme sui modi in questo modo si eliminano e si ha:

〈E2〉 = 4
∑
x,y

∑
k,q

|ak|2|aq|2
(
1 + ei(k−q)(x−y)

)
(1.394)

Il primo termineè proprio〈E〉2. Al solito possiamo portare fuori dalla somma i moduli
delle ampiezze e scrivere

〈E2〉 = 〈E〉2 + 4|aν |4
∑
x,y

∑
k,q

ei(k−q)(x−y) (1.395)

il vettorek − q è, genericamente, “grande”, nel senso che i vettori possono stare in qua-
lunque posizione relativa sulla sfera|k| = 2πν/c nello spazio dei modi. L’esponenziale
quindi è rapidamente oscillante. Se il volumettov è macroscopico rispetto alle lunghezze
d’onda, cosa che supporremo38, l’integrale iny, ad esempio, si valuta facilmente. Passando
dalle somme agli integrali

I =
∑
x,y

∑
k,q

ei(k−q)(x−y) → L6

∫
d3k

(2π)3
d3q

(2π)3

∫
dx

∫
dyei(k−q)(x−y)

Nell’ultimo integrale possiamo estendere il dominio di integrazione a tutto il volume e
usare la rappresentazione della distribuzioneδ:∫

dyei(k−q)(x−y) = (2π)3δ(k − q)

Si ha allora

I = L6

∫
d3k

(2π)3

∫
dx = L3

∑
k

∑
x

= L6ΩF

Quindi, sostituendo nella (1.395)

〈E2〉 − 〈E〉2 = 4|aν |4L6ΩF =
〈E〉2

ΩF
(1.396)

Per due polarizzazioni l’unica cosa che cambiaè lo spazio delle fasi a disposizione, cioè i
gradi di libert̀a, che diventano il doppio,ΩF → 2ΩF , ma

2ΩF = 2 · v4π
ν2

c3
dν = vZνdν

38In caso contrario si avrebbero logicamente degli effetti diffrattivi e non avrebbe alcun senso parlare della
densit̀a di radiazione nel volume.
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e si ottiene il primo termine della (1.383).
Concludiamo l’argomento con una nota: se non avessimo distinto i modi veloci da

quelli lenti, se ciòe non fossimo passati dalla (1.387) alla (1.388) si sarebbe ottenuto un
risultato sbagliato per un fattore 2.

Se si vuole tenere in conto esplicitamente delle polarizzazioni, la decomposizione di Fourier del
campo elettrico (1.385) si scrive:

E =
√

4π
∑
k,λ

{
a(k, λ)ελeikx + a∗(k, λ)ε∗λeikx

}
(1.397)

L’indice λ = 1, 2 indica le due polarizzazioni indipendenti.ελ i versori di polarizzazione, che
possono per semplicità essere considerati reali e ortogonali fra loro,ε1 · ε2 = 0. I vettori ε sono
ortogonali alla direzione di propagazione,ε · k = 0, quindi costituiscono una base ortogonale nel
piano ortogonale al vettorek. Da questo segue l’utile relazione di completezza:∑

λ

εi
λεj

λ =

(
δij −

kikj

|k|2

)
= Proiettore⊥ k (1.398)

Le fasi delle ampiezzea(k, λ) sono indipendenti per ogni polarizzazione, di modo che la (1.389) va
sostituita da

a(k, λ1)a∗(q, λ2) = |a(k, λ)|2δk,qδλ1,λ2 (1.399)

Il resto del calcolo procede nello stesso modo.

1.C Assorbimento di un oscillatore.

Il campo elettromagnetico all’interno di una cavità in equilibrio termico soddisfa le equa-
zioni di Maxwell nel vuoto. Quindi in un dato punto, diciamox = 0, ogni componente del
campo elettrico, ad esempio la componentex, è scrivibile nella forma

Ex = Re

[∑
i

fie
−iωit

]
≡ Re

[∑
i

|fi|e−iωit+iδi

]
≡
∑

i

|fi| cos(ωit + δi) (1.400)

la sommaè effettuata sulle frequenze compatibili con le condizioni al bordo. La (1.400)
non ha molto contenuto, perchèqualunquesoluzione delle equazioni di Maxwell ha questa
forma, la forma concreta della soluzione dipende dalle ampezze|fi| e dalle fasiδi, che
sono determinate dalle condizioni iniziali e dall’interazione con le pareti. Per una radia-
zione termica le fasiδi vanno intese come variabilicasualie in ogni osservazione occorre
effettuare una media su queste fasi. Se immaginiamo, ad esempio, che il processo di intera-
zione avvenga tramite un accoppiamento di dipolo elettrico la faseδi dipende dalla fase di
oscillazione del dipolo, che appuntoè casuale all’equilibrio termico. nel processo di media
statistica sulle fasi, tutti i termini di interferenza che possono avere origine dalla (1.400) si
mediano a zero: [∑

i

|fi| cos(ωit + δi)

]2

=
1
2

∑
i

|fi|2 (1.401)

dove abbiamo sfruttatocos2(x) = 1/2. Ad esempio per la densità di energia, sfruttando
l’isotropia della radiazione:

u =
1
8π

E2 + H2 =
1
4π

E2 =
3
4π

E2
x =

3
4π

∑
i

1
2
|fi|2 (1.402)

La densit̀a di energia sulla singola frequenzaè allora

uν =
3
8π
|fν |2 (1.403)
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Consideriamo ora un oscillatore armonico di frequenzaν0, che oscilla lungo l’assex per
fissare le idee. Questòe sottoposto al campo di radiazione (1.400), esegue quindi un’o-
scillazione forzata ed emette radiazione.È noto dall’elettromagnetismo che una carica
accelerata emette un’energia al secondo pari a

−dE

dt
= I =

2
3

e2

c3
a2 (1.404)

dovea = ẍ = accelerazione eE è l’energia dell’oscillatore. Per un oscillatore, sup-
ponendo piccola la perdita di energia per oscillazione, l’effetto (1.404) può essere incluso
nell’equazione del moto tramite una forza di attrito effettiva, la forza di frenamento di
Lorentz:

f =
2
3

e2

c3

...
x ' −2

3
e2ω2

0

c3
ẋ (1.405)

Infatti mediando su un periodo di oscillazione la potenza dissipata per irragiamento:

dE

dt
=

1
T

∫ T

0

2
3

e2

c3

...
x · vdt = − 1

T

∫ T

0

2
3

e2

c3
ẍ · dv

dt
= − 1

T

∫ T

0

2
3

e2

c3
a2dt = −I

L’equazione del moto per un oscillatore di frequenzaν0 si scrive allora

ẍ + ω2
0x + γẋ =

e

m
E ω0 = 2πν0 γ =

2
3

e2ω2
0

mc3
(1.406)

La soluzione omogenea della (1.406) decade esponenzialmente nel tempo, quindi dopo un
transiente possiamo assumere come soluzione quella “a regime”, proporzionale al campo
esterno. Scrivendo la soluzione in termini di esponenziali complessi:

x =
e

m
Re
∑

i

fi

(ω2
i − ω2

0)− iγω
e−iωit (1.407)

Sfruttando la relazione (1.401)

x2 =
e2

m2

1
2

∑
i

|fi|2

(ω2
0 − ω2

i )2 + γ2ω2

Per γ → 0 le uniche frequenze rilevanti sonoω ∼ ω0 quindi fra tutte le componen-
ti fi viene selezionata quella a frequenzaω0 che pùo essere fattorizzata. Effettuando le
approssimazioni

(ω2
0 − ω2)2 ' 4ω2

0(ω0 − ω)2 γω ∼ γω0

si ottiene

x2 =
e2

8ω2
0m2

|fν0 |2
∑

i

1

(ω0 − ωi)2 + γ2

4

=

=
e2

8ω2
0m2

|fν0 |2
∫

dω

2π

1

(ω0 − ω)2 + γ2

4

=
e2

8ω2
0m2

|fν0 |2
1
γ

Per l’energia media dell’oscillatore di frequenzaν0, cheè il doppio dell’energia potenziale
media, si ha perciò

Eν0 = 2 · 1
2
mω2

0 x2 =
e2

8mγ
|fν0 |2 =

3c3

2 (2πν0)2
1
8
|fν0 |2 =

c3

8πν2
0

uν0 (1.408)

Quindi per una frequenza qualsiasi la relazione fra la componente della densità di energia
della radiazione di corpo nero e l’energia di un oscillatoreè

uν(ν, T ) =
8πν2

c3
Eν (1.409)
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1.D Entropia di Sackur-Tetrode.

L’analisi della distribuzione microcanonica per l’oscillatore armonico, par.1.4.1, ha una
interessante interpretazione geometrica. Consideriamo l’ellisse

p2

2m
+

1
2
kq2 = E (1.410)

L’area di un’ellisse di semiassia, b èA = πab, quindi l’area delimitata dalla curva (1.410)
è

A = π
√

2mE

√
2E

k
= π2E

√
m

k
= π

2E

2πν
=

E

ν
(1.411)

Il fatto che l’energia sia quantizzata,E = nhν, può essere interpretato dicendo che lo
spazio delle fasi accessibile all’oscilatoreè composto da “mattoncini” di grandezzah, cioè

∆p∆q = h ≡ 2π~ (1.412)

A livello statistico sembrerebbe quindi che la novità fondamentale introdotta sia quella di
dare una dimensione minima alle celle dello spazio delle fasi. Nel mettere in relazione gli
ensembles statistici con il conteggio degli stati alla Boltzmann spesso si fa uso di una di-
mensione elementare delle celle nello spazio delle fasi, sembrerebbe che questa granularità
abbia un significato fisico e non si possa mandare a zero la grandezza di queste “cellette”.
In seguito vedremo come questa granularità dello spazio delle fasi trovi applicazione in
molte situazioni fisiche, qui vogliamo ancora insistere su un aspetto statistico. Nella di-
stribuzione microcanonica la definizione completa di entropia per un gas perfetto, v. eq.
(1.45), tenendo conto della granularità è

S = k log(W ) W =
1

N !

∫
H=E

N∏
1

(
d3pd3x

∆3
) (1.413)

∆ è l’area della celletta elementare nello spazio delle fasi, che d’ora in poi porremo uguale
adh. Il fattore 1/N ! è una costante per l’entropia, maè essenziale per evitare il noto pa-
radosso di Gibbs: se si uniscono 2 gas uguali l’entropia del sistema non deve cambiare, se
non ci fosse questo prefattore camberebbe. In meccanica classica non c’è una vera giusti-
ficazione per questo fattore: intuitivamenteè dovuto al fatto che permutando le particelle
nelle celle dello spazio delle fasi lo stato macroscopico non cambia, ma classicamente le
particelle sono distinguibili l’una dall’altra, quindi formalmente una loro permutazione do-
vrebbe corrispondere ad un diverso stato microscopico. Per ora teniamoci il fattore1/N !
senza approfondirne l’origine. Il fattore∆−3N = h−3N presente nella (1.413) cambia
anch’esso la costante dell’entropia. Questo fattore costante, comeè noto, entra nelle equa-
zioni di bilancio delle reazioni chimiche, o in generale nelle reazioni in cui il numero di
particelle cambia. Consideriamo allora un gas monoatomico. Nella (1.413) la superficie ad
energia costantèe

N∑
1

p2

2m
= U

cioè una sfera di raggior =
√

2mU in uno spazio a3N dimensioni. In generale il volume
di una sfera inRn è

Sn =
πn/2

Γ( 1
2n + 1)

rn Γ(x) = (x− 1)!

Si ha allora, indicando conV il volume del gas di elettroni,

W =
1

N !
V N

h3N

(2π2mU)3N/2

Γ( 3
2N + 1)
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Applicando la formula di Stirling si ha la formula di Sakur-Tetrode[Sack13] per l’entropia
di un gas monoatomico:

S = kN

[
log

V

N
+

3
2

log
2U

3N
+ log

(2πm)3/2e5/2

h3

]
(1.414)

Questa espressioneè in accordo con l’esperienza. Notiamo cheV/N eU/N sono quantit̀a
intensive, ed in particolare possono essere espresse tramitep, T usando le equazioni

U = NE = N
3
2
kT pV = NkT

quindi l’entropia (1.414)̀e additiva:

S(N1, p, T ) + S(N2, p, T ) = S(N1 + N2, p.T )

e questòe dovuto alla presenza inW del fattore1/N !, come accennato in precedenza.
Un caso particolare di gas monoatomicoè un gas di elettroni (trascuriamo l’interazione

elettrostatica).È noto che una schematizzazione con un gas perfetto dà conto qualitati-
vamente delle proprietà di conduzione in un metallo, ma c’è un problema: come si può
ricavare dalla solita equazionedS/dU = 1/T aV costante, la (1.414) implica la nota for-
mulaE = U/N = 3

2kT , cioè l’equipartizione dell’energia, e questo a sua volta implica
un contributo al calore specificoCV = 3/2Nk, in realt̀a non si osserva un calore specifico
costante a basse temperature, ma un calore specifico che va a zero perT → 0. D’altronde
ad alta temperatura la (1.414)è corretta, e, nel caso degli elettroni, descrive bene l’entro-
pia nelle reazioni di eqilibrio di ionizzazione, in cui si ha un equilibrio fra ioni e gas di
elettroni, come in una reazione chimica.

1.E Regole di quantizzazione.

Richiamiamo brevemente alcune nozioni di meccanica analitica. Le equazioni di Hamilton

ṗi = −∂H

∂qi
q̇i =

∂H

∂pi
(1.415)

possono essere ricavate da un principio variazionale

δ

∫
dt (piq̇i −H(q, p, t)) = 0 (1.416)

Nella (1.416) e nelle prossime formule gli indici ripetuti si intendono sommati. Quindi tutte
le trasformazioni di variabili(q, p) → (Q.P ) per cui l’integrando cambia per una derivata
totale lasciano la fisica invariata, sono letrasformazioni canoniche. Le trasformazioni
canoniche possono essere espresse tramite funzioni generatrici, il tipo più comodo per i
nostri scopìe dato da

piq̇i −H(q, p, t) = PiQ̇i −H ′(Q,P.t) +
d

dt
F (q, P, t) ≡ −QiṖi −H ′ +

d

dt
(F + QiPi)

Nell’ultimo termine possiamo pensareQ riespresso in termini diq eP e porreS(q, P, t) =
F (q, P, t)−QiPi, quindi

piq̇i−H(q, p, t) = −QiṖi−H ′(Q,P.t)+
dS

dt
= QiṖi−H ′(Q,P.t)+

∂S

∂qi
q̇i+

∂S

∂Pi
Ṗi+

∂S

∂t

confrontando i differenziali delle due espressioni si ricavano le leggi di trasformazione:

pi =
∂S

∂qi
Qi =

∂S

∂Pi
(1.417a)

H(q, p, t) = H ′(Q,P, t)− ∂S

∂t
(1.417b)
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Nella (1.417a), una volta conosciutaS, possiamo invertire la seconda equazione e scrivere
P in termini diQ e q, in questo modo aggiungendo e sottraendo la derivata totale diPQ:

piq̇i −H = PiQ̇i +
d

dt
(S −QP )

postoS∗ = S −QP ed uguagliando di nuovo i differenziali si ricava

pi =
∂S∗

∂qi
Pi = −∂S∗

∂Qi
H = H ′ − ∂S∗

∂t
(1.418)

S∗ è funzione diq eQ: S∗ = S∗(q, Q). Il lettore probabilmente ha riconosciuto nell’ultima
trasformazione di variabili unatrasformata di Legendre.

NOTA Le equazioni (1.417b) e (1.418) per l’Hamiltoniana significano: esprimiamop, q
in funzione diP,Q, in questo modo otteniamo una nuova funzioneH(q(Q,P ), p(Q, P )) =
f(Q,P ). Sela trasformazionèe indipendente dal tempo l’Hamiltoniana nel nuovo sistema
di coordinatèe proprio questa, altrimentiè data, a seconda del tipo di trasformazione usata,
da:

H ′(Q,P ) = H(q(Q,P ), p(Q,P )) +
∂S

∂t
H ′(Q,P ) = H +

∂S∗

∂t
(1.419)

1.E.1 Sistemi periodici unidimensionali.

Come spiegato nel paragrafo 1.13 nei sistemi periodici unidimensionali la variabileq o è un
angolo, nel qual caso le variabili dinamiche devono essere periodiche di periodo2π oppure
descrive un’oscillazione fra un valore minimo ed uno massimo,q1, q2. In entrambi i casi la
topologia in giocòe quelli di un cerchio, o toro unidimensionale.

La motivazione fisica per studiare questi sistemiè duplice:

1) Si immagina che il sistema classico corrispondente a un sistema quantistico con ener-
gia fissata abbia una frequenza di oscillazione fissata, in modo che si possa parlare di
una frequenza caratteristica del sistema ed eventualemente connetterla alle frequenze
di transizione quantistiche. Questa connessioneè obbligata nel caso di alti numeri
quantici se si assume il principio di corrispondenza: in questo caso la frequenza di
transizione deve coincidere con la frequenza classica del sistema Deve quindi esistere
una frequenza di oscillazione classica, cioè il moto deve essere periodico.

2) Se si assume il principio delle adiabatiche di Ehrenfest il sistema quantistico deve
essere colegato tramite una trasformazione adiabatica ad un oscillatore armonico,
cheè naturalmente periodico.

Questi sistemi possono essere studiati adattando una tecnica generale per la soluzione
delle equazioni di Hamilton. Se si trova una trasformazione canonica in modo tale che
la nuova Hamiltoniana dipendasolo dagli impulsi, le nuove coordinate sono cicliche e
le equazioni del moto si risolvono banalmente. Chiamiamow, J le nuove coordinate ed
i nuovi impulsi, che prendono in questo caso il nome di variabiliazione-angolo. Dalla
(1.417) abbiamo che la funzione cercata,S(q, J), per Hamiltoniane non dipendenti dal
tempo, deve operare la trasformazione

p =
∂S

∂q
w =

∂S

∂J
H ′(J) = H(p, q) (1.420)

Le equazioni del moto sono banali per le nuove variabili

J̇ = −∂H ′

∂w
= 0 ẇ = −∂H ′

∂J
≡ ν(J) (1.421)
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La prima equazione dice cheJ è costante, quindi la seconda impone chew sia una funzione
lineare del tempo, in pratica un angolo. Possiamo ancora sfruttare delle trasformazioni
canoniche che lascino invariata la struttura trovata per scegliere la normalizzazione delle
variabili w, scegliamo le variabili in modo tale che l’incremento dopo un periodo39 valga
1. SeT è il periodo del moto:

w(t + T )− w(t) = w2 − w1 ≡ ∆w = 1 (1.422)

Alle variabili cos̀ı selezionate si d̀a il nome divariabili azione (J) - angolo (w) .
La normalizzazione (1.422) permette di esprimere la variabileJ in termini delle varia-

bili q, p. Scriviamo la variazione diw in un periodo,T :

∆w =
∫ t1+T

t1

dt ẇ =
∫ t1+T

t1

dt
d

dt

∂S

∂J

Poich̀eJ è una costante del moto, l’unica dipendenza dat in S è attraversoq, quindi

1 = ∆w =
∂

∂J

∫ t1+T

t1

∂S

∂q
q̇dt =

∂

∂J

∫ t1+T

t1

p q̇dt =
∂

∂J

∮
pdq (1.423)

Quindi, riassorbendo una eventuale costante additiva con una trasformazione canonica,
possiamo scrivere

J =
∮

pdq (1.424)

Nella (1.424)p è una funzione diq. Nel caso unidimensionale possiamo determinarep
dalla relazione

p2

2m
+ U(q) = E (1.425)

In questo modo la (1.424) fornisceJ in funzione diE, invertendo la relazione si haE in
funzione diJ , il che coincide con l’HamiltonianaH ′(J). Un altro modo per ottenere la
stessa cosàe notare che l’ultima equazione delle (1.420)è un’equazione differenziale per
S

H(q,
∂S

∂q
) = H ′(J) (1.426)

Per definizioneH ′(J) è costante, e possiamo chiamarlaE:

1
2m

(
∂S

∂q

)2

+ U(q) = E (1.427)

Questa equazione prende il nome diequazione di Hamilton Jacobi.La (1.426) ha una
soluzionef(q, E):

f(q, E) =
∫ q

q0

dq√
2m(E − U(q))

(1.428)

La scelta diq0 determina solo una costante additiva che non gioca alcun ruolo. La derivata
rispetto aq della soluzione precedenteè ovviamente una radice dell’equazionealgebrica
(1.425). Nel seguito non useremo mai la forma esplicita diS, quello che interessàe che
la soluzione dell’equazione di Hamilton Jacobi, (1.427) dipende da una costante, in questo
caso l’energia.

Ci interessano invece alcune proprietà generali diS, qualunque sia la sua forma. Rifa-
cendo lo stesso ragionamento fatto per il calcolo di∆w, abbiamo, per la variazione su un
periodo diS

∆S =
∫ t1+T

t1

dS

dt
dt =

∫ t1+T

t1

∂S

∂q
q̇dt =

∮
pdq = J (1.429)

39Si sarebbe potuto scegliere2π come incremento, la scelta di∆w = 1 è puramente convenzionale edè dovuta
a motivi storici.
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S è una funzione diq eq è periodica, quindi al variare diq, S si comporta come un angolo,
cioè comew. Ricordando che lo spazio delle configurazioni può essere assimilato ad un
cerchio,S è una funzione non monodroma su questo cerchio, incrementa diJ ad ogni
“giro”.

Invece la funzione
S∗ = S − wJ (1.430)

cioè la sua trasformata di Legendreè periodica, perch̀e w aumenta di 1 in un periodo e
quindi∆S∗ = ∆S − J = 0.

Dimostriamo ora che la variabile di azioneJ è un invariante adiabatico. Supponiamo
di avere un sistema con un parametro variabile,λ(t). Scriviamo la soluzione del siste-
ma dinamico usando le stesse variabili usate nel caso diλ costante. Questa proceduraè
semplicemente la generalizzazione del noto metodo di variazione delle costanti usato nella
risoluzione delle equazioni differenziali. Effettuiamo quindi lastessatrasformazione di va-
riabili, con la stessa funzioneS. Per convenienza usiamo qui la varianteS∗, definita dalla
(1.430). Questa trasformazioneè definita in modo tale che sostituendo le funzioniq, p, in
termini di J,w la funzione hamiltonianaH(q, p) è funzione solo diJ . Nel caso in esame,
per̀o, la funzione di trasformazione dipende esplicitamente dal tempo, tramite il parametro
λ, quindi l’Hamiltoniana per le variabili trasformateè quella definita nella (1.419):

H ′ = H +
∂S∗

∂t
; H = H(J) (1.431)

Le leggi di trasformazione e le equazioni del moto sono

p =
∂S∗

∂q
J = −∂S∗

∂w
(1.432a)

J̇ = −∂H ′

∂w
= −∂H

∂w
− ∂

∂t

∂S∗

∂w
= − ∂

∂t

∂S∗

∂w
(1.432b)

La (1.432b) naturalmente segue direttamente dalla definizione diJ , è stata scritta per
mostrare la consistenza e chiarire che tutta la variazione diJ proviene dal parametroλ.

Quindi per la variazione diJ su un intervallot1, t2 si ha:

J2 − J1 = −
∫ t2

t1

∂

∂w

(
∂S∗

∂λ

)
λ̇dt (1.433)

Noi siamo interessati al limitėλ → 0, λ̇(t2 − t1) → finito. La funzioneλ è lentamente
variabile, possiamo a tutti gli effetti considerare una espansione di Taylor del tipo

λ(t) = λ + tλ̇ + . . . (1.434)

Alla fine del calcolo sar̀a semplice verificare che gli ordini superiori int non modificano le
conclusioni, sëλ è continua e limitata. Possiamo allora scrivere

J2 − J1

λ̇
= −

∫ t2

t1

∂

∂w

(
∂S∗

∂λ

)
dt (1.435)

ciò che dobbiamo dimostrareè che nel limite considerato il secondo membro della (1.435)
resta finito, malgrado l’intervallo temporale diverga.

Se il motoè periodico inw, a fissoλ, ogni quantit̀a periodica ha un’espansione in serie
di Fourier della forma

f =
∑

n

An(λ)ei2πnw (1.436)

Notiamo che in generale nella (1.436) compare un termine costante, corrispondente an =
0. Abbiamo gìa dimostrato cheS∗ è periodica, quindi anche la sua derivata rispetto aλ lo è.
Il punto importantèe che nella (1.435) compare la derivata rispetto aw, quindi l’eventuale
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termine costante nello sviluppo di Fourier non contribuisce, in altre parole lo sviluppo di
Fourier per l’integrando della (1.435) si scrive nella forma generica:

− ∂

∂w

(
∂S∗

∂λ

)
=
∑′

n

An(λ)ei2πnw (1.437)

l’apice sta ad indicare che non c’è il terminen = 0 nella somma. Questòe importante
perch̀e significa che tutti i termini sono rapidamente oscillanti, come nell’esempio dell’o-
scillatore armonico nel paragrafo 1.13. A questo punto, sviluppando in serie di Taylorλ si
può scrivere:

J2 − J1

λ̇
=
∫ t2

t1

An(0)ei2πnwdt +
∫ t2

t1

λ̇tA′n(0)ei2πnwdt (1.438)

Ora si pùo suddividere l’intervallot2 − t1 in N multipli del periodoT più un restoδT ,
minore diT . Il contributo sul restòe ovviamente finito. Sugli intervalli di periodoT , il
primo integrale nella (1.438) si annulla perchè

w = νt + δ ≡ t

T
+ δ

e l’integrale di una funzione trigonometrica su un periodoè nullo. Su ogni singolo periodo
il secondo integrale d̀a al massimo un contributo dell’ordinėaT o ȧT 2. EssendociN
periodi

J2 − J1

λ̇
= O(NȧT ) = O(ȧ(t2 − t1)) → costante

che è proprio quanto volevamo dimostrare. Notiamo che si il sistema ha una frequenza
propria nulla,ν → 0, T →∞ e la dimostrazione cessa di valere.

Questa dimostrazione di invarianza adiabaticaè quella “classica”, vedi es. [Born25]. Una di-
mostrazione molto dettagliata ed istruttiva si trova nel libro di Tomonaga[Tomonaga]. Il lettore avrà
notato che l’essenza della dimostrazioneè passare da un integrale temporale ad ua media sulle fasi
w, è questo quello che si ottiene integrando sui singoli periodi. Questo tipo di procedimento, molto
comune ed implicitamente alla base del ragionamento fatto nel paragrafo 1.13,è formalizzato, ad
esempio, nel testo di Arnold[Arnold].

La procedura di quantizzazione consiste ora nell’assegnare valori interi alle variabili di
azione,J = nh. In questo modo, dalla relazioneE = E(J), si ricava una quantizzazione
dell’energia.

1.E.2 Esempi espliciti.

Trattiamo esplicitamente ancora una volta l’oscillatore armonico per evidenziare i vari
punti del procedimento. Scriviamo l’Hamiltoniana nella forma

H(q, p) =
p2

2m
+

1
2
mω2q2 (1.439)

Fissato, arbitrariamente, il valore dell’energia,E, possiamo scrivere

p = ±
√

2mE −m2ω2q2 (1.440)

il radicando ha due radici, che delimitano la zona del moto:

q1 = −
√

2E

mω2
q2 =

√
2E

mω2
|q1| = |q2| = qL (1.441)
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Come vediamo la funzionep(q) nonè una funzione univoca sul segmento[q1, q2], la si pùo
rendere univoca sullo spazio delle configurazioni “duplicato”[q1, q2] ∪ [q2, q1], che ha la
topologia di un toro. Per la variabileJ si ha

J = 2
∫ q2

q1

√
2mE −m2ω2q2dq = 4

E

ω

∫ +1

−1

√
1− x2dx =

2πE

ω
≡ E

ν0
(1.442)

ν0 = ω/2π è ciò che si chiama frequenza dell’oscillatore. La nuova Hamiltonianaè
H ′(J) = ν0J , quindi

ẇ = ν0

cioèν0 è proprio la frequenzaν della variabile “angolo”w. La (1.442) basta per effettuare
la quantizzazione del sistema, se vogliamo andare oltre possiamo calcolareS. La soluzione
(1.428) dell’equazione di Hamilton Jacobi si scrive, ponendo arbitrariamente a0 il limite
inferiore dell’integrale per fissare la costante additiva arbitraria:

S =
∫ q

0

√
2mE −m2ω2q2dq =

2E

ω

∫ qω
√

m/2E

0

√
1− x2dx

=
2E

ω

∫ q/qL

0

√
1− x2dx =

E

ω

[
q

qL

√
1− q2

q2
L

+ arcsin
(

q

qL

)]
(1.443)

Come si vede la funzioneS non è monodroma. Un periodo corrisponde alla variazione
0 → qL → 0 → −q−L → 0, in questo percorso la funzionearcsin varia di4 ·π/2 = 2π,
e quindi∆S = 2πE/ω = J , come aspettato. Una volta scrittoE = J · ν possiamo
effettuare la derivata rispetto aJ per ricavarew:

w =
∂S

∂J
=

arcsin(q/qL)
2π

q = qL cos(2πw) (1.444)

ed effettivamente, su un periodo,∆w = 1. Infine

S∗ = S−wJ =
J

2π

[
q

qL

√
1− q2

q2
L

+ arcsin
(

q

qL

)]
− J

2π
arcsin

(
q

qL

)
=

J

4π
sin(4πw)

ed si ha una funzione periodica inw, come aspettato. Per referenza scriviamo anche
l’espressione dip: dallaèqrefgreg24 si ha, scegliendo le due detreminazioni della radice,

p =
√

2mE

√
1− q2

q2
L

= mωqL sin(2πw) (1.445)

Il lettore pùo provare come esercizio a studiare la quantizzazione dei modelliU = gx4,
oppure l’oscillatore anarmonicoU = 1

2mω2x2 + gx4, nel limite di piccola anarmonicità.

1.F Calcolo di alcuni integrali.

Nel paragrafo 1.15 abbiamo incontrato l’integrale

Jr = 2
∫ rmax

rmin

√
2mE −

p2
ϕ

r2
−m2ω2r2dr (1.446)

Perpϕ = 0 si ha lo stesso integrale di un oscillatore unidimensionale, conrmin = 0 e
rmax = (2E/mω2)1/2. La variazione da 0 armax è l’analogo di 1/4 di oscillazione quindi,
tenendo conto del fattore 2 nella (1.446),Jr è la met̀a dell’invariante per l’oscillatore:

Jr =
1
2

E

ν
= π

E

ω
pϕ = 0 (1.447)
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Perpϕ 6= 0 il radicando si annulla per

r2 =
2mE ±

√
(2mE)2 − 4p2

ϕm2ω2

2m2ω2
=

E

mω2

1±

√
1−

p2
ϕω2

E2


e quindi sono determinatirmin = R1, rmax = R2.

Si ha allora, fattorizzando il polinomio

Jr = 2mω

∫ R2

R1

dr
1
r

√
(r2 −R2

1)(R
2
2 − r2) = mω

∫ R2
2

R2
1

dx

x

√
(x−R2

1)(R
2
2 − x) =

= mωR2
1

∫ (R2/R1)
2

1

dz

z

√
(z − 1)(

(
R2

R1

)2

− z)

Si ha

Ia =
∫ a

1

dx

x

√
(x− 1)(a− x) =

π

2
(√

a− 1
)2

(1.448)

L’integrale pùo essere fatto usando le sostituzioni:

x =
a + 1

2
+

a− 1
2

sinα − π

2
≤ α ≤ π

2
e dopo: u = tan

α

2

Dalla (1.448) risulta quindi:

Jr =
π

2
mωR2

1

(
R2

R1
− 1
)2

=
π

2
mω =

πE

ω

(
1− |pϕ|ω

E

)
=

πE

ω
− π|pϕ| (1.449)

Nel limite pϕ → 0 ri riottiene il risultato (1.447).
L’integrale (1.447) e tutti gli altri che si trovano nel testo, possono essere effettuati in

modo molto istruttivo utilizzando l’integrazione nel piano complesso. Tutti gli integrali
considerati possono essere ridotti ad una forma del tipo:

I =
∮

R(z)
√

(z − e1)(e2 − z)dz ≡
∮

R(z)
√

Q(z) e1 < e2 R razionale

(1.450)
La radiceè reale nell’intervallo[e1, e2] e qui ha due determinazioni, in pratica l’integrando
è una funzione definita su una superficie di Rieman a due fogli, ed ha singolarità nei punti
singolari diR, e all’infinito. PerR 3 z > e2 il radicandoè negativo e la fase diz− e2 èπ:√

Q =
√
|Q|eiπ = i

√
|Q|

Passando all’intervallo[e1, e2] attraverso il semipiano complesso superiore, il fattorez−e2

acquista una faseeiπ, quindiQ → |Q|e2iπ e√
Q → −

√
|Q|

Viceversa nel semipiano inferiore si ha, acquistandoQ una fasee−iπ,√
Q → +

√
|Q|

Infine sull’asse reale, perz < e1 il fattoreQ acquista una fase diei2π, in quanto cambia di
segno anche il terminez − e1 e quindi√

Q → −i
√
|Q|

Le varie situazioni sono illustrate in figura 1.F. L’integrale (1.450) equivale dunque all’in-
tegrale sul contorno del taglio indicato in figura.
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Figura 1.10: Determinazioni della radice (1.450) nel piano complesso.

Il teorema di Cauchy impone:

I + 2πi
∑

a

Resa(R ·
√

Q) + 2πiRes∞(R ·
√

Q) = 0 (1.451)

da cui si deduce il valore diI. per calcolare il residuo all’∞ basta effettuare la sostituzione
di variabili z → 1/z.

Come esempio consideriamo l’integrale della forma (1.448):

I =
∮

dz

z

√
(z − 1)(a− z) = 2Ia a > 1 (1.452)

In questo casoe1 = 1, e2 = a. La funzione ha, al finito, un polo inz = 0. Il residuo al
polo è semplicemente il coefficiente del termine1/z nello sviluppo di Laurent, quindi

Res0 = −i
√
|a| (1.453)

Il fattore−i è quello determinato nella discussione precedente. Per il residuo all’infinito
poniamoz = 1/x, dz = −1/x2dx e scriviamo l’integrando nella forma

−
∫

dx

x

√
(
1
x
− 1)(a− 1

x
) = −

∫
dx

x2

√
(1− x)(−1 + ax)

Perx → 0
− 1

x2

√
(1− x)(−1 + ax) ∼ − i

x2
(1− a + 1

2
x + . . .)

Il segno della radice,+i, è stato preso in accordo con quanto mostrato in figura 1.F. Il
residuo az →∞, cioè ax = 0 è allora:

Res∞ = i
a + 1

2
(1.454)

Sommando i residui e usando la (1.451):

I = −2πi(−i
√
|a|+ i

a + 1
2

) = π(a + 1− 2
√

a) = π(
√

a− 1)2 ≡ 2Ia (1.455)

Come secondo esempio consideriamo l’integrale (1.260c) per l’atomo di idrogeno:

Jr =
∮

dr

√
2µ

(
E +

Ze2

r

)
− L2

r2
=
∮

dr

r

√
−2µ|E|r2 + 2µZe2r − L2 (1.456)

I due punti diinversione sono reali perE = −|E| < 0. Le singolarit̀a sono inr = 0 e
r = ∞. Dalla (1.451)

Jr = −2πi (Res0 + Res∞) (1.457)

Perr → 0, con la prescrizione delle fasi vista precedentemente:

1
r

√
−2µ|E|r2 + 2µZe2r − L2 → − i

r
|L| ⇒ Res0 = −i|L|
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Perr →∞, postor = 1/y, dr/r = −dy/y:

− dy

y

√
−2µ|E|

y2
+

2µZe2

y
− L2 = −dy

y2

√
−2µ|E|+ 2µZe2y − L2y2 =

= −i
dy

y2

[√
2µ|E| − 1

2
2µZe2√
2µ|E|

y + . . .

]
⇒ Res∞ = i

√
µZe2√
2|E|

Quindi

Jr = −2π|L|+ π

√
2µZe2√
|E|

= −|Jθ + Jϕ|+ π

√
2µZe2√
|E|

(1.458)

che coincide con il risultato (1.267). Lo stesso procedimento può essere usato per gli altri
integrali presenti nel testo.

1.G Calcolo perturbativo del dipolo elettrico.

In questo paragrafo tratteremo in modo molto succinto una elementare tecnica perurbativa
che ci permetterà di ricavare l’espressione per il dipolo elettrico indotto in un sistema clas-
sico. Per semplicità di notazione tratteremo un sistema periodico, i calcoli per un sistema
multiperiodico sono praticamente identici.

Supponiamo di avere trovato le variabili azione angolo per il sistema isolato,w0, J0.
H0(J0) è la corrispondente Hamiltoniana. Il sistemaè ora sottoposto ad una perturbazione,
che scriviamoλH1(w0, J0, t):

H = H0(J0) + λH1(w0, J0, t) (1.459)

λ è un parametro di sviluppo che porremo uguale ad 1 alla fine dei calcoli,è solo un modo
per descrivere il fatto cheH1 è trattata come una “piccola” perturbazione.

Per risolvere il sistema (1.459) possiamo cercare una trasformazione canonica(w0, J0) →
(w, J) in modo tale che nelle nuove variabili l’Hamiltoniana dipenda solo daJ . Sia
S(w0, J, t) la funzione di trasformazione:

w =
∂S

∂J
J0 =

∂S

∂w0
H +

∂S

∂t
= W (J) (1.460)

Le (1.460) sono identiche alle (1.417).W (J) indica la nuova Hamiltoniana. Cerchiamo la
soluzione in forma di serie inλ

S = w0J + λS1 + . . . W = W0 + λW1 + . . . (1.461)

La trasformazioneS0 = w0J corrisponde alla trasformazione identica, come si verifica
immediatamente dalle (1.460). All’ordine 0 inλ si ha dunqueW0 = H0. Al primo ordine

J0 = J + λ
∂S1

∂w
; w = w0 + λ

∂S1

∂J
⇒ w0 ' w − λ

∂S1

∂J
(1.462)

Quindi, ricordando cheH0 dipende solo daJ0:

H0(J + λ
∂S1

∂w
) + λH1(w, J) + λ

∂S1

∂t
= W0 + W1

ed al primo ordine inλ

∂S1

∂w

∂H0

∂J
+

∂S1

∂t
+ H1(w, J) = W1(J)
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Per le equazioni di Hamiltonν1 = ẇ =
∂H0

∂J
è la frequenza del sistema, quindi

ν1
∂S1

∂w
+

∂S1

∂t
+ H1(w, J) = W1(J) (1.463)

In generale le derivate diS1 sono funzioni periodiche, mentreW1 è una costante, quindi,
prendendo la media della (1.463) sulle fasi e sul tempo:

W1(J) = H1

Nel caso che ci interessa si avràH1 = 0, comunque in ogni caso si ha l’equazione

ν1
∂S1

∂w
+

∂S1

∂t
= −(H1 −H1) (1.464)

che pùo essere risolta ricavando perciò S1. Ci limiteremo al primo ordine perturbativo,
quindi la (1.464)̀e sufficiente per i nostri scopi.

Per il calcolo del dipolo indotto in presenza di una radiazione elettromagnetica, li-
mitandoci come al solito alcaso unidimensionale, possiamo scrivere l’interazione nella
forma

H1 = −dE E = E0 cos(2πνt) (1.465)

d è il dipolo elettrico del sistema, cioè, in pratica,ex nel caso unidimensionale. Usando la
stessa notazione del paragrafo 1.19 possiamo scrivere

d = e
1
2

∑
τ

Cτei2πw0τ (1.466)

La sommàe estesa a tutte le armoniche, posiive e negative. poichèd è reale si ha

C−τ = C∗
τ (1.467)

Per un oscillatore armonico, in cui compare solo la prima armonica,

d = e|C| cos(2πν1t + arg(C))

Evidentemente se operiamo la media sulle fasi e sulla dipendenza esplicita dal tempo (che
compare nel campo esterno)

dE = 0

Al primo ordine perturbativo possiamo sostituirew0, J0 con w, J nell’espressione did,
l’equazione perS1 è allora:

ν1
∂S1

∂w
+

∂S1

∂t
=

eE0

4

∑
τ

Cτ

{
ei2π(wτ+νt) + ei2π(wτ−νt)

}
che ha come soluzione

S1 =
1

2πi

eE0

4

∑
τ

Cτ

{
ei2π(wτ+νt)

ν1τ + ν
+

ei2π(wτ−νt)

ν1τ − ν

}
(1.468)

Per calcolare il dipolo elettrico dobbiamo ora esprimerew0, J0 in termini di w, J e sosti-
tuire nella espressione (1.466) did, otterremo

d = d0 + λd1 + . . .

d1, proporzionale al campo elettrico esterno,è il dipolo indotto. Usando le relazioni (1.462)
si ha

d(w0, J0) ' d(w, J) + λ

[
∂d

∂J

∂S1

∂w
− ∂d

∂w

∂S1

∂J

]
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quindi

d1 =
[

∂d

∂J

∂S1

∂w
− ∂d

∂w

∂S1

∂J

]
(1.469)

Scriviamo per chiarezza le varie derivate:

∂d

∂J
=

e

2

∑
τ

∂Cτ

∂J
ei2πwτ ∂d

∂w
=

e

2
2πi

∑
τ

τCτei2πwτ

∂S1

∂w
=

eE0

4

∑
τ

τCτ

{
ei2π(wτ+νt)

ν1τ + ν
+

ei2π(wτ−νt)

ν1τ − ν

}
∂S1

∂J
=

1
2πi

eE0

4

∑
τ

{
ei2π(wτ+νt) ∂

∂J

Cτ

ν1τ + ν
+ ei2π(wτ−νt) ∂

∂J

Cτ

ν1τ − ν

}
Nello scrivere le derivate abbiamo tenuto in conto del fatto che in generaleν1 è una fun-
zione diJ , mentrew, J sono considerate variabili indipendenti. Nell’espressione (1.469)
compaiono diverse dipendenze temporali, che corrispondono ad oscillazioni con diverse
frequenze e, cassicamente, danno luogo a diffusione della luce con cambiamento di fre-
qeunza (effetto Raman). A noi comunque interessa in particolare il termine corrispondente
ad una oscillazione con la stessa frequenza del campo incidente, quindi nei prodotti che
compaiono nella (1.469) dobbiamo solo tener conto dei termini in cui la dipendenza daw
si cancella (ricordiamo chew = ν1t). In questo modo nei prodotti solo i termini conτ
opposti contribuiscono e si ha:

∂d

∂J

∂S1

∂w
→ e2E0

8

∑
τ

∂C−τ

∂J
τCτ

{
ei2πνt

ν1τ + ν
+

e−i2πνt

ν1τ − ν

}
∂d

∂w

∂S1

∂J
→ e2E0

8

∑
τ

(−τ)C−τ

{
ei2πνt ∂

∂J

Cτ

ν1τ + ν
+ e−i2πνt ∂

∂J

Cτ

ν1τ − ν

}
Per la parte a frequenzaν del dipolo segue, ricordando cheC−τ = C∗

τ :

d1(ν) =
e2E0

8

∑
τ

{
ei2πνt ∂

∂J

|Cτ |2τ
ν1τ + ν

+ e−i2πνt ∂

∂J

|Cτ |2τ
ν1τ − ν

}
cambiando indice nella seconda somma:τ → −τ :

d1(ν) =
e2E0

4
cos(2πνt)

∑
τ

∂

∂J

|Cτ |2τ
ν1τ + ν

ed infine, sommando esplicitamente i termini conτ di segno opposto:

d1(ν) =
e2E0

2
cos(2πνt)

∑
τ>0

τ
∂

∂J

|Cτ |2τν1

(ν1τ)2 − ν2
(1.470)
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