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Capitolo 1

La nascita della Meccanica
Quantistica.

1.1 Introduzione

La nascita della meccanica quantistica nella sua forma odierna ha una fase di gestazione che
si pw convenzionalmente fissare fra la data della prima comunicazione di Planck[Pla00a]
in cui viene presentata la formula per la distribuzione spettrale della radiazione di corpo
nero, 9 Ottobre 1900, e la stesura dell'articolo di Heisenberg[Heis25], Luglio 1925, in
cui si delineano le linee guida della meccanica quantistica. Questo processo, innescato
da una profonda crisi della fisica classica a fronte del nuovo mondo microscopico che le
tecniche sperimentali cominciavano a disvelare, ha costituito unowprgiondi sconvol-

gimenti culturali nella storia della scienza, coinvolgendo il concetto stesso  fesatia

ed imponendo un cambiamento radicale nel paradigma interpretativo della natura.

In questo breve capitolo non vogliamo fare una storia di questi eventi, cosa per la quale
non ci sentiamo competenti, quanto presentare nella manigsepiplice possibile alcuni
fili conduttori che permettano di seguire la logica di questa evoluzione.

Uno dei motivi di questa presentazioada convinzione degli autori che una compren-
sione, almeno parziale, del retroterra teorico - sperimentale della meccanica quantistica
possa far capire meglio alcuni concetti della teoria. Una seconda motivaziamenstata-
zione che I'evoluzione della meccanica quantistica noi garto dirsi conclusa, quindi la
conoscenza dei fondamenti su cui poggia piutare a capire alcuni degli sviluppi futuri.

Qualche precisazione per il lettore.

1) La lettura di questo capitolo n@ntecnicamente necessaria per la comprensione del
testo principale, una buona idea sarebbe una rilettura di questadppadaver letto
il resto del libro, alcune cose appariranno sotto un’altra luce.

2) In questo capitolo, necessariamente, daremo per scontate moltissime cose di fisi-
ca classica. Un minimo di conoscenza della meccanica statistica@gaere uti-
le. Daremo delle dimostrazioni per alcuni punti che potrebbero non far parte delle
conoscenze di base del lettore. Le dimostrazioni non strettamente necessarie alla
comprensione del testo saranno messe in appendice.

1.1.1 Aree dicrisi.

Si & soliti indicare in tre questioni principali i punti di crisi della fisica classica. In parole
semplici:

a) Il problema della radiazione del corpo nero: la teoria elettromagnetica classiéa non
capace di spiegare il colore della luce emesso da un corpo caldo.
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4 CAPITOLO 1. LA NASCITA DELLA MECCANICA QUANTISTICA.

b) Il problema dei calori specifici: secondo la meccanica statistica classica ogni grado
di liberta contribuisce in ugual misura al calore specifico di un corpo, que#to
palese contraddizione con I'evidenza sperimentale, come commenteremo fra breve,
ed & piuttosto “imbarazzante” da un punto di vista logico, prefigurando un limite
alla possibile struttura interna dei corpi (allaumentare della struttura aumentano di
sicuro i gradi di liberd).

c) Il problema degli spettri atomici: 'osservazione sperimentale mostra che la luce
emessa, e assorbita, dai vari elementi chirgicistretta a ben definite frequenze,
caratteristiche di ogni elemento. Lo spettro,&linsieme delle frequenze, e le sue
regolarits sono incomprensibili classicamente.

Benche questi problemi siano gravi, confinare in questo modo la problematicza
ottimistica sottovalutazione. Quello che i dati sperimentali sempieppecisi della se-
conda mei dell'ottocento andavano svelando era la struttura microscopica, atomica, della
materia. La fisica classi@assolutamente incompatibile con I'esistenza stessa di strutture
microscopiche stabili legate da forze di tipo elettrico (le uniche conosciute all’epoca), non
essendo capace nemmeno di stabilire I'ordine di grandezza delle dimensioni atomiche. |
problemi precedenti sono una conseguenza di questa situazione. Il problema fondamentale
€ cinematicQ come emerg@ra poco a poco nel primo quarto del novecento: non sono pre-
senti forze sconosciute, sono i concetti stessi di posizione, impulso, energia a dover essere
rivisti. Accanto a questi aspetti “cinematici” appariranno anche delle nuove forze, rivelate
dalla scoperta della radioatti@itma queste questioni avranno un’influenza marginale nella
prima fase di sviluppo della teoria.

Non basta. La fisica classica poggia su una dicotomigdréicelle definite da pochi
gradi di liberg, ad esempio la posizione e I'impulsoc@mpiche necessariamente hanno
infiniti gradi di liberta: se vogliamo ad esempio conoscere I'evoluzione temporale di un
campo elettromagnetico dobbiamo assegnarne il valore su un’intera superficie. Matemati-
camente questa differenza si riflette nel fatto che le equazioni per il campo elettromagnetico
sono equazioni alle derivate parziali, mentre le equazioni di Newton, per i supposti costi-
tuenti elementari, sono equazioni ordinarie. Questo pentonnesso al precedente nel
senso che qualunque tentativo classico di immaginare una struttura interna agli elettroni
(le uniche particelle abbastanza conosciute all'epoca) era fallito, quindi questi costituenti
andavano trattati come puntiformi. La coesistenza quasi pacifica di queste due rappresen-
tazioni del reale comincia ad entrare in conflitto con I'analisi teorica ed i dati sperimen-
tali, risolvendosi infine nell’abbandono delle due visioni, che diventano un caso limite di
rappresentazione dello stesso oggetto quantistico.

Uno dei campi in cui tutte queste problematiche vengono per prime all&licstu-
dio della radiazione di corpo nero, &lda questo fenomeno che partiamo per la nostra
presentazione.

1.2 Radiazione di corpo nero.

Un importante risultato della fisica classica, dovuto a Kirkhhoff, afferma che in condizioni
di equilibrio termico il rapporto fra il potere emissivo di un corpo ed il potere assorbente
e universaleed e porporzionale alla denaitspettrale di energia in una cavitPer la di-
mostrazione rimandiamo all'appendice 1.A ed al libro di Planck sull'argomento[Pla-H.R.].
Consideriamo una cavita pareti perfettamente riflettenti, di voluriie (per semplicia
supporremo un cubo) e tenuta a temperaffiraLe pareti di questa cadtsono in equi-
librio termico con la radiazione elettromagnetica emessa ed assorbita dalle paréfi. Sia
I'energia elettromagnetica totale,= U/V la densia di energia ey, (v, T) la sua densit
spettrale, ciéu, (v, T)dv € la quantia di energia elettromagnetica per @niti volume e di
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frequenza. Naturalmente
u:/ u, (v, T)dv (1.1)
0

Un corpo neroé definito come un corpo che assorbe completamente la luce di tutte le
frequenze, cie con potere assorbente 1. In forza del risultato citato sopra il potere emissivo
di questo corp@ direttamente proporzionale alla funzioag Il teorema di Kirkhhoff
afferma appunto che la funziong (v, T') &€ universale il potere emissivo di un corpo nero
non dipende cie dal tipo di corpo, dalla sua composizione chimica etc, e la dedsit
radiazione non dipende dal tipo di cauvit

Una affermazione cogeneraled capire che la determinazione della funziapév, T')
coinvolge solo costanti universali e riflette qualche importante prapfigita. Dal punto
di vista “visivo” la determinazione della funzione permette di capire il “colore” della luce
emessa: la dipendenza dalla temperatura provaaiea diversa distribuzione in frequenza
della luce, e quindi un colore (cdauna frequenza) diversi.

La situazione teorica dell’'argomento alla fine del'80@mssere riassunta nei seguenti
fatti:

e Legge di Stefan Boltzmanba densia di energia proporzionale alla quarta potenza
della temperatura:

u@):ﬂﬂzéﬂ“ J(T) = oT* (1.2)

o € detta costante di Stefan-Boltzmanrnrg la velocit della luce, eJ e I'energia
radiante emessa al secondo dall'anii superficie di un corpo nero a temperatura
T. Si pw pensare di misuraré considerando un forno a temperatdt@on un pic-
colo foro da cui esce la radiazione. La (1&)na conseguenza diretta del secondo
principio della termodinamica e della relaziome= /3 che lega la densitdi ener-
gia elettromagnetica e la pressione di radiazione. Come sottoprodotto si ha anche
I'espressione dell’entropia della radiaziéne

4du_ 4U

e Legge di WienLa funzioneu, (v, T) ha la forma

MMﬂzﬁﬂ% (1.4)

Dalla (1.4) segue la legge di Stefan-Boltzmann

u= /OOOuV(V,T)dV /000 Vfv/T)dv = T* /Uooo:?’f(x)dxaT4

La (1.4) racchiude ldegge dello spostamento di Wieit:massimo della funzione
spettrale soddisfa alla relazione

Vmax/ T = cOst. OVVero  AmaxI' = cost. (1.5)

Basta infatti scrivere I'equazionéu, /dv = 0: si ottiene un’equazione nella sola
incognitav /7.

La situazione fenomenologico-sperimentale era la seguente:

INella speranza di ridurre la possibile confusione dovuta al proliferare delle gyaritheremo di usare in
modo consistente la seguente convenzione tipografidadica una quantit globaleg la sua densit, cie Q/V/,
eq, la densih spettrale.

2Ricordiamo che la dimostrazione di tutte queste affermaziobigssere trovata nel paragrafo 1.A
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¢ Sullabase di analogie con la distribuzione di Maxwell, Wien aveva proposto la forma
seguente per la funziong (v, T):

u,(v,T) = av’e™ /T (1.6)

Non ci sono giustificazioni teoriche ragionevoli per questa legge gssere pensata
come una descrizione fenomenologica dei dati.

¢ | dati sperimentali, limitati a piccole lunghezze d’'onda, si accordano bene alla eq.(1.6).

La situazione cambia rapidamente alla fine dell’800 con I'affinarsi delle misure e I'esten-
sione delle stesse verso l'infrarosso, i grandi lunghezze d’onda: i dati sperimentali
mostrano una deviazione significativa dalla legge proposta da Wien, e la teoria non ha al-
cuna predizione@per la proposta fenomenologica di Wieg,tantomeno per le deviazioni
misurate E a guesto punto che Planck scopre la corretta forma(di, 7') e per giustificare
guesta forma, che si adatta perfettamente ai dati sperimentalpstretto” a introdurre il
concetto di quanto, céola possibilid di una discontinuit nei processi fisici.

1.2.1 Lalegge di Planck.

E chiaro che la determinazione della funziangv, T') & un problema di equilibrio stati-
stico, ma bisogna tener conto del fatto che la meccanica statistica era una parte della fisica
relativamente nuova e non universalmente accettata, in particolare Planck non ne era certo
un sostenitore. L'approccio usato da Plaggbercd, almeno inizialmente, termodinamico:
una metodologia ben suffragata dal fatto che gli unici risultati noti all'epoca, la legge di
Wien e la legge di Stefan-Boltzmann, erano stati ottenuti appunto in questo modo.

Il risultato finaleé laformula di Planckper la radiazione di corpo nero

8why3 1
_ 1.7
c3 e% —1 ( )

u,(v,T) =

h € la costante di Planck /e la costante di Boltzman. Per quanto detto sull’'univeraalit
della radiazione di corpo nerf,e k sono due costanti universali. Dimensionalmente:

[h] = energiax tempo= azione

E interessante notare che la costante di Boltzmann fa la sua prima comparsa proprio nel
lavoro di Planck [Pla00a], ritorneremolpavanti su questo punto. In questo capitolo deri-
veremo la (1.7) in diversi modi, n&interessante seguire la logica originale della deduzione
di Planck.
L'equilibrio termico della radiazione mantenuto da uno scambio continuo di energia
con le pareti della cavd, la prima idea di Planck di trasformare la ricerca di, (v, T")
nello studio dell’equilibrio termico del materiale della cavitPer il teorema di Kirkhhoff
la scelta del materiake arbitraria, quindi Planck sceglie il modellaygemplice: oscillatori
armonici che mantengono I'equilibrio assorbendo e riemettendo radiazione. Un oscillatore
con frequenza proprigy assorbe ed emette luce a frequengaComee noto la potenza
emessa da una carica accelemta
2¢e? 9
33"
dovea € l'accelerazione. La potenza assorkitéornita dal lavoro del campo elettrico
della radiazioneE - v. L'ampiezza di oscillazion& proporzionale al campo elettrico,
quindi il lavoro& proporzionale &?, cioé alla densi di energia. All'equilibrio I'energia
emessa uguale all'energia assorbita ed un semplice calcolo, riportato per cenrulit

3Lo studio della radiazione di corpo nero costituiva da anni l'interesse scientifico di Planck, nel lavoro del
1900 vengono utilizzate molte idee sviluppate in lavori precedenti.
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paragrafo 1.C d la relazione fra I'energia media dell’'oscillatore di frequenz&,, e la
densit spettrale:

2
w, (v, T) = &TC—:E,, (1.8)

Notiamo che, in accordo col teorema di Kirkhhoff, nella (1.8) non compaiono i parametri
dell'oscillatore,e, m. Se siriesce a calcolare I'energia media termica dell’oscillatbye,
si ha la soluzione del problerhala (1.8), assieme alla legge di Wien, assicura che a fisso
v, E, € una funzione solo df":

E, = E,(T) (1.9)

E ben noto, ed era noto da oltre 30 anni nel 1900, che un oscillatore armonico in equi-
librio termico ha classicamente un’energia meHja= k7" € il teorema di equipartizione
dell'energia, ad ogni grado di libértche compare in forma quadratica nell’Hamiltoniana
€ associata un’energ@kT e l'oscillatore ha un grado di libexttraslazionalep? /2m, ed
uno vibrazionalejmw3q?. Probabilmente Planck non crede alla validitel teorema di
equipartizione e non lo applica, per fortuna, alla (1.8): se lo avesse fatto non avrebbe sco-
perto la legge (1.7). Planck parte dal secondo principio della termodinamica applicato agli
oscillatori. L'entropiaé una quanti estensiva, se consideriamo fisso il volume della aavit
possiamo considerare I'entropia per oscillatore come funzione dell’enBgggsscrivere il
secondo principio nella forma

s 1
dE T
Siccome nel discorso che segue fisso tralasceremo di indicarlt' indica I'entropia
per oscillatore ed~ I'energia media per oscillatore. Nella (1.10) la temperatiiraa
pensata come funzione di, ottenuta invertendo la (1.9). Viceversa se si conastelE
in funzione diF si pw trovare la (1.9).
Consideriamo ad esempio la legge fenomenologica di Wien. Dalla (1.8) segue

(1.10)

E=ave T = _py = log(g) (1.11a)
T av
d?s d (1 11
I = B <T> =" %E (1.110)

Ripetiamo: i fattoriv sono costanti, sono stati messi in evidenza per sottolineare che i due
coefficientic, 3 sono costanti universali, indipendenti da

Viceversa assumendo I'equazione (1.11b) si ricava la legge di Wien. Notiamo che in
questo modo la costante® una costante di integrazione. Una relazione deldfsty dE?
1/F era stata ipotizzata da Planck in base ad un modello piuttosto complicato, ma i dati
sperimentali indicavano una violazione della legge di Wien e quindi la non atidgue-
sta equazione. Dalla (1.11a) vediamo cheper- 0, oppurer — oo, E — 0. In questo
regime la (1.11ag in accordo con i dati, quindi la correzione deve consistere in qualcosa
che si annulla pi rapidamente dE' quandoE — 0. Lipotesi pit semplice2

d*S 1 1

— = 1.12
dE2 aq E(CLQ —|—E> ( )

Integrando la (1.12) si ha:

1 ds 1 1 1 1 E
- = - _ dE [ = — = — 1 1.13
T~ dE alaQ/ (E a2+E> aras {Oga2+E+C} (1.13)

Un punto da sottolineare ora il seguente: péef — oo, I'energia media dell’'oscillatore
deve divergere, quindi il limited? — oo della (1.13) deve essere nullo, questo fissa la

4Per evitare malintesi le energie che compaiono nella (1.8) sono emengiehe lo zero dell’energia cieé
fissato dI' = 0. Eventuali altre forme che non dipendono dalla temperatura sono escluse.
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costante additiva = 0. Si hanno quindi ancora 2 costanti, come nel caso della legge di
Wien. Notiamo che il vincold® — oo perT — oo & incompatibile invece con la (1.11a).
Imponendo ora che péf — 0, cioeT" — 0 si recuperi la (1.11a) si ottiene

aras = Bv as = av (1.14)

Invertendo la (1.13) e usando la (1.8)

—Bv/T 1 8T’ 1
e TOV
Ezowl—e—ﬁl’/T =V = uy(MT):cTW (1.15)
Cambiando nome alle costanti
h 8 h
o = = —
k

si ha la legge di Planck nella notazione usuale. Lidentificazione della costante di Boltz-
mann segue dal limite di alta temperatura:
T «
E,—av—==T (1.16)
pv B
Notiamo due cose molto importanti:

e |l teorema di equipartizione classico nerun “optional” della fisica classica, &
violato, come nella (1.15), qualche principio fondamentale deve venire a mancare.

¢ Dai dati sperimentali, piuttosto precisi, Planck ricava il valore delle due cogtanti
Dal valore dik si possono ricavare il numero di Avogadro, usando la costante dei gas,
e, dal valore del Faraday, la carica dell’'elettrone:

Ni=R/k F=Ngue (1.17)

i valori ricavati sono i migliori per I'epoca in esame, solo diversi anni dopo, ad
esempio, la misura di & stata migliorata. Lo stesso sidoulire per il valore di
Nay.

e Dal valore diu, € possibile ricavare la costante di Stefan-Boltzmann

2o k4 40 8ok

7 5h3e B (118)

T ¢ T 15h33

Usando l'integrale

oo 3 4

T ™

I: d = —
/0 er —1° 7 15

e 8wh [ V3 8kt
u:/o uyah/:—C3 ) ehu/kT_ldu: h3c3T I

si ha

da cui segue la (1.18).

La conclusione che si purarre dalle previsioni (1.1 8 che la formula di Planakqualcosa
di piu di un semplice accordo fenomenologico, mentre I'indicazione teeratee qualcosa
di rilevante deve essere sbhagliato nella fisica classica.

Quanto rilevante sia lo scostamento dalla fisica classica lo si capisce nella proposta di
spiegazione che Planck avanza nel lavoro[Pla00b]. Riscrivendo la (1.13) con il valore delle
costanti (1.14) e integrando si ha

S = % [(1+ 5) (1og(1+ 5) - 1) - % (log(i) - 1)] + S,
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PerT — 0, E — 0. Imponendd S(0) = 0 si haS, = 1 e, sostituendo il valore noto delle

costanti 5 5 5 5

S=k {(th) log(lJrﬁ) hulog(hyﬂ (1.19)
Naturalmente dall’espressione (1.19), derivando si ottiene la formula di Planck, come vi-
sto precedentemente. Si tratta quindi di dimostrare la (1.19). Ricordiamo che in termini
statistici I'entropia di un sistemadata da

S = klogW (1.20)

dove WV, nel linguaggio usuale il numero di microstati corrispondente al macrostato di
equilibrio. Confrontando la (1.20) con la (1.1®haturale provare a calcolafevalutando

W all’'equilibrio. 1l ragionamento di Planck il seguente. Consideriam¥ oscillatori.

Sia Fy I'energia di equilibrio eSy la corrispondente entropia. All'equilibrio I'energia
Ey € in qualche modo distribuita fra gV oscillatori e I'energia media per oscillatoge

E = En/N. Supponiamo di considerare I'energia come composta da tante piccole parti,
¢, siavia Ey = Pe, P e il numero di pezzetti di energia. Planck afferma ékee il
numero di modi in cui questa energiafpassere distribuita, il nome tecnico usato per un
microstato, all’epoca, ereomplessioneQuindi W & il numero di modi in cuiP palline
identichepossono essere distribuite M cassetti.E facile calcolare questo numero: se si
traccianolN — 1 righe verticali, si delimitandV cassetti, comprendendo lo spazio a sinistra
della primariga e a destra dell'ultima. Si distribuiscono Braalline nei cassetti, il numero
delle distribuzioni possibili si ottiene permutando fra di loro I'insieme delle palline e degli
oggetti,(N + P — 1)!. Le (N — 1)! permutazioni che scambiano fra loro le righe sono
ininfluenti, e lo stesso dicasi delle! permutazioni delle palline, quindi

(N+P—1)

V=N

(1.22)
EssendaV > 1, P > 1, possiamo trascurare il terminel nella espressione precedente
ed applicare la formula di Strirlinkpg(n!) ~ n(logn — 1), ottenendo

Sy =k[(N+ P)(log(N +P)—1)— N(logN —1) — P(log P — 1)] =

— kN [(1 n %) log(l + %) - %log zﬂ

Ricordando che® = E /e = NE/¢ si ha, per I'entropia per oscillatore

s=5 [(1+E) 1og(1+§) —Elog(E)} (1.22)
N € € € €
Cheeidenticaalla (1.19) se si identifica il “pezzetto minimo” di energiaonhuv.

Il problemaé chenon si pw fareil limite ¢ — 0, questo corrisponde al limite — 0
nella (1.19), ci@ E — oo ed in questo caso si ricade nel caso classico inftuk k7.
Quindi la formula di Planck si ottiene assumendo uliscretizzazione dell’energiain
quanti di grandezzauv.

E owvio che queste in contrasto con tutta la meccanica classica, non solo, rischia di
entrare in conflitto con le stesse equazioni di Maxwell nella éawice nel vuoto. Co-
munque a questo livello la situazioegrerlomeno ambigua. Si puad esempio pensare a
gualche, oscuro in vedt meccanismo dinamico che provochi a livello effettivo una discre-
tizzazione del tipo (1.22). Il vero problenggla violazione del principio di equipartizione
dell’energia. Un altro problema all'apparenza tecritoche il conteggio usato per dedurre
la (1.22)none il conteggio di Boltzmanm almeno non sembra il conteggio di Boltzmann.
Le differenze sono due

SLannullarsi dell’entropia pef” = 0 & il contenuto deTeorema di Nerst.
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¢ Nel normale conteggio combinatorio per il calcolo del numero di microstati, si con-
siderano gli stati di oggettistinguibili, le particelle di un gas, mentre le quaatit
usate da Planck sono oggettdistinguibili.

e Nel conteggio di Boltzmann occorre scrivere la realizzazione di un macrostato gene-
rico e trovareS all’equilibrio massimizzando questa espressione, questo identifica lo
stato di equilibrio come lo statoipprobabile. Nel risultato (1.22) non&ieffettuata
nessuna operazione di massimizzazione, quindienamlto chiaro in che senso il
conteggio fatto descriva lo stato di equilibrio, non avendo specificato quali sono gli
altri stati possibili. Queso conteggio fu ampiamente discusso, e criticato, nei primi
anni del 900, vedremo piavanti quak la spiegazione corretta.

Il problema del principio di equipartizione dell’energia viene sollevato in varie forme
da Raleigh, Einstein, Jeans. Ponetgo= kT la formula (1.8) diventa

82
3

uw, (v, T) ~ kT (1.23)

e prende il nome di formula di Raleigh-Jeans. Un punto interessantee po essere
dedottasenza far ricorsaagli oscillatori materiali. Se consideriamo una cawt pareti
riflettenti, possiamo decomporre il campo elettrico, e quello magnetico, in onde stazionarie,
diciamo che si annullano ai bordi. Per annullarsi ai batdi; L, una funzione del tipo

x
o
sin( 7r/\)

deve avere\ = % cioe per ogni lato occorre sistemare un numero intero di semilunghezze
d’'onda. Queste lunghezze d’onda corrispondono a frequenze

C nc
=—-=— =1,2...
"TXTae "o
Questo vale per ognuna delle 3 direzioni spaziali. Il humero di frequenze possibili, o

modi di vibrazione e allora il volume individuato dalle triplette di interi positivi =
(ng, ny,n;), tutti in un ottante dello spazio tridimensionale. L'elemento di volume in
guesto spazie

1, 5 vi o c
~4mn“dn = 47TC—SL dv v= |n\ﬁ

Tenendo conto che per ogni modo di vibrazione del campo elettrico ci sono due modi di
polarizzazione, il numero di modi in frequenza, per armit volume ¢

2
Z,dv = 87?0—3du (1.24)

Ogni modo di vibrazion& un modo armonico, quindi a tutti gli effetti un oscillatore. La
densit di energia di radiazione allora

w(v,T)=Z,E, (1.25)

doveFE, e I'energia media di unscillatore di campd nel 1900, per Raleigh, un oscillatore
dell’'etere): la (1.25) coincide con la (1.8). Questo modo di procedere ha il vantaggio di
focalizzare I'attenzione sulla radiazione.

Ea guesto punto che compare un rivoluzionario lavoro di Einstein[Ein05], che da una
parte ribadisce la validitin meccanica classica del principio di equipartizione, dall'altra
segna la nascita del concetto di fotone.



1.3. IL FOTONE. 11

1.3 Il fotone.

Vogliamo capire quali sono le implicazioni della formula di Planck per la radiazione elettro-
magnetica, cie cosa dice sulla luce. Seguiremo essenzialmente la logica usata da Einstein
in una serie di lavori scritti a partire dal 1905: in questi lavori vengono delineati molti dei
concetti che costituiranno I'ossatura della meccanica quantistica.

Nella regione infrarossa della radiazione di corpo nero,/per< kT, la legge di
Planck riproduce la legge di Raleigh-Jeans, (1.23). Quindi almeno nella zona di grandi
lunghezze d’'onda le previsioni della fisica classica funzionano. D’altra parte la stessa legge,
non pw averevalidita generale. Infatti se fosse sempre valida si avrebbe, per I'energia
totale

o < 872 .
u = / u,dv = / 7;;/ kTdy = (catastrofe ultravioletta) (1.26)
0 0

un risultato palesemente assurdo[Ein05]. Quindi nella regheng> kT non possono va-

lere le leggi della meccanica classica e/o dell’elettromagnetismo classico. Il fatto che la
stessa legge (1.26) possa essere ottenuta considerando gli oscillatori di campo, indipenden-
temente quindi dai particolari meccanismi di interazione, induce a ritenere che I'opzione
“e/0” vada intesa come un “e”, cionon possono valere le equazioni di Maxwell. Faccia-

mo notare di nuovo che si tratta dele equazioni di Maxwell nel vuot@, gia delle cose
meglio verificate della fisica.

Sia la formula di Planck, sia la legge fenomenologica di Wien, indicano una modifica
della (1.23) pefww > kT, quindi la domand&: come si descrive la radiazione elettro-
magnetica in questo regime? La deduzione di Planck suggerisce una discretizzazione dei
processi di emissione ed assorbimertayuindi naturale pensare che uno stesso tipo di
discretizzazione possa avvenire a livello di radiazione, per la radiazione questo significa
interpretare la luce in termini di particelle, che saranno chiarfoédai. Quanto questo sia
in contrasto con tutta I'evidenza dei fenomeni di interferenza, diffrazione gatosa facile
da immaginare.

Ogni fotone dovrebbe avere una certa energia e, vista I'analogia della legge di Wien
con la distribuzione di Maxwell di un gas perfetto, o in generale con la distribuzione di
Boltzmannexp(—E/kT), ci si aspetta che questa energia cresca con la frequenza. Nella
zonahv > kT la densia di energia tende rapidamente a zero con la frequenza, quindi,
se di fotoni si tratta, in questo regime si deve avere un gas “rarefatto” di fotoni. Se il gas
non fosse rarefatto ci potrebbero essere problemi a distinguere una distribuzione continua
di energia, come quella aspettata classicamente, da una distribuzione discretizzata ed orga-
nizzata inquantielementari. Se invece il g&srarefatto la cosa relativatemente semplice:
dividiamo il volume della cavit in piccoli elementi, se distribuiamo I'energia in forma
discretizzata ci saranno delle cellette vuote e delle cellette piene, come se distribuissimo
delle palline. Il punto essenziateche una pallina o €' 0 non c&, non p@ esserrci mezza
pallina, mentre non si hanno vincoli per una distribuzione continua. In un normale gas que-
sto semplice concetto geometriedradotto in una propriatdell’entropia. Se dividiamo
il volume V in cellette di dimensioni la probabili di trovare una particella in una data
cellettae proporzionale a/V/, la probabilia di trovarneN sa@ proporzionale & /V)¥,
se supponiamo che le particelle siano statisticamente indipendenti (lo sono di sicuro se |l
gase rarefatto). Se consideriamo due diverse suddivisioni, la prolzatslitiva s

Py = (”)N (1.27)

Py eilrapporto fra la probabilit di trovareN particelle in un volumetto, e la probabilia
ditrovareN particelle in un volumetto, . Ma sappiamo che la relazione di Boltzmaha=
klog W lega I'entropia alla probabibit di un dato stato di equilibrio, quindi considerando
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I'entropia di un volumettas, e quella di un volumetto; si ha

N
Sy — 81 = klog Py = klog (?) = S=FkNlog(V)+ f (1.28)
1
con f indipendente d&’ .
Se i fotoni esistono I'entropia della radiazione di corpo nero, jpers> kT, deve
soddisfare ad una relazione come la (1.28). L'entropia della radiazianegsere scritta
nella forma

S=sV= V/ sy(uy,v)dv (1.29)
0

La (1.29)& una “decomposizione spettrale” per I'entropia. |l volume a fattore indica la
propriet estensiva, le variabili,, sono intensive. Noi vogliamo “estrarre” dalla (1.29) solo

la parte ad alta frequenza. Se consideriamo un volume unitario, quindi fisso, il secondo
principio della termodinamica mette in relaziéng, eu, :

ds, 1
= — 1.30
du, T ( )
Nel limite hv > kT possiamo usare la relazione di Wien per ricavigf€
ds, l B —ﬁl u,
du, T  hv 08 avs
da cui integrando
__k [1 o 1} (1.31)
Sv = ho Y 8 av3 '

Consideriamo ora I'energia, dovuta ad un intervallodi frequenza,F = Vu,dv e la
corrispondente entropi&, = Vs, év, dalla (1.30) si ha

S(V,E) = —ﬁE [log

B |
hv Vivav3 }

quindi considerando due diversi volumi

Sy — 51 = k% log (KT) (1.32)
confrontando questa espressione con la (1.28) si ha che la radiazione di corpo nero ad
alta frequenza si comporta come un gas rarefatto di particelle di eriergia modo che

E/hv sia il numero di particelle (fotoni). In altre parole[EinO8]Jecito ipotizzare che la
radiazione elettromagnetica sia costituita da particelle. Notiamo che questa interpretazione
a “particelle indipendenti’® valida nella regionér > kT, cioe lontano dalla zona di
validita della legge di Raleigh-Jeans. Nel lavoro del 1905[Ein05], ed in quelli successivi,
Einstein propone diversi esperimenti che possono convalidare questa interpretaziane. Il pi
notoe I'effetto fotoelettricped il suo inverso, I'effetto Volta.

1.3.1 Effetto fotoelettrico.

Se si invia della radiazione elettromagnetica su un metallo, si osserva una emissione di
elettroni, questo effetto si chianedfetto fotoelettrico.E noto che per estrarre degli elet-
troni da un metallo occorre fornire una certa energia, il cosiddetto potenziale di estrazione,
W, caratteristico del metallo. La spiegazione classica dell’effetto fotoele#ratoara: il
campo elettrico dell’onda incidente accelera I'elettrone e quando la sua energial8Upera

6Le affermazioni (1.29) e (1.30) anche se intuitive, non sono inadzsthali, ne diamo una dimostrazione in
appendice 1.A.2.
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I'elettrone viene emesso. L'energia trasfegtproporzionale all'intensitdella radiazione,

quindi ci si aspetterebbero degli elettroni energetici per onde di alta iriensntre non ci

si aspetta nessuna dipendenza significativa dalla frequenza della radiazione incidente. La
situazione sperimentale, come evidenziato da Lenard nel 1902[Lem0@impletamente
opposta

1) C'eunafrequenza caratteristiea;,, al di sotto della quale, qualunque sia l'inteasit
della radiazione, non vengono emessi elettroni.

2) L'energia degli elettrondipendedalla frequenza maon dipendalall’intensit.

3) Gli elettroni vengono emessi a qualunque inténdélla radiazione, anche a bassisi-
me intensid. Al descrescere dell’intenaine vengono emessi meno.

La spiegazione di questi fattiimmediata se si considera la luce come composta da fotoni.
Un fotone di energiagh pud al massimo cedere tutta la sua energia ad un elettrone del
metallo, questo ne guperdere eventualmente una parte per “attrito” (urti col materiale),
uscendo dal metallo stesso. Quindi I'elettranestratto dal metallo solo sev > W,

il che spiega la soglia in frequenza, anzi mette in relazione la soglia con il potenziale di
estrazione. L'energia, massima, dell’elettrone est&tto

Eomas = hv — W (1.33)

L'intensita dell’ondaé proporzionale al numero di fotoni, quindi al variare dell'inteqsit
l'unica cosa che vari@ il numerodi elettroni emessi, non la loro energia. Tutti questi
effetti ed in particolare la relazione (1.33) sono stati verificati sperimentalmente negli anni
fra il 1905 ed il 1920[Mil14], facendo a poco a poco accettare l'idea dell’'esistenza dei
fotoni.

Leffetto Volta & I'inverso dell’effetto fotoelettrico: se un facio di elettroni incide su
un metallo e viene assorbito, si ha un’emissione di radiazione. La (1.33) in questo caso
predice che la frequenza della luce emeassa = E + . Anche questo effetto ha avuto
conferma sperimentale in quegli anni[Dual5]. Per le altre prime applicazioni del concetto
di fotone il lettore po consultare gli articoli[Ein05, Ein06].

Ci occuperemo pi avanti delle altre caratteristiche del fotone.

1.4 Livelli energetici discreti.

Facciamo il punto della situazione: la formula di Planck descrive in modo perfetto la ra-
diazione di corpo nero, la sua spiegazione teorica richiede in qualche modo una discretiz-
zazione degli scambi di energia fra radiazione ed atomo, d’altra parte I'interpretazione di
Einstein della radiazione presuppone una discretizzazione della radiazione stessa. Entram-
be queste cose, ovviamente, sono inconsistenti con la meccanica clBssiesito ancora
di Einstein[Ein06], nel 1906, avere messo in luce i problemi e proposto in modo chiaro la
necessd di un’ulteriore rottura con la meccanica classica: la quantizzazione dell’energia
per i corpi materiali, oltre che per la radiazione.

Cominciamo col notare che nell’'ambito dell’elettromagnetismo classic@&natural-
mente possibile che un oscillatore assorba energia “a salti’, quindi se si assume corretta la
deduzione di Planck aisignifica che I'interazione oscillatore-atomone descrittadall’e-
lettromagnetismo classico. Ma I'elettromagnetismo classistato usato nella derivazione
della (1.8)! La conclusione che in reah la (1.8)e un’ipotesi. Il secondo punte che
in meccanica classicajualunque sia l'interazioneéell’oscillatore col campo elettroma-
gnetico, I'energia termica media di un oscillataré:T', si ricade ci@ nella formula di
Raleigh-Jeans.

Questa conclusiong estremamente generale. La distribuzione statistica, in energia, di
un sistema data dalla legge di Boltzmann

dP = Ce E/Fy(E)dE (1.34)
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w(E) & la densi degli stati,C' una costante di normalizzazione. Questa formula, per
oscillatori indipendenti, implicd& = kT, lo sappiamo gi. Il lettore, se vuole, putrovare

la dimostrazione dettagliata a partire dalla (1.34) nel paragrafo 1.4.1. Il punto importante
e che questa conclusione dipende solo dalla cemlsgli stati dell’oscillatore, in ultima
analisi dalla forma quadratica dell’Hamiltoniamepn dall'interazione elettromagnetica
L'unico modo per non ottenere la formula di Raleigh-Jeacse la densit degli statinon

sia quella classica. Per un oscillatore classig@d) = 1, cioe tutte le energie, a parte

il fattore di Boltzmann, sono pesate uguali. La chiave per capire come cambipe
l'ipotesi dei fotoni di Einstein.

La descrizione di Einstein della radiazione di corpo nero descrive la luce come un in-
sieme di particelle di energiaw: questa conclusioneon fa uso dellg1.8), quindi non
presuppone nessun meccanismo particbléde I'energia di radiaziong discretizzata pu
essere assorbita solo in forma di “quanti” di grandeizzama allora I'energia dell’oscil-
latore pw variaresolo di hv. Questoe compatibile con la descrizione di Planck ma la
richiesta della possibibit di una descrizione statistica impone qualcosalti gueste ener-
gie sonde sole possibilper I'oscillatore, a meno di una costante additiva. In altre parole
le uniche energie possibili, per il singolo oscillatore, sono:

’En = Ey + nhv n>1 ‘ (1.35)

Trascuriamo I'energid,, che come vedremo in seguito non va in effetti considerata per
guesto problema. Dimostriamo[Ein06] che dalla (1.35) si riottiene la legge di Planck. Si
possono dare diverse versioni di questo fatto, laggimplices la seguente. Per oscillatori
indipendenti la (1.34) puessere applicata al singolo oscillatore. Se sono possdidii

livelli energetici (1.35) la densitdegli state, in notazione moderna, a meno di una costante
moltiplicativa inessenziale per le medie,

w(E) =Y §(E - Ey) (1.36)

Per il lettore che non conosce la distribuzione di Difacse sono presenti solo livelli
discreti invece degli integrali sull’energia bisogna fare delle somme. Per I'energia media si
ha allora

[e%s) 00 -1
E— | EdP _ Znhy . e—nhv/kT [Z enhv/kT‘|

f ap n=1 n=1
Usando
> x > d & x
"= "=x— N —— 1.37
lex 1—z zlznac xdlezx (1—2) (1.37)
si ha
. e—hu/kT 1
Usando la (1.8):
1 s 1
EV = hym u, = 8mhy m (139)

cioe la formula di Planck. Nel paragrafo segueatgrevemente analizzata la relazione fra
discretizzazione dell'energia e conteggio degli stati.

Se fossero presenti altri livelli cambierebbe la deénsitE), cioe la (1.36), € non si
otterrebbe la formula di Planck.

"Nella deduzione sé fatto uso della legge di Wien, non dimostrata se non si usa la legge di Planck, ma a
questo livello I'esistenza dei fotoeil'ipotesi di partenza, non va vista come una conseguenza di un’altra legge.
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Una dimostrazione formale puessere questa. In una distribuzione di Boltzmann, effettuando le
derivate rispetto & di E, si possono ricavare i valori medi &?, E* etc. ci® i momenti della
distribuzione. Una distribuzione di probakilitegolare® individuata univocamente dai suoi momenti,
quindi la soluzione trovata unica.

La conclusione che si @utrarre a questo punt® che la dinamica microscopica deve
essere tale da imporre una discretizzazione dell’energia, quindi la meccanica cassica
esclusa.

L'unico punto (relativamente) insoddisfacente, per @&d,fatto che si sia dovuta as-
sumere, nella deduzione, la val@litiella (1.8), cie@ della relazione fra energia della ra-
diazione ed energia dell'oscillatore, cosa opinabile, vista la dimostrata non ¥alilia
descrizione classica. Un altro fondamentale lavoro, sempre di Einstein, del 1917[Ein17]
rimedia a questo punto, introducendo il concetto di emissione spontanea ed emissione in-
dotta, e dando, in ultima analisi, la prima derivazione consistente della legge di Planck
basata sullo scambio di energia radiazione-materia.

1.4.1 Conteggi e spazio delle fasi.

Presentiamo due modi diversi, ma equivalenti, di ricavare i risultati (1.21), (1.22), entrambi
basati sulla discretizzazione dell’energia.

Probabilita massima. Per calcolare I'energia media di un oscillatore a frequenzan-
sideriamoN oscillatori. Se I'energi& discretizzata ognuno di essigpassumere un mul-
tiplo del quanto elementaee Sia Ny, il numero di oscillatori con energike. Il numero di
modi in cui possono essere suddiviéioscillatoriindipendenti e distinguibilé

N!

W=—
NiINo! .

Ny, = # oscillatori con energiae (1.40)

i vincoli macroscopici che individuano lo stato sono: il numero di oscillatSii€ I'energia
totale del sistemdl/):

N:ZNi U:ZNk~k5 (1.41)

In meccanica statistica si mostra come nel limite termodinamio,~ oo, nell'ipote-

si di equiprobabilid di tutte le configurazioni, lo stato di equilibrio macroscopico $ pu
ottenere come lo stato di probakilimassima, che corrisponde allo stato con il maggior
numero di realizzazioni possibili. Si tratta pérai massimizzare I'espressione (1.40), o
pit semplicementéog(1), soggetta ai vincoli (1.41), cosa che siopiare introducendo
dei moltiplicatori di Lagrange:

O (g W 4 A (YN~ N) 4 AN sz - 1)) =0

usando I'approssimazione di Stirling
log(n!) = n(logn — 1) (1.42)

si ricava
Ns — e/\l e)\QSE

I moltiplicatori di Lagange sono fissati dalle condizioni ausiliarie (1.41). Usando le (1.37):

Aoe E
A Aoe € _ Age /e
1= N(1—e N———=U=NE = =
¢ (1—e™) 1 eree ¢ 1+ E/e
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L'entropiaé definita daS' = & log(Wia.) quindi

¥ Nllog(N) ~ 1) ~ Y N(log(N.) 1) =

= Nlog(N) = > N1 — Y NAise = Nlog(N) = NA; — \,NE

dacui

E

Ble _n [(1 + B g1+ By Erg Bl (143
[ e € g

1 —_—
Og1+E/a

S E E
— = Nlog(l+—)-N—
k Og(+s) €

Insieme microcanonico. | valori medi in meccancia statistica sono calcolatiesisem-
bles cioé su misure di probabibt che forniscono una termodinamica. Iimemplicee
I'ensemble microcanonico, cléedefinito assegnando uguale probadbiittutti gli elementi
dello spazio delle fasi del sistema compresi fra enetg@alU + AU, doveU ¢ 'energia
totale. L'entropiaé definita, a meno di una costante che qui non interessa:

U+AU
S = klog / 11 (dprdar) (1.44)
u k

il prodotto e sulle variabili canoniche del sistema. Per un oscillatore armonico di energia
E:

P 1

— 4 k¢’ =E (1.45)

2m = 2
La curva (1.45% un’ellisse di area proporzionale & per cui passando a “coordinate

radiali”
dpdg x dE (1.46)

e quindi
U+AU
S =klog / [T 4Ex + So (1.47)
U k

Se I'energia discretizzata al posto dell'integrale occorre fare una somma e pordiide
¢ si ha che l'integrale (1.47) si riduce a

S=klog » 1=klogW
3 E;=U

dove W & il numero di “punti” sulla superfiié/ = Zj E;, cioe il numero di modi di
ottenere un inter® = Pe a partire daV (il numero di oscillatori) interh;, doveE; = n;e,
cioe il numero di modi di scrivere

ma queste esattamente il valore @icalcolato (1.21): corrisponde a porigunita e in
ogni “cassetto” costituito dall’oscillatoreesimo:

(N+P—1)

W= (N —1)IP!

(1.48)

si riottiene perd il risultato di Planck.
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NOTA. Entrambe le derivazioni presentate in questo paragmfabranouna derivazio-

ne consistente con il conteggio di Boltzmann, o equivalentemente con I'ensemle classico
microcanonico di Gibbs (che Boltzmann naturalmente conosceva e chiampdy. In

real@a in entrambi gli approcci la distribuzione di equilib@odefinita a partire dall'asse-
gnazione a priori di stati equiprobabili. Banalizzando: alla domandaélaprobabilia

che gettando due dadi si possa ottenere un dato numero, 10 diéigmossibile rispon-

dere solo assegnando per via empirica o teorica una distribuzione di prababiitutti

gli eventi che costituisconodhsemblequi i possibili risultati. In molti casi, in particolare

nei dadi ed in meccanica statistica per sistemi non interagenti, questo si fa decidendo quali
sono gli eventi elementari ed assegnando una prokmhbidjtiale ai diversi elementi. Nel
caso dei dadi si suppone che dadi non siano truccati, si assegna la praldabild risul-

tato di ogni faccia e si costruiscono le probabhilidell’evento “risultato del lancio di due
dadi”, come il rapporto fra i casi favorevoli e quelli possibili. Notiamo che in ogni caso
dobbiamo avere un procedimento per contare i possibili riultati del lancie,dnbbiamo
definire cosa intendiamo per evento. Nel caso della meccanica statistica classica gli “stati
equiprobabili”, corrispondenti alle facce dei dadi, sono le coppie posizione-impulso di ogni
particella, ci@ i punti nello spazio delle fasi del sistema. assegnate queste come equipro-
babili, nell'insieme microcanico, dobbiamo “contare” in quanti medgiossibile costruire

uno stato macroscopico dato, che guieventq cioe il lancio dei dadi. Assumere che gl

stati equiprobabili siano gli intervalli di energren € la stessa cosa che assumere come
equiprobabili i punti nello spazio delle fasi. Torneremo sull’'argomento nel paragrafo 1.9.

1.5 Emissione e assorbimento: coefficienti di Einstein.

Come vedremo nei prossimi paragrafi il quadro delineato nel paragrafo precedente per
I'oscillatore armonico si generalizza agli altri sistemi: I'energia di un sistema legato, come
una molecola, un atomo etc., ha valdiscrett £, E> .. ..

La differenza rispetto al caso semplice dell’oscillatore armogidodue tipi:

a) | livellinon sono necessariamente equispaziati.

b) Ad ogni livello possono corrisponderelgistati interni” dell’oggettog,,. Il coeffi-
cienteg,, € detto “degenerazione del livello”. Genericamepi@ dovuto al fatto che
diverse configurazioni del sistema possono corrispondere alla stessa engugitio
che succede ad esempio ruotando nello spazio una molecola. Come vedremo I'in-
troduzione della teoria dei quanti permette il calcol@.gi ma per le considerazioni
seguenti il valore dy,, € inessenziale.

Questo quadro presenta una grave lacuna: come si tratta il campo elettromagnetico? Sap-
piamo dal paragrafo precedente &possibile trattare la luce in termini di fotoni, ma non
abbiamo ancora nessun modello preciso che sostituisca le equazioni di Maxwell e, a mag-
gior ragione, nessun indizio su come debba essere trattata I'interazione elettromagnetica.

In questo paragrafo, seguendo la prima parte del lavoro[Ein17], dimostreremo che da
alcune ragionevolissime e molto generali ipotesi sull’interazione elettromagnetica e dallo
schema precedente sulla struttura dei livelli energetici discendono due cose:

a) Una precisa relazione fra assorbimento ed emissione di luce.
b) La formula di Planck per la radiazione di corpo nero.

Per concretezza possiamo considerare un gas, rarefatto, di mélaelguilibrio ter-
mico. La probabili& di avere una molecola nel livello energetic@simoe proporzionale
al corrispondente fattore di Boltzmann

“Eu/RT P, = Cgpe” P /RT (1.49)

gn€

8Qui “molecole”& un nome generico dato ai sistemi microscopici.
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C & una costante di normalizzazione, fissatayda P, = 1. La (1.49)é data dalla
generalizzazione della (1.36): tenendo conto della molteplézi livelli si pw scrivere

W(E) =" g.0(E - E,) (1.50)

da cui segue la (1.49). Consideriamo ora una particolare coppia di livadli(up,down),
con
E, > Ey (1.51)

A causa dell'interazione elettromagnetica la molecola effiettuare delle transizioni fra i
due livelli, e, in questo processo, pgedere o0 assorbire energia dalla radiazione, ad una
frequenza caratteristicache per ora lasciamo arbitraria.

Le molecole quindi assorbono ed emettono radiazione in continuazione. Supponiamo
che il sistema sia completamente isotropo, la radiazione sia isotropa, e I'orientazione stessa
delle moleocole sia isotropa, nel senso che quand’anche ci fossero, nei singoli processi,
direzioni privilegiate per questa o quella molecola, prenderemo una media sugli angoli;
guestee la situazione normale all’equilibrio termico: non ci sono direzioni privilegiate.

Le ipotesi fatte sull'interazione luce-materia sono le seguenti:

a) La molecola nello stato di energialipalta pw decadere allo stato di energiaipi
bassa emettendo radiazione. Questo proce$analogo della radiazione classica di
una carica accelerata. Ogni molecolazauna certa probabidétper unib di tempo di
effettuare questa transizione. Indichiamo questa probalboitin

A,_.q = Prob. al secondo per— d (1.52)

b) Il sistema nello stata pud decadere nello staid sotto I'influsso della radiazione
esterna, si aeruna probabilé di transizione per uritdi tempo

By_.qu, (1.53)

c) Il sistema nello statal puo assorbire un fotone e passare allo statacon una
probabilita al secondo:
By_yuy (1.54)

Il coefficiente B, _.4 & chiamato coefficiente dimissione indottae quelloB,_., coeffi-
ciente di assorbimentoll coefficiente A ha il nome, per ovvi motivi, dcoefficiente di
emissione spontanea

La (1.52), nella sua sempliéit ha un elementmolto peculiare. In meccanica clas-
sica I'energia viene emessa in modo continuo, la dinamica deterministica fissa un tempo
iniziale ed un tempo finale per il processo. Il fotané&rattato come una particella, quindi
I'emissionee sicuramenteiscontinuanel tempo. Qui non stiamo facendo nessuna ipotesi
sull’esistenza o meno di un tempo definito di emissione, I'unica cosa che stiamo richie-
dendoe che ci sia una probabgitche I'evento si verifichi. Questa procedéradentica
a quanto si fa fenomenologicamente per descrivere la proldadiliin decadimento ra-
dioattivo. Formalmente la (1.52)il primo punto in cui incontriamo una rinuncia ad una
descrizione strettamente deterministica dei processi fisici.

Ci chiediamo ora sotto che condizioni si possa verificare una situazione di equilibrio
termico. In condizioni di equilibrio termico il flusso di transizioni al secondo fra i due
livelli si deve equilibrare, altrimenti non si avrebbe equilibrio, quindi

(prob. di essere im) x (prob./sec. — d) = (prob. di essere id) x (prob./seal — u)

cioe
gue_E’U/k'T . (Auad + Buﬂduu) = gde_Ed/kTBdHuul/ (155)
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Innanzitutto ad alta temperatura la deasit radiazione deve divergere, quindi facendo il
limite T' — oo si ha

Quindi il coefficiente di emissione e di assorbimento sono legati, in particolare sono uguali
per livelli non degeneri. Dividendo membro a membro la (1.55)pé?, .4 Si ha

MEEORT (L g ) —,
Bu—>d
Da cui Aa]
o u—d Bu—»d
W = ChBu—EBa)/FT _ (1.57)
La legge di Wien (1.4) impone due cose
E,—FE;=cv (1.58a)
Aus :
Buﬁj = cor? (1.58b)

L'universalita della legge di Wien impone che le due costanti; sianouniversali Iden-
tifichiamo ovviamente:; con la costante di Plandk La costante:; puo essere espressa
in funzione di altre costanti note se si effettua il limfte— oo, in cui si deve recuperare la
legge di Raleigh-Jeans

kT 2 87h
u, — czygﬁ = SWZ—SkT = ¢y = :—3
quindi
hv3 1

(1.59)

U =8mT—4—F—F77—
v 3 ehv/kT _ 1

cheé proprio la legge di Planck. In conclusione:

1) L'unico modo per avere equilibrio termiéxche la luce che interagisce con la coppia
di stati deve avere frequenza determinata dalla (1.58a8, gtiba la conservazione
dell’energia in termini di fotoni, come visto nel precedente paragrafo.

2) 1 coefficienti di emissione e assorbimento sono legati dalla (1.56).
3) Il coeficiente di emissione spontanebegato a quello di assorbimento dalla (1.58b).
4) La densia spettrale della radiaziomequella di Planck.

Quindi la teoria dell'interazione elettromagnetica luce materia, beadeora non formu-
lata, ha le caratteristiche su esposte, in particolare vale la legge di Planck.

Notiamo cheu, & proporzionale al rapportd,, .,/ B,—.4 chenon si riferiscead uno
stato di equilibrio della molecola ma ad una probabilii transizione fra stati diversi,
questoe il motivo per cui nella deduzione del paragrafo precedente si era trascurato il
fattore £y nell’energia dell’oscillatore.

Emissione indotta e legge di Wien. E interessante capire quale delle ipotesi fatre-
sponsabile della sostituzione della legge fenomenologica di Wien con quella di Pianck:
l'ipotesi b), cicg 'ipotesi che esista uremissione indotteeq.(1.53). Infatti se non ci fosse
guesto termine si avrebbe per I'equilibrio:

u Au%
gue_E“/kT-Aqu = gde_Ed/kTBdHuuy = u, = %dee_(Eu_Ed)/kT (160)
d Pd—u
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La legge di Wien (1.4) impone ancora i vincoli (1.58) e si ottiend @slistribuzione di

Wien (1.6),u, = Cv3 exp(—hv/kT). Quindi 'esistenza dell'emissione indottadal pun-

to di vista dei fotoni, il fattore responsabile della “non clasaitdella formula di Planck.

Il motivo €& il seguente: se i fotoni fossero particelle classiche, la prokabiliemissione
dell'oscillatore non dovrebbe dipendere dall’'esistenza o0 meno dei fotoni esterni. Viceversa
I'emissione indott& esattamente quanto ci si aspetta se vale un discorso classico in termini
di onde: in presenza di un campo esterno il sistéenp@sto in oscillazione e irraggia. La
formadell’emissione casottenuta, proporzionale all'intenaitiella radiazione incidente,
quella suggerita dal calcolo classico. Questa nuce, un esempio di un concetto che ve-
dremo apparire molto spesso: la forma dell'interazione quantistseggerita dal calcolo
classico, in una forma undmiu precisa sax il cosiddettqorincipio di corrispondenza.

1.6 Statistica e dualit onda-particella.

Come sie visto nei paragrafi precedenti I'ipotesi di quantizzazione dei livelli energetici
conduce alla formula di Planck. Nelle due deduzioni presentate la differenza fondamentale
e la seguente:

a) Usando come sistema un oscillatore armonico sia nella deduzione di Planck, sia in
guella di Einstein, si usa I'ipotesi (1.8)

82

HV(V, T) = CTED
che lega la densitdi radiazione alla energia media di un oscillatore. Notiamo che
guesta formula dimostrata solo in teoria classica e, in,gioscillatore armonico

quantizzato ha una struttura dei livelli molto particolare: sono equidistanti fra loro.

b) Nella deduzione di Einstein del paragrafo precedente si generalizza la questione ad
un sistema qualunque, non ci sona fpotesi particolari sui livelli energetici del si-
stema, ma si fanno solo delle ipotesi molto generali sulle pr@pdieissorbimento ed
emissione. Queste proprgtbenck ragionevoli, non sono dimostrate, non avendo
ancora sviluppato una teoria per l'interazione quantistica fra radiazione e materia.

Per certi aspetti questo stato di cose Bonolto soddisfacente: sarebbe come voler ricavare
la legge di distribuzione di Maxwell per un gas perfetto partendo da un’analisi degli urti
con un sistema all’equilibrio termico, le pareti della cawdid esempio. Si gufare, mae

pit semplice, e pi logico, trattare un gas perfetto come sistema a se stante, debolmente
interagente, a cui applicare la meccanica statistica.

L'analisi di Einstein sull'interpretazione a fotoni della radiazione elettomagnetica sem-
bra andare in questa direzione; fra I'altro non prevedendo alcuna interazione diretta fotone-
fotone si dovrebbe essere esattamente nel caso ideale in cui poter applicare tutte le note
tecniche della statistica dei gas perfetti. Ci si convince subito glee la proposta presenta
delle difficola, e non sono difficadt tecniche, ma profonde. Una breve analisi di questa
questione ci permettardi evidenziare il problema che fin dall'inizio aleggia sulla questio-
ne: come si conciliano i fotoni con le equazioni di Maxwell ed in che senso assomigliano
a particelle? La risposta sapiuttosto spiazzante: i fotoni non si comportafoaome
particelle classicheencome onde classiche, ma hanno contemporaneamente entrambe le
caratteristiche!

Lidea di basee molto semplice: consideriamo un piccolo volumall'interno della
cavita. Lo stato di equilibrio, ricordiame uno stato di equilibrio statistico, il che significa
che accanto al valor medio delle grandezze osservate, possono esserci delle fluttuazioni
dal valor medio. Se I'energia distribuita in maniera continua, come nella descrizione
ondulatoria, si av un certo tipo di fluttuazioni, se I'energéacorpuscolare un altro tipo,
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quindi misurando le fluttuazioni dalla media possiamo decidere in che forma si presenta la
radiazione elettromagnetica.

Una misura delle fluttuazioni si ha considerando lo scostamento dell’energia dal suo
valor medio. SigE) I'energia media nel volumetto, la media dello scarto quadratico

(AE?) = ((E - (E))*) = (B%) - 2E)(E) + (E)* = (E?) — (E)° (1.61)

fornisce la misura cercata. Noi considereremo I'energia in un intervallo di frequenze
quindi
E=vu,év (1.62)

Vediamo innanzitutto cosa ci si deve aspettare nei due casi, quello ondulatorio e quello
corpuscolare.

Caso ondulatorio. In questo caso la radiazioealescritta da un campo elettromagnetico,
soluzione delle equazioni di Maxwell nel vuoto, €iana sovrapposizione di onde piane
corrispondenti ai modi di vibrazione della cauitll fatto di essere all’equilibrio termico,
quindi in uno stato completamente disordinato, significa che le fasi relative di tutte queste
onde sono distribuite casualmente. Pérshhanno fluttuazioni di energia? La deagit
energia elettromagnetiéaproporzionale al quadrato del campo elettricox E?, il cam-
po elettrico che va a formare I'energia nell'intervaflo € una sovrapposizione di onde a
frequenze vicine, nell'intervallér appunto: nel fare il quadrato si hanno fenomeni di bat-
timento fra onde di frequenza quasi uguale. Misurare il valor medio statistico all’equilibrio
e la stessa cosa che misurare il valor medio temporale, quindi il valor medio dell’energia
misurataé dovuto al risultato di tutti questi battimenti. La posizione di questi battimenti
nel volume considerato fluttua nel tempo, icosme il loro numero, e questo provoca una
fluttuazione dell’energia attorno alla media. Sperimentalmente se si fanno molte misure si
otterranno una serie di risultati con medig) ed una certa “incertezza” parametrizzata da
(AE?).

Ora I'energia dipende dal quadrato dell'lampiezzaj come i battimenti fra due onde,
quindi la fluttuazione(E?) — (E)? dipende dallaguarta potenzadelllampiezza, cié e
proporzionale all'energia al quadrato

(AE?) x (E)? (1.63)

C’e peb un altro fattore da considerare. Come abbiamo visto dall'analisi della legge
di Raleigh-Jeans, la radiazione elettromagnetica nell'intendallai frequenza, attorno
ad una frequenza, corrisponde ad un numero di oscillazioni della cavitZ(v)dv =
v87121? /c3dv che sono i “gradi di libe&” del sistema, cie il numero di ampiezze stati-
sticamente indipendenti che possono fluttuare. La fluttuazioaepsaporzionale a questo
numero, come anche I'energia media, chedpeella (1.63) compare al quadrato, quindi
deve essere ,
2 ((£))

(AFE*®) = CUZ(V)dy (1.64)
C' e una costante adimensionale. |l calcolo esatto, riportato nel paragrafo 1.B mostra che
C = 1, ma questo noe importante per il seguito del discorso.

Caso corpuscolare. Qui il meccanismo delle fluttuaziogi completamente diverso. Pos-
siamo prendere abbastanza piccolo in modo che la probabii avere pi di una par-
ticella nel volume sia trascurabile, in questo modo I'origine delle fluttuaZafiiara: se

si fanno molte misure alcune volte si trova una particella, altre volte non si trova niente,
raramente si trovano due particelle etc. Se ogni particella ha enfergiavalor medio
dell'energiaa fissato dahumero medidai particelle che si trovano nel volume. Per un
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gas rarefatto, o per volumi abbastanza piccoli, la distribuzione statisticagptr classica
distribuzione di Poisson e si ha
(An?) = (n) (1.65)

La probabili& di trovare una particella nel volu-
mettov €z = v/V. Chiamatap = N/V la
densit numerica, si ha = pv/N. Le proba-
bilita di trovaren particelle inv sono elencate
nella tabella a fianco, ad esempio la probadbilit
di trovare una sola particelila probabilitia di
trovare una particella moltiplicata per la proba- | 1 particella| (1)z (1 —2)N~!
bilita che le altreNV — 1 si trovino al di fuori di
v. (1) = N @il numero di modi di scegliere
una particella fra 16V a disposizione. Nel limite
N — oo siha

Probabili

0 particelle 1—z)V

2 particelle | (§)a? (1 — )V 2

3particelle| (M)z? (1 —2)V 3
(1-2)" = (1= BN e P Gt = )

e applicando la formula di Stirling, per < N
n particelle | (Y)a™ (1 — )N~ "

N\ 1 NNe N N 5
n n! (N —n)N-ne-(N-n) n!

Quindi

Da cui immediatamente

e quindi la (1.65).

(n) & il numero di fotoni inv, quindi E = hvn e

(AE?) = (hv)*(An?) = hvE (1.66)

Calcolo della fluttuazione. Le due stime precedenti possono essere confrontate con il
valore esattodella fluttuazione dell’energia, che pessere facilmente calcolato. Consi-
deriamo infatti il volumettov, la radiazione al suo intern®in equilibrio termico con la
radiazione all’esterno, nel volunié — v > v. Questo grande volume esterno funziona
come un bagno termico, pekela sua capadittermica, proporzionale al volume,infini-
tamente pi grande di quella della radiazione nel volumeUn sistema in equilibrio in un
bagno termico a temperatufaha una distribuzione statistica noéaproprio la definizione
di insieme canonico:

1

p(E)dE = Ee_E/"'Tw(E)dE Z = / e P/ y(E)dE (1.67)

w(E) e ladensi degli stati. Dalla definizione di media segue

/ (E—(E))e B/ y(E) =0

Effettuando la derivata rispettdia

0= T;Q (E — (E))Ee™ B/My(E) — %/e—E/kTw(E)dE =
1 d(E)
= WZ(<E2> —(B)?) ~ 7 2
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quindi

_ (E)
(AE?) = kT? T (1.68)

La fluttuazione in energia perco calcolabile una volta che sia nota I'energia media in
funzione della temperatura.
Consideriamo ora la distribuzione di Planck ed i suoi casi limite:

Z(v)hv vov Z(v)kT hv < kT Raleigh-Jeans
—_—
ehv /KT — 1 vov Z(v)hve "/*T  hy > kT Wien

FE = vévu, = vév

La derivata (1.68) si scrive

d(FE) hv e /KT
2 _ 2 —
kT W = kT 'U(Sl/ Z(V)hyﬁm =
1 1 (E)?
— 2 —
= vovZ(v)(hv) |:(€hu/k'T 1z + 1| = wouz ) + hv(E)
Mentre pil semplicemente, nei casi limite:
- o AE) o _ (B2
R.-J.. kT T = kT vév Z(v)k = 230 Z00)
d(E) hv ok
. 2 — 2 hv/kT _
W.: kT —T kET? vév Z(V)hu—kT2e hv(E)
Quindi
Planck: (AE?) = ﬂ + h(E) = ¢ u? 4 hru ov (1.69a)
' — wvZ(v) C\8m? Y v '
E)?
R-J:  (AEY) = B 1.
J < ) vovZ(v) (1.696)
Wien:  (AE?) = hv(E) (1.69c)

Si ha quindi che la radiazione di corpo nero nel limite di basse frequenze si comporta
come un’onda, nel limite di alte frequenze, viceversa, come un insieme di particelle, ma
genericamente hantrambe le caratteristiche.

Il risultato (1.69a) assolutamente incomprensibile nell’'ambito della fisica classica:

e Le equazioni di Maxwell sonbineari, non ci sono interazioni delle onde elettroma-
gnetiche nel vuoto, cionella cavid. | fenomeni di battimento esprimono appunto la
linearita delle equazioni, quindi se le equazioni di Maxwell descrivono la radiazione,
deve essereerificata la (1.69b).

e Se siinterpreta la luce come un insieme di particelle classiche non interatperi,
valerela (1.69c): abbiamo visto chesemplicemente una conseguenza del “contare”
le particelle, ci@ della distribuzione di Poisson.

La distribuzione di Planck, chequella verificata sperimentalmente, impone invece che la
luce si comportanello stesso tempeome ondae| come particella. Insistiamo sulla con-
giunzionee, none vero che la luce si compodicome onda come particella, si comporta
in entrambi i modi contemporaneameriesolo nei casi limite di basse frequenze, rispetto
akT, o di alte frequenze che si recupera il limite classico di onda o particella.

Come vedremo la soluzione che dda meccanica quantistiéapiuttosto sottile:

¢ | fotoni, trattati come particelle quantistiche, si comportano come particelle libere
nella cavia, ma nonostante @ila costruzione degli stati quantistici di molti fotoni
implica delle correlazioni, non classiche, che provocano una deviazione dalla stati-
stica di Poisson. Ripetiamo n@nguestione di interazione fra fotoeijl concetto di
stato diV particelle che cambia.
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e Sesiusail campo elettromagnetico direttamente si trova che questoumamormale
vettore numerico ma un operatore; in termini di sviluppo in onde piane

E(x) =) (Exe*® + Eje "]
k
i coefficienti dello sviluppo di FouriertE,,, non sono humeri ma operatori che agi-
scono su uno spazio di Hilbert. Le regole di commutazione di questi operatori danno
luogo ad un termine aggiuntivo nel calcolo delle fluttuazioni che origina il termine
lineare in(E) nell'espressione diAE?).

Fluttuazioni del numero di fotoni. Chiamiamony, il numero di fotoni per uné di vo-
lume che hanno impulso in direziokee frequenzav. A causa delle fluttuazioni € una
variabile stocastica. L'energia per unii volume e per undt di frequenza si scrive

k
€= E hvng 27w:u
k

le variabili corrispondenti a impulsi diversi sono statisticamente indipenden#, resto
che la varianza di una somma di quantitatisticamente indipenderila somma delle
varianze. Quindi si ha

(1.70)

(Ae?) = "(hw)*(An}) (1.71)

k

Considerando un piccolo intervallo di frequenza e sommando sulle direzioni (si assume
che la distribuzione it sia isotropa) sappiamo che i modi indipendenti sono

2
Z,dv = 87TV—3dV
C
quindi abbiamo
(e) = Zydv(ng) (Ae?) = Z,dv(An})
Confrontando con la (1.69a) ricaviamo l'importante relazione

(An) = (k) + (nk)? (1.72)

che mostra chiaramente la divegsttalla statistica di Poisson.

1.7 Impulso del fotone

La radiazione elettromagnetica trasporta energia ed impHsmto che ad una denaitli
energiau € associata una dersiti impulsou/c, e quindi ad una energi& un impulso
E/c. Se crediamo all'ipotesi della quantizzazione della radiazione dobbiamo dedurre che
all’energiahv, associata ad un quanto di luce, deve corrispondere un impllse hv/c.
Usando larelazionei?c? = E?/c? — p? si ha che i fotoni devono essere particelle a massa
nulla. Come si fa a “vedere” questo impulso? Normalmente per misurare I'impulso di un
oggetto si trasferisce questo impulso ad un altro oggetto per fadile misurare la velo-
cita, che diventa allora lo “strumento di misura” dell'impulso. La cosaggmplice quindi
e trasferire I'impulso della luce ad una particella e misurare I'impulso di quest'ultima. La
radiazione trasferisce impulso anche nella teoria classica di Maxwell, in cosa dovrebbe
consistere allora I'evidenza sperimentale dell'impulso di un fotone? Occorre mettere in
luce la “granularid” del trasferimento di impulso, analogamente a quanto fatto per I'ener-
gia con l'effetto fotoelettrico. La prima idea potrebbe essere, appunto, quella di sfruttare
I'effetto fotoelettico, ma l'idea no® molto brillante. Se scriviamo I'effetto fotoelettrico
come una reazione:

Yy+A— A" +e”



1.7. IMPULSO DEL FOTONE 25

in cui A* e I'atomo ionizzatoA I'atomo neutro, capiamo immediatamente che una parte
rilevante dell'impulscé assorbita dall’atomo, quindi se non misuriamo questa parte, non
possiamo misurare I'impulso del fotone.

La cosaé piu semplice da vedere nel centro di massa. In questo sistema il fotone ha un’energia
leggermente pi piccola dovuta all'effetto Doppler;’ ~ v(1—V/c) e la velociaV & determinata da
hv'/c = MV, doveM e lamassa dell'atomd; ~ hv/Mec. In seguito alla ionizzazione I'elettrone
e 'atomo si muovo in direzioni opposte e la conservazione dell'impulso imgdh®”’ = meve,
dove M* ~ M e la massa dell'atomo ionizzato. L'impulso dell'atomo quieduguale a quello
dell’elettrone. Passando nel sistema di riferimento del laboratorio si ha una differenziazione dei due
impulsi, dipendente dall'angolo di uscita dell’elettrone, ma restano dello stesso ordine. Ekrso
discorso sull'energia. L'energia cinetica dello ione

2

%MVQ = %MWEZ = Fe < Ee

Anche passando al sistema del laboratorio questa energia cambia di un termine dell6iding, ~
MV?2. In tutti i casi il contributo dell’energia (cinetica) dello ione al procesgeascurabile, il con-
tributo all'impulso no. Il caso limite ovviamentzquello di un atomo di massa infinita che assorbe
il fotone ed emette un elettrone: sidgtrasformare I'energia del fotone in energia dell’elettrone ma
I'impulso del fotone viene perso completamengeun processo cinematicamente simile all'urto di
una palla di gomma contro un muro.

Bisogna allora considerare un processo in cui I'atomo fa da spettatore. Qussto-
plice da immaginare: il fotone, o la radiazione elettromagnetica in termini classiti, pu
diffondere sull’elettrone invece di venire assorbito dall'atomo, quindi la reaZated tipo
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Classicamente il processoil seguente. Possiamo schematizzare I'elettrone come legato
elasticamente allo ione. Se la frequenza della luce incidegtande rispetto alla frequenza
caratteristica del sistema, I'elettrone entra in oscillazione con la frequenza del campo elet-
trico dell'onda incidente, ci®si comporta come un elettrone libero. Se oscilla a frequenza
v, riemette luce alla stessa frequenzail cosiddettoThomson scatteringdiffusione di
Thomson). Consideriamo allora un atomo con frequenze di oscillazione di tipo ottico, o
inferiori, cioe che diffonde la luce tipicamente a lunghezze d’'onda di qualche migliaio di
A. Se inviamo dei raggi X sullatomo dobbiamo aspettarci dei raggi X difflisi stessa
frequenzalella luce incidente.

In termini di fotoni invece il fenomené completamente diverso: si ha un urto, elastico,
fra fotone ed elettrone, I'energia, e quindi la frequenza, della luce diffusa dipende dall’urto.
Il processoe stato analizzato per la prima volta da Compton e Debye[Comp23, Deb23]
ed il primo esperimento effettuato da Compton. Possiamo supporre che I'elettrone prima
dell'urto sia fermo, chiamandp, E, I'impulso e I'energia dell’elettrone dopo I'urtd;, &k’
gli impulsi del fotone prima e dopo l'urto, la conservazione dell’energia e dellimpulso
impongono:

hv +mc®* = E + hv/ = A (p? +m?c?) = (hv +mc? — h/')?
h? 2

— ' 2 _ ne _ 2 .

k=p+k = p'=(k-kK) 702(1/ + V7 —2v1 cos )

dove p & I'angolo di diffusione del fotone, vedi figura. Sostituendo il valorgtinella
prima equazione si ricava:

h 1 1 h
Ww/(l—cosgo) =v—-v = NN %(1—cosga) (2.73)

A = c¢/v e lalunghezza d’'onda. La relazione (1.73) predice un risultato completamente di-
verso da quello classico: nella diffusione si ha cambiamento di energia. Sperimentalmente
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il segnale2 molto chiaro: qualunque sia la lunghezza d'onda della luce incidente, ad angolo
fisso si deve osservare uno spostamento in lunghezza d’onda. Quindigbisagno di
selezionare in modo particolare il fascio di raggi X: se ci si pone, ad esempio, ad angolo
retto rispetto al fascio incidente si deve osservare, per qualunque lunghezza d’onda, uno
spostamneto di/mc per lo spettro in funzione di/\. L'esperimento, ideato e realizzato

da Compton[Comp23] verifica perfettamente la previsione (1.73), vedi fig.1.2.

----/1?, =07304

Figura 1.2: Risultati schematici
Figura 1.1: Cinematica dell'effetto Compton.  dell’'esperimento di Compton.

Rapidamente I'esperimentostato raffinato, da Wilson e Bothe. Se una particella ca-
rica attraversa una camera piena di gas soprassatura di vapor d’acqua (camera a nebbia),
le molecole di gas vengono ionizzate e funzionano da nuclei di condensazione per il va-
pore. In questo mode possibile visualizzare la traiettoria (traccia) della particella. Dalla
lunghezza della traccia possibile risalire all’energia della particella. In questo médo
possibile visualizzare direttamente gli elettroni di rinculo nella diffusione.

Si pw fare anche di meglio: talvolta, anche se raramente, il fotone diffussphire
una seconda deviazione. Unendo i punti in cui iniziano le traccie dei due elettroni diffusi
si pw determinare I'angolg della figura. Misurando I'angolé di diffusione del primo
elettrone e la sua energia possiamo predire I'anga@aonfrontarlo con il valore misurato,
avendo cokuna verifica diretta delle leggi di conservazione (1.73), che dimostrano oltre
ogni ragionevole dubbio che il fotone esiste e si comporta come una particella elementare
a tutti gli effetti.

| dubbi sull'esistenza del fotone, prima dell’esperimento di Compton, erano molto dif-
fusi: none esagerato dire che in pratica solo Einstein e pochi altri fisici erano convinti
della sua esistenza. Il motivo, come abbiamblte sottolineato, era la naturale ritrosia
a dichiarare che le equazioni di Maxwell nel vuoto non erano una buona descrizione della
real&s microscopica.

Nel parlare dell'impulso del fotone abbiamo sovvertito la cronologia degli eventi. Nei
lavori di Einstein dal 1906 al 1917 la neceadifell'impulso del fotone, e quindi la sua esi-
stenza come particella, e non semplicemente come modo fenomenologico di considerare
una qualche pacchetto discretizzato di energienessa i volte in evidenza. Il metodo
usatoe ancora una volta lo studio delle fluttuazioni, qui le fluttuazioni di impulso. Pre-
sentiamo brevemente le argomentazioni, sia per il loro indubbio valore metodologico sia
percte in questa analisi emerge di nuovo una caratteristica che si era incontrata nello stu-
dio dei coefficienti di emissione e assorbimento. In quel contesto non si facevano ipotesi
sull'istante di emissione dei fotoni nell’emissione spontanea, rinunciando di fatto ad una
descrizione deterministica del processo (anche se a priori, per quanto abbiamo visto, po-
trebbe esserci una dinamica deterministica, incognita, dietro al processo di emissione). Se
ora aggiungiamo un impulso definito al fotone, dobbiamo assegnare una direaiatialit
radiazione emessa: questo chiaramertecontrasto con la visione intuitiva di un’ondaipi
0 meno sferica emessa per radiazione da un oggetto miscroscopico, ma la cosa veramente
rilevantee che, analogamente a quanto succedeva per il tempo di emissione, qui & trover
che per ladirezionedi emissione del fotone si possono fare solo affermazioni di tipo sta-
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tistico. Questo, unito a quanto vedremo per I'emissione di radiazione nella teoria di Bohr
degli spettri atomicig I'inizio della rinuncia, forzata, della descrizione deterministica, nel
senso classico, dei fenomeni fisici.

1.8 Impulso e sue fluttuazioni.

Consideriamo un corpo qualunque, una molecola ad esempio, in equilibrio termico con la
radiazione, all'interno di una cawita temperaturd’. Sappiamo che all’'equilibrio termo-
dinamico la sua energia cinetica media deve es%leifé D’altronde se ad un certo istante
il corpo ha velocia v, questo urta in continuazione con la radiazione elettromagnetica. La
radiazione che viaggia in direzione opposta al carpasta, nel sistema di riferimento del
corpo, con una frequenza maggiore, per effetto Doppler; viceversa quella che procede nella
stessa direzione ha frequenza minore. Sappiamo che la radiazione produce una pressione di
radiazione, quindi la pressione sui due “lati” del copdiversa, questo provoca una sorta
di forza di attrito, che dovrebbe portare il corpo in quiete: come fa a mantenere un’energia
cinetica%kT? Larisposta che esistono delle fluttuazioni nella radiazione e queste devono
essere tali da compensare, statisticamente, la forza di attriéah@ivogliamo verificare
che questa descriziorein accordo con l'interpretazione della radiazione come composta
da fotoni.

Consideriamo per sempliéiil moto lungo un unico asse, I'asseliciamo. Ad un certo
istante il corpo abbia velogity. Dopo un piccolo tempe I'impulso &

mv — Pur + Q (1.74)

—Pv indica la forza di attritoQ il contributo casuale delle fluttuazioni di impulso. In
media naturalmenté)) = 0. All'equilibrio termico I'energia cinetica media non deve
cambiare quindi

1 1
2 2 27,2 2 2
sm(v°) = %«mU—PUT‘*‘Q) ) = %(m (v?) —2mP(*)T +(Q%))
Avendo trascurato gli ordini superiori ine usato il fatto ché@) = 0. Per il moto lungo
'assez, all'equilibrio termico deve essere

1 1
§m<’U2> = ikT

Abbiamo quindi il vincolo[Ein09]
Q% =2mPw*)r = (Q*) =2kTPr (1.75)

Per esemplificare il contenuto di questa relazione consideriamo uno specchio, di superficie
f, che si muove con veloéity nel verso positivo dell’asse. Lo specchio sia trasparente a
tutte le radiazioni eccetto quelle comprese in un interv@il@ttorno alla frequenza; in

guesto modo possiamo selezionare la darspettrale della radiazione.

Previsione. Essendd)? piccolo, possiamo valutarlo per uno specchio fermo, trascuriamo
cos termini di ordine@Q?v/c. Se la fluttuazione di impulse dovuta ad urti elementari si
puod scrivere:

Q=Q1+...Qn

Dove Q; ¢ il trasferimento di impulso nell'urté-esimo eN ¢& il numero medio di urti
nell'intervallo 7. Per urti statisticamente indipendenti

(QiQ;) =0 peri # j
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quindi
(@%) = N(@1) (1.76)

In pratica si ha un “random walk” nello spazio degli impulsi. Se I'impulso dei fotoni
legato all’energia dalla relazione= E/c possiamo scrivere

(Q%) ~ C%N@E?) (1.77)
La radiazione che puinteragire con lo specchio in questo intervallguella compresa in
un volume2fcr, met di questa urta contro lo specchio, I'altra metdiretta in direzione
opposta.N quindi coincide col numero medio di fotoni in un volurfier. N(AE?) & la
fluttuazione in energia in questo volume, data, secondo la legge di Planck, dalla relazione
(1.69a). Dobbiamo quindi avere

3

c
82

3
<Q2> 1 <huuy + u?,) ferov = 5Vf7% (huu,, + Cng) (1.78)

8y

Un modo pu corretto di ottenere il risultato (1.78)il seguente. In una riflessione un fotone con
angolo di incidenza trasferisce un impulsBhv/c cos 6 La variazione totale di impulso, chiamando
ng, il numero di fotoni corrispondenti alla direziokeper unig di volume ¢

Q= Z Z 2— cos Ong,

vol

la sommae fatta sul volume in cui sono presenti i fotoni che vengono assorbiti dallo specchio. La
media diQ) & zero per isotropiaj varia su tutto I'angolo solido peréhi fotoni possono assorhbiti

da entrambi i lati dello specchio. Consideriamo statisticamente indipendenti sia le variabid i
singoli urti, quindi la varianza d), somma di variabili staticamente indipendéxti

224

vol

cos® 0(Ang)

Il volume interessaté, per ognd, f| cos @|cr La media sulle direzionia

0, B
/Ecos 0| cosb| =

quindi

2 h21/2 2
Q%) =fer -y =5 (Anj)
k
Utilizzando I'espressione (1.71) per la variazione di denditenergia si ha

@ = fT%(AsQ} (1.79)

che coincide con la (1.78).

Calcolo della forza di attrito.  La forza di attritoé data dalla variazione di impulso nel-
l'unita di tempo, e@ un invariante per trasformazioni di Galileo (lo specchio si muove con
velociiv < ¢) quindi si pw calcolare nel sistema di riferimento in cui lo specchia
riposo. Questo fra l'altro permette di esprimere in modo semplice la selezione sulle fre-
guenze della radiazione: lo specchio riflette la luce a frequemzedsistema di riferimento

a riposq la stessa luce ha frequenza diversa nel sistema di riferimento in cui la eavit
ferma (laboratorio).

9Vedi I'equazione (1.70) e seguenti per un procedimento analogo.
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Nel sistema dello specchio la radiazione di corpo nero @i isotropa, ed ha una
diversa distribuzione in frequenza, che fra poco scriveremo, in questo modo la pressione
di radiazione ai due lati dello specchéadiversa, questo provoca una forza netta contraria
al moto. Siap(v,0) la densik spettrale nel sistema dello specchio. Sappiamo che per
riflessione di un raggio proveniente da un angolo safidwi € un trasferimento di impulso
lungo I'asset, sullo specchio:

POV A et cos ] (1.80)
c 47
La (1.80)¢ il modo usuale in cui viene calcolata la pressione di radiazione, ipfaté la
densia di impulso per un'onda elettromagnetica, vedi eq. (1.340b),(1.341). Integrando su
tutte le direzioni, a destra e a sinistra dello specchio, e facendo la differenza otterremo la
forza risultante.

Si tratta quindi di scriverg. Nel sistema del laboratorio la deris&pettrale isotropa,
ede data day, (1), indicheremo con I'indic® le quantit che si riferiscono al laboratorio.
p(v,0)dvd() € la densi di energia, quindi per cambiamento del sistema di riferimento
deve trasformarsi comE?, dove E & il campo elettrico. Per trasformazionidi Galileo (o
per trasformazioni di Lorentz a bassa velait

E=Eg-HoA> = B =FE}—2B(HoAY)=F}—2EoNHo)-

per un'onda|E,| = |Hy|, la direzione diEy, A H, & la direzione di propagazione
dell'onda, quindi se chiamiamil'angolo di incidenza sullo specchio:
E?>~E3(1 - 2% cos ) (1.81)
Deve quindi esseté
v
(v, 0)dvdQ = u, (o) dvodS (1 — 2= cos 90)) (1.82)

La legge dello spostamento Doppler e la legge di aberrazione della luce forniscono la
relazione fra le frequenze e gli angoli nei due riferimenti. Al primo ordine/in

V=1 (1 — %COS 90) Vg =V (1 + %cos 0) (1.83a)

cosf = cosfy — Y + 2 cos? O cosfy = cos b + v_Y cos? 6 (1.83b)
c ¢ c ¢

Un modo semplice per ricavare le (1.88)i applicare una trasformazione di Lorentz, con piccola
velocita, ad una particella di massa zero, dr= hv, p = hv/c

E' =(E - Ecpm) = V=vl- 2 cos 0)
C C
/ / v
Py =pe——-——) = v cosb :V(COSQ—Z)
Dalla prima equazione/v" ~ (1 4 ¥ cos 6) e sostituendo nella seconda
cos 6’ = (cosf — E)(1 + EcosH) ~cosf — 2 + 2 cos® 0
& C C C

Non stiamo assumendo l'esistenza del fotone, facendo un ragionamento circolare, questa dimostra-
zionee semplicemente un modo veloce di ricavare i risultati (1.83), sfruttando il fatto che le paopriet

di trasformazione di un fotone devono essere uguali a quelli di un raggio luminoso. Vediamo infatti
che la costante di Planck non gioca alcun ruolo nella derivazione, i #&@mo sfruttando solo il

19Diamo per scontata la simmetria assiale gciindipendenza per rotazioni attorno all’assedirezione di
moto dello specchio.



30 CAPITOLO 1. LA NASCITA DELLA MECCANICA QUANTISTICA.

fatto che il numero d’'ond&, |k| = 27 /), e la frequenza formano un quadrivettore. Il lettor@ pu
facilmente dimostrare la cosa o consultare in merito un qualunque testo di elettromagnetismo.

Dalle (1.83) si ha al primo ordine /¢, e ricordando chéf2 = dyd cos 6:
vy %
dv dQ
All'ordine piu basso in/c possiamo scriveré al posto did, nella (1.82) ed ottenere

:(1+%c059) :(1—2%0059)

p(r,0) =u, (1)1 — 3% cos f)

Esprimenda, in funzione div con la (1.83a) e sviluppando in serie di Taylor:

v ou, v v Ou,
p(v,0) = [ul,(y) + p 5 } <1_3E cosf) ~ ul,—l—g cos 6 (V 5 ) (1.84)

che esprime I'anisotropia della radiazione. Integrando la (1.80) in un semisf)azin/2
si ha I'impulso trasferito da un lato (quello davanti allo specchio):

dQ v
I, = / 2f dt cos® 0— dv {uy + v cos (uau — 3uy>]
< 4 c Oov

/2 1 . 1
/—cos G—E/ cos20sinfdf = = /—cos‘3 = -
4 J 6 < 4 8

I, =dévfdt 1ul, + 31 V% — 3u,
3 ov

Usando

si ha

c4

Siriconosce il fattore:/3 della pressione di radiazione. Analogamente, integrando sull’al-
tro lato, quindi petr/2 < 6 < = si hail traferimento di impulso per pressione di radiazione
dal lato posteriore lo specchio:

1 v 1 Ou,
II_ = évfdt {Suy — < ED 3u,,>}

Per la forza ed il coefficiente di attrito si ha quindi

R FEE | B v 1 Ou, B 1 Ou,
F = T 1) f* = ( o - 3111,) P = 6Vf§c <3u,, Vay) (185)

Per la distribuzione di Planck

3 Ou, _ 8mh 5 v3 o 3
W Ve ) T Ta Pt — 1 Vg AT

87rh h 3ehv/kT hv . u? 1 I, + Au?
- 7 /T q4N\9 T v = T rvu,
"kT (ehv/kT —02 kT | T R | T kT | T 8m?
e quindi[Ein09]
11 c3u? ]
= —— y+—= 1.
5Vf2 T hyu +—= o] (1.86)
Dalla relazione (1.75)Q?) = 2kT Pt ricawamo pera
1T 3..2 7
Q%) = dufr= |hvu, + — (1.87)
c| 82 |

che coincide con la (1.78), confermando iclasinterpretazione corpuscolare della radia-
zione.
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1.8.1 L'mpulso nei processi di emissione e assorbimento.

Una descrizione analoga a quella del paragrafo precedentetntefpagliata ed interes-
sante, poO essere fatta se si considera un processo microscopico, come fatto a proposito
dell'energia nel paragrafo 1.5. Si tratta di studiare il processo di trasferimento dell'impul-
so dalla radiazione ad una molecola. Limiteremo la nostra attenzione a soli due &tati

che corrispondono all’emissione e assorbimento di luce a frequenza

Notiamo innanzitutto che nel processo di assorbimento, all'enéigiaE; = hv deve
necessariamente corrispondere un trasferimento di impuisqg nella direzione del fascio
di luce incidente. Visto il ruolo simmetrico dei due stati per quanto riguarda la radiazione
esternag ragionevole assumere che nel processo inverso di emissione indettd, ven-
ga trasferito lo stesso impulso alla radiazione. In altre pdadigce emessa per emissione
indotta ha la stessa energia e lo stesso impulso di quella incid€ntestoe uno dei punti
cruciali: 'emissionee direzionale Se I'emissione e I'assorbimento sono discretizzati, co-
me nel caso dei fotoni, questo significa che in ogni singolo processo si ha un’emissione in
una direzione ben definita, quest@ompatibile con I'ipotesi dei fotoni m&chiaramente
contrario a quanto aspettato in termini di una teoria classica dell'irragiamento.

Per quanto riguarda I'emissione spontanea, questa non dipende dalla radiazione esterna,
quindi, nell'ipotesi di completa isotropia fatta nel paragrafo 1.5, dobbiamo assumere che la
direzione della luce in questo caso abbia, in media, simmetria sferica. @Questgpatibile
con I'emissione direzionale se si assume che un fotone possa essere emesso in una direzione
particolare in ogni decadimento, ma la direzione sia casuale.

Cio che verificheremo qui di seguito[Ein1# che la distribuzione di Planékcompa-
tibile con queste ipotesi, viceversa qualora una di queste ipotesi venisse a cadere occorre-
rebbe fare delle ipotesi molto “ad hoc” per poter ottenere la distribuzione di Planck come
distribuzione di equilibrio.

La fisicaé semplice e@ analoga a quella analizzata per I'urto con lo specchio. Conside-
riamo una molecola in equilibrio termico con la radizione. &la velocit della molecola
ad un certo istante. Come nel caso dello specchio considereremo solo il moto lungo I'asse
2. Questa molecola guassorbire o emettere luce solo a frequenzaa luce emessa dalla
molecola ha frequenza nel suo centro di massa. Quindi un fotone emesso in avanti, ad
esempio, ha, nel laboratorio, frequen#a + v/c) per effetto Doppler. Viceversa un foto-
ne assorbito, in senso contrario al moto, ha nel laboratorio frequénza v/c), in modo
che nel centro di massa abbia frequenzaAssociando un impulsfay/c ad ogni fotone,
se vede che & uno sbilanciamento di impuls@hv/c, che tende a frenare la molecola.

Lo stesso ragionamento pessere fatto per le altre direzioni. Si crea quindi una forza di
attrito. Nel sistema di riferimento del centro di massa la distribuzione della radiagione
anisotropa, 'assorbimento e I'emissione quindi hanno una anisotropia ed un corrisponden-
te trasferimento di impulso, odouna forza di attrito. Affinch la molecola non si fermi,

cosa contraria all’equilibrio termico, questa forza d’attrito deve venire compensata dalle
fluttuazioni della radiazione. Nella stessa notazione del paragrafo precedente possiamo
scrivere, per I'impulso dopo un piccolo tempo

mv — Pur + Q (1.88)

P e il coefficiente di attrito. All'equilibrio termico deve esseitew2 = %kT e quindi,
analogamente alla (1.75):

(@) _oprp (1.89)

-
Calcoliamo ora separatamente il coefficiente di attrito e la fluttuazione dell'impulso.

Calcolo di P. Consideriamo il sistema di riferimento di quiete per la molecola. L'assor-
bimento di un quanto di energia, che d’'ora in poi chiameremo fotone, con ererga
angolo di incidenza, rispetto all'asser, trasferisce un impulsby/c cos 6 alla molecola.
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Per assorbire il fotone la molecola deve trovarsi nello stato di energia mihdrenpulso
trasferito al secondo, per assorbimento, dalla radiazone

trovare la

hv ( probabilitx di
— cosf x
molecola ind

probabilita di
¢ transizione al se).
Nel sistema di riferimento considerato la radiazione di corpo nero ha unaalepsitra-
le p(v,8), quindi secondo la definizione di coefficiente di assorbimento, la prokadilit
transizione per angolo solida

dQ)
prob. trans./sec= By, p(v,0) .
7
Ogni molecola, all’equilibrio termico ha una probaliilii trovarsi nei due stati, d, data
dalla distribuzione di Boltzmann:

1 1
Pu=ggue” ™M Py= ggae M5 = guem T 4 ggem PR (1.90)

Quindi I'impulso assorbito dalla molecola al secoridantegrando sull’angolo solido:

" hv gae Fa/kT 4Q
I, = | —cosb By p(v,0) =———— — 1.91
o= [ st B plo0) M (191)
In emissione la molecoleede impuls@lla radiazione. Per l'ipotesi fatta di isotropia I'e-
missione spontanea@on contribuisce in media questo processo, quindi, analogamente
alla (1.91) I'impulso perso dalla molecadedovuto solo all’emissione indotta. Nell'ipotesi
fatta anche questa emissioaelirezionale, quindi in presenza di radiazione ad angplo

l'impulso persce hr/ccos 6. Si ha allora

; probabilita di

hv probabilia di
— cosf x .. trovare la
c transizione al se .
molecola inu
cioe
e~ Eu/ET 4Q)

h .
- / M o0 By a p(,0) 2 (1.92)
C

S 4
La variazione di impulso al secon@da forza, quindi:

—Eq/kT —FE,/kT h dQ
—I, -1 = [ |9 _ Qe T w e
F=I, —TI_ /{ 5 By 5 Buﬂd} p cosBp(v,0) y

Usando le relazioni di equilibrio (1.569,, B, .4 = gaB4_, la forza si pd scrivere nella
forma

—Ea/kT h dQ
_ 9d€ _—hu/kt| W ase
F= 5 By_ [1 e ] . cos Op(v,0) ym (1.93)
Abbiamo g& calcolato la distribuzione spettralév, 6), (1.84):
v Ou,
p(v,0) =u, + — cosf (V 5 3u,,> (1.94)
C 14

Effettuando I'integrale angolare

o—Ea/kT
S

F:_gd

_ e Vv L Ouy
B [1 e }c - {uy o (1.95)
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quindi il coefficiente di attritax dato da

o—Ea/kT
S

P:gd

hv 1 Ou
_ —hv/kt| "7 - 4
By [1 e ] 2 [uy 3V 8u] (1.96)

Per la distribuzione di Planck
1 Ou, 8th V3 1 9 V3
u, — -V =— | V=
3 ov 3 |e/FT —1 3 Qv elw/kT — 1
8th1l h  v3ew/kT
= —_—)— -
3 3 kT (ehu/lcT _ 1)2

e perP segue

p_ gdefEd'/kTB [1 _ eth/kt] hv 8th1hy vie/MT
N S d—u 2 3 3T (ehv/FT —1)2
11 gae Fa/kT AN
=37 g B ) w (1.97)

Calcolo di (Q?). Come nel caso dello specchio I'impulso totale trasferito &i gtrivere
nella forma

Q=Q1+...Qn

essendo gli eventi casuali e statisticamente indipendenti si ha un random walk nello spazio
degli impulsi e quindi

(@% = N(QT) (1.98)
In ogni processo I'impulso scambiakdiv/c cos 6, quindi
2 (M o2y — L (M)
Q7)) = ( - (cos” 0) = 5\ (1.99)

I numero di evente il numero di processi al secondo per il tempareso in considerazione
N = N,.-7. All'equilibrio si hanno tante emissioni quanti assorbimenti, quindi il numero
di eventi al secondé il doppio del numero si assorbimenti:

N — oy ( probabiliadi prt‘:g\"j‘:r"e'ﬁ‘ad' _ gae AT
sec ™ transizione al seq. . - S d—up
molecola ind

In questa approssimazione possiamo consideracene la distribuzione di equilibrio, cio
quella di corpo nero, quindi

2 (hw\? gae~ Fa/kT
2 — JR— e —
Q%) = 3 ( ; ) 5 By_yu, T (1.100)

Notiamo che nel calcolo di9?) hanno contribuito anche le emissioni spontanésumero

degli assorbimeng uguale al numero delle emissioni indqgtté il numero delle emissioni
spontanee. Se si fossero trascurate queste ultime non si sarebbe ottenuto il fattore costante
2 nella (1.100), ma un termine complicato, dipendente dalla temperatura e dalla frequenza.

Risultato Dalla (1.100) e dalla (1.97) si vede subito che la relazione di equilibrio (1.89),
(Q?) = 2kT Pr, & soddisfatta per la radiazione di Planck. Dalla derivazione dovrebbe
essere chiaro che se qualche ipotesi venisse meno la speranza dell’accordo sarebbe molto
tenue. Ad esempio se I'emissione indotta non avvenise nella direzione della radiazione
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incidente, il coefficiente relativo nei due termini della forza sarebbe diverso, non si potreb-
be cancellare il quadrato a denominatore nella espressiofig di 1/3vd,u,) € non si
potrebbe allora trovare accordo con la (1.100), eliimeare nella densitspettrale. Della
necessi della emissione spontaneagsjia detto. Anche questa deve essere direzionale.

Se I'emissione spontanea fosse a simmetria sferica, come nel caso classico, non potrebbe
contribuire alle fluttuazioni: si deve invece avere una isotropgglig che permette quindi

delle fluttuazioni.

E sotto certi aspetti sorprendente che anche dopo questa dimostrazione da parte di Ein-
stein, nel 1917, l'idea del fotone non fosse ancora accettata dalla gran maggioranza dei
fisici. Pur di non accettare questa spiegazione anche proposta una conservazione so-
lo statistica dell’energia e dell'impulso[BKS24] nei processi radiativi. Anche quest'ultima
opzione, alquanto stravagante nell’ottica odietneaduta solo con il progredire degli espe-
rimenti sull'effetto Compton: s potuto verificare evento per evento la conservazione del-
I'energia e dell'impulso misurando contemporaneamente I'impulso dell’elettrone diffuso e
guello del fotone in un singolo processo.

L'ultimo punto da chiarired la costruzione di una statistica per questo “gas di fotoni”.

La relazione di Einstein sulla fluttuazione di energia, soprattutto nella forma (1.72), indica
che i fotoni, anche se particelle libere, non soddisfano ad una statistica di tipo Poissoniano,
e questa abbastanza misterioso nella fisica classica. La soluzione definitvéreeata

da Bose ed Einstein nel 1924[Bos24, Ein24a]. Il problema parallelo per gli elettr@ni sar
risolto da Fermi[Fer26]. La spiegazione di queste statistiche nell’lambito della meccanica
guantistice& dovuta a Dirac[Dir26b].

1.9 |l problema dei calori specifici.

La seconda “area di crisi” menzionata nel paragrafo 1.1.1 riguardava i calori specifici.
Il problema, si po ben dire,& coevo alla stessa meccanica statistica ed in sostatea

riproposizione del principio di equipartizione. Consideriamo ad esempio un gas perfetto
monoatomico, nella schematizzazione di un insieme di oggetti puntiformi. L'Hamiltoniana

dei singoli atomi si scrive
2

g P
2m

Questaé una forma quadratica in 3 variabili, che corrispondono a 3 gradi didibqtidi
I'energia media per ator‘rﬁa%kT. In un gas perfetto le molecole sono statisticamenete in-
dipendenti e debolmente interagenti, quindi I'energia interna di una mole di gas, contenente
N4 atomi (N4 € il numero di Avogadrog

U= NAng = gRT R = Nak = Costante dei gas

Questo corrisponde ad un calore specifico per mole, a volume costante, di

oUu 3
Cv = (w)v = 3R

Si pw fare un modello analogo per una molecola poliatomica, schematizzata come un
corpo rigido: vi sono 3 gradi di libesttraslazionali e 3 rotazionali, e quesi® an calore
specifico molare”y, = 3R. Schematizzando infine una molecola lineare, in particolare
biatomica, come un corpo rigido con due soli momenti d'inerzia, e quindi solo due termini
di energia rotazionale, si ha, per queste molecole, un calore specifico mol@ke ¢

5/2R. Il problemaée che appena si introduce un grado di libertterno, sotto forma ad
esempio di oscillazione degli atomi attorno alla posizione di equilibrio, si ha un termine
aggiuntivo nell’Hamiltoniana per descrivere questo moto di oscilazione:

m

1
-2 2
—k
2 1 +2 ¢
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Altri due gradi di liber&: quindi un termine aggiuntivo dR7" nell’energia molare e un
termine aggiuntivo dR nel calore specifico. La cosachiaramente assurda, basta pensare

ad una molecola composta da molti atomi per avere un calore specifico enorme. A questo
logicamente bisognerebbe aggiungere quello dovuto ai gradi didilbgdrni degli stessi

atomi, peggiorando la situazione. Nella secondaandetl'ottocento la situazione era al-
guanto ambigua, da una parte non si conoscevano i costituenti elementari delle molecole,
e la stessa ipotesi atomica era messa in discussione, dall’altra per diversi gas, ma non per
tutti, i valori dei calori specifici sperimentali riproducevano i risultati suddetti. Boltzmann
stesso affermava che il calcolo dei calori specifici era uno dei punti fondamentali da capi-
re nella meccanica statistica. Notiamo, come fatto acutamente osservare da Sommerfeld
molti anni dopo, che la situaziorepiuttosto peculiare: se veramente si crede che un certo
numero, qui il rapport@y /R sia un intero, o un multiplo di/2 in generale, no® pos-

sibile accontentarsi di un accordo men che perfetto, se il risultato sperimentale per un gas
biatomico foss&'y, /R = 2.6+0.02 non si avrebbe un discreto accordo col valore previsto,
5/2 = 2.5, si avrebbe un disaccordo completo! Un numegoun intero o non &, non ci

sono interi “approssimativamente giusti”.

Una situazione molto simile si presenta nei solidia@el 1819 Doulong e Petit ave-
vano osservato sperimentalmente che per i solidi valeva la seguente “regola”: il calore
specifico molare approssimativamen8®t, ede costante con la temperatura. Questo ri-
sultato ha una spiegazione che sembra molto naturale: in un grammoatomo Wgono
atomi, ogni atome libero di oscillare attorno alla posizione di equilibrio, in questo modo
ad ogni atomo competono 3 modi di oscillazione (uno per direzione) ed una corrisponden-
te energia media termicdT. Per un sistema dV, atomi questo d un calore specifico
C = 3kNs = 3R ~ 5.96 cal/K. Notiamo in particolare che in questo contestassolu-
tamente impossibile avere un calore specifico minor&/dir, corispondente ai gradi di
liberta traslazionali.

La situazione sperimetale per molti materelkonforme, a temperatura ambiente, alla
legge di Doulong e Petit, ma per diversi materiali si trovano fortissime deviazioni, ed in
particolare un calore specifico dipendente dalla temperatura. |l protéeragicolarmente
acuto per materiali come il diamante, per cui, ad esen@ie; 0.76 cal/K a temperature
di circa —50°C. Un valore cosbasso, minore ciodi3/2R & assolutamente incompati-
bile con qualunque modello classico. In generale si trova che il calore specifico tende a
zero perl’ — 0. La situazione chiaramente peggiora all'inizio del ventesimo secolo: la
scoperta dell’elettrone porta ad aggiungere i gradi di libbéitquesta particella al moto
microscopico, rendendo ancoraimiritica la situazione.

L'idea per la soluzione di questo probleraali Einstein[Ein07]. Come abbiamo visto
le ricerche precedenti di Einstein indicavano in maniera piuttosto netta la tesi che I'ener-
gia di un oscillatore armonico potesse assunsetevalori discreti. La tesi, parzialmente
contrapposta, sostenuta da Planck, era che la discretizzazione fosse dovuta a qualche pro-
cesso incognito di emissione della luce da parte di un oscilatore microscopico. L'analisi
dell’equilibrio termico tramite la distribuzione canonica nei lavori[Ein05, Ein0& ig-
dicava che, invece, il punto essenziale era lo spettro dei valori energetici dell’oscillatore,
indipendentemente dal meccanismo di interazione. La situazione ideale scipematiz-
zare in questa maniera: la radiazione di corpo neimipteragire elettromagneticamente
con degli oscillatori, in tal modo pernon si pw stabilire un equilibrio termico pereh
l'oscillatore ha un sua frequenza proprig,ed emette e assorbe solo a questa frequenza.
L'equilibrio termico si instaura quando si permette agli oscilatori di interagire fra loro e
scambiarsi energia, ad esempio attraverso gli urti con un gas. Basta in teoria una singola
molecola di gas, che costituisce il “granello di polvere” a cui accennato all'inizio della
discussione sulla termodinamica del corpo nero. In questo modo I'insieme di oscilatori
all'equilibrio, a temperaturd’, sia con la radiazione sia con il gas. Lo stato di equilibrio
termodinamicce unico, quindi verrebbe mantenuto anche se si “spegnesse” la radiazione,
e sarebbe mantenuto dall’equilibrio col gas. Questo significa che lo stato di equilibrio del-
l'insieme di oscillatori non ha niente a che vedere con la radiazione termica, ma dipende
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solo dalla temperatura del sistema, come ogni equilibrio termodinamico.

In formule quest@ proprio quello che si fa quando si scrive una distribuzione statistica
di equilibrio, come la distribuzione canonicao@he determina I'equilibrio sono i parame-
tri come la temperatura, non il modo in cuigsiarrivati al’equilibric!. Questo discorso,
col senno di poi, sembra ovvio, ma non lo era affatto nei primi anni del ventesimo secolo,
percle, ripetiamo ancora una volta, significava abbandonare la meccanica classica.

Il problema dei calori specifici assume un altro aspetto sotto questa nuova luce. |l risul-
tatoC = 3R si basa sul principio di equipartizione, magappiamo che questo principio
non e vero, in generale, per I'oscillatore armonico. Come abbiamo visto la descrizione
pit elementare di un solido consiste nell’assimilarlo ad un insieme di oscilatori armonici.
La cosa pil sempliceg dire che si hann®N oscillatori indipendenti a frequenza dove
N = nNj4 € il numero di atomi+ il numero di moli) ev una frequenza caratteristica
dell’elemento in esame che esprime quanto fortemente un adoiegeato al reticolo cri-
stallino. In questo modo I'energia totale del sistersemplicementaN volte I'energia di
un singolo oscillatore, che abbiamagialcolato:

hv 3Nhve /KT T 0
E=3N—7F— 1.101
R {3NkT T - oo (1.101)
Dalla (1.101) si ricava il calore specifico
2 hv\ 2
dE h hv/ET nr —hv/kT
C= ar 3Nk <k’;> ( h:/e/kT 1)2 3R (kT) ‘ 0

¢ 3Nk = 3nR T— o

(1.102)
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Figura 1.3: Calore specifico per grammoatomo nel modello di Einstein.

11Qui si suppone che il sistema sia all’equilibrio, la cosa a priori potrebbe non essere vera. Alcuni autori, come
Jeans, contestavano il risultato di Planck asserendo appunto che probabilmente non si era raggiunto I'equilibrio
termodinamico.



1.9. IL PROBLEMA DEI CALORI SPECIFICIL 37

Quindi nel limite di alta temperatura si riottiene il valore classiéy mentre per bassa
temperatura il calore specifico tende a zero. Il calore specifico clasgomporzionale al
numero di gradi di libe&: quntisticamente i gradi di libértvengono “congelati” a bassa
temperatura. Il modello di solido descritto nella (1.101) prende il nome di modello di
Einstein e fu dallo stesso autore confrontato con i dati sperimentali allora disponibili (1907)
sul diamante e su altri elementi trovando una discreta corrispondenza. La freqummiza
essere stimata dalle caratteristiche del solito e confrontata con quella derivante dai dati sul
calore specifico, trovando un certo accordo.

La (1.101) coglie I'essenza del problema ma naturalménia modello troppo sem-
plificato. Come nota lo stesso Einstein in un modello di atomi legati da forze elastiche lo
spostamento di un atomo provoca uno spostamento collettivo, in altre parole un’onda elasti-
ca nel mezzo, quindi occorrerebbe parlare di oscillatori accoppiati. A questo naturalmente
vanno aggiunte le correzioni di anarmonrégitice le deviazioni degli oscillatori dal com-
portamento armonico, etc. Un modellaipiealisticoe stato proposto negli anni seguenti
da Debye[Deb12], e quasi contemporaneamente da Born e von Karman[BornKar].

Modello di Debye. Consideriamo un solido come descritto Naatomi che possono oscillare
attorno alla posizione di equilibrio. Come esempio concreto Sigensare ad un reticolo cubico in
cui l'interazione fra primi vicini ha un’energia potenziale della forma

1
U= 5]4,‘(:1); — 93‘7')2
Le equazioni del moto in generale sono della forma
xr; = —Qijwj (1103)

cioe un sistema d3 [V oscillatori lineari. Lo spettro vero di oscillazioni possibili si ottiene risolven-
do il sistema (1.103), ciodalla diagonalizzazione della matri@ema possiamo fare semplicemente
I'ipotesi di avere uno spettro continuo di frequenzeda: 0 av = v,,. Fisicamente chiaro cosa
rappresentano i vari modi di oscillazione: supponiamo di spostare un atomo dalla posizione di equi-
librio, ad esempio fornendogli una certa velaciuesto spostamento si trasmette agli atomi vicini
tramite gli accoppiamenti elastici, i quali a loro volta inducono uno spostamento su altri ato®i etc.
quello che si chiaman’onda elastican un solido. Le varie frequenze corrispondono a onde elasti-
che a frequenze diverse. Il lettore na@tehe la descrizione identica a quella dei modi di vibrazione
elettromagnetici in una casit La velocia di propagazione delle onde elastiéhia velocia del suo-
no nel mezzo, che prende il posto della veladella luce. Consideriamo per breviin cubo di lato
L. Imponendo, ad esempio, condizioni al contorno periodiche per le vibrazioni, si ha che il vettore
d’ondae della forma (vedi anche eq.(1.384))
21 . . o -

k= f(nm,ny,nz) Nz, Ny, N, . iNteri positivi e negativi (1.104)
La connessione fra vettore d’onda e freque@z| = v/c. Il numero di oscilazioni corrispondenti
ad interi compresi in un intervalldn, An,An, attorno ad unvalore centrale., ny, n.) Si scrive
immediatamente dalla (1.104)
d’k
(2m)?

e passando alle frequenze (integrando quindi sulle direzioni di propagazione dell'onda):

AN, = LP

2
N, = L*dn " dv
C

In un solido possono propagarsi onde sonore trasversali, con @elg@d onde sonore longitudinali,
con velocia ¢;. Notando che esistono due direzioni trasverse per ogni direzione di propagazione
dell’onda, il numero totale di modi a fissa frequenza si riscrive:

2
N, = LP (33 + is) AmPdy = L3127ry—3d1/ % = % + % (1.105)
c c3 GG e
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Abbiamo introdotto per comoditla veloci media del suonogs. Il numero totale di modi di
vibrazionee 3N, questo fissa il valore della frequenza massima

vm 103 3N
AN, = LP127- 2 = 3N = 3 =
/0 N "3 cd Y 4dr L3

2
. dN, = 9N;/—3dz/ (1.106)

Poicte (N/L3)Y3 ~ a = passo reticolare, la frequenza massima corrisponde ad una lunghezza
d’onda minima\ = ¢, /v ~ a, come era lecito aspettarsi. Assumendo ora, come nel modello di
Einstein, uno spettro di Planck per ogni oscillatore, I'energia del solido ha la forma

hv V2

om hv vm
b= /0 ot — 1 :9N/0 T 18 (1.107)

Esprimenda/,,, in termini di una temperatura, temperatura di Debye

o= vm (1.108)
k
ed effettuando il cambiamento di variahili = hv/kT, I'espressione (1.107) puessere riscritta
nella forma

(C] 3 (% 2%dz

E=3NKTD() con  D(z)= ;3/0 e (1.109)
Nella forma (1.109) la diversitrispetto al caso classiéoparametrizzata da una funzione universale,
D(z) e da un parametrd, che dipende dal materiale. Sviluppando in serie il fatiofe” — 1) si
ricava lo sviluppo per la funzion® (z):

D(x)zl—%x—k...

e quindi risulta evidente il limite classico per alte temperature. Lasciamo al lettore verificare che per
basse temperatuB ~ T* e quindi, per il calore specific6 ~ T°. Questa dipendenza daé
diversa da quella del modello di Einstein,&duella in accordo con i dati sperimentali.

La cosa che ci interessa sottolinearehe con questa applicazione del concetto di quan-
to di energia al di fuori del’ambito della radiazione di corpo nero, la discretizzazione
dei livelli energetici incomincia ad apparire come una proprigénerale della materia,
non come un qualche misterioso meccanismo dell'interazione elettromagnetica a livello
miscroscopico.

Nel lavoro[Ein07], la (1.101} ricavata dalla distribuzione canonica, (1.34), come ab-
biamo fatto nel paragrafo 1.4. In questo lavoro come in quello precedente del 1906[Ein06]
e soprattutto nella edizione del 1906 del libro di Planck[Pla-H.R.] I'attenzione si sposta
gradatamente dalla discretizzazione dei livelli energetici alla discretizzazione dello spazio
delle fasi del sistema.

Abbiamo ga accennato, vedi (1.46), alla questione. La distribuzione canonita pu
essere vista direttamente nello spazio delle fasi del sistema. Per un singolo oscillatore la
distribuzione di probablte

dP = Ce 1P Dapdq = e~ E/FTy(E)dE (1.110)

Come abbiamo visto la (1.110), usandi@ig < dE, implica classicamente(E) = 1.

La quantizzazione dei livelli energetici equivale a sostituire delle somme agli integrali nei
valor medi. Formalmente la distribuziong E) & nulla per tutti valori diE’ eccettone,

cone = hv. Se sivuole evitare I'uso della distribuzione di Dirac sbpensare a/(E)

come una funzione ovunque nulla eccetto un intervallo infinitesimo, diciamo di larghezza
«, attorno ai valorine, in modo tale che l'integrale su questi piccoli intervalli sia costante:

/Oaw(E):/:Jraw(E):...:A
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In questo modo i valori medi hanno la forma

B Yoo flne)e ™A
ey = EL

(1.111)

Il risultato non dipende dai parametrj A ede quello di Planck.

Guardiamo la stessa cosa dal punto di vista delle variabili canofiche. La traiet-
toria classica di un oscillatore nello spazio delle fasi del sistema, &b piano(p, ¢) €
costituita da un’ellisse: )

=P loeg (1.112)
2m 2

Come ga detto nel paragrafo 1.4.1 I'area di questa ellisggoporzionale ad. In effetti
con il cambiamento di variabili, con Jacobiano 1,

P = Vmwe q= \/7% dpdq = dxdy

la (1.112) siriscrive
E
22 y? =2— (1.113)
w

cioe un cerchio di raggi® = 1/2F /w I'areaé percod, usando la regola di quantizzazione
per I'energia:
2F 2nhv
A=rR?=n"=n7
w 2y
Due energie diverse di un oscillatore corrispondono a due diverse ellissi, energie che diffe-

riscono dihv delimitano una “corona ellittica” (circolare nelle variahiljy) di area

= nh (1.114)

A=(n+1h—nh=nh (1.115)

Oradpdq € I'elemento d’'area nello spazio delle fasi, quindi I'integralégaq che occorre
fare nella definizione classica di media

70</dpdqe_H(”"’)f(p,q)

e un integrale di area sullo spazio delle fagidqg = dA: la prescrizione quantistica sulle
energie significa allora affermare che l'integrale sullo spazio delle fasi va sostituito con una
somma su delle “cellette”, di aréa

Questo stesso significato si ottiene, se il lettore ricorda, dalla definizione microcanonica
di entropia (1.44): anche in quel caso si era trasformato il conteggio nello spazio delle fasi
in termini di un conteggio in cellette di energia. Sigpfare anche un passo in avanti: il
numero di microstate un numero puro, quindi, a voler essere precisi, la definizione di
entropia dovrebbe essere (@ih effetti):

U+AU
Praqk
Szklog/
A

Dove A e 'area di una celletta nello spazio delle fasi. In meccanica classica questa quan-
tita e arbitraria e @ impedisce di definire uno zero per I'entropia. Se assumiamo che la
grandezza\ sia proprioh, poniamo ci@

(1.116)

opdg=A=nh (2.117)

otteniamo una normalizzazione assoluta per I'entropia. Inad@lf1.116) lascia ancora a
desiderare, come vedremo tra poco.
Questa interpretazione ha tre elementi distinti, importanti per motivi diversi:
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1) h ha le dimensioni di un’azione: in questo modo si lega il significatéd did una
guantit con le dimensioni di un’azione che ha significato meccanico, come cella
dello spazio delle fasi, indipendentemente dalla radiazione elettromagetica.

2) Dal punto di vista statistico si opera una discretizzazione dello spazio delle fasi e si
propone una scelta per lo zero dell’entropia.

3) Siopera unaceltasulle celle dello spazio delle fasi.

Gli ultimi due punti sono pi sottili di quanto possa sembrahon bastda discretizzazione
dello spazio delle fasi per ottenere la statistica di Planck. Consideriamo ad esempio una
divisione in cellette del tipo

p = Lép q = ndq opdqg =h (1.118)
L'integrale sullo spazio delle fasi ha la forma
5p? o Mmw?q>

_52 )y —n
%:GXP( ok " okT )

e questo non solo ha poco a che fare con la distribuzione di Planck, ma dipende dalla scelta
esplicita diop, 5¢*2.

Il punto essenzial@ invece il punto 3): la scelta djuali celle sommare, in questo
caso celle “ellittiche”, molto diverse da quadratini come nella (1.118). La scelta delle
celle nell'insieme microcanoniod connessa con la scelta degli stati equiprobabili a priori.
Classicamente lo stato di una particéllindividuato dalle coordinate canoniche ¢) ed
una cella del tipo (1.118) corrisponde a questa concezione di stato. Scegliendo come celle
elementari le celle determinate dall’energia si opera in deaft grande allontanamento
dal concetto classico di particelle. In effetti questo tipo di scelta gaella dettata dalla
meccanica quantistica.

Se si assumd punto 3 allora I'entropia per un sistema di oscillatori, (1.116), assume

la forma UiAU
S = kzlog/ 11 dEx (1.119)

U oA

e questa I'espressione che abbiamo visto nel paragrafo 1.4.1. Questo dovrebbe chiarire
il senso della nota posta alla fine del paragrafo 1.4.1. Notiamo cha la (®eli$)ta in

un modo o nell’'altro sia da Einstein[Ein06] sia da Planck[Pla04, Pla-H.R.], ed entrambi
avevano ben presente il problema. Probabilmente il primo a mettere chiaramente in luce la
differenza fra il “conteggio alla Planck” e quello alla Boltzmann, fu Ehrenfest[Ehr06], che
era un allievo di Boltzmann.

C’e comunque un punto abbastanza interessante da notare: ad alta temperatura ci si
aspetta che il regime classico sia valido, come nel caso dell’'oscillatore. La prescrizio-
ne (1.117) fissa la costante dell'entropia, e questagasere misurata, ad esempio, dagli
equilibri chimici, quindi dovrebbe essere possibile verificare la (1.117) calcolando I'entro-
pia di un gas perfettee quanto fatto da Sackur e Tetrode, nel 1912-1913. Il calcolo, molto
sempliceg riportato nel paragrafo 1.D.

Queste prime applicazioni della ipotesi dei quanti, effetto fotoelettrico, calori specifici,
etc. segnano la chiusura della fase interlocutoria della teoria dei quanti, Nel congresso di
Solvay del 1911, il primo congresso dedicato a questa nuova t@&denai chiaro che
la fisica classica richiede una revisione. Nello stesso congresso cominciano ad affacciarsi
nuove ipotesi, come la trattazione degli invarianti adiabatici (Einstein) o la quantizzazione
del momento angolare (Lorentz) che saranno sviluppate negli anni a verireh€resta
completamente oscum® su che basi debba poggiare questa svolta nella dinamica. Due
eventi “rivoluzionari” cambiano la situazione:

12)| |ettore pw verificare che la funzione di partiziodeun prodotto di funzioni ellittichés e che nel limite
ép — 0,6q — 0 si ha il teorema di equipartizione classico per I'energia.
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¢ Rutherford rielaborando una serie di esperimenti effettuati nel suo laboratorio, pro-
pone nel 1911, ancor prima del congresso Solvay, I'esistenza di un nucleo pesante
di carica positiva negli atomi. Il modello che ne consegue, elettroni leggeri orbitanti
attorno ad un nucleo pesante, come un sistema solare in miniatura, prende il nome di
modello atomico di Rutherford

e La pubblicazione del primo articolo di Bohr sulla meccanica quantistica[BoHz.3].
la sintesi fra il modello atomico di Rutherford e la teoria dei quanti: viene avanzata
la prima spiegazione dell'esistenza delle righe spettrali, si crea la prospettiva per
la formulazione di una meccanica atomica e, infine, si ha un ottimo accordo fra le
previsioni della teoria e lo spettro dell’atomo di idrogeno, che fino a quel momento
era un mistero.

1.10 Alcune nozioni elementari sugli spettri atomici.

In questo capitolo non discuteremo le motivazioni che portarono Rutherford alla formu-
lazione di un modello “planetario” dell’atomo. Il lettore che non conoscesse I'argomento
puo consultare, ad esempio, il libro di Born[Born32] o il libro di Ter Haar[TerHaar], dove
e ristampato I'articolo orginale di Rutherford.

Per motivi di spazio non discuteremo nemmeno le classificazioni dettagliate degli spet-
tri atomici. Un’introduzione all’argomento si trova nel testo[Born32] o, in mododatta-
gliato, nel libro di G. Herzberg[Herzberg]. L'unica nozione che ci sarmel seguite@ la
legge di ricombinazione di Raleygh-Ritz, che ora illutreremo sommariamente.

Lo spettro di ogni elemento si presenta come un insieme di righe organizzate in serie,
ogni serie ha un “punto finale”, o “end point” che fissa la frequenza massima di quella serie.
Un esempio molto schematiéopresentato per I'idrogeno in figura 1.4.

Si nota che le frequenze di ogni serie possono essere espresse nella forma

vV = TQ(TLQ) — Tl(nl) (1120)

ni1,ny SONO numeri interi. La serie si ottiene tenendo fisgee cambiandoy,. | fattori
T'(n) sono dettitermini della serie, e tendono a zero per— oo, di modo che il termine
T>(n2) nella (1.120) individua la frequenza limite della serie.

Nella notazione spettroscopica comune i vari termini sono denotati in questo modo

1s 2s 3s 4s b5bs 6s
2p 3p 4p 5p 6p
3d 4d 5d 6d

4f  5f  6f

Le serie principali hanno nomi particolari, che sono all’origine delle letteped . . .

Serieprincipale v=1s—np
Seriesharp v=2p—ns
Seriediffusa v=2p—nd

Seriefondamentale v =3d —nf
Seconda seriprincipale v =2s —np
Seconda seridiffusa v =3p — nd

L'osservazione cruciale, frutto dell’elaborazione di una gran quadiitlati spettrosco-
pici & la seguente: ogni rigascrivibile come una differenza di termini e, viceversa, ad ogni
differnza di terminie possibile associare una riga. In certi casi alcune differenze di termini
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corrispondono a righe molto deboli o completamente assenti, in questo caso si parla di
gole di selezioneQuesto principio si chiamgrincipio di ricombinazione di Raleygh-Ritz,
ede il vero contenuto dell’equazione (1.120).

Qualche esempio fuservire a chiarire le cose. Lo spettraigemplices quello dell’a-
tomo di idrogeno. Per questo elemento i vari ternfimiella (1.120) hanno tutti la stessa

forma e si scrivono R R
T(n)=-—  — ~109677.581cm ' (1.121)
n C
La costanteR si chiamacostante di RydbergSpesso le righe spettrali sono identificate
dal numero d’ondap=! = v/c, per questo abbiamo scritto il valore #i/c. Le serie

dell’'atomo di idrogeno sono allora espresse nella forma molto semplice

1 1 .
V:T<n2> —T(?’Ll) :R<7’L2 — 722) n9 fisso ni=ns+1no+2... (1122)
2 1

Queste serie hanno di solito il nome del loro scopritore:

SeriediLyman ny, =1 v =1s—np ultravioletto
SeriediBalmer ny =2 v =2p—nd visibile
Seriedi Paschen ns =3 v =3d—nf infrarosso
Serie di Brackett no =4 v =4f—ng infrarosso
SeriediPfund ny =5 v=5g—ne infrarosso

Dovrebbe essere chiaro allora chiél) — T'(10) corrisponde alla sesta riga della serie di
Brackett, mentrel’(2) — T'(10) all'ottava riga della serie di Balmer, etc. Lidroge®o
particolarmente semplice pekeltermini T, ovvero le funzionil'(n), sono le stesse per
tutte le serie.

Br. Pa. Balmer Lyman

L 1 1 1

0 2 4 6 8 10
numeri di onde x 10%

Figura 1.4: Diagramma schematico di una parte dello spettro dell'ldrogeno. In a&cissa
riportato il numero d’ondd /\. Le linee verticali tratteggiatate indicano il punto finale
della serie. Sono riportate 4 serie, di Lyman (nell’'ultravioletto), di Balmer (nel visibile), di
Ritz-Paschen e di Brackett (entrambe nell'infrarosso). Si noti cheavrapposizione fra
alcune serie, nel diagramma fra quella di Brackett e quella di Ritz-Paschen.

Il caso immediatamente picomplicatoe quello dei metalli alcalini, (Li, Na, K, Rb,

Cs). In questo caso i termini sono ottimamente approssimati dalla semplice formula
R
— 1.123
(n+9)2 ( )

doves dipende dalla serie eglchiamataorrezione di Rydberdsi avia cos
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Serieprincipale v =1s—np Tps— m +R5p)2 n=273
Seriesharp v=2p—ns Tgg— w f65)2 n=2,3
Seriediffusa v=2p—nd Tgg— w +R5d)2 n=3,4

Seriefondamentale v =3d —nf Trs— (n+R(5f)2 n=4,5

Notiamo che la frequenza limite per la serie sharp e quella difukastessa. Il punto
importante, conseguenza del principio di Raleygh-Rithe i terminil'pg, Tss, Trs SONO
termini delle serie adiacenti:

R

Tpg= ————

Tps = Tss =

R R
(1+05)° (2+06p)°
la qual cosa giustifica la notazione usata nella tabella.

Se indichiamo cot = 1,2,3,4... le series,p,d, f ... possiamo esprimere in modo
semplice un’importanteegola di selezionesono osservate solo le righe corrispondenti a
Ak = +1. Ad esempio non si osservano righe della fozra- 3d.

La procedura di classificazione ppessere estesa agli altri elementi.

Notiamo, a scanso di equivoci, che, misurate con maggiore risoluzione, le righe prece-
dentemente elencate in reaki rivelano costituite denultipletti, i cosiddettimultipletti di
struttura fine.E chiaro che per descrivere questi multipletti occgrravere a disposizione
degli altri “numeri quantici”, oltre a, k gia usati.

1.11 Modello di Bohr.

L'articolo di Bohr[Boh13] segna I'inizio della “vecchia teoria dei quanti”: si crea uno sche-
ma per la comprensione dei fenomeni microscopici basato sul concetto di quanto. La teoria
ha inizialmente un grosso successo, riuscendo a spiegare quantitativamente e qualitativa-
mente molti fenomeni: per la prima volta la stessa “dimensione” degli atomi viene dedotta
a partire da costanti universali, quali la carica e la massa dell’elettrone. La teoria si basa
Su un insieme essenzialmente contraddittorio di ipotesi, cercando di introdurre in qualche
modo la quantizzazione all'interno di uno schema descrittivo e cinematico prevalentemente
classico, queste contraddizioni vengono via via alla luce generando infine, nel 1925, una
nuova cinematica ed una nuova meccanica, la meccanica quantistica.

Malgrado questa premessa pensiamo sia importante avere un’idea almeno approssi-
mativa dei metodi e dei risultati ottenuti nella vecchia meccanica quantisticagpirch
guest’ambitce ancora possibile usare, almeno parzialmente, un linguaggio classico per la
descrizione dei fenomeni: si pyarlare di particelle, di posizione, di impulso, di orbite
etc. Questa possibifitviene meno nella meccanica quantistica, nel cui ambito gli oggetti
saranno descritti in modo moltolpastratto e lontano dall'esperienza comune. Partiamo
quindi dall'analisi del lavoro di Bohr.

NOTA In questo paragrafo, come nei paragrafi 1.2.1 e 1.3, il lettore deve avere ben in
mente che non si tratta diedurredelle proprieh della materia da principi noti, ma di
indovinarequali sono le leggi a partire dai dati sperimentali e da “pregiudizi teorici”.

Riassumiamo @i che si sa per certo sugli atomi prima del lavoro di Bohr:

1) Esiste, e no® spiegata, la tavola di Mendeleiev che indica una qualche per@dicit
nella struttura chimica degli elementi.

2) La lunghezza tipica associata ad un atomo, il “raggio” dell’atoendell’ordine di
10—® cm. La massa atomigaabbastanza conosciuta.
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3) Sisono scoperti gli elettroni e se ne conosce il rappofto.
4) Si conosce approssimativamégtia “grandezza” di un elettronep—° cm.

5) Gli elettroni sono costituenti dell’'atomo, questa convinzione deriva dallo studio dei
raggi catodici e da altre esperienze. Come conseguenza dei punti 2) e 4) gli elettroni
sono “piccoli” costituenti del sistema.

6) L'unica vera informazione sulla struttura atomica deriva dagli spettri di emissione
e di assorbimento. Le esperienze di Zeeman, la spiegazione di Lorentz dell'effet-
to Zeeman, ed i punti precedenti indicano che i movimenti degli elettroni sono in
qualche modo causa dello spettro.

7) Laregola diricombinazione di Ritz, vedi eq.(1.120), dice che esiste una qualche sem-
plice relazione linearefra le frequenze della luce negli spettri esprimibile tramite
numeri interi.

8) Il modello di Rutherford suggerisce I'esistenza di un nucleo pesante, di carica posi-
tiva e praticamente puntiforme, in ciliconcentrata la massa atomica.

L'esperienza con la radiazione di corpo nero e con la teoria dei calori specifici insegna
che a livello microscopico gli scambi di energia, almeno quelli di tipo elettromagnetico,
avvengono attraverso “quanti” discreti di energia, e questa enelgigata alla frequenza
della luce dalla relazion& = hv. Il problema central@ proprio qui: nell’elettrodinamica
classica la frequenza della luce emes$egata al periodo di oscillazione delle cariche, se il
moto none periodico si ha uno spettro continuo di luce, se inveperiodico, con periodo
T, si avia uno spettro di armoniche con frequenz&”, multipli della frequenza fonda-
mentalé. Le frequenze osservate negli spettridoron sono armoniche Bisognerebbe
allora immaginare un modo di oscillazione diverso associato ad ogni frequenza. Ma allora
come mai le frequenze soddisfano una relazione come quella di Ritz?

In un oscillatore quantistico la frequenza di emissione della luce ha un duplice ruolo: da
una parte indica la frequenza propria dell’'oscillatore, dall’altra, con la relaZibrehv,
indica ladifferenza di energidra uno stato e I'altro dell’oscillatore armonico. Il fatto che
la luce sia monocromatica in questo casdovuto al fatto che Idifferenzedi energia fra
i vari livelli sono costanti e queste differenzeincidong in frequenza, con la frequenza
classica di oscillazione.

La proposta di soluzione quindi potrebbe essere: la luce emessa dagleatomiessa
con ladifferenza di energidra diversi livelli atomici, h dovrebbe cié indicare la diffe-
renza fra due livelli energetici. Se si vuole fare un modello atomico occorre allora trovare
una “regola” per costruire questi livelli energetici, in modo tale da riprodurre gli spettri
osservatiE questo che fa Bohr nel suo lavoro.

Che il problema non sia banale lo si capisce subito da questa considerazione: se un ato-
mo emette luce perde energia, se perde energia cambia il moto degli elettroni, ad esempio
se oscillano cambia I'ampiezza di oscillazione. Ma la frequenza del dipendedal-
I'energia: I'isocronismo si ha, comé noto, solo in casi tipo I'oscillatore armonico. Ma
cambiando la frequenza del moto dovrebbe cambiare la frequenza di emissione della luce,
come mai allora la luce osservatanoncromatica, cile righe sono ben definite?

Un’altra spinosa questione ha a che vedere con le dimensioni dell’'atomo. Se consi-
deriamo le dimensioni come un dato caratteristico dell’elemento, come ad esempio nel
modello di Thompson, abbiamo che come ordine di grandezza I'energia cinetica, e quindi
I'energia totale, devono essere della forma

1 2
B~ Smv? ~ % (1.124)

13Quested un concetto puramente classico, il lettore lo consideri tale e non lo prenda alla lettera.
14se il moto ha period@ le coordinate ammettono uno sviluppo in serie di Fourier con frequepze k /T,
ed ogni armonica si comporta come un oscillatore.
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Come vediamo compare la frequenizél” al quadrato. Se si ha una qualche forma di
discretizzazione dell'energia si @/una relazione con numeri interi frajuadrati delle
frequenze, mentre le relazioni spettroscopiche indicano una relazione fra le frequenze, non
i loro quadrati. Quindi assegnare un significato fondamentale alla grandezza di un atomo
sicuramente non porta nella giusta direzione.

Il modello di Rutherford da questo punto di vigtgpreferito: non ci sono lunghezze
intrinseche. Bohr usa il modello di Rutherford.

Consideriamo allora I'atomo pisemplice, I'atomo di idrogeno. Per questo elemento,
nel 1913, si conoscevano due ben note serie spettrali, la serie di Balmer, nel visibile, e la
serie di Paschen, nell'infrarosso. Le frequenze di queste righe soddisfano, fenomenologi-
camente, alle seguenti relazioni:

22
% - L (1.125)
R (32 — n2) Serie di Paschen

R ( ! — 12) Serie di Balmer
n

V=

R & una costante, la costante di Rydberg, comune alle due serie. Si tratta di vedere in
che senso queste due serie possono essere spiegate dall'introduzione di quanti di energia.
Analizzeremo la questione per passi successivi, cercando di mettere in luce quali sono le
ipotesi e i motivi che spingono a farle.

Ipotesi 1 Si assume il modello di RutherfordP?er 'atomo di idrogeno, o idrogenoide,
signica considerare un nucleo di massa molto grande, praticamente infinita rispetto all’e-
lettrone, e caric&e. Classicamente si ha quindi una forza coulombiana fra nucleo ed
elettrone e conseguentemente stati legati del sistema descritti da orbite circolari ed ellitti-
che, esattamente come nell’analogo problema gravitazionale, sidarcimoto Kepleria-

no. Questo sistem@aovviamente inconsistente dal punto di vista classico. Un elettrone in
un’orbita (per semplicé circolare) di raggio ha un’accelerazione = Ze?/mr?. Le ca-

riche accelerate emettono radiazione con una poté‘r&a§62/c3a2. Quindi rapidamente
I'elettrone cade verso il nucleo: il sistereanstabile, al passare del tempo I'energia tende
a—oo. Sappiamo, dall’esperienza con il corpo nero, che sicuramente le leggi classiche non
sono valide per quanto riguarda I'emissione e I'assorbimento della luce, diciamo quindi
per brevit che le leggi dell'irragiamento classico devono essere maodificate. Ma non pos-
siamo rinunciare a tutto I'elettromagnetismo altrimenti non avremmo nemmeno la legge di
Coulomb e non si avrebbe un sistema legato.

Ipotesi 2 | livelli energetici dell’atomo sono quantizzaté transizioni elettromagnetiche
corrispondono a passaggi da un livello all’altro.

Ipotesi 3 Si suppone che I'emissione e I'assorbimento di radiazione elettromagnetica av-
venga attraversquanti di energiaquindi non classicamente. Le transizioni semanocro-
matiche avvengono cie ad una precisa frequenza. Si suppone invece che valgano, in for-
ma, le leggi classiche del moto per la parte non radiativa. Questa assuazibiaeamente
poco soddisfacente ma riflette il fatto che non si ha una teoria completa.

1.11.1 Motivazioni delle ipotesi di Bohr.

Prima analisi. Consideriamo per sempliciorbite circolari, di raggia. Gli stati legati
del sistema hanno energie negative,= —W. W e il lavoro minimo necessario per
estrarre I'elettrone dall'atomo in quello stato, €ibenergia di ionizzazione a partire da
quello stato. Sappiamo anche che in un’orbita circolare I'energia cineticguale alla
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met dell'energia potenziale, in moddf Quindi chiamatdl” il periodo orbitale ev =
1/T la frequenza di rotazione, si hanno le relazioni

1 1

E=-W= Ecin + Upot = _Ecin = iUpot = Ecin =W 5 ‘Upot‘ =W
cioe )

1 A

—m(2mv)?a® =W 2C —ow

2 a
Quindi

Ze2 1 9 3/2
o= 12V (1.126)

W T\ m Ze?

Le equazioni (1.126) esprimono i parametri dell’orbita tramite una qaaosiservabile, il
potenziale di ionizzazione. Dato un valore p&rviene fissata I'orbita. Se esistono delle
orbite quantisticamente stabili solo alcuni valorilli saranno permessi.

Pensiamo ora a come “costruire” un atomo nell’orbita descritta dalla (1.126): un elet-
trone, inizialmente fermo, viene attirato dal nucleo e finisce sull’orbita (1.126). In questo
processo si a@aemissione di radiazione. Questan punto cruciale: in questa transizione,
fra uno stato di elettrone “fermo” ed uno stato dell’atomo la radiazéommessa sotto for-
ma di quanti ect monocromatical'ipotesi di monocromatict & naturale, nel senso che
lo stato di elettrone libero, e fermo, corrisponde al caso limite di uno stato legato con ener-
gia di legame tendente a zero, quindi quella consideéra@lo una particolare transizione
fra stati atomici (corrisponde, in termini spettroscopici, alla frequenza limite di una serie
spettrale, come abbiamo visto). Per I'ipotesi 2) questa energia ha quindi la forma

W = rhy,, (1.127)

dover & un numero interay, la frequenza della luce emessa. Il numero inteha due in-
terpretazioni possibilie il numero di quanti emessi, oppure si tratta di un singolo quanto di
frequenzar-volte una frequenza di base (I'analogo di una frequenza armonica classica).
Problema: che frequenzsr,? La configurazione iniziale nod periodica, quella finale

si, con frequenza data dalla (1.126)x € l'unica frequenza in gioco, quing naturale
supporrev, = Cv, doveC € una costante, anzi supponiamo che la frequenza sia diretta-
mente la media fra la frequenza iniziale, zero, e quella finalgoé v, = v/2. Stiamo

solo verificando la consistenza delle ipotesi fra loro, quindi questaenora limitazione.
Sostituendo questansatznella (1.127) ed usando la (1.126) si hanno le equazioni

W 1 /2 w3/?
vt =20 V=N e

e quindi si ricava pelV/

2m2metZ? 1 1722 1
W = -z - 1.128
h? 72 2 ap T2 ( )

Abbiamo introdotto per brewt, e per usi futuri, una grandezza con le dimensioni di una
lunghezzag g, il raggio di Bohr

h? h
— h

aB = = —_—
me?2 2

(1.129)

Abbiamo ci ottenuto una serie discreta di livelli, un livello energetico per egilipunto
importante& cher > 1 quindi il livello con il piu grande livello di ionizzazione possibile,
cioé lo stato pil legato, lo stato fondamentale del sistema, ha enérgia:

1 7%

W:
! 2(LB

=¢ (1.130)

15per orbite ellittiche vale lo steso discorso per le energie mediggorema classico del viriale.
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Inserendo i valori noti, anche nel 1913, per le costantjm, h

e~ d8x10° 10 £ ~597%x107 h~663x10"2"  unita CGS
m

otteniamo il valore di¥/; ed il raggio dell’orbita corrispondente dalla (1.126)

w
a=apg=053%x10"%cm r~62x10Ysec! — =13.6V W =13.6eV
e

(1.131)

Si e usata I'unid di misura “eV" che corrisponde all’energia acquistata da un elettrone (di
caricae) che attraversa la differenza di potenziale di 1 V. | valori ottenuti per il raggio
atomico e la frequenza sono molto ragionevoli, e I'energia di ionizzazotello stesso
ordine di quella misurata (in reale proprio quella misurata). Quindi la procedura sembra
ragionevole.

Per comodi, e per vedere meglio le dimensioni in gioco, useremo d'ora in poi la
costantef definita nella (1.130). In questo modo possiamo riscrivere le relazioni classiche

(1.126) nella forma

Ze? 2
0= ﬁ hy = ﬁw?)/2 (1.132)

Seconda analisi. Supponiamo di seguire lo schema precedente. Qualunque livello deve
essere costruibile con la procedura vista: si parte da un elettrone libero, si emette radiazione
quantizzata e si arriva allo stato atomico finale. Allartii i livelli dell'atomo di idrogeno
devono avere energie date dalla (1.12B)naturale ora dire che i processi di emissione e
assorbimento corrispondano a passaggi fra un livello e I'altro, con conseguente emissione
di radiazione

hVTl,T2 = Wn - W‘rg (1.133)

In questo modo si assume che le righe spettrali corrispondano all’emissione di un unico
guanto. Dalla (1.128) abbiamo allora

12%2 (1 1 E(1 1
S e e 1.134
T 2 hag < ) h(T% > (139

Ma queste per; = 2 e perr; = 3 hanno proprio la forma delle righe di Balmer e Paschen!
Sono in pil predette molte altre serie, varianeld®. Le transizioni per I'atomo do idrogeno
possono essere espresse ora attraverso un diagramma che lega la frequenza di transizione
ai livelli energetici dell’'atomo, vedi fig.1.5.

Ora peb possiamaredirela costante di Rydberg, dalla (1.125) si ha

_ 1 Z2%e2
o 2 haB

Ry (1.135)

con i valori noti all’'epoca per le costanti fondamentali Bohr trova (pef 1):
(R)in =31 x 10 (R)ewp = 3.290 x 10"

L'accordoé molto buono, la discrepanza fra i valori era compatibile con l'incertezza sui
valori di e e dih.
Il progresso rispetto a quanto si sapeva prévenorme:

1) Sie data una stima della grandezza degli atomi. Questo era stato fatto anche pre-
cedentemente, su bastpd meno dimensionali: si ha ora uno schema teorico per
questo calcolo dimensionale.

18Naturalmente queste serie sono state successivamente trovaiespet si ha la serie di Lyman, e questo
naturalmente ha significato un grosso successo della teoria.
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Figura 1.5: Livelli energetici e serie spettrali per 'atomo di idrogeno.

2) Sie stabilito un criterio per la stabiitdegli atomi: se si assumono le leggi quanti-
stiche si ottiene uno stato fondamentale per il sistema. La cosa hanale, anche
nell'ipotesi che esistano quanti di energia: I'elettrone potrebbe continuare a perdere
energia, seppure in forma quantizzata, e cascare sul nucleo.

3) Si e spiegata l'origine delle righe spettrali: sono transizioni monocromatiche, in
linguaggio moderno transizioni ad un fotone, tra livelli energetici discreti dell'atomo.

4) Sieé affrancata la frequenza della luce emessa dalla frequenza propria del moto: le
frequenzev,, ,, non sonole frequenze di rotazione degli elettroni in una qualche
orbita.

Resta da chiarire la scelia, = /2 nella deduzione iniziale. La giustificazione di
guesta scelta port&un altro importante tassello al modello.

Abbiamo ga detto che per ragioni puramente dimensionali, nel “costruire” I'atomo in
una data orbita, si deve avére, o« hr. Supponiamo in generale che si abbia una relazione
del tipo

hvy = f(1)hv (1.136)
Il calcolo dei livelli € identico al precedente, semplicemente dove era sc%n’ttora va
scritto f(7), ovveror — 2f(7). Si ottiene quindi per le righe spettrali

1222 (1 1N 1 1
= 30 (a0~ 1767) = (e ~ ) 4390

Quindi se si vogliono ottenere delle serie come quella di Balmer, deve gsserér:

1722 1 1 1 1 1 1
=22 (L) ze— (L -2 1.138
Yrom =g ap 4C? <7'12 7'22) 5402 (712 7'22> ( )
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Se in pi si vuole ottenere accordo con i dati sperimentali si deve aVerel/2. Il punto
seguente& unpunto importante. Consideriamo una transizione fra due livelli contigui,
79 = 71 + 1, per un livello di base con grande “numero quanticg”,>> 1. Per questi
livelli:

£ &
_ & & 1.139
W, 4C?73 Wr, 4C% (11 4+ 1) ( 3)
1 1 1 1 2
W W, — e [ ) re— (= 11
Wia =W =W =635 (- s ) = (55) @asom)

Le frequenze classiche di rotazione, corrispondenti ai [iN&l}i, 1V..,, si ricavano dalla
(1.132):
2 2

Ve Ve

cioé per grandi numeri quantici i periodi di rivoluzione prima e dopo I'emissione sono circa
uguali, ma queste proprio quello che ci si aspetta per l'irragiamento classico in un moto
circolare. D’altronde in regime classico la frequenza della luce emessa deve essere proprio
la frequenza di rivoluzione del moto, quindi, in questo regime, deve essere

s
B 2 an £ 2 2 (& \ g 2
n =Wnn = FZW=qms 7 gliee) i

Da cui segu&”’ = 1/2, cioé esattamente il valore precedente.

Il ragionamento che abbiamo usataina forma dprincipio di corrispondenza: per
grandi numeri quantici si deve riottenere la descrizione classica del processo.

Il lettore notea la somiglianza col fatto che nello spettro di corpo nero per alte tempe-
rature si riotteneva il principio di equipartizione classico.

Resta un ultimo punto da interpretare. Nella formula iniziale (1.187)= thv,,
avevamo lasciato una ambiguisul significato dir, poteva indicare un numero di fotoni o
un’armonica della frequenza,: & quest’ultima I'interpretazione consistente. Consideria-
mo infatti una transizione, nel regime quasiclassico, gos 71 + n, n < 71. In questo
caso, si hanno le formule analoghe alle (1.139),€osa 1/2:

W22 huy, W3/2 ~ hu,, (1.140)

hv., =

& &
W. =— Wr =—— 1.141
I (11 +n)? ( a)
1 1 2n
Wi =W = =8 ( (1 + n>2> ¢ () —

Vediamo quindi che la frequenza di transizianan multiplo di quella precedente, €ian
multiplo della frequenza di rivoluzione:

Vry,mp = NMVry (1.142)

Ricordiamo che le formule precedenti vanno considerate valide anche per i moti ellittici,
praticamente infatti non cambia nulla, il ruolo del raggisvolto dal semiasse maggiore
dell’ellisse, le altre formule, come la connessione fra energia cinetica ed energia potenziale,
seguono dal teorema del viriale. | moti ellittici sono periodici ma non armonici, quindi
nello spettro della radiazione occorre trovare le armoniche della frequenza fondamentale,
vediamo quindi che nel regime “semiclassico” il prefattore numerigoalla frequenza

di rotazione dello stato indica un’armonica. Estendiamo questa interpretazione per tutti i
valori di 7 nella (1.127), giustificando cblipotesi di emissione di un singolo quanto nella
transizione.
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1.11.2 Formulazione alternativa della quantizzazione delle orbite.

Quanto visto nel paragrafo precedeata tutti gli effetti equivalente ad una dimostrazione
della forma dello spettro per I'atomo di idrogeno. Abbiamo seguito la procedura, piuttosto
involuta per certi aspetti, della derivazione originale di Bohr per mettere in luce la giustifi-
cazione di ogni ipotesi. Chiaramergégossibile, a partire dalle ipotesi fattelal principio
di corrispondenzaperare una derivazione puramente deduttiva, che presentiamo qui di
seguito, e che Bohr nell'articolo[Boh13hder scontata.

Il punto di partenza& che avendo a disposizione un'altra grandezza fondamehtale,

e possibile costruire una quaatiton le dimensioni di una lunghezzag, definito nella
(1.129): ap = poo E possibile quindi avere una energia tipied/ap, per comodi
prenderemo come energia tipica la quanfitdefinita nella (1.130), ripetiamo: la scebka

fatta solo per rendere semplice il confronto con le formule precedenti.

Punto 1 Se i livelli energetici sono quantizzati (ipotesi 2 del paragrafo 1.11) possiamo
sempre scriverli nella forma

1 = —
E, = —sm =W, (1.143)

n € un numero intero ¢ una funzione per il momento incognita (quindi la fattorizzazione
di £, come predettag puramente formale). Il segne nella (1.143) dovuto al fatto che
stiamo considerando stati legati del sistema.

Punto 2 Se I'emissione avviene attraverso I'emissione di un quanto di radiazione (ipotesi
3 del paragrafo 1.11), si ha

1 1
han,nz = Wn1 - Wn2 =& (f(nl) — f(’ﬂg)) (1144)

Punto 3 Se viene usata la meccanica classica ed il modello di Rutherford per determinare
i parametri delle orbite possibili (ipotesi 1 e 3 del paragrafo 1.11) la frequenza di rivoluzio-
neper l'orbita corrispondente al livello con energia € data dalla formula classica (1.126),

che riscriviamo per comoditnella forma (1.132):

2

\/EWS/ 2 (1.145)

hv,,

Punto 4 Applichiamo ora il principio di corrispondenza. Consideriamo una transizione
n — n+ 1, conn > 1. Per la frequenza della radiazione dalla (1.144) si ha, sviluppando
in serie la funzionef:

1 1 f'(n)
h,=8———F— | =€ 1.146
= (70~ 7)) =6 (149
Nel regime classico questa espressione deve coincidere con la (1.145), quindi
9 £3/2 / , )
NGEEE = gﬁ = f=2/f = f(n)=n (1.147)

Otteniamo cokl'espressione del paragrafo precedente.
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1.11.3 Quantizzazione del momento angolare.

Per un’orbita circolare di raggio possiamo scrivere il momento angolare in termini dei
potenzialilV, usando le (1.132):

Z2%e* 2 . mZ%e* 1
L = mva = mwa® = m2rva® = 2rm S wsr =2
AW? hJE ho VWE
Usando il valore quantizzato per I'energia ed il valor€ dii ha
h
L=nh=n— (1.148)
2w

Viceversa, assumendo la quantizzazione del momento angolare e le equazioni del moto si
ha:

762 2552 2
mwa® = nh mw?a = —; = a= h = % (1.149)
e quindi per I'energia:
1ze* 12%* 1
E, = =— 1.150
2 a 2 ap n? ( )

cioé esattamente la formula precedente. Assumendo la quantizzazione del momento ango-
lare non occorre far uso del principio di corrispondenza.

L'idea di quantizzazione del momento angolare tradarsua giustificazione nell’estensione dell’'ana-

lisi di Planck sulla discretizzazione dello spazio delle fasi e su analoghe ricerche di Ehrenfest[Ehr13]
e successivamente di Sommerfeld, come vedremo nel prossimo paragrafo. Probabilmente una delle
prime proposte in tal sensostata fatta da Lorentz nelle discussioni del congresso di Solvay del 1911.
Se i fenomeni periodici hanno una quantizzazione, $i pupporre che ci sia una quantizzazione
nell'energia di rotazione di un corpo:

ly2_1 2 _ oot
2[w = 2[(27r1/) = Cnhv I(27r11)f2C’27T

I indica il momento di inerzia. In particolare, in analogia con I'oscillatore armonico e con alcuni
modelli analoghi sviluppati da Planck, si@supporre che la differenza di energia fra due livelli
rotazionali sia legata all’emissione di un quanto di energia con frequenza media fra le due frequenze
in gioco:
%1 (W2 —w?) = hw = Jwns1=1lw, +h (1.151)
Dalla (1.151) segue, per il momento angoldte, = nh. Nel modello proposto da Ehrenfest la
costanteC & introdotta dalla relazion&,.; = nhv/2, ed il fattore 1/2 rispetto all'oscillatore
attribuito alla presenza della sola energia cinetica: nell’oscillatore armonico tale termine contribuisce
alla met dell’energia totale.
In entrambe le interpretazioni la quantizzazione del momento angolare implica per i livelli ener-
getici:
L* 1., R

L= — = — = 1.152
of ~ 21" " T 82" (1.152)
e per le frequenze di transizione
h? 2 h? 1
En+1 —FE, = hlln,n+1 = 8 2[ ((TL+ 1) ) = Py (TL+ 5) (1153)

Lo spettro quindi consiste in righe equispaziate, un cosiddpittro a bandeche effettivamente

quello osservato per molecole biatomiche. Dai dati sperimenfadssibile valutaré e si trovano dei
numeri ragionevoli. Per inciso la quantizzazione del momento angolare automaticadmentilda
del tipo di spettro: due nuclei di massda = Am,, e distanza relativd, dell'ordine dia s, 0 qualche
A, hanno un momento di inerziai~ Md?, quindi le frequenze caratteristiche sono dell'ordine di

L h 10_

c 2 -
~ =~ A=—~A"-3x10" A
YT MaZ, ~ A? v 8
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e la radiazione cade nella regione dell'infrarosso.
Modelli atomici in cui si prevedevano delle variazionifdin momento angolare nelle transizioni
erano stati precedentemente elaborati da Nicholson[Nich12].

Come vedremo nel seguito questo tipo di approccingasere generalizzato e formalizzato
e daa luogo ad una procedura di quantizzazione applicabile a molti sistemi.

L'uso del principio di corrispondenza richiede una analisi classica del problema e, so-
prattutto, bisogna capire come applicare questo principio, la seconda proceduragnvece
piu formale. Il principio di corrispondenza ha trovato maggiore applicazione nella scuola
di Bohr a Copenhagen, mentre la procedura “canorécstata pi sviluppata a Monaco da
Sommerfeld e Born a Gottinga.

1.11.4 Osservazioni e prime generalizzazioni.

E owvio che la spiegazione dello spettro dell'idrogeno da parte di Bohr apre la porta al-
l'indagine della struttura atomica e molecolare. Vledremo alcuni degli sviluppi nei paragrfi
successivi. Qui vogliamo solo notare un paio di punti interessanti.

1) L'espressione per il raggio dell’orbita stazionaria, vedi es.(1.149), indica come la
grandezza effettiva di un atomo dipenda dal livello energetico. La rapida crescita
conn, spiega immediatamente alcuni aspetti qualitativi degli spettri. Abbiamo visto
cheap ~ 0.5 x 108 cm, quindi pern = 10 — 20 si raggiungono raggi dell’or-
dine di10~% cm, abbastanza rilevanti. Questo spiega perighe corrispondenti a
transizioni verso stati molto eccitati si vedono solo in gas abbastanza rarefatti.

2) Un punto importante la dipendenza de. Abbiamo fatto il calcolo nell'ipotesi di
massa infinita del nucleckE chiaro, trattandosi di un problema a due corpi, che la
massa che determina i parametri dell’orbita classitmmassa ridotta del sistema

mM
m—+ M

guesto significa che i livelli precedentemente trovati, proporzionaliéa la dipen-
denzal/ap, sono in reak proporzionali a:. In uno ione idrogenoide lo spetti
allora scrivibile nella forma

= M = Massa del nucleo (1.154)

1 1 M 1 me*

o = 2Rt (5 — — ) Bu= ———Re  Re = e

Ynina M (n% n%) MM 2 h2
(1.155)

Siusail simbolaR,, perindicare la costante di Rydberg teorica relativa ad un nucleo
di massa infinita. La forma della (1.15B)stata uno dei primissimi grossi succes-

si della teoria di Bohr. In alcune atmosfere stellari si erano osservati degli spettri
praticamente identici ai termini della serie di Balmer ma leggermente spostati in fre-
quenza. Bohr correttamente li intergyetome dovuti ad una serie spettrale dell’elio
ionizzato. PelZ = 2 si pw scrivere

1 1

Vning = RHe ( - ) (1156)
b Gm)?  (Gno)?

da cui si capisce la quasi coincidenza dei termini pari con le serie dell'idrogeno.

Tuttavia la costante di Rydberg dell’ekoleggermente diversa da quella dell'idroge-

no, a causa della diversa massa del nucleo: I'espressione (1.156) era perfettamente

coincidente con i dati spetroscopici.

1.11.5 Lesperimento di Franck ed Hertz.

Un importante esperimento che diede la prima conferma non direttamente spettroscopica
dell'ipotesi di Bohr sui livelli atomici stazionari, fu quello compiuto nel 1914 da Frank ed
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Hertz[FrHel4]. Lo schema dell'esperimemtonostrato in figura 1.6. Un fascio di elettroni
viene emesso da un catodd, tenuto a potenziale-x ed accelerato verso I'anodal,
collegato a terra, Un controcampo generato da una griglia a potenZidlevolt impedisce
agli elettroni con energia minore @i5 eV di essere rilevati dal galvanomettb

Gas BA ﬁ /

+0.5 volt Terra il

Figura 1.6: Diagramma schematico dell’esperi- 8 © voit

mento di Franck e Hertz(' ¢ il catodo, la sor-

gente di elettroniA I'anodo, collegato a terrad Figura 1.7: Risultati schemati-
un galvanometro per misurare la correny@ una  ¢j dell’'esperimento di Franck ed

griglia tenuta a+0.5 volt. Hertz sul Mercurio.

Il fascio elettronico atraversa un ambiente riempito di vapori di Mercurio. Siands . . .
gli stati stazionari dell'latomo. A temperatura ambiente praticamente tutti gli atomi sono
nello stato fondamentale.

L'energia degli elettroni pti essere variata cambiando il potenzialeA bassa energia
gli elettroni hanno urti elastici con I'atomo, po&ld/y, > m. non si ha praticamente
perdita di energia cinetica. Allaumentaresdaumenta la velocit degli elettroni e quindi
la corrente rilevata d&. Quando I'energia degli elettroni supera la sodli& = F» — Fy,
e possibile un nuovo fenomeno: I'energia viene trasferita in energia interna dell'atomo,
cioe si ha un atomo eccitato, e quindi I'elettrone diminuisce la sua valo€ier energia
immediatamente sopra la soglia I'elettrone perde praticamente tutta la sua energia cinetica
e la griglia impedisce la rilevazione. Si deve quindi osservare un brusco calo di corrente
in corrispondenza dell’energia elettronica, &idel voltaggio,l. = ex = AFE. lo stesso
meccanismo funziona a energid £, 3AF etc., corrispondenti a urti multipli degli elet-
troni con il gas. Per il mercurié; — Fy ~ 4.9eV: il risultato dell’esperimento, mostrato
nella figura 1.7, conferma in pieno la teoria di Bohr.

1.12 Regole di quantizzazione.

Formulare delle regole di quantizzazione significa avere uno schema per I'introduzione del
concetto di quanto applicabile ad ogni sistema meccanico. Questo significa che occorre
porre la questione in termini delle variabili canonighe, in modo da avere uno strumento
valido per ogni sistema Hamiltoniano. La speraazhe, una volte formulate, queste regole
permettano di calcolare i livelli energetici dei sistemi atomici, determinare gli spettri etc.

| primi passi in tal senso sono quelli fatti da Planck e sono quanto visto nel paragrafo
1.9: la quantizzazione fuessere interpretata nello spazio delle fasi dell'oscillatore armo-
nico assegnando ad ogni cella dello spazio delle fasi un “voluleXq = h e asserendo
che l'area racchiusa dalla curva di fase

2

2oy %kq2 —E (1.157)

2m
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racchiuda un numero intero di celle. Questo significa: fra tutte le traiettorie possibili nello
spazio delle fasi, cidfra tutte le ellissi del pianp, ¢q) descritte dalla (1.158olo alcune

sono selezionate dal processo di quantizzazione, queste corrispondono agli stati stazionari
quantistici del sistend. L'area racchiusa dall’ellisse (1.157) pp@ssere scritta, usando il
teorema di Stokes, o semplicemente applicando la definizione di area, nella forma:

area= /dpdq = j{pdq (1.158)

Lintegrale nella (1.158 effettuato sulla curva (1.157). Esplicitamente: si ricavkalla
(1.157), che allora diventa una funzioneqdéd E, edé questa funzione che viene usata

nella (1.158):
1
p= :l:\/Qm (E - qu2>

Chiamatey, ¢» le due radici del radicando, @d punti i punti di inversione del moto, in

cuip =0, si ha:
q2 1
area— 2/ 2m <E — 2kq2) (1.159)
q1

La regola di quantizzazione si scrive allora

?{pdq =nh (1.160)

La (1.160)selezionale traiettorie permesse quantisticamente. Se esprimigraajuindi
p, tramite il tempo, che qui fa le veci di parametro della traiettoria, possiamo riscrivere la

(1.160) nela forma
T dq T
/ p—dt = / 2F.;, dt = nh
o dt 0

T indica il periodo del moto, cidil tempo necessario a percorrere l'intera orbita. Moltipli-
cando e dividendo péF ed usando la frequenza= 1/T si ha anche

I 1
T—/ 2B i dt = —2E¢;, = — =nh (1.161)
T /o v v

La sopralineatura indica la media temporale. L'ultimo passaggio sfrutta il fatto che per un
oscillatoreE,;,, = E/2'8.

Si tratta ora di capire se una forma analoga alla (1.158) possa essere estesa ad altri
sistemi, ed in particolare a sistemi tridimensionali o cain griadi di libera. La cosa pi
ovvia sarebbe un’estensione del tipo

]{ pidg; = nih (1.162)

a tutti i gradi di libera del sistema. La (1.162) in generale non ha molto senso, e sulla stes-
sa scrittura (1.160) potrebbero essere espressi dei dubbi. Le obiezioni principali sorgono
gia nel primo congresso di Solvay del 1911, a cui abbiandcagicennato. Proviamo ad
elencarle:

17Questa nore la motivazione dello studio di Planck, che era interessatotdiagli aspetti statistici della
questione, qui riportiamo le conseguenze dell'analisi di Planck sul problema che stiamo trattando.

18 5 formafot E.;ndt = Cnht € stata usata anche da Sommerfeld in una proposta di applicazionde della
legge di Planck a fenomeni non periodici, come I'emissione di raggi X durante negli urti di elettroni con un
metallo.
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1) Laprima obiezione, dovuta a Poinéa& che la connessione fra la relaziahpAq =
h e la (1.158) dipende dalla forma che si sceglie per le celle dello spazio delle fa-
si. Abbiamo discusso questo problema nel paragrafo 1.9, vedi discussione dopo
l'eq.(1.118).

2) La (1.162) nore invariante per scelta delle coordinate canoniche e questo porta
a degli assurdi, obiezione sempre di Poigca€onsideriamo infatti un oscillatore
isotropo tridimensionale, si avrebbero tre condizioni:

]{pxdaz =nzh fpydy =nyh fpzdz =n,h (1.163)

conng, ny, n, interi. Se si considerano tre altri assi, ottenuti per rotazione da quelli
iniziali, si dovrebbero scrivere le analoghe condizioni con tre altri intgriy; , n,.
Ma ruotando le coordinate con una matrige

fpla:dﬂcl = ZRlile %pidl‘k

ik

ed in generale, come facile verificare, questa espressione eam multiplo intero
di i, anche se valgono le (1.162). Il problema quigdjuali sono,se esitono, le
coordinate “giuste” su cui implementare le condizioni (1.162)?

3) Unaterza osservazione, sempre sul tipo di scelta delle “celle” dello spazio delle fasi,
e posta da Einstein. Ci si aspetta che un oscillatore tridimensionale abbia il triplo
dell’energia termica di un oscillatore unidimensionale. Ora I'equazione (1.157) in
questo caso ha 6 variabili, 3 componenti dell'impulso e 3 coordianate. Riscalando
le variabili come nel caso unidimensionale la (1.157) descrive una sfera in 6 dimen-
sioni, di raggior « VE. Larea dell’ellisse qui va sostituita con I'elemento di
volume

Epdiq o r’dr <« E°?dEY? x E?dE

Il valor medio dell’energia nell’insieme canoniéadato da:

JdE E3e=E/KT
(E) = [dE E3¢~E/RT
Assumendo semplicemente una quantizzazione dell’eneigig, nhv, l'integrale
si trasforma in una somma, ma il valor medio corrispondemae ¢ il triplo del
valor medio unidimensionale. | vari livelli di energia devono quindi avere un “peso
statistico” diverso, a differenza di quanto succede nel caso unidimensidhaie.
che si chiamadegenerazione del livelloLa teoria deve essere capace di predire
questa degenerazione. Se valessero le (1.162,1.163) per le tre coordinate cartesiane la
degenerazione sarebbe dovuta al fatto che un dato intpud essere scritto in molti
modi nella forman = n, + n, + n.. Ma cos si da di nuovo un ruolo privilegiato
alle coordinate cartesiane, e non se ne capisce il motivo.

5) Una quarta osservazionepghe un’obiezione, nasce da una discussione di Einstein
e Lorentz, sempre al congresso Solvay. La teoria di Planck ed Einstein sulla radiazio-
ne di corpo nero insegna che sicuramente la teoria elettromagnetica classicanon pu
essere usata nel descrivere I'interazione luce materia; la selezione di stati stazionari,
per I'oscillatore armonico, indica anche una deviazione dalla meccanica classica, ma
le orbite sono pur sempre scelte a partire da variabili canoniche clasgigheedal
concetto classico di energia, come espresso nella (1.157). Ora I'energia classicamen-
te pw cambiare, effettuando un lavoro dall’esterno sul sistema. In questo processo
possono cambiare i parametri del sistema, in particolare la frequenza di oscillazione.
Consideriamo ad esempio un pendolo di lunghezzger piccole oscillazioni si ha
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un oscillatore armonico ideale con frequenza proptia = \/W. Se si accorcia il

filo si compie un lavoro sul sistema, quindi I'energia cambia, ma nello stesso tempo
cambia anche la frequenza. Se anche il sistema inizialmente soddisfaceva la relazio-
ne di PlanckE = nhrv comee possibile che dopo il processo il rapporto fra la nuova
energiak’ e la nuova fequenzé sia ancora un multiplo intero @? L'osservazione

di Einsteine che per proces#nti, in cui cice il filo si accorcia lentamente rispetto

alla frequenza di oscillazioné/¢ < v, il rapporto E/v rimane costante. Questo

tipo di processi lenti saranno chiamatbcessi adiabatice forniranno, soprattutto

per merito di Ehrenfest e dei suoi allievi, la chiave per capire quali integrali del tipo
(1.160) vanno considerati e peich

5) C'e infine un problema fondamentale: nella formula (1.160) I'integeadsteso ad
un periodo, come si possono scrivere le condizioni di quantizzazione se il moto non
e periodico?

1.12.1 Invarianti adiabatici.

Chiariamo innanzitutto che tipo di problema vogliamo risolvere. Si tratta di avere un crite-
rio per la selezione di stafiiscretizzatdi un sistema meccanico, usando lo schema concet-
tuale della meccanica classica, élanico a disposizione al momento, prima della formu-
lazione della meccanica quantistica. Questi stati devono avere delle energie disgrete,

le eventuali transizioni elettromagnetiche fra questi stati avvengono tramite I'emissione o
I'assorbimento di luce (fotoni) con frequenza fissat&vda= E,, — E,,. Di sicuro sappia-

mo che la meccanica classica noromssere usata per descrivere questo tipo di processi,
madeve esserdina qualche situazione in cui i ragionamenti classici valgono, altrimenti
non potremmo in alcuna circostanza neppure parlare di orbite, impulsi etc., e tutto I'ap-
proccio sarebbe privo di senso. L'osservazione di Ehrenfest, molto “moderna” dal punto di
vista di principio,e che un modo, l'unico in vedt per caratterizzare un sistemauello

di considerarlo accoppiato con I'esterno”, eieccorre trattare sistembn isolati. For-
malmente questo significa che 'Hamiltoniana del sistema ha la forma gedétfica, \),

dove )\, funzione del tempag 'insieme dei parametri che descrivono I'accoppiamento.

pud indicare qualunque cosa, ad esempio I'accoppiamento con un campo elettromagnetico,
ma soprattutto, ed questo il punto interessante, possiamo pensare che I'azione dell'accop-
piamento si traduca in unariazione dei parametiiel sistema. |l lettore notara stretta
analogia con la definizione dei parametri termodinamici: il volume di un gas, ad esempio,
da un lato determina lo stato del gas, dall'altro la sua variaziobepsere provocata da un
agente esterno (una forza che regola lo spostamento di una parete) ndommeno neces-

sario che la variazione dei parametri sia sperimentalmente fattibile, basta poterla pensare
come un esperimento concettuale: ad esergpiattibile I'accorciamento di un pendolo
come visto nel paragrafo precedente, mentre non sarebbe facilmente realizzabile una va-
riazione continua della carica di un nucleo atomico che regola le orbite elettroniche (oggi
sappiamo che sarebbe impossibile).

Quello che sappiamo dall’esperienza con la radiazéoole una variazione veloce dei
parametriA, come quella del campo elettrico di un’onda elettromagnetica, provoca dei
“salti quantici” non descrivibili dalla meccanica classica. D’altronde I'esistenza stessa di
un quanto d’azioneh, implica che, ad esempio, i trasferimenti di energia devono essere
guantizzati, ed in generale la quantizzazione significa che le variazioni di certe grandezze
sono regolate da numeri interi, quindi non con conti&uRossiamo allora immaginare che
se consideriamo traformazioni molto lente dei parametri queste grandezze non possono va-
riare. Se esisteina zona di “sovrapposizione” fra la meccanica quantistica e quella classica
gueste grandezze, nelle stesse circostanze, devono essere costanti anche classicamente. Ri-
petiamo: se non esistesse nessuna circostanza in cui possiamo applicare la meccanica clas-
sica e la quantizzazione contemporaneamente tutto I'approccio non avrebbe senso. Queste
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grandezze esistono in meccanica classica, si chianmaoanti adiabatici, e saranno
indicate con la letterd nel seguito.

Come vedremo fra poco, quando gli invarianti adiabatici esisepossibile scrivere
I'energia del sistema come una funzioB¢.J). Questo fornisce un criterio ed una logica
alla quantizzazione. Partiamo dall’'oscillatore armonico, di cui assumiamo di avere capi-
to la quantizzazione, (anche in tre dimensioni considerando il sistema come somma di tre
oscillatori indipendenti). Se abbiamo un altro sistema e troviamo una serie di Hamilto-
niane che al variare di un parametro connettono il nuovo sistema all’'oscillatore armonico
abbiamo la quantizzazione del nuovo sistema. Ad esempio consideriamo le Hamiltoniane

2 2

p 1, 5 1 e 1 5

H =—+ -k — |- -k 1.164

t2m+2q+T(r 24 (1.164)

pert = 0 si ha I'Hamiltoniana di un oscillatore armonico, pex T' quella di un atomo di
idrogeno. Le energie dei due sistemi sono scritte nella forma

Eo(Jo), Ex(JT)

Dove Jy, J7 sono i due invarianti adiabatici iniziali e finali. Per trasformazioni lenteg cio
T grandi, Jo = Jr quindi anche I'energia dell'atomo di idrogemoquantizzata. In al-

tre parole qualunque sistema aaeonnesso tramite una trasformazione adiabatica ad un
oscillatore armonico, o ad un insieme di oscillatori armoréajuantizzabile.

NOTA Percle questo ragionamento sia valido le Hamiltonidfiedevono ammettere invarianti adia-
batici, per ogni valore di. Questo punt@ stato particolarmente messo in luce da Fermi[Fer23]
e, sotto un altro punto di vista, da Einstein. Questa richiesta, come vedeenoma, delle cause di
incosistenza interna e del fallimento di tutta la procedura.

Se chiamiamo{.J;} la collezione di invarianti adiabatici del sistema, la procedura di
quantizzazione consisgemn pratica nel porrg; = n;h, conn; numeri interi.

Formalmente gli invarianti adiabatici si definiscono in questo modo. Supponiamo di
avere un parametro lentamente variabile), e supponiamo di considerare la variazione del
sistema in un temp®@ = ¢, — t1. Per ogni valore d\ possiamo definire le nostre variabili
dinamiche, e costruire delle grandezze\) che dipendono dal parametro di controllo. Una
variabile dinamica/ € un invariante adiabatico se

Somh_ J) =Tt o s (1.165)
A A
coni A—0;T—o0 A — cost. (1.166)

Jo—Ji & lavariazione della nostra quaatizT & I'ordine di grandezza della variazione del
parametro, quindi la condizione imposta dice che il parametro varia, anche se lentamente.
Per) — 0 si ha quindiAJ — 0, cioé la quantia.J resta costanté.

La richiesta (1.165) nok banale. E chiaro che se\ & costante la quandit/ resta
costante e quindi la sua variaziod@roporzionale &, ma, in generale, sihAJ o AX ~
X(tz—tl). Larichiesta (1.165) equivale a richiedere che il coefficienterstlla variazione
di J restifinito per tempi infinitamente lunghi.

Per capire il significato fisico della (1.165) consideriamo ancora un generico oscillatore
armonico:

1 1
H = Ein + Epot = §Qp2 + §5q2 2mv =/ Ba (1.167)

191n alcune dimostrazioni che seguiranno si opereranno degli sviluppi in serie per la fungtonse si vuole
valutare il resto in questi sviluppi, e quindi verificare rigorosamente la (1.165), occorre avere sotto controllo la
derivata seconda di, assumeremo senz’altro che la funzioxg) sia doppiamente differenziabile con derivata
continua, ci& di classe?.
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Consideriamo ora, 3 come parametri variabili, lentamente, nel tempdn questo caso
e la “frequenza istantanea”, &@da frequenza che avrebbe l'oscillatore ®g3 fossero
costanti. Le equazioni di Hamilton per il sistema (1.167) sono sempre

_9H _
dq

p

p =
Il valore dell’Hamiltoniana invece (I'energia) nancostante nel tempo, usando le (1.168):

dH 0H .p* .q¢°
oo Ay tiy

Quindi per la variazione di energia in un tenfpai pu scrivere

T . ;
AE = / dt <O‘E n BEW> (1.169)
0 « B

Il punto crucialee il seguente: nell'integrando della (1.169) ci sono termini “veloci”,
Ecin, Epot che variano con un tempo dell'ordine del periodo di oscillazione del sistema,
e termini “lenti”, le variazioni dei paramett, 5. In ogni singolo periodo possiamo assu-
mere questi ultimi costanti e quindi, in ogni periodo, l'integrale della (1.568) media
dell’energia cinetica e dell’energia potenziale, queste sono la dedfenergia totale, per il
teorema del viriale. Al primo ordine i, 3, i termini in o, 3 nella (1.169) possono essere
considerati costanti e quindi

_Efa B P
AFE = 5 <a+ﬁ>T+(’)(a ,3%) (1.170)

Comee chiaro dalla (1.170YA E e proporzionale alle velogitdi variazione mad’ none un
invariante adiabaticqercte il coefficiente delle velodité proporzionale al tempo totale,
quindi diverge pefl’ — oo.

Consideriamo d’altra parte la frequenza del sistema:

dve 1. gy, La1ppap v [& B
T A L N D

Quindi al primo ordine nelle veloditdi variazione

- dl/ O/ ﬁ -2 A2
AV_/tl dtdt_”<a+5>T+0(a,6) (1.171)
Dalle (1.170),(1.171) segue, pérg — 0:
F- A <E) =0 (1.172)
E - U

Quindi effettivamente? /v € un invariante adiabatico. Nel seguito daremo una dimostra-
zione un @ piu rigorosa ma la cosa che il lettore deve apprezeadasseparazione fra moti
lenti e veloci. Chiaramente questa separazione cessa di valere-sé, e per frequenza

di oscillazione nulla il teorema non vale. Il lettoredptrovare una dimostrazione molto
dettagliata ed istruttiva nel caso di un pendolo nel libro di Tomonaga[Tomonagal].

Non abbiamo fatto nessuna ipotesi sulla natura dell’'oscillatore, sedaecriveva la
piccola oscillazione di un pendolo, una molla o altro. In effetti Ehrenfest, nel suo primo
lavoro sull’argomento applica la relazione di adiabai@ppena trovata agli oscillatori
virtuali che descrivono il campo di radiazione in una caviissia al corpo nero.
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La motivazione fisica di questa applicazione, e 'origine concreta dell'interesse per gli
invarianti adiabaticig la seguente: nella derivazione della legge di Planck abbiamo usato
la legge di Wien, questa leggestata ricavata calcolando, in pratica, il lavoro effettuato
dalla radiazione su una parete mobile, applicando quindi le leggi della meccanica classica,
e la correttezza di questa procedura nod pasere data per scontata. Ehrenfest dimostra
che in effetti la legge di Wien segue direttamente dall'ipotesi adiabatica.

Consideriamo infatti I'insieme degli oscillatori di campo in una cayvjier semplici
una cavia cubica di latal.. Abbiamo visto che la distribuzione spettrale di energia i pu
scrivere nella forma

82

u, dv = numero di modix energia per mode- dv E, (2.173)

03
E, e I'energia di un modo di oscillazione del campo elettromagnetic& diain modo
della cavig.

La cavita sia isolata termicamente, I'unico parametro di contréllallora il volume.
Consideriamo ora uno spostametdato delle pareti della cavdt Questee un processo
adiabatico (meccanicamente) quindi, per quanto igtgr deverimanere costante. Se si
suppone che esista una distribuzione spettfglequesta deve essere una funzione della
frequenza, e quindi anchi, /v: E,/v = f(v). Questa funzione deve rimanere costante
nello spostamento. Supponiamo per fissare le idee che le pareti delt@asiamib conduttri-
ci, in modo che il campo si annulli su di esse, allora sulla lunghézt@vono trovare posto
un multiplo intero di semilunghezze d’onda)/2 = L, cioé A x L e quindiv « 1/L.
Quindi la quantid v L rimane costante nell'espansione, allora:

E,

= fvL) E, =vf(vL) = u, = sm/”

= dv f(vL) (1.174)
Notiamo chevL = (¢/2) - n quindi, a parte una costante fisgamultiplo di un interog

cioe “guantizzato”, queste il motivo per cuif(v), non potendo cambiare con contirayit
resta costante.

La trasformazione considerata, oltre che essere Eatachaeversibile in effetti ab-
biamo visto che al variare lento dei parametri la variazione di enérgi@porzionale alla
velocita, eq.(1.170), quindi cambiando segno alla veboléffetto si inverte e siritorna alla
situazione precedente, sempre a meno di ordini superiori nella \eldeitrasformazioni
di questo tipo (il sistema isolato termicamente) I'entropia del sistema non cambia, quindi
la trasformazione adiabatica in senso termodinamico. Per le trasformazioni adiabatiche
il secondo principio della termodinamica impone, vedi eq.(1.3%0) V3 « 1/L
quindi la (1.172) prende la forma

8’

u, =
83

dyf(%J (1.175)

cheeé proprio la legge di Wien.
Tornando al problema della quantizzazione, si tratta di trovare una procedura per clas-
sificare gli invariantiJ;. Consideriamo dapprima il caso unidimensionale.

1.13 Moti periodici unidimensionali.

Consideriamo un motperiodicounidimensionale. Sianp, ¢ le coordinate canoniche e
H(p, q) 'Hamiltoniana, che supporremo indipendente dal tempo. Supponinnella
forma

1
H(p,q) = %pQ +U(q)

U e I'energia potenziale. Le equazioni di Hamilton si scrivono

p=-"" g§=p (1.176)
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Un moto periodico si pot manifestare in due modi apparentemente diversi:

1) Una rotazione La variabileg aumenta di una quargitiissa dopo un perioda(t +
T) = q(t)+9. E il caso ad esempio di una rotazione, in guappresenta un angolo e
0 €27. Usiamo il linguaggio degli angoli per essere concreti. Le variabili dinamiche
q, p, che si assumono ottenibili dalla posizione iniziale e vetoriiziale tramite la
soluzione delle equazioni del moto, sono periodiche di peribdguindi tutte le
variabili dinamichef (p, ¢) hanno la stessa propréetFormalmente = ¢ € R ma
le coordinatey e ¢ + 27 corrispondono allo stesso punto fisico, quindi in reddt
spazio delle configurazioni, @&d'insieme dellg;, € un cerchio, ovvero un segmento
in cui le estremi, diciamo0, 2 sono identificate: indicheremo tale insietheon
7.

2) Una librazione (oscillazione)Un moto di librazione consiste nell'oscillazione di
fra due estremigy , g2 e durante il periodo del moto si ha, ad esempjos~ g> — qi.
E il classico moto oscillatorio, come esempio somonsiderare I'oscillazione di un
pendolo, un oscillatore armonico, etc. Formalmente in questo caso lo spazio delle
configurazioni il segmentdq , g2].

H e indipendente dal tempo, quindi I'energi@onservata, ne segue che tutte le orbite,
anche guelle da “selezionare” per la quantizzazione, hanno energia costante. Consideriamo
le orbite possibili ad energia fissata. Sopmcrivere allora:

H(p,q) = in +U(Q=E = p==+vV2m(E-U(g) (1.177)

2m

Chiaramente la regione classicamente permesgaella in cuilU/(¢) < E. Bisogna ora
fare attenzione a cosa significa il seghmella (1.177).

1) Il radicando nella (1.177) non ha radici, quirtdsempre positivo nella regione clas-
sicamente permessapud assumere qualunque valore, quindi siamo nel caso di un
moto rotazionale.U(q) deveessere una funzione periodica, pérdd angoli che
differiscono di2w corrisponde lo stesso punto fisico, quindi angheperiodico. La
(1.177) definisce allora 2 orbite distinte, nel senso che esistono due orbite distinte per
lo stesso valore dell’'energia: I'orbita cen> 0 e quella corp < 0, corrispondenti
ai moti di rotazione orario e antioraftb La funzionep(q) & una funzione periodica
quindi pw essere utiimente pensata come una funzione definiteeschio 7, per
motivi che saranno chiari in seguito si dice che definisceampo vettorialesu7 .

2) llradicando ha due radiaj; , ¢» che corrispondono ai punti di inversione del moto e
sono i limiti di variazione per 'oscillazione. la radice ha quindi la forma

VI@a—a)e—q9  flg >0

| segni+ nella (1.177) corrispondono ai moti di “andata” e “ritorno” sulla stessa
orbita. Quindi vediamo che noa possibile in questo caso definire una funzione
univocap(q) sul segmentfy, , g2]. Ma il “trucco” per definire una funzione univoca a
partire da una funzione alpvalorie ben noto, eé la costruzione dell’analogo di una
superficie di Riemann. Qui basta raddoppiare il segmentaaosiderare lo spazio
delle configurazioni come l'uniong, ¢2] U [¢2,¢1]: la determinazioner,/ & la
funzione definita sul primo segmento, la determinaziené & definita sul secondo.
Nell'insieme considerato, il punto iniziale ed il punto finale sono identificati quindi si
ha ancora un cerchi@;, e la funzione, per come I'abbiamo definit&, ora periodica
su7: nello stesso senso del caso precedente, definisce un campo vettofiale su

20pi solito si usa la notaziong; per un cerchio unidimensionale, non la usiamo per non creare confusione con
I'azione S che introdurremo fra poco.

21Trascuriamo per sempliéitil caso particolare in cuf? coincide con uno dei valori massimi o minimi della
funzioneU (q).
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Abbiamo fatto questa breve disamina geometrica pesan utile per capire il caso con
piu gradi di liberéa.

Per un sistema con un solo grado di lideesiste un integrale adiabatico edlato,
come ci si aspettava, da

J = %pdq (1.178)

Nella (1.178) la funzione(g, E) € intesa come definita nella (1.177), con le specfiche fatte
sopra, quindi nel caso di un moto oscillatorio la (1.178) significa

q2
J = 2/ pdq (1.1279)
q1

NOTA. Per fisso valore dell’energia, esistothoe orbite possibili nel caso rotatorio, corri-
spondenti alle due funzioni definite nella (1.177): in questo dagud assumere sia valori
positivi sia negativi:e I'area (con segno) delimitata dal grafico della funzipig¢ E) e
I'asse delleg nel piano(g, p). Nel caso oscillatorio i due segni nella (1.177) corrispondo-
no alle due determinazioni deltaessa funziongcioe I'orbita € una sola & assume solo
valori positivi, & 'area delimitata della curva chiuga = p?/2m + U, nel piano(q, p);
un’ellisse nel caso dell’oscillatore armonico.

E possibile dare una dimostrazione diretta del fatto.£ltefinito dalla (1.178} un inva-
riante adiabatico, vedi es.[Tomonaga], éwit utile seguire un’altra strada, generalizzabile
nel caso di pi gradi di liber&. Indichiamo i passi della procedura, rimandando alla sezione
1.E le dimostrazioni, che richiedono un minimo di familiariton i metodi della meccanica
analitica.

1) E possibile effettuare una trasformazione canonica di variéhifi) — (w,.J) in
modo tale che I'Hamiltoniana, nelle nuove variabili, dipenda solo/ d&icordia-
mo che una trasformazione canonica lascia invariante la forma delle equazioni di
Hamilton. In queste nuove variabili le equazioni del moto si scrivono

OH . OH
_9t W= 2o
ow oJ
Quindi le variabili J sonocostanti del motpmentre le variabilw si comportano

come angoli, crescono linearmente col tempo. La coppia di varigbili) prende il
nome di coppia dvariabili di azione-angolo.

J = 0 (1.180)

2) Lavariabilew pud essere scelta come una variabile di periodo 1, la grandezza
e lafrequenzadel moto, ci@ l'inverso del periodo. le variabili canoniclgep sono
funzioni periodichedi w (nel caso di angoli gli angoli che differiscono 2+ sono
identificati). In questa normalizzazione la variabil& data dalla (1.178).

3) Latrasformazione divariabili guessere espressa da una funzione generatfige./)

tale che
_95 _ 08
P=%¢ YT aJ
La (1.181) implica, per una hamiltoniana indipendente dal tempo, che la funZione
soddisfa I'equazione differenziale di Hamilton-Jacobi:

(1.181)

oS

E=H(q,p) = H(%(Tq)

(1.182)

4) La variabileJ e un invariante adiabatico. La procedura per calcolagéesemplice:
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a) Siesprime» come funzione dj, E attraverso la (1.177).

b) Si calcola l'integrale (1.178) ottenendo tosin funzione diE. La richiesta
p € R o la natura angolare difissano i limiti di integrazione. Invertendo la
funzione.J(E) si ottiene la nuova Hamiltonian@(.7).

NOTA. Nel caso unidimensionale I'equazione di Hamilton-Ja@bn’equazione diffe-
renziale ordinaria. La soluzione si ricava immediatamente dalla (1.181):

q
S(q, J):/O pdq (1.183)

Una eventuale costante additiva nella (1.18®%)essenziale. Nella (1.188)= p(q, E) ed

E e espresso in funzione di, quindi S e funzione dig e J. Notiamo anche che in questo
modo si ottiene subito

95 [ apd

_ 92 _ 1.184
a7~ J, a1 (1.184)

w

che esprimev in funzione dig, invertendo tale relazione di ig= g(w).

Procedura di quantizzazione. Le orbite quantisticamente permesse corrispondono a
J=nh neN (1.185)

Una volta fissatd/, I'energiaé data da& = E(.J), in questo modo si determinano i livelli
energetici del sistema e, via la relazidng; = E; — E; le frequenze di transizione, &o
lo spettro di emissione e assorbimento del sistema.

Osservazione. Se il sistema ammette un punto di equilibrio, la traiettgria 0, ¢ = geq
e classicamente permessa. La regola di quantizzazione

J = %pdq =nh (1.186)

dice che questa stessa traiettaggiguantisticamente permessa corrisponde al numero
qguanticon = 0. Quindi F = E,,,;,, € in questo caso I'energia dello stato fondamentale del
sistema.

1.13.1 Esempi.

In questa sezione presentiamo, in modo succinto, alcuni applicazioni elementari dei con-
cetti espressi nel paragrafo precedente. Questi esempi dovrebbero chiarire alcuni punti
di interesse fisico, il lettore che voglia approfondire gli aspetti formadi ponsultare il
paragrafo 1.E.

Rotatore.

E il modello g& visto per la schematizzazione di un tipo di rotazione per una molecola
biatomica, meccanicamente corrisponde ad una rotazione attorno ad un asse, pesse
convenzione, di un sistema rigido con momento di inefzipropriamentd .. L'energia

€ puramente cinetica:

Ly

57P% Py =1 (1.187)

1
Ecin = 5-[902 = H=
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p indica I'angolo azimutale, ciadescrive la rotazione attornaal’'Hamiltonianae ciclica
nella variabilep, quindip, & una costante del mote,il momento angolare lungo I'asse
La variabile d’azione/ si calcola immediatamente:

J = %p¢d<p = 27p,, (1.188)

e la procedura di quantizzaziogelata da

h h?
J =n,h Dy = ng,% E = ﬂni

Come ga accennato nel paragrafo 1.11.3 questi livelli energetici si accordano con I'eviden-
za sperimentale di uno spettro a bande per le molecole. Vogliamo qui sottolineare un punto:
la variabiley € un angolo, quindi il numero intera, pud essere sia positivo che negativo,

cio corrisponde al fatto che allo stesso valore dell’energia corrispondono, genericamente,
due orbite la rotazione oraria e quala antioraria. Se chiamiatato'orbita quantistica
selezionata dalle regole di selezione, possiamo dire che ogni livello energetico (&.189)
doppiamente degenereioe 2 stati corrispondono allo stesso livello, eccetto il livello con

n, = 0. La degeneraziongy,, del livello & importante peréhda una parte determina
I'equilibrio statistico via la distribuzione di Boltzmann:

(1.189)

—E,/kT
P = gne "/
dall’altra, come vedremo, influenza l'interesidelle righe spettrali.

Classicamente ad ogni momento angolare si associare un momento magnetico:

p=kL (1.190)

quindi lo stesso sistema, immerso in un campo magndsiairetto lungo I'assez, ha

un’Hamiltoniana )
H= ﬁpi — kBp, (1.191)

La variabilep,, & ancora ciclica e, al primo ordine i I'energiaé data da

n
E= 2]”*"
Vediamo quindi che la degenerazione viene rimossa introducendo un campo magnetico,
ogni livello si scinde due livelliE% + kBh|n,,|. La scissione dei livelli e la corrispondente
modifica dello spettro prende il nome effetto Zeemaerd avremo occasione di riparlarne
in seguito. La cosa importante per il momegtootare che la degenerazion@mssere ri-
mossa tramite 'introduzione di un campo esterno, quindi il numero di stati ha un significato
fisico.

— kBhn,, (1.192)

Oscillatore armonico.

E un sistema che abbiamo analizzato polte. L’'Hamiltonianad

P L 99
Quindi

p = £/2mE — m2w?2q? (1.194)

Il moto € oscillatorio, i punti di inversione sono dati da

2F 2F :
@ =—\— g2 =1/ 5 lg1] = |g2| = ¢z = Ampiezza (1.195)
mw mw
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Si ricava immediatamente
a2 E [t orE  E
J=2 V2mE — m2w2q3dq = 4— / V1—22dz = oz (1.196)
a w J_1 w v

conv = w/2m. Segue I'ormai nota legge di quantizzazione
E=H(J)=vJ E =nhv neN,n>0 (1.197)
Notiamo che in questo caso> 0, essendo il moto un’oscillazion& facile anche scrivere
le soluzioni delle equazioni del moto
. OH
= — =
oJ

Dalle equazioni precedenti, vedi in particolare la (1.184), o semplicemente ricordando la
soluzione generale per un oscillatore armonico, sificavare:

v w=vt+9 (1.198)

q = qr, cos(2mw) p = mwqy, sin(2rw) (1.199)
Notiamo che dalla (1.197) e dalla (1.195) segue

Y N e (1.200)
Tmw T™mw

Le (1.199) sono particolarmente interessanti perparmottono di calcolare immediata-
mente le medie temporali delle variabili dinamiche, trasformando I'integrale sul tempo in
un integrale sulla variabile angolate o, come si usa dire, in un integrale sutsi.

T
dw:ydt:% = T:%/O f(qm)dt:jl{f(q,p)dw

In particolare si ha

— 1 E — 3 3 E?
2 -2 4_ A = 1.201
4 21 mw? a 8IL = 92t ( )
Oscillatore anarmonico.
Consideriamo ora il sistema descritto da un’Hamiltoniana
p* 1
H="—+ —mw?¢®> + \* (1.202)
2m 2

Questoe uno dei pii semplici sistemi non armonici, nel senso che il periodo del moto
dipende dall'ampiezza di oscillazione, éidall'energia. Abbiamo

1
p= :I:\/Zm (E — imw2q2 - )\q4) (1.203)
Il periodo, esatto, del sistengadato da
q2
T= @:m @:2771/ dq (1.204)
v P w P

doveq, g2 sono i due zeri del radicando nella (1.203) &cigunti di inversione del moto.
Proviamo a stimare, per piccoli valori di, la variazione dei livelli energetici. La
variabile di azione/ € sempre data dalla (1.179)

q2(\)
J(E,)) =2 / (B, \)dg (1.205)
q1 ()
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Abbiamo indicato esplicitamente la dipendenzaXdaPer piccoli) la variazione diJ €,
dalla definizione di integrale:

q2 ap

M 1.206
oA q ( )

0J >~ 2[p(q2)0q2 — p(q1)dq1] + 2/
A=0

q

In questa espressiong, ¢go etc. sono le espressioni calcolate con= 0. Il termine di
bordo, il primo, nella (1.206) si annulla, pekchei punti di inversione I'impulsé nullo,
quindi, effettuando la derivata rispetto\a

q2 1 —
0J ~ —2/ dq —2mAg* = —)\%@q4 = —Aq4 (1.207)
@ P 2 v )

1
vo = 1/Ty = w/27 € la frequenza imperturbata dell’oscillatore armonico, che in questa
approssimazione guessere usata al posto del periodo vero, essendo I'espressione (1.207)
gia di ordine\. Usando la (1.201)

E E 3\ E?
J="4b6j=—-2
IZ0) o 2V0m2w4

Invertendo questa relazione si ottiene, allo stesso ordine in

3. E? 3 J?
E~J A——=J A 1.208
s 2 m2wt Yot 2" (2mm)2w? ( )
| livelli quantizzati sono allora
3 n?h?
E, =nh A 1.209
oty (2mm)2w? ( )

La (1.208)e il primo esempio non banale in cui la frequenza classica del moto, e quindi il
periodo, dipende d4:

OH J
D = = — = 3A7
w=v ot (2mrm)2w?

5 (1.210)

Il lettore pw verificare che lo stesso risultato si¢pottenere sviluppando I'espressione
(1.204).
Una generalizzazione del modello (1.202) suggerisce alcune interessanti osservazioni:

p* 1
H="—+ —mag*> + \¢* (1.211)
2m 2

Oracq € un parametro, positivo, negativo, o nullo.
Caso l:a > 0. La situazioned qualitativamente uguale a quellagista.

Caso 2:a = 0. Inquesto caso i punti di inversione sonadigg; g0 = (E/)\)'/* e siha

90 4 1
J=2 sz/ 1— (qq) dg = 4\/2mE|q0|/ V1 —ztde = CLE* (1.212)
0 0

q0

quindi per i livelli quantizzati:E ~ n*/3, uno spettro completamente diverso dall’'oscilla-
tore armonico.
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Caso 3:a < 0. Questoe un caso molto interessante.

Pera < 0 I'Hamiltoniana ammette due
punti stazionari di minimo, pek > 0, I'e-
nergia potenziale ha la forma di una “dop-
pia buca”, come illustrato schematicamen-
te nella figura accanto. Quindi tutti i livel-
li energetici compatibili con la condizione
di quantizzazione e cof minore del mas- -
simo locale della curva, sono doppiamente -
degeneri, e corrispondono al fatto che ci so- . ; ot ; o : g

no due orbite con la stessa energia, una descrive un’oscillazione attorno al minimo di
destra, I'altra un’oscillazione attorno al minimo di sinistra. La degenerazione deriva dal-
la simmetrialU (—z) = U(x) dell’'energia potenziale. Che la degenerazione sia reale lo
si capisce dal fatto che se aggiungiamo un termine che rompe la simmetria,kaome
evidentemente i livelli energetici delle due buche cambiano.

Le considerazioni svolte valgono in particolare per lo stato fondamentale, che, come
visto nella (1.186) corrisponde al valofe = FE,,;,,. Quindi lo stato fondamentake dop-
piamente degenere. La situazione “sperimentale” quindi dovrebbe essere: si hanno dei
“doppietti” di stati, e in corrispondenza dei multipletti di righe spettrali, questi multipletti
collassano ad una singola riga in assenza di campi esterni che rompono la simmetria. Una
analoga situazione si presenta ovviamente in qualunque potenziale con minimi degeneri:
lo stato fondamentale in particolare dovrebbe essere degenere.

Una situazione assimilabile ad un potenziale del tipo descritto dalla Hamiltoniana (1.211)
si ha nella descrizione di alcune oscillazioni della molecola di ammoniaca, come vedremo
nello studio della meccanica quantistica. La situazione sperimentalepletamente di-
versa lo stato fondamentaleoné degenerganche in assenza di campi esterni: si hanno
due livelli “vicini” e le transizioni al fondamentale danno luogo ad un doppietto di righe
spettrali. Come vedremo esiste un effetto tipicamente quantistico, efédtto tunneglche
permette un “passaggio” da una parte all'altra del potenziale, distruggendo la classifica-
zione classica delle orbite. Anche se all'epoca, 1913-1925, questo effetto non era ancora
stato messo in luc& proprio la sua esistenza che sta alla base di molti “fallimenti” della
descrizione alla Bohr-Sommerfeld degli spettri, soprattutto quelli molecolari.

C’e un altro punto, pi sottile ma fondamentale, che distingudast meccanica quanti-
stica dalla teoria incompleta che stiamo analizzando: in tutti i modelli che abbiamo visto
I'energia dello stato fondamentale corrisponde al minimo classico dell’'energia. Come ve-
dremo in meccanica quantistica si ha normalmente una “energia di punto zero” diversa da
quella classica. Modelli pio meno giustificati che suggerivano un’energia di questo tipo
si trovano ga in uno dei modelli di Planck, in cui si scrive I'energia di un oscillatéreslla
formaFE, = (n + %)hy. La ragione profonda che fissa I'energia dello stato fondamenta-
le sah data solo dalla meccanica quantistica attraverso il principio di indeterminazione di
Heisenberg.

03|

02

o1

1.14 Moti quasi periodici.

La generalizzazione dell’analisi precedente al caso aigoadi di liberh presenta molti
problemi, sia pratici sia di principio.

Il contenuto di questo paragraédeggermente piastratto rispetto al resto della trattazione e pratica-
mente nessuno dei risultati riportatprovato. L'unico risultato che useremo nel prossimo paragrafo

22| o zero dell'energia di un sistemi di oscillatori ha importanza perchntribuisce, ad esempio, al calore di
vaporizzazione in un solido, quindi la questione ®oaccademica.
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e il risultato:

Ji= %dqmi(%F) (1.213)

che indica le variabili da quantizzare, per i sistemi che prenderemo in esamo. Sono proprio gli
integrali di Sommerfeld che abbiamaghcontrato.F' sono costanti del moto.

Il lettore che voglia approfondire 'argomentoguaonsultare dei manuali di meccanica analitica
e i libri riportati in bibliografia [Born25, Arnold, FaMa, Gal86, Graffi]. Il libro di Born in particolare
e interamente dedicato alla vecchia teoria dei quanti nella formulazione di Bohr-Sommerfeld. Un
articolo utile da consultare quello di Einstein[Ein17b].

Innanzitutto dobbiamo avere almeno un’ide@a$apossiamo identificare con uno sta-
to atomico stazionario. Nel caso unidimensionale un sistema “legato” era automaticamente
periodico, quindi era naturale cercare fra le orbite periodiche quelle da selezionare come
stati quantistici stabili. Un sistema corupdi un grado di libed in generale nog perio-
dico, cice 'orbita classica no® una curva chiusa, quindi questo criterio viene a cadere.
Prima di presentare una soluzione cerchiamo di farci un’idea intuitiva della cosa utilizzan-
do il principio di Ehrenfest. Consideriamo un oscillatore tridimensionale o in generale un
sistema di oscillatori cod gradi di liber:

4
1 1
H=Y Hipiai);  Hipigi) = 5 v} + gmiwia; (1.214)
i=1 v

Il sistema (1.214F semplicemente una “copia” di quello unidimensionale, quindi per i
singoli oscillatori possiamo introdurre delle variabili azione angdlaw; e scrivere

Ji = j{pid% (1.215)
La posizione (1.215) ha ora geun significato alquanto diverso da quella unidimensionale:
ad una variazione ciclica della coordingtanon corrisponde pi un periodo del moto.
La soluzione delle equazioni del moto del sistema (1.21ddtoriamente:

G = A (ei(wit-‘rtsi) +e—i(uit+éi)) (1.216)

Se le frequenze; = w; /27 non sono relativamente razionali il matoné periodicq si ha
I'analogo multidimensionale delle note figure di Lissajous per un oscillatore planare.

Consideriamo le fasi, in urdtdi 27, dell’espressione (1.216): sono le variabili angolayi Per ogni
variabilew;, i puntiw; ew; + 1 sono identificati, rappresentano infatti la stessa variahiltn queste
variabili il moto si svolge su un ipertord*, ad esempio in due dimensioni su un quadrato di lato 1
con i lati opposti identificati. L'evoluzione data da:

w; Iwi(O)-i-Vit 7= 1,.4.7f (1.217)
Consideriamo come esempio il caéo= 2. Se almeno una delle due frequerezaulla il moto

chiaramente periodico. Se nessuna delle due frequenze si annulla si possono avere due casi:

a) Il rapportorz /n1 € un numero razionale, diciamie /k1, alloraé chiaro che dopo un tempo
t= k1/l/1 si ha

rt==%k €N I/QtZEklzszN
11

quindi il motoe periodico.

b) Il rapportor, /n1 non € un numero razionale. In questo caso dopo ogni periodo della prima
variabile,71 = 1/v1, la variabilew, prende valoriws = kv /11, maé ben noto dall’analisi
che l'insieme{[ka]} ([x] = parte frazionria dic) € denso irf0, 1], se« € irrazionale. Quindi
I'orbita “riempie” tutto il quadratdo0, 1] x [0, 1].
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La situazione schematizzata nella figura 1.14. Nel caso genéralevio che se il mot@ periodico
esiste una sola frequenza “vera” quindi ci devono eséerd relazioni fra le/ frequenzey;, se ci
sono/ — k relazioni solok frequenze saranno indipendenti. Sbpmlimostrare il seguente teorema,
vedi es.[FaMa] Chiamiammodulo di risonanzaM,, linsiemek € Z* (cioé vettori con componenti
intere) tale chée - v = 0. Allora

1) Lorbita & periodica se e solo se dit,, = ¢ — 1, esistono cié ¢ — 1 relazioni indipendenti,
suZz, frale frequenze. in questo caso si parla di risonanza completa.

2) Se dimM, = 0, cioé senon esistonorelazioni razionali fra le frequenze, I'orbitadensa in

Tt

3) Sed =dimM,,0 < d < £— 1, l'orbita € densa su un toro di dimensicfie- d immerso in
T

1r 1

oe/ 05
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Figura 1.8: Triettorie con frequenag, v») rispettivamentg(1,1/1.4) e (1,1/1/2) dise-
gnate per un tempo totale ti= 50. L'asterisco indica il punto iniziale delle traiettorie. Si
ha periodicia nel primo caso, non periodiainel secondo.

Una generelazzazione del sistema (1.2 4)ata dai sistemi coHamiltoniana sepa-
rabile, cioé della forma (1.214), anche se non si tratta di un oscilatore armonico. L'unica
differenzae che in questo caso le variabili dinamiche, ed in particolarg penon sono
funzioni armoniche delle variabitv;, esattamente come accadeva nel caso unidimensio-
nale. Una qualunque variabile dinamiggeb una funzione’'(w, . .., w,), periodica in
gueste variabili, essendo periodiche le variaRilp;. Esiste allora uno sviluppo in serie di
Fourier multipla, del tipo

F(J,w) =Y F ()™ 7= (n,..m) el (1.218)

Nella (1.218) sk posto(T,w) = Tywy + ... + Tew,. Funzioni del tipo (1.218) prendono
il nome difunzioni multiperiodiche condizionatamente periodiche Per Hamiltoniane
separabili, come la (1.214) le singole variahjlisono periodiche imv;, quindi la scrittura
(1.215)e ben definita, il ciclo si riferisce ad un ciclo della variahjjeo. il cheé lo stesso,
ad un periodo della variabile;.

E allora naturale, sempre seguendo il principio di Ehrenfest, assumere come sistemi
“guantizzabili”, in cui cie sia possibile identificare stati stazionari quantistici, sistemi de-
scritti da una dinamica multiperiodica, in cui esistonceaitelle variabiliw; periodiche, ed
i corrispondenti momenti coniugati, le aziohi.

23per maggiori dettagli possono essere consultati i testi [Born25, FaMal]
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Una classe ungpiu vasta dei modelli con Hamiltoniana separabile si ottiene ricordan-
do la definizione della funzione di trasformazione di Hamilton-Jacobi. Quello che occorre
trovare, per definire delle variabili;, .J;, € un integrale completo della associata equazione
di Hamilton-Jacolbt:

H (qi, as> =E (1.219)
9q;
Le nuove variabili canoniche saranno definite esattamente come nel caso unidimensionale
oS oS
P = P = 1.220
%= 5 wi =57 ( )
Supponiamo che I'equazione (1.220) ammetta una soluzione del tipo
4
S = Z Si(qi, F) Fy ... F, = costanti (1.221)
=1
ammetta cié una soluzione per separazione di variabili. In questo caso
oS  0S;
= — = — = p(¢;, F 1.222
Pi= 50~ B p(gi, F) ( )

Le funzionip; sono ancora funzioni di una singola variabile, questa varighitiltiperio-
dica nellew;, ma ha ancora senso considerare la variabile canohied anche in questo
caso si po dimostrare che

Ji = %Pid% (1.223)

Il caso di un’Hamiltoniana separabieun caso particolare di quanto visto oraSlen quel
caso possono essere considerate soluzioni delipiazioni distinte:

H; <%g§l> =F E:ZFi

Cio che dovrebbe trasparire dagli esempi precedectie una possibiitper realizzare
un moto condizionatamente periodico cogradi di liberk & avere uno spazio delle con-
figurazioni, variabiliw;, con la topologia di un ipertord*, e ¢ costanti del motaJ;, che
possano fungere da variabili canonicamente coniugate.

Un importante esempio di sistemi di questo tipo, in meccanica classigagllo dei
sistemi integrabili canonicameniehe sono per la precisione individuati dal teorema di
Liouville-Arnold, vedi ad esempio le referenze[Arnold, FaMa, Gal86, Graffi].

Teorema SiaH (p, q) un’Hamiltoniana cort gradi di liber& canonici. Supponiamo che:

1) Il sistema abbid integrali primi del moto,F;(p, q) indipendenti e in involuzione,
cioé con parentesi di Poisson nufl&;, F;} = 0.

2) Le superfici di livello
Fi(p.q) = J; (1.224)

siano varieh compatte, connesse e senza bordo.

Allora:
E possibile associare ad ogni integrale prifaina variabile angolay; in modo tale che:

245j chiama integrale completo di un’equazione differenziale del primo ordiAeaniabili una soluzione che
dipende d& costanti arbitrarie.
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a) Le variabili(w, J) sono canoniche e sono legate dlte q) da una trasformazione
canonica.

b) L'Hamiltoniana, dopo la trasformaziogedella formal = H(J).

Prima di andare avanti sottolineiamo che fino agli anni attorno al 1960 i soli sistemi inte-
grabili esplicitamente conosciuti erano quelli a variabili separabili, questo in qualche modo
spiega perch in (quasi) tutti i lavori sulla quantizzazione si siano trattati solo questo tipo
di sistemi.

La procedura di quantizzazione@assere sintetizzata in questo modo.

Quantizzazione. La quantizzazione di Bohr-Sommerfeld consiste nel restringere la va-
riazione delle variabili di azione a multipli interi di, cioe

Ji=nh = E=E(nh) (1.225)

Non & detto che le regole di quantizzazione (1.225) siano tutte indipendenti, e questa
situazionee la generalizzazione del caso di degenerazione riscontrato per gli oscillatori
armonici. Le frequenze di oscillazione del sistema sono al solito definite da

Supponiamo che esistafie- r relazioni del tipo
(k,v)=0 keZ (1.227)

allorae possibile, tramite una trasformazione canonica, elimibare variabili J dall’Ha-
miltoniana, che cdgisulta funzione di solo- variabili, solo queste quindi forniscono un
insieme indipendente di quantizzazioni. In pratica comurep@& semplice quantizzare
tutte le variabiliJ e eliminare a posteriori quelle superflue, degli esempi saranno forniti in
seguito.

Per completezza e per uso futuro notiamo che in generale le frequesarm funzioni
delle variabiliJ. Se la relazione (1.227) avviene identicamenteg gier ogni valore delle
variabili J si parla didegenerazione intrinsecae avviene solo per particolari valori di
di degenerazione accidentale.

E utile infine esprimere le variabili in termini delle variabili di partenza, ¢. La
costruzioned puramente geometrica, ne diamo un accenno. Consideriamo la forma diffe-
renziale

Q= pidg (1.228)

guestae una formachiusaed & invariante sotto trasformazioni canonickeayn caso parti-
colare della forma di PoincarCartan. Per i nostri scopi attuali basta notare che se esiste la
trasformazione canonica che porta dalle variahii alle variabiliJ, w, significa che esiste

una funzioneS(q, J) tale che

> pidg; =Y %dei (1.229)

quindi laq e un differenziale totale e, per il teorema di Stokes, I'integrale lungo due curve
chiuse qualunque, 72 deformabili 'una nell'altrag lo stesso

j{ Zpiin:% Zpid%' (1.230)
AT Y2

Quindi l'integrale su tutte le curve contraibili ad un puaullo. Le curve chiuse corri-
spondono pér a cammini chiusi sullo spazio delle, chee un toro. Su un toro esistono
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cammini chiusi chenon sonocontraibili, sono tutti quelli che si “avvolgono” sui cerchi
T che definiscono le singole variabili;. Esistonofl (r < ¢ nel caso di degenerazione)
cammini indipendenti;, corrispondenti allé variabili w;, e si ha

. 0<w; <1
Ji :j{ ijdqj cammino:{ = = V1= o (1.231)
v 5 w; = COSt. perj # 1

Nel caso pil semplice di variabili separabili la (1.231) si riduce a

3= § dapilai, F) (1.232)

percte ogni variabiley; dipende dalla sola variabite;. Notiamo che, come probabilmente

il lettore gia sa dagli studi di meccanica analitica, la scrittura (1.281ljvariante per tra-
sformazioni canoniche, mentre la (1.232) no, vale appunto solo in un sistema di coordinate
in cui 'equazione di Hamilton-Jacobiseparabile. L'affermazione (1.231) quindi risponde
alla critica di Poinca sollevata durante il congresso Solvay dal 1911 e a cui abbiamo fatto
cenno nel paragrafo 1.12. Il primo ad avere scritto [agenerale (1.231) al posto della
(1.232)e stato Einstein[Ein17b].

1.14.1 Invarianza adiabatica.

La dimostrazione dell'invarianza adiabatica delle quantiinel caso multiperiodice piut-

tosto delicata. Una dimostrazione parziale, sulla linea di quella delineata per sistemi perio-
dici nel paragrafo 1.E.1, guessere trovata nel libro di Born[Born25], o nel testo[FaMa],
dove vengono fornite referenze per una dimostrazione completa. Qui vogliamo solo sotto-
lineare alcuni aspetti fisici della questione.

Per avere invarianza adiabatica il sistema deve “seguire” la variazione dei parametri
esterni, nel senso che istante per istante le varidbdevono essere quelle di “equilibrio”,
cioé per parametri esterni fissi, a meno di correzioni trascurabili. Per usare una immaginifi-
ca rappresentazione di Bohr, i parametri esterni devono variare lentamente in modo da dare
al sistema il tempo di “visitare” tutti i punti dell’orbita rilevanti per il calcolo degli integrali
di azione come quelli nelle equazioni (1.231),(1.232). Un modo alternativo di dire la stessa
cosae affermare che i modi del sistema devono essere veloci rispetto a quelli lenti della
variazione dei parametri. Nel caso unidimensionale questo significava che la frequenza di
oscillazione doveva essere non nulla, in modo da rendere il periodo del moto piccolo ri-
spetto al tempo caratteristico di variazione dei parametri. Questo, a maggior ragione, deve
valere nei moti a pi gradi di liberg, con la complicazione che ci sono molti modi per pro-
durre moti “lenti”. In particolare quando &iin condizioni di degeneraziori&,v) = 0,
sicuramente esiste un modo a frequenza nulla, quello appunto corrispondente alla combina-
zione degenere delle frequenze. Questo significa che nella variazione dei parametri esterni
non bisognapassare attraverso regioni di degenerazione, altrimenti di sicuro il principio
adiabatico di Ehrenfest viene a cadere.

Questo fatto nel caso multiperiodico ha importanti conseguenze fisiche. Consideriamo
un sistema, ad esempio un atomo di idrogeno, immerso in un campo magnetico diretto
lungo 'assez. Come vedremo in assenza di campo magnetico il sistehegenere, la
degenerazione viene rimossa dal campo magnetico e questo porta alla quantizzazione, con
certe variabili azione angolo etc. Questa procedura implica una separazione di variabili
connessa all’'asse la direzione del campo. Per una direzione diversa le variabili sareb-
bero diverse e corrispondentemente gli “stati”,&cle orbite classiche selezionate quanti-
sticamente, sarebbero diversi. Possiamo ora immaginare di diminuire il campo magnetico
fino a renderlo nullo e quindi farlo crescere nuovamente ma in una diremiotigersa da
guella precedente. Per quanto detto gli stati quantistici del sistema sono cambiati, e questo
senza far intervenire processi di emissione o assorbimento di radiazione. Il motivo per cui
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guesta transizione fra stati puavveniree il fatto che all'annullarsi del campo il sistema
diventa degenere, quindi la variazione del campo nang considerarsi una variazione
adiabatica.

Al solito il meccanismo di cambiamento dello stato rodescritto dalla dinamica che
stiamo formulando, ma, a differenza delle transizioni di tipo elettromagnetico, qui non si
pud attribuire I'incompletezza della descrizione all'ignoranza del meccanismo di interazio-
ne materia-radiazione: il process@uramente meccanico, nonostantelaitransizione di
stato nore spiegata.

Vedremo in seguito che meccanismi analoghi provocheranno vere e proprie inconsi-
stenze nella teoria.

1.15 Sistemi integrabili: oscillatore.

In questo paragrafo daremo un paio di esempi espliciti di sistemi integrabili su cui appli-
care le tecniche viste nel paragrafo 1.14. Indicheremo quando possibile le conclusioni che
possono essere estese a tutti i sistemi dello stesso tipo.

Cominciamo da un esempio molto semplice che dovrebbe chiarire la relazione fra dege-
nerazione, numero delle condizioni di quantizzazione etc.: un oscillatore bidimensionale,
cioé con due gradi di libedt ¢ = 2. In coordinate cartesiane I'Hamiltoniana ha la forma

1 1
2mp”” + 2mw1x + 2—pu + 2mw2y (1.233)
Questo sistema ha due costanti del moto ovvie:
1 2.2 1 2 1 2,2
H, = o —p2+ 2mw1x H, = 57 Py + 5Mway (1.234)

e si dimostra subito che sono in involuzione,&{d,,, H,} = 0. Questad una propriet
valida per qualunque sistema con Hamiltoniana separabile:

L
H = ZHi(pi>ql’) = H; costanti del moto
i=1

Le equazioniHd,, H, = cost. descrivono delle ellissi, quindi sono superfici compatte e
senza bordo. Il sistema (1.233jjuindi integrabile. La soluzioreenaturalmente quelladi
vista per il singolo oscillatore, v. paragrafo 1.13.1, che riportiamo qui per comodit

H,=v,J, T = cos(2mw,,) Wy = Vgl + Oy (1.235a)
MWy
Jy
Hy =vyJ, y= — cos(2mwy) Wy = vyt + 4y (1.235b)
E=H,+H, quantizzazione J, = hn, Jy = hny (1.235c)

Le variabili angolariw,,, w, descrivono il toroZ 2 di cui si parla nel teorema di Liouville-
Arnold.

Sewv,, v, non sono relativamente razionali questo sistetoa ha altre costanti del
moto continug a parte le funzionj (J,, J,). Infatti una qualunque variabile dinamiéa
deltipof(J,w). Una costante del moto, per definizioeostante sulle orbite. Siccome le
variabili di azioneJ sono costanti del moto possiamo considerarle costanti come argomenti
di f. Allora I'integrale del motof deve essere una funzione delle variabili angoiari
Ma l'orbita del sistema, come abbiamaagristo, & densa sul toro, quindi se la funzione
continuaf e costante sull’'orbita deve essere costante su tutto lo spazio, il che significa che
dipende solo dd.
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Le equazioni del moto del sistema sono quattro equazioni differenziali del primo ordine, quindi per
ogni traiettoria esistono di sicuro 4 costanti del moto, corrispondenti ai valori iniziali delle variabili

q, p- Una delle costanti puessere riassorbita nella scelta dell’origine dei tempi, ne restano 3& Qual

la terza costante nel nostro caso? Il ragionamneto appena fatto dimostra che questa costante non
un integrale primaontinuoe definito sul toraZ 2. Il lettore pw provare a scrivere questa costante.

Il discorso vale in generale: in un sistema meccanico esistéro1 costanti del moto, nei sistemi
integrabili si hannd integrali primi, in situazione generica, in assenzeeai risonanze, le altre
costanti del moto non sono integrali primi (continui), o0 meglio uniformi écéoun sol valore) sul

toro.

Caso degenere. Supponiamo che le due frequenzg v, siano uguali, e indichiamo il
loro valore comune con. In questo caso ovviamente si ha una dipendenza razionale fra le
frequenze

Vg — vy =0 (1.236)

e quindi si ha una degenerazione. Questo si manifesta in diversi modi, normalmente:

a) Una degenerazione intrinseca, indipendente dal valore delle azioni (come in questo
caso)e indice della presenza di una simmetria e di altre costanti del moto associate a
questa simmetria.

b) Esitono diversi sistemi di coordinate in cui I'equazione di Hamilton-Jagaieipara-
bile.

¢) Le variabili di azione compaiono nell’Hamiltoniana in una combinazione razionale.
Partiamo dall’'ultimo punto. Dalla (1.235c) si ha, in questo caso:
H=v(J,+Jy,) = Wy =V Wy =V (1.237)

Quindi anche se non lo avessimo saputo, dalle equazioni del moto discente direttamente
per le frequenze (che qui coincidono proprio con le frequenze proprie degli oscilatori):

Vg — Vy = g — Wy =0

cioe una relazione razionale. Vediamo che effettivamente possiamo eliminare una delle
varabili. Se effettuiamo la trasformazione canonica, ch&,dascia invariante le parentesi
di Poisson,

jl =J1+ Jo j2 = Jo; W1 = Wy; Wo = —Wg; + Wy (1238)
I’'Hamitoniana e le equazioni di evoluzione diventano rispettivamente

- dy dy

H= — = —= = 1.239

vl =g =0 (1.239)

Vediamo quindi che il tor@ 2 si & ridotto ad un cerchio, quello descritto dalla variakile
I'altra variabilee fissa. L'invariante rimastaj; € proprio

1
~ - dx dy
Ji=Ji+Js %(pmdx + pydy) /o dun (pw a0, + Dy d1ZJ1> ( 0)

cioe proprio I'integrale della forma di Poind&Cartan sull’'unico ciclo invariante rimasto,
cioé l'integrale sub; .
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Il lettore pw constatare che le trasformazioni che permettono di eliminare le variabili ridondanti
possono essere cercate come trasformazioni canoniche generate da una funzione di trasformazione
F = A.pgwaJg, con le conseguenti leggi di trasformazione

_9F  _ OF

o awi Wi GJZ

Ji

Gia il fatto che con una trasformazione canonica si sia eliminata una delle due variabi-
li di azione dovrebbe essere un motivo sufficiente per capire che I'orbita quantistica va
selezionata con l'invariantd;, mentre le singole azioni,, .J, non hanno alcun signi-
ficato intrinseco. Se non bastasse possiamo sfruttare il punto b) nell’elenco precedente.
L'Hamiltoniana e I'equazione di Habilton-Jacobi hanno la forma

1 1
H = %(pi +p§) + §mw2(x2 + y2)

E—i @2_’_ @2
~ 2m |\ Oz Ay

In entrambe le forme ovvio che si ha invarianza sotto rotazioni e quindi si ha ancora un
sistema separabile dopo aver fatto la rotazione éctiea trasformazione canonica)

1
+ imwg(ﬁ +v?)

(1.241)

! Py = —Pzsina+p,cosa

= wcosa+ysina Py = Pgcosa+ p,sina
y' = —xsina + ycos«

Il lettore pw facilemente verificare che con questa trasformazione
J, = cos? aJ, + sin? ady J; = cos? ady + sin? aJ,,

quindi non ha alcun senso attribuire dei valori interi alle varialdjli J, separatamente.

J: + Jy, invece, resta invariante per rotazioni. Notiamo comunque che se si ha un sistema
per rompere la degenerazione con un campo esterno, che quindi obbligatoriameéte non
invariante per rotazioni, ha senso scegliere delle direzigpiin funzione dell’orientazio-

ne delle rottura della simmetria, in modo da avere dei “buoni numeri quantici” da usare
nel caso non degenere. Possiamo ad esempio immaginare un campo lunge Easse
cambi la frequenza,. Qui siamo proprio nella situazione adombrata nel paragrafo 1.14.1:
se cambiamo la direzione del campo esterno facendolo passare per lo zero abbiamo una
“transizione” non elettromagnetica fra stati quantistici€ @en un punto importante da
sottolineare: se rompiamo completamente la degenerazione ogni livell@dgine ad un
insieme di sottolivelli, questo numermn deve dipenderedalle coordinate che abbiamo
usato per descrivere la situazione degenere, in altre parole la degenerazione del livello ha
un significato fisico, indipendente dalle coordinate usate. Nel nostro caso la quantizzazio-
ne diJ; da luogo a dei livelli energetici della formé, = hvn. Se usiamo le coordinate
cartesianer,y si han = n, + n,. la degenerazione allora data dal numero di modi in

Ccui un numero intero positivo o nullo puessere scritto come somma di due numeri dello
stesso tipon, pud assumere i valor — k conk = 0...n, in corrispondenza il valore di

n, € fissaton, = k, quindi la degeneraziorie

k=0

In modo analogo il lettore guverificare che nel caso tridimensionale

@ _ N, _ (D +2) 1.243
n ;)gk 2 ( )
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Consideriamo ora il sistema degenere da un altro punto di vista, che anettgylio
in luce le simmetrie del problema. Usiamo coordinate potayi. Dall’espressione di
distanza infinitesimas? = dr? + r2dy? segue che la lagrangiana del sistema si scrive

1
Ezim(f’Q—i-TQ(pQ)—U = pT:%:mf p¢:g—£:mr2¢
da cui discende I'Hamiltonia’a
1 1 1
H=—"p 2 4+ Zkw?r? 1.244
2m P * 9mr2le + ka " ( )

L'Hamiltoniana (1.244) nore separata, cé&® somma di Hamiltoniane indipendenti, ma
'equazione di Hamilton-Jacobi

1 [[/08\> 1 [85)°
EF=— — ) + ==
2m |\ Or r2 \ Op
e separabile. Cerchiamo infatti una soluzione nella forma

S=5,(r)+ Sp(p) = Ezll(aa%)ll(%%)z

+ %muﬂrz (1.245)

1
+ imw2r2 (1.246)

2m 72

La variabilep e ciclica, quindi tutta la dipendenza ganella (1.246)e contenuta nella
derivata diS,, che quindi deve essere costante. D’altronde

as,,
L 1.247

chee in effetti costante per le equazioni del moto. In generale se una varabitéclica,
I'azione dipende da nella formagp,. La variabile di azione associadaquindi

Jo = %d(ppg, = 2mp,, (1.248)

come nel caso del rotatore che abbiam@igcontrato nel paragrafo 1.13.1. Con la soluzio-
ne (1.247) 'equazione di Hamilton-Jacobi si riconduce ad un’equazione unidimensionale
per la variabiler:

2
Z—S =p, = :I:\/ZmE — p—g — m2w?r? (1.249)
r r

Si pw calcolare allora/,.
TE
Jrz%prdr: 7—w|pg,| =———F = E=v2J.+]|J,) (1.250)

Il calcolo dell'integrale (1.250% indicato nel paragrafo 1.F.
I momento coniugato &, p,,, none altro che la componentedel momento angolare,
cioe
Pp = TPy — YDz (1251)
Usando le (1.235) si gucalcolare/,, in termini di J,, J,:

2

J, = ;\/JIJy sin(w, — wy)

250 stesso risultato, come il lettore pwerificare si pd anche ottenere con una trasformazione canonica di
coordinate direttamente dalla Hamiltoniana scritta in coordinate cartesiane.
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il che conferma ancora una volta che assegnare un significato particolare ai Jimgbli
caso degenere non ha senso/sg/, sono interi, non la J.
E interessante comunque controllare la degenerazione dello stato, che come abbiamo
detto non deve dipendere dalle coordinate sceité.un angolo, quindy, puo assumere
valori sia positivi che negativi. Invecg. > 0. Consideriamo ora

E, = nhv = hv(2n, + n,)
si hanno due casi

a) n pari,n = 2k, alloran,, deve essere pari, pud assumere tutti i valof, 1,. . . k,
corrispondentemente si hanno i valorigi, tutti con molteplicia 2 ( comparén.,|),
eccetton, = 0, quindi la molteplicia &

2x (#n.#£0)+1=2k+1=n+1

b) ndispari,n = 2k+1, corrispondentemente, deve essere dispati,, pud assumere
ivalori1,3,...,2k + 1, cioé (k + 1) valori ognuno con molteplicit 2. n,. € fissato
di conseguenza. La moltepliaie dunque

2k+1)=2k+1)+1=n+1

Il conteggioe quindi consistente con quanto ottento usando le coordinate cartesiane. I
punto interessanté che per gli stati pari si hanno salg, pari, per quelli dispari sola.,
dispari. Come vedremo studiando le rappresentazioni del gruppo delle rotazioni, guesto
dovuto alla invarianza del sistema sotto inversione spaziale.

Notiamo infine che, come ben noto dalla meccanica analitipa, € un generatore di
simmetria,& il generatore delle rotazioni attorno all'asseE facile verificare, usando ad
esempio le espressioni espliciteM, H,, p,, in coordinate cartesiane, che

{pp. Ha} #0  {pp, Hy} #0 (1.252)

cioé la costante del motd, none in involuzione con le costanfi,, J,. Questcé proprio

il motivo per cui I'orbita non riempie in modo denso il tof: il moto si deve svolgere
sulla supeficig,, = cost., ches una superficie regolare, questa superficie, interseca le altre
due superfici/,, = cost. eJ, = cost., I'intersezione di tre (iper)superfici nello spazio delle
fasi a 4 dimensioni avviene su una curva regolare. Il fatto di non essere in involuzione con
le altre costanti del moto significa geometricamente che la supepficie cost. “taglia”
tasversalmente le altre due.

1.16 Sistemi integrabili: atomo di idrogeno.

In questo paragrafo studieremo la quantizzazione di un sistema composto da un elettrone
che si muove in un campo centrale di forze, in particolare un campo di forze coulombiano.
Per avere un modello fisico concreto possiamo pensare ad un nucleo di massa infinita,
eventualmente circondato da un “nuvola di elettroni” che creano uno schermo a simmetria
sferica alla carica: I'elettrone che stiamo considerando si muove in questo campo di forze.
Discuteremo pi avanti le approssimazioni fisiche del modello.
L'Hamiltoniana si scrive:

1
H=_—p*+U(r) (1.253)
2p
Abbiamo indicato la massa cgn in un sistema a due corpi rappreseatier massa ridotta
del sistema, in ogni caso usiamo questa notazione paiskrveremo la letterax per
indicare un particolare numero quantico relativo al momento angolare.
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Questo sistema invariante per rotazioni, la forZzacentrale e, com&sicuramente noto
al lettore, il momento angolare rispetto al centro di foezzonservato:

%:r/\F:() = L=rAp= cost. (1.254)
Quindi I'orbita si svolge su un piano, quello perpendicolare al vetfgreheé una costante
del moto. Possiamo scegliere un sistema di riferimento in modo che I'orbita giaccia su un
piano coordinato, ad esempio il piampy. Questo ci basta per ricavare I'energia del siste-
ma ed i livelli energetici, ma in questo modo perdiamo l'informazione sulla direzione del
vettore L nello spazio. Come abbiamo visto negli esempi precedenti una simraetoa
malmente legata ad una degenerazione dei livelli, e questa viene rimossa dall'introduzione
di campi esterni. Se, ad esempio, introduciamo un campo elettrico lungo Yagse de-
scrivere il sistema dobbiamo avere un’informazione sull'inclinazione del piano dell’'orbita
rispetto a questo asse, se usiamo delle coordinate “adattate” all’orbita questa informazione
viene persa. Logicamente si avrebbe lo stesso tipo di situazione se si trattasse il moto di
piu di un elettrone: noe detto che le orbite delle due particelle siano coplanari. Per questo
motivo scegliamo un sistema di riferimento arbitrario, in modo da lasciare I'inclinazione
dell’orbita come un parametro libero. L origine del sistema di riferimeéntomunque scel-
ta coincidere con il nucleo. Scegliamo coordinate polari, peatime vedremo in queste
coordinatez possibile la separazione delle variabili.

Scrivendo lo spostamento infinitesimo in coordinate polari:

ds? = dr® + 12d6? + r? sin® dp?

si deduce che la lagrangiaaascrivibile come

oL .
pr*a,'-n*/u'

_1 -2 242 23220922\ 7857 20

/3—2#(7’ +re0° +r sm@gp) Ulr) = pgfaéfm“é)

oL 9 . 2,.
Py = = = pur-sin” 0¢
¥ 890

e quindi 'Hamiltoniana in coordinate polagi

1 1 1
H=—(p?+ =p2+ ——p° U 1.255
2 (pr toabt p@> +U(r) ( )

Dalla (1.255) si ha che la coordinagee ciclica, quindip, € una costante del moto.
L'equazione di Hamilton-Jacobi relativa alla Hamiltoniana (1.2&85)

2S\? 1 /9S\* 1 28\?
<aq~) ﬂz(ae) +m<8¢> LU —E)=0  (1.256)

Proviamo a vedere se I'equazioaseparabile scrivendo:
S = 5:(r) + Se(0) + Sy(v) (1.257)

La variabilep compare solo iS5, /¢, quindi questo termine deve essere costante, chia-
miamoA,, la costante, che coincide cpp naturalmente. Dopodiéhla dipendenza daé

solo nel termine
2
(a5)". 4
do sin? 6
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che quindi dev'essere anch’esso costante, dicidgid_a parte restante dipende solosda
e da luogo ad una equazione ordinaria. Riassumendo:

ds,
=2 = 1.258a
dQD 2 ( )
dS 2 A2
<d;) t5= A2 (1.258b)
A2
(dj) +=242uU(r)-E)=0 (1.258c)

Quindi I'equazione: separabile. Si hanno tre costanti del metg, Ay, E, quindi il pro-
blemaé integrabile nel senso canonico ed la soluzione delle equazioni (1.258) fornisce
appunto l'integrazione.

Il significato delle costanti del motdtrasparente se si scrivono esplicitamente:

=Py = pr?sin®fp =L, (1.259a)

/ P
ps+ “20 = m*\/ 70)2 + (rsin0p)2 = plr Av| = (1.259Db)

Quindi A, = p,, € la proiezione del momento angolare lungo I'assaentrel € il modulo
del momento angolare.
Con la procedura ormai nota possiamo scrivere le variabili d’azione:

Jo = j{pgodsﬁ = 7{ Cil&dcp =21A, = 2L, (1.260a)
P
Jo = j{peda = @dﬂ = % L2 — =2m(L — |L,|) (1.260b)
sin 9
L2

Jrz%prdrz j{dr\/2u(EU)r2

]fdr \/m E-v)- % +2|J2 o’ (1.2600)

47

Limiti sul momento angolare e quantizzazione.

La variabilep € una variabile angolare, quinfli puo essere sia positivo che negativo. La
variabilef & una variabile di librazione, come si vede nella (1.260b) si ha un minimo ed un
massimo valore possibile pér Il radicando della (1.260b) deve essere positivo, i limiti di
integrazione si ottengono da

L*sin?0=1° = |L.|<L (1.261)

Il limite (1.261) & ovviamente consistente col fatto che il modulo della proiezione di un
vettore su un asse deve essere minore del modulo del vettore.
La procedura di quantizzazione consiste nel porre
h

Jo =mh m=0,£1,£2... L, 2 =M (1.262a)
T
h

Jo=kKh K =012... L*k’h+|L|f(k’+| Do k— (1.262b)

visto il significato fisico conviene porre I'attenzione ku= k' + |m|. Il vincolo (1.261)
impone
Im| <k = —k<m<+k (1.263)
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Osservazioni.

1)

2)

3)

4)

Il modulo del momento angolaré, & quantizzato in urét di h/2x7, come nei casi
gia visti.

Fissato il momento angolare, €ib, la proiezionel . del momento angolare quan-
tizzata. Oral, /L € legato all'angolo di inclinazione, dell’orbita rispetto al piano
xy, 0 se vogliamo diL, perpendicolare all’'orbita, rispetto all’'asse

L, m

cost = — = 3 (1.264)
Questo significa che sollicune inclinazioni sono permessHotiamo che la dire-
zione dell'asse ¢ stata scelta arbitrariamente. possiamo pensare di averlo scelto in
modo da indicare, s& presente, un campo magnetico, e in tal caso si avrebbe che so-
lo alcune inclinazioni del momento magnetico, proporzionalg aono ammissibili
quantisticamenteE naturale che difficile “credere” ad affermazioni cosontrarie
al senso comune, ed in effetti nei primi anni della formulazione della vecchia teoria
dei quanti, si pensava a questo risultatod giie altro come ad un artificio matemati-
co. Cb non toglie che furono fatti esperimenti per verificare in modo diretto questa
“quantizzazione delle direzioni”: I'esperimento di Stern e Gerlach, di cui parleremo
in seguito, conferm che in effetti questa quantizzazione era reale.

Per ogni valore dk, il numero quanticon, detto numero quantico azimutale,qou
assumerek + 1 valori. Come si vede dalla (1.260@ualunque sia il potenziale
centraleU, I'energia dipende solo dalla combinaziosig + |J,,|, cioé proprio da

L ( cioe dak), quindi in un potenziale centrale ogni livellbalmena2k + 1 volte
degenere. Questauna conseguenza dell'invarianza sotto rotazioni, che ha permesso
la separazione di variabili nella forma della (1.260).

Il numero quanticd: a priori potrebbe assumere tutti i valori positivi o nulli. Spe-
rimentalmente, analizzando le linee spettrali, si vede che il vélered non esiste.
Questoe facilmente comprensibile: classicamente corrisponderebbe ad avere orbi-
te passanti per il centralette orbite pendolariqueste orbite sono escluse su base
fisica:

E>1 (1.265)

Questa conclusione vale per potenziali come quello atomico, in cui si suppone che
a piccole distanze dal nucldé ~ —Ze?/r, quindir = 0 & una singolaré del
potenziale e I'azion&,. avrebbe una singoladitser = 0 fosse incluso, anche come
punto limite, nello spazio delle configurazioni. Per I'oscillatore armonico, in cui il
potenziale regolare nell’'origine, non si hanno queste limitazioni.

NOTA. Il lettore consideri comolta precauzionel'assegnazione dei numeri quantici fatta in questo
paragrafo. In particolare I'identificazione Hicon il momento angolare vabolo per grandi numeri
quantici. Gli stati quantistici coil. = 0 sono permessed il concetto di orbita “pendolare”, pura-
mente classico, non ha molto senEovero, comunqgue, che si ha una degenerazzdn¢ 1 per ogni
livello con momento angolarg.

Livelli energetici.

Il calcolo di J,. dipende dal tipo di potenziale. Per un potenziale coulombiano:

Ur) = —Z762 (1.266)
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l'integrale si svolge analiticamente, vedi eq.(1.458), fornendo

\/ﬁZeQ
J=2 —Jg—J 1.267
a 5k 0 © ( )
L'energia del sistema si scrive peici
2 2 4z2 2 2 422
- _THE =R (1.268)
(Jo+ Jo + Jo)? J;
La quantizzazione discretizza i valori d;:
J. =n.h n.=0,1... J1=(n,. +k)h=nh n=12,... (1.269)
n prende il nome dhumero quantico principald.livelli energetici sono:
2m2petZ? 1 1 Z2%e? h? h?
E,=-=-""= - —__ =—=— 1.270
h? n2 2 ap 4B pe2  4r?pe? ( )

che coincide con la formula di Bohr (1.128). Analizziama pi dettaglio questo risulta-

to. Innanzitutto il vincolok > 1, imponen > 1, quindi lo stato fondamentake limitato
inferiormente. In secondo luogo vediamo che la degenerazione nel caso coulombiano
maggiore di quella presente in un generico potenziale centrale: compare solo la combi-
nazioneJ; = J, + Jy + J,. Operando come nell'oscillatore armonico possiamo fare il
cambiamento di variabili:

wy = w, Ji = J+Jo+J,
We = Wy — Wy Jo = Jog+Jy, (2.271)
w3 = We — Wy J3 = J,

In generale I'energi@ una funzione di due variabili d'aziongy J,, J-), nel caso partico-
lare del campo coulombiar®funzione solo dif;, E = E(J1).

NOTA. Ripetiamo ancora una volta che I'assegnazione dei numeri quardairetta solo nel limite
semiclassico, ci per grandi numeri quantici. In particolare la degenerazione dei livelli per 'atomo

di idrogeno nore quella corretta. Per confrontare le degenerazione teorica oarheisi osserva
bisogna spiegare la struttura fine dei livelli e I'effetto Zeeman, che serve a rimuovere la degenerazione
sulle orientazioni dell’orbita: la teoria sostanzialemente fallisce in questo tentativo, anche per la non
considerazione dello spin elettronico (il momento angolare intrinseco dell’elettrone) quindi non ci
soffermiamo su questa questione.

Per completezza diamo senza dimostrazione l'interpretazione degli angali, ws:

1) 27wy €, a parte una costante additivap che in astronomia si chianenomalia
media la distanza angolare, sull'orbita, dal perielio per un punto immaginario che
ha la stessa veloatdel punto materiale nel passaggio al perielio, in pratica, per
un’orbita kepleriana2nw; = ¢/T. La definizione pi sofisticateé dovuta al fatto
che nel caso generico 'orbita n@nperiodica, T’ € il periodo che avrebbe il corpo
se percorresse un’ellissi kepleriana con perielio e velddintiche a quelle vere nel
perielio.

2) 2mw- €, a parte una costante additiva, la distanza angolare del perielio dalla linea dei
nodi, cice dall'intersezione dell’orbita col piangy, nel caso planetario il pianay €
il piano dell’eclittica.27v, = 21, € quindi la velocia di precessione del perielio.

3) 2mws €, a parte una costante additiva, la coordinata azimutale della linea dei nodi.
Quindi27v3 = 2w € la velocit di precessione della linea dei nodi.

Nel caso generale di un moto in campo centrale vediamoughe= 0, ciog non si ha
precessione dei nodi, mentre nel caso particolare del campo coulombiano si hayareche
0, ciog non si ha precessione del perielio e I'orbita risulta chiusa.

Il lettore che voglia approfondire la trattazione “semiclassica” dei sistemi atomici e del-
la loro perturbazione con campi elettrici e magneti@ ptilmente consultare il libro[Born25].
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1.17 Esperimento di Stern e Gerlach.

Come abbiamo visto una delle previsionligistrane” della quantizzazione alla Bohr -
Sommerfelce la quantizzazione delle direzioni, eq.(1.264):

L, m

cosf = T =% |m| < k (1.272)
O. Stern e W. Gerlach hanno condotto una serie di esperimenti con l'intento di verificare o
meno questa quantizzazione, e, nel 1921, hanno ottenuto una spettacolare conferma della
teoria quantistica, e nello stesso tempo hanno realizzato la prima esperienza “meccanica”
che era assolutamente incomprensibile sia dalla teoria classica sia, malgrado il risultato,
dalla teoria di Bohr-Sommerfeld.
Lidea & (relativamente) semplice: il momento angolare atongiodovuto al moto

degli elettroni, le orbite elettroniche sono la realizzazione microscopica delle “correnti
Ampeériane, e devono dar luogo ad un momento magnetico. In effetti classicamente vi
e la relazione

p=g—1L (1.273)

2mec

g € un fattore numerico, chiamafattore giromagneticoche classicamente 1. Sel &
quantizzato in un# di h/27, lo € anche il momento magnetico, e il “magnetone elementa-

ren

e h eh
— o= 1.274
1B 2me 27 2me ( )

e dettomagnetone di BohSe le direzioni diL. sono quantizzate allora lo sono anche quelle
di i e queste possono essere messe in evidenza accoppiamioun campo magnetico.

L'idea & quella di inviare un fascio atomico in una zona con un campo magnetico
fortemente disomogeneo, come schematicamente illustrato in figura 1.17.

o/

‘I

/

Figura 1.9: Schema dell’esperimeno di Stern e Gerlazk.un forno, sorgente del fascio
atomico.S & lo schermo.

Linterazione del dipolo col camp® € U = —u - B, quindi la forza a cui un atomo
€ sottoposto in questo cam@goF = —VU = V(uB). Sia oraz I'asse del fascio,



82 CAPITOLO 1. LA NASCITA DELLA MECCANICA QUANTISTICA.

z la direzione che va da un polo all’altro del magnetg k& direzione “orizzontale” in
figura 1.17. Un atomo che attraversa il dispositivo risente di una forza verticale, lungo
l'assez:

0
F, = 92 (NIBx + ,UyBy + ,Usz)

Il dispositivoe omogeneo lungo I'asse quindi il sistemae praticamente bidimensionale
e B, ~ 0. Inoltre nel vuoto fra i due poli magnetici:
0 0
—B,=—B
0z Y oy °
La disomogeneit di B, lungo I'assez € molto maggiore di quella nella direzione trasversa,
vista la geometria dell’apparato, quindi
0 OB
F,~u,—B, = u——=cosf (1.275)
0z 0z
dove#d e I'angolo frap € B. Quindi ogni atome sottoposto ad una forza, praticamente
costante, nell’attraversare I'apparato e riceve un impulso verso l'alto o verso il basso a
seconda a seconda che il suo momento magnetico sia parallelo o antiparallelo al campo. Se
v € la velocit del fascio €. la lunghezza del dispositivo:
L 0B, L
Ap, = F,At=F,~ = p—=="cosf (1.276)
v 0z v
Una volta uscito dall’apparato I'atomo prosegue la sua corsa e colpisce lo schefmo
punti diversi a seconda dell’angofo
Le previsioni del risultato in meccanica classica e quantistica sono diametralmente
opposte:

a) In meccanica classica il momento magnetico ha un’orientazione casuale, quindi la
densit di probabilia che abbia un angotbcon il campee, vista la simmetria attorno
az:

dP = ;-dQ = § sin0db (1.277)

Questa distribuzioné massima pef = 7/2, ciog perp ortogonale al campo, e
descresce allontanandosi da questo valore, quindi si deve osservare sullo schermo
una immagine del fascio leggermente allargata, inidella deviazione (1.276), ma
concentrata nel centro.

b) In meccanica quantistica ci sofie + 1 valori possibilidiscreti per L., doves e
definito daL = s- h/2m, quindi2s + 1 deviazioni possibili; si devono vede?e + 1
“macchie”simmetrichesullo schermo.

L'esperimento, effettuato su un fascio di atomi di argento, nddstnacchie simmetriche,

e niente in mezzo:una clamorosa evidenza della discretizzazione delle direzioni.uln pi
dalla misura del gradiente d? e dalla separazione delle macckigossibile dedurre il
valore diy, il valore trovato fuu g, cioe un magnetone di Bohr.

Come si veda nello studio della meccanica quantistica I'argento ha un momento ango-
lare1/2 - i dovuto all’elettrone pi “esterno” e, quantisticamente, il fattore giromagnetico
g che compare nella eq.(1.273) vale 2, quindi in questo esperimento viene misurata la
guantizzazione del momento angolare intrinseco dell’elettrone, lo spin appunto.

A parte I'importantissima conferma della quantizzazione delle direzioni, I'interpreta-
zione del risultato non era molto chiara. Innanzitutto notiamo che nella teoria “canonica”
alla Bohr il momento angolare dovrebbe essere un mulfigiero di £, quindi 2s + 1
dovrebbe essere un numero dispari, si dovrebbero vedere3aivacchie sullo schermo,
corrispondenti ad un momento magnetjco= 1 x pp. Quindi sarebbe naturale, oggi,
pensare che da questo esperimento si fosse dedotto il fatto che lo spin ele@rbfiicor,
ma non fu cok Vi erano all'epoca due scuole di pensiero:
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a) Alcuni, come Sommerfeld, Labced Heisenberg, per spiegare I'effetto Zeeman e la
struttura fine delle righe spettrali, avevano introdotto il concetto di numero quantico
semintero, attribuendolo p&rgli elettroni del “core” atomico. In questa interpreta-
zione era il core a contribuire al momento magnetico. Le regole elaborate, clée non
il caso di presentare, prevedevano che per una struttura fine costituita da un doppietto
si dovesse avere= 1/2, siccome I'argento ha un doppietto di struttura fine, questo
spiegava il fatto ches + 1 = 2. Il fattore giromagnetico naturalmente doveva essere
2.

b) Altri, sostanzialmente Bohr, i suoi collaboratori a Copenaghen e, almeno inizialmen-
te, Paulf® sostenevano la necessiti avere numeri quantici interi, ma nei modelli
atomici elaborati da questa scuola per I'effetto Zeeman alcune delle orbite erano
vietate, per ragioni di stabifit in particolare erano vietate quelle in cui il campo
magnetico giaceva sull’orbita, quindi il momento angolare dell’orbita era perpendi-
colare al campo, il casé, = 0. Quindi anche per questa interpretazione dei tre
valori possibili diL, solo 2 erano permessi, e si dovevano osservare due macchie. Il
fattore giromagnetico in questo caso era quello classice, kio

L'osservazione pi importante comunque fu quella avanzata da Einstein ed Ehrenfest
nel lavoro[Ehr21]:.come & il momento magnetico ad “allinearsi” col campo?

Ricordiamo che nella teoria di Bohr-Sommerféléssunta la validitdella meccanica
classica per la determinazione degli stati, mentre le transizioni, quantistiche, sono dovute
all'interazione con la radiazione elettromagnetica.

Il fascio atomico usato da Stern e Gerlach era composto da atomi d’argento prodotti
da una fornace &000°C, con una velocé media dell’ordine dj - 10*cm/sec. L'apparato
era lungo circaem ed il gradiente di campo dio*gauss/cm. Il tempo di attraversamento
dell’apparato era quindi dell'ordine d0—* sec. All'uscita dal forno sicuramente la dire-
zione del momeno magnetico atomie@asuale, come fa ad allinearsi? Classicamente un
momento magnetico in campo esterno precede attorno al campo, con una frequenza che,
quantisticamentes

,— kBB

h

corrispondente alla quantizzazioneldi. La precessione classica narsufficiente: per
avere due macchie distinte il dipolo magnetico si deve proprio allineare, eseere in
uno stato quantico ben definito, o con proiezidne con prioezione-1 rispetto all'asse
z. Secondo la versione pre-meccanica quantistica la transizione fra uno stato allineato
in una direzione qualunque ed uno stato allineato lungo avvenire solo per effetto
radiativo. Per un dipolo magneti@semplice calcolare un tempo caratteristico per questo
“rilassamento” verso I'asse La potenza emessa da un dipolo magnetico oscillante, uguale
ad un magnetone di Bohg,

(1.278)

2 ., 2
I Peggeln ll=ps w=2mr=—

~ 33t T3
Lenergia in giocc .z B quindi il tempo caratteristico, per un campo tipicdldigausse

B
= M% ~ 10" sec

molto pili grande del tempo di passaggio, dell’ording @i sec. Il possibile effetto della
radiazione termica ambiente non modifica di molto la stima: il probleriae I'emissione

26_a posizione di Pauk: molto particolare: inizialmente era contrario all'introduzione di numeri seminteri per
la buona ragione che. una volta accettata la frazione 1/2, niente a priori ostava il comparire di frazioni diverse che
avrebbero tolto qualunque significato al concetto di quantizzazione. Una volta accettato il fatto che effettivamente
occorreva usare numeri seminteri per la descrizione dell’effetto Zeeman, dincostiunque la non validitdel
modello a core degli atomi ed elaldgrinventando il principio di esclusione, la prima assegnazione corretta dei
numeri quantici, e quindi il primo modello atomico realistico.
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di dipolo magnetico ha un tempo caratteristico estremamente lungo per frequenze di tran-
sizione come quelle in gioccE quindi escluso che la transizione possa avvenire per via
radiativa. Quindi come possibile descrivere I'allineamento? La risposta, come siavedr
studiando il formalismo della meccanica quantistieashenon € possibiledescrivere in
termini classici questo effett@, il prototipo di unamisura quantistical’apparato di Stern

e Gerlach funge da apparato classico: la selezione delle orbite misura in effetti o spin e
provoca un “collasso della funzione d’onda” in un autostate,dia componente dello spin
lungo I'assez. Questa terminologia divexpiu chiara in seguito, per ora ci basta osserva-

re che, come osservato nel lavoro [Ehr21] I'esperimento di Stern e Gerlach richiede una
gualche modifica fondamentale alla teoria di Bohr Sommerfeld.

1.18 Conferme e smentite del modello.

Il modello di Bohr e le regole di quantizzazione di Bohr Sommerfeld hanno avuto sicu-
ramente il grande merito di offrire il primo schema interpretativo dei fenomeni atomici,
ma era ben chiaro, ed esplicitamente dichiarato nei lavori dell’epoca, che questo schema
doveva essere solo un primo passo verso 'elaborazione di una nuova mecEatqlimadi

utile avere almeno un’idea sommaria delle questioni lasciate irrisolte da questa teoria.

L'enorme passo in avanti del modekoquello di avere introdotto il concetto di “stati
stazionari”, e collegato la frequenza delle righe spettrali differenzadi energia fra gli
stati, separando cola frequenza della luce dal periodo classico di oscillazione, o rotazione,
del sistema: il lettore deve avere ben chiaro che questo completo allontanamento
dalla teoria classica dell'irraggiamento, in cui la frequenza della luce eraelsgttamente
connessa alla frequenza meccanica. Lintroduzione di stati stazichraramente anche
una rinuncia alle leggi della meccanica e dell’elettromagnetismo classico. Il sottile filo di
collegamento che permette, a questo stadio, di fare della fisica microséapmastulato
di quantizzazione ed il principio di corrispondenza. Il primo &iuh criterio per stabilire
quali sono gli stati stazionari di un sistema, il secondo ci permette di esprimere le grandezze
osservate in termini quasi classici e, in alcuni casi, di fare delle previsioni. Forse I'aspetto
piu appariscente dell’'ultima affermazione si ha proprio in relazione alle righe spettrali.
Dall’'analisi degli spettri discende che non tutte le transizioni fra due livelli energetici sono
visibili. Ad esempio per spettri attribuibili a transizioni di un solo elettrone, come nei
metalli alcalini, solo le transizioni corrispondenti a cambiaméviti= +1 sono permesse,

k € il numero quantico legato al momento angolare introdotto nel paragrafo 1.16: questo
discende dallo studio semiclassico delllampiezza di transizione, un’oscillazione dipolare,
fra gli stati in questione. Non ci addentriamo in questa analisi gefelssegnazione dei
numeri quantici nella vecchia teoria dei quanti e nella meccanica quanédaggermente
diversa, non vorremmo quindi suggerire idee sbagliate sulle regole di selezione, argomento
che vera trattato nel seguito del libro.

Questi principi base, cistati stazionari e principio di corrispondenza, vengono uti-
lizzati tramite il principio adiabatico di Ehrenfest per lI'indagine sistematica dei sistemi
microscopici: se un sistengottenibile da un altro con una trasformazione adiabatica pos-
siamo avere un’idea di come quantizzare il nuovo sistema a partire dal vecchio. In questo
modo, ad esempio, Bohr propone i primi modelli atomici, in cui ogni elett&dtaggiunto”
ad un sistema di tipo idrogenoidé da sottolineare che in questo modo si incominciano
ad associare le propriéethimiche degli elementi al numero di elettroni periferici del siste-
ma, iniziando a spiegare la tavola periodica di Mendeleev. Il problema principale di questi
modelli era spiegare come mai non tutti gli elettroni occupavano I'orbita di minore energia
del sistema. La soluzioreedovuta a Pauli[Pau25, Pau45] che enuncia il principio di esclu-
sione, questo sostanzialmente afferma che due elettroni non possono possedere gli stessi
numeri quantici. Ai numeri quantici conosciuti, ricavati ad esempio dall’esame dell’atomo
di idrogeno, Pauli aggiunge un nuovo numero quantico cleapare due soli valori, la cui
origine, si scopria in seguitog legata allo spin dell’elettrone.
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Per quanto riguarda la descrizione degli spettri atomice almeno la corretta identifi-
cazione dei numeri quantici dei livelli energetici, la situazione si fa estremamente comples-
sa. Laragione ben descritta da Pauli nella lezione tenuta in occasione del conferimento del
premio Nobel: da un lato non era chiaro come applicare la teoria a sistemi complessi come
quelli atomici, per ragioni che esamineremo fra breve, dall'altro lo stesso modello mec-
canico usato, cariche in interazione elettrostatica, era insufficiente: mancava un elemento
essenziale, lo spin dell’elettrone ed il connesso momento magnetico. | problemi principali
erano due, collegati fra loro: I'effetto Zeeman e la struttura fine delle righe spettrali. In pre-
senza di campo magnetico esterno si ha, coraevigito in alcuni esempi elementari, una
rimozione della degenerazione dei livelli atomici e, sperimentalmente, una divisione delle
righe spettrali in componenti diverse. Questan effetto spiegato gida Lorentz per un
oscillatore classico ed il lettore trozeuna discussione del fenomeno, classico e quantisti-
co, nel capitolo dedicato alla teoria perturbativa. Il punto che qui interessa mettere én luce
che classicamente ogni riga spettrale dovrebbe dividersi in un tripletto e a questa stessa con-
clusione si arriva nella teoria di Bohr Sommerfeld “canonica’eaiome I'abbiamo vista
finora. Sperimentalmente invece si trova una varditcasi, la suddivisione in multipletti
diversi da tre2 molto comune e prende il nome di “effetto Zeeman anomalo”. Per spiegare
questo tipo di suddivisione &icostretti a introdurre numeri quantici seminteri, estranei alla
teoria di Bohr Sommerfeld: solo con la scoperta dello spin elettroniepstuta capire I'o-
rigine di tali numeri quantici. Una situazione per certi versi analoga si presenta per le righe
spettrali in assenza di campo esternoe Subito osservato che in reale righe spettrali
hanno una struttura fine, con una separazione in frequenza dell’ordihe/éi ~ 1075.

In effetti uno dei maggiori successi del modello di Bohr Sommerfeld era stata proprio la
spiegazione della struttura fine delle righe dell'idrogeno, ottenuta da Sommerfeld calcolan-
do la correzione relativistica alla quantizzazione vista nel paragrafé’l @&esto tipo di
spiegazione pérnon funziona per gli altri atomi: anche in questo caso, come nell’effetto
Zeeman, le righe si presentano in diversi tipi di multipletti, la cui molteplieitegata in
modo complicato al numero di sottolivelli Zeeman generati da un campo magnetico. In
analogia al caso magnetico questi multipletti vengono imputati ad un momento magnetico
degli elettroni pui interni all'atomo, “core” elettronico, che provoca una sorta di effetto
Zeeman “interno” sull’elettrone ottico. Anche in questo case sbstretti a introdurre dei
numeri quantici seminteri.

Anche da questo breve e sommario elenco dovrebbe essere chiaro che I'evoluzione
della comprensione dello spettro atomipiuttosto complicata e per darne conto occor-
rerebbe un intero capitolo, il lettore interessato alla nascita e allo sviluppo delle idee e dei
modelli nati in questo periodo purovare molto materiale interessante nelle opere[Mehra,
Jammer].

Le difficolta elencate finora sono in massima parte dovute alla non conoscenza dello
spin elettronico, ci sono peraltre difficol& pitl intimamente connesse alla formulazione
stessa del modello di Bohr. L'atomo di ekd’atomo pii semplice dopo quello di idrogeno.

Dal punto di vista meccanico si tratta di un problema a tre corpi che ha tutti i problemi del-
I'analogo problema a tre corpi gravitazionale. Un noto teorema di Burns e Pejneati
es.[Whitt] afferma la non esistenza di altri integrali primi, oltre all’energia ed al momento
angolare, quindi il sistema sicuramente riimtegrabile in senso canonico. Per fissare le
condizioni di quantizzazione si ricorre allora alla teoria perturbativa, mutuata dalla teoria
delle perturbazioni secolari in meccanica celeste. Sulla teoria perturbativangembe
ancora un macigno: sempre Poiredwa mostrato che la serie perturbativaicuramente
divergente, quindé abbastanza problematico fondare la teoria su queste basi. Sottolineia-
mo che il tipo di difficolf di cui stiamo parlandé qualitativamente diverso dall'analoga
difficolta in meccanica celeste

1) In meccanica celeste la serie perturbativa @@onvergente, ma, come giustamente

27In sequito si capit che I'accordo con i dati della teoria di Bohr Sommerfelbbastanza fortuito, mancando
appunto il contributo dello spin elettronico.



86 CAPITOLO 1. LA NASCITA DELLA MECCANICA QUANTISTICA.

sottolineato da Poincarstesso, questo non significa sia inutile, come del resto di-
mostrano le eccellenti previsioni fatte usando questa tecnica: la serie, in peatica,
una serie asintotica, che beiahmon convergenteaduna buona approssimazione del-
la soluzioné®. Il problema teorico in meccanica classica sorge quando si vogliono
fare delle previsioni di tipo asintotico, ad esempio sulla stabéigrandi tempi di un
sistema, ad esempio il sistema solare.

2) Nella teoria di Bohr la questioreepit delicata. Innanzitutto, prendendo ad esempio
I'elio, I'interazione elettrone-elettrone n@maffatto “piccola” in confronto all'intera-
zione elettrone nucleo. In secondo luogo i periodi tipici di rivoluzione sono dell’or-
dine di10~13 — 1071° sec., quindi se si vuole parlare di livelli atomici “stabili” su
tempi macroscopici & automaticamente in un regime asintotico. Infine @affatto
owvio che i moti multiperiodici necessari per poter definire la stessa quantizzazione
esistano; il teorema di Poiné&@afferma appunto che norechessun dominio (aperto
nello spazio delle fasi) in cui le orbite siano del tipo volunotevole che questa
problematica abbia avuto uno sviluppo moderno molto importante, almeno sul ver-
sante della dinamica classica: il teorema KAM (Kolmogorov, Arnold, Moser) dice
che per piccole perturbazioni esistono ancora dei tori invarianti (che sono le strutture
necessarie per scrivere le condizioni di quantizzazione), attorno ad un sistema inte-
grabile, mentre per grandi perturbazioni, normalmente, si entra in un regime caotico,
in cui ovviamente qualunque tentativo di scrivere una condizione di quantizzazione
non ha molto senso. Quantisticamente il problem@evante perch la sua com-
prensionee alla base del delicato passaggio da regime quantistico a regime classico,
che a tutt’oggi nore affatto chiaro.

Sottolineiamo quindi che il problema nértanto quello di usare una serie asintotica
per approssimare un risultato, quanto il fatto che non si sa se il risultato possa o no
esistere.

In mancanza di alternative, ovviamente, la cosa migliore daf@@munque usare la teo-

ria perturbativa per studiare I'atomo (di elio) e confrontare i risultati con I'esperimento.
Questo atomo presenta sperimentalmente due serie di spettri, tanto che all'nizio si pensava
ci fossero due diversi tipi di elio, pparaelio e I'ortoelio, che hanno, fra I'altro, strutture

fini e livelli Zeeman diversi. Malgrado tutti gli sforzi fatti questo tipo di struttura restava
sostanzialmente inspiegata nella vecchia teoria dei quanti, anche se si intuiva che dovesse
corrispondere a due tipi diversi di orbife Vari lavori di Kramers a Copenhagen e degli
allievi di Sommerfeld a Monaco, fra cui citiamo Pauli e Heisenberg, etc. non avevano
prodotto risultati ragionevoli. Il risultato finale che in qualche modo segna la fine della
vecchia teoria dei quangi un lavoro di Born e Heisenberg i quali non calcolano solamente,
tramite la tecnica perturbativa, gli stati di bassa energia dell’'atomo, calcolano invece anche
le energie corrispondenti ad un elettrone vicino al nucleo ed un elettrone in un’orbita molto
periferica, ci@ stati molto eccitati del sistema: in questa zona, di “grandi numeri quantici”

la teoriadevefunzionare. Invece non funziona, i risultati sono in completo disaccordo con

i dati sperimentali. Per rendere l'idea dello stato delle cose riportiamo la traduzione della
conclusione del libro di Born[Born25], cleepraticamente la “summa” delle conoscenze in
materia attorno al 1924-1925:

Possiamo quindi concludere che I'applicazione sistematica dei principi della
teoria dei quanti stabiliti nel Cap.2, &adl calcolo del moto secondo le leggi
della meccanica classica e la scelta degli stati stazionari a partire dai moti clas-
sici attraverso la determinazione delle variabili d'azione come multipli interi
della costante di Planck conduce all’accordo con I'esperienza solo nei casi in

28]| lettore interessato a questa questione travera discussione del problema nel capitolo dedicato alla serie
perturbativa in meccanica quantistica.

291| paraelio corrisponde a due elettroni con spin totale nullo, I'ortoeleio invece ha spin totale uno: questo in
meccanica quantistica influenza la simmetria del sistema.
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cui si tratta del moto di un singolo elettrone; essa fallisce subito appena si passi
alla considerazione del moto di ambedue gli elettroni nell’atomo di elio.

Questo non deve sorprendere pé&rélprincipi usati non sono in realtcon-
sistenti; da una parte le equazioni differenziali classiche per la descrizione
dell'interazione di un atomo con la radiazione sono rimpiazzate da differenze
finite, nella forma della condizione di Bohr sulle frequenze, dall’altra relazioi-
ni di tipo differenziale continuano ad essere usate nella trattazione dell’inte-
razione di molti elettroni. Una completa e sistematica trasformazione della
meccanica classica in una meccanica discontinua dell’atoloscopo verso

cui deve tendere una teoria quantistica.

Alle difficolta dell’'atomo di elio occorrerebbe aggiungere quelle con la molecola di
idrogeno ionizzato, con la molecola di idrogeno, quelle relative all’effetto di un campo
magnetico e di un campo elettrico simultanei sull’'atomo di idrogeno etc. Crediamo co-
munque di aver dato un’idea, almeno vaga, delle problematiche. Per motivi di spazio e di
opportunia didattica non ci soffermeremo ulteriormente sulla questione, ma, nel prossimo
paragrafo, analizzeremo I'ultimo e decisivo passo verso la meccanica quantistica: la teoria
della dispersione della luce.

1.19 Interazione luce materia.

Nei paragrafi precedenti abbiamo sommariamente discusso come le regole di quantizzazio-
ne di Bohr-Sommerfeld ed il principio di corrispondenza costituiscano uno schema inter-
pretativo che, benéhincompleto, lascia comunque intravedere alcune delle caratteristiche
che deve necessaiamente possedere una dinamica microscopica consistente. Il passo de-
cisivo per la costruzione della nuova meccanica, ed al tempo stesso “il canto del cigno”
della vecchia teoria dei quanti, si ha nello studio del problema che aveva dato origine alle
considerazioni di Planck e di Einstein: I'interazione luce-materia.

La limitazione pu evidente della teoria, dal punto di vista sperimentaléncapacia
di predire in modo consistente e completo gli spettri atomici e la polarizzazione della radia-
zione nei “salti quantici”. Le uniche affermazioni certe al riguardo sono le considerazioni
di Einstein sui processi di emissione e assorbimento, ed in particolare I'introduzione dei
coefficienti A e B che abbiamo vist nel paragrafo 1.5. In particolare il coefficiente di
emissione spontaned,, ., descrive la probabilit di decadimento al secondo per il decadi-
mentou — d in un sistema atomico. Da questo coefficiente possono essere dedotti i coef-
ficienti B che descrivono I'emissione indotta e I'assorbimento, vedi paragrafo 1.5. Occorre
quindi capire come questi coefficienti siano legati alla dinamica ed alla quantizzazione.

L'analogo classico dell’emissione spontargetornito dalla trattazione classica dell’ir-
raggiamento di un oscillatore. Sappiamo che la potenza media irragiata, in approssimazio-
ne di dipolo, da una carica accelerata

2¢e?

I= @cﬁ (1.279)
dove a indica I'accelerazione. La (1.27%) importante anche peretfa capire come la
spiegazione quantistica dell'interssit implica una comprensione dell'accelerazianee
quindi della dinamica del sistema.

Consideriamo un oscillatore armonico unidimensionale, con frequenza prgpeic
ampiezza di oscillaziong”|. In questo caso si ha

z = |C| cos(2mvpt + ) = Re (Ce?™0%) ~v = arg(C) (1.280)
a = —(271p)?|C| cos(2mvpt + )

30Usiamo qui la notaziongl, B perche useremo la letterd per indicare un'altra quanéit
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e quindi, usando per la media su un periodo il risultat& (x) = 1/2:

2
€ 412

In generale un sistema periodico, con frequengda un moto non armonico

z =Y |C;|cos(2nTrgt + ;) = Re (Z CTeQ’””Ot> r=1,2,... (1.282)

T T

e l'oscillazione descritta dalla (1.282hduogo a radiazione emessa con frequenze date
dalle armoniche del mote, = vy7:

2 2
_7 _ € 4 2 _ € 4 2
[l/ = IT = @(27“/) |O7—| = @(271’7’1/0) ‘CT| (1283)
Quantisticamente l'intensitdella luce emessa in una transizionle — n” & data dai
coefficienti di Einstein

I = energia del fotone prob. di emissione= hz/,’}f,Anf_,nu (1.284)

dove
W = Ep — Epr (1.285)

e la frequenza associata alla transizione. Naturalmente si tratta ora di calcolare i coefficienti
A .

Descriviamo le transizioni quantistiche in modo analogo a quelle classiche, usando
delle “ampiezze”Aﬁﬁ, per caratterizzare la transizione tra uno stat@d uno stato.”.
Possiamo immaginare di associare un “oscillatore virtuale” ad ogni transizione, e questa
e la motivazione originaria dell'introduzione di queste grandezzegmi ragionevole
considerare queste ampiezze semplicemente come un modo per descrivere la transizione e

scrivere
2

e ’ ’
Ly = @(%u;;,, AR, 2 (1.286)
La (1.286) non dice molto per il momento, ma permette di capoesabisogna applicare

il principio di corrispondenza per stimare le inteasili radiazione. I principio di corri-
spondenza afferma che per transizioni fra due stati’” conn’,n” > len' —n" =7

si deve riottenere la descrizione classica della transizione, corrispondente all’emissione
dell'armonicar. Per le frequenze si ha allora

V;L/// ~ TV (1.287)

quindi dobbiamo aspettarci
A", o Cr = Crr g (1.288)

La (1.288) in linea di principio ci permette di stimare le ampiezze dalla conoscenza del
motoclassicodel sistema, dalla (1.282). Questo tipo di informaziérsata essenziale fin
dalle prime applicazioni della vecchia teoria dei quanti, in effetti dei vincoli sulle compo-
nenti classiche del motd;,, possono venire tradotte, almeno ipoteticamente, ad analoghi
vincoli sulle ampiezze quantistiche. L'esempia pemplices proprio I'oscillatore armoni-

co. In un moto armonice presente solo un’armonica, quella cos 1, quindi la (1.288),
estesa come vincolo a tutte le transizioni, afferma che sono possibili solo le transizioni in
cui il numero quantica cambia di uno. Questo tipo di regole di selezione, nel casaldi pi
gradi di liberg, ca luogo, ad esempio, alla regalek = +1 di cui sie parlato al paragrafo
precedente. Ci sono due problemi da affrontare:
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a) Capire se la identificazione delle ampiez&;é, come variabilie significativa oé
solo una parametrizzazione dell'intersiti emissione. Il limite semiclassico (1.288)
sembra indicare che IA?L:/ abbiano un significato, essendo legate alle coordinate del
sistema via la relazione (1.280).

b) Supponendo che Lézi, abbiano un significato, comzpossibile calcolarle al dal
del limite semiclassico (1.288):? chiaro che la soluzione di questo problema signi-
ficher’ calcolare le coordinate del sistema in modo “quantistico” e quindi formulare
una nuova meccanica.

1.19.1 Diffusione della luce e legge di dispersione.

Per illustrare il punto a) del paragrafo precedente studiamanpdettaglio I'interazione
luce-materia.

In approssimazione di dipolo, sufficiente per i nostri scopi, I'interazione luce-materia
ha luogo perch il campo elettrico della radiazione induce un’oscilazione sulle cariche ele-
mentari, gli elettroni. Questa oscillazione, a sua volta, produce un’onda elettromagnetica.
La radiazione viene assorbita da questi “oscillatori elementari” e viene riemessa dando
luogo ad una diffusione della luce incidente. Le progrigitdiffusione di una data sostan-
za cambiano al variare della lunghezza d’onda della luce incidéntefenomeno noto
comedispersione Consideriamo per fissare le idee un gas. Il campo elettrico dell’onda
elettromagnetica induce una polarizzazione macroscdpi¢ache, in un gass data da:

P =Nd=NaE (1.289)

DoveN & il numero di atomi per ch) « la polarizzabilib atomica, ciéd = «F & il dipolo
indotto dal campo esternB. Tutta I'informazione sull'interazione luce-atorea@ontenuta
in o, in particolare la struttura delle righe spettrali.

Sperimentalmenté noto che una buona descrizione della variazione don la fre-
guenzee data da

e? i 2
a= - Z R (1.290)

v; sono le frequenze di risonanza del sistemag tédfrequenze dello spettro. La relazione
(1.290)¢ verificata nelle regioni non coincidenti con le frequenze di risonanza. La spiega-
zione classica della (1.290), allinterno della teoria degli elettroni di Lorén&hbastanza
naturale. Consideriamo per semplicit caso unidimensionale, sialo spostamento del-
I'elettrone, E' il campo elettrico incidente, diretto anch’esso lungo I'ass€onsideriamo

la componente del campo a frequemza

E = Eycos(2mvt) =Ree ! w =27y (1.291)
Per piccole oscillazioni
Ftyi+wir= B =S ERee ™ w = 2 (1.292)
m m

v indica la frequenza propria dell'oscillatore, una delle frequenz®ella (1.290).v € il
coefficiente di smorzamento dell’oscillazione: supponiamo per sengptibié sia dovuto
solo alla reazione di frenamento per emissione di radiazione, vedi eq.(1.279). In questo

casoe noto che

2,2
_ 2€e7wq

TT 3T
La relazione (1.293f gia stata sfruttata nell'analisi dell'assorbimento di un oscillatore
nella teoria del corpo nero, per una dimostrazione si veda il paragrafo 1.C, eq.(1.406). La

(1.293)
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soluzione “a regime” della (1.298)immediaté'

1

it 1.294
(wg — w?) —iw'ye ( )

e
xr = —EORe
m

Il dipolo del sistema ex. Lontano dalle risonanze il termine ine trascurabile e si ha

e? 1 €2 1
deer—aE o2% _ 1.295
er=a T wi —w?  Am?moy —v? ( )

Quindi la (1.290)e interpretata dicendo che ci sorfp elettroni effettivi per grado di
oscillazione, modernamente i fattgfi prendono il nome di “forza di oscillatore”.

i coefficienti f; sono direttamente collegati all'intergitielle linee spettrali. Conside-
riamo infatti I'energia assorbita al secondo da un oscillatore, uguale al lavoro effettuato
sull'oscillatore dal campo esterno. Dalla (1.294):

e 1

v=i=— 0(&)3—&02)2-4—01272[ w(wg — w?) sin(wt) + w?y cos(wt)]

quindi, usandeos?(z) = 1, cos(z) sin(z) = 0:

2 2
LY = eBy = — B2 it
v TR T oo (w3 — w?)? + w?y?

(1.296)

L'onda elettromagnetica nanin generale perfettamente monocromaticagnui@a somma
di campi a diverse frequenze
dw ,
E= [ —=ZE et
2w

il campo E, che compare nelle dormule precedenta componente a frequenza As-
sumendo che la radiazione abbia una distribuzione spettrale larga rispetto alla “larghezza
di riga” ~, 'assorbimenta dato dall'integrale della (1.296) in cdi, si pud supporre co-
stante. Lintegraleé dominato dalla zona in cui ~ wy, quindi, scrivendqw? — w?) ~

(wo — w)2wp:

— € _Lwiy [dw 1 1e?

,Cl(jl) =eFkv = 72mE374L(«)12 %—2 = gEEg (1'297)
0 (w _ WO)Z + l

4

Per una radiazione isotropa, come supporremo,

1— 3 3

- 3 -
I=—E’= ~E,”= "—Fy’cos?(wt) = —E2 1.298
4 4 4r? cos*(wt) 8r 0 ( )
Quindi, per la componente a frequenza perf; oscillatori effettivi:
2 2
=% = r,=2trg (1.299)
3m 3m

La grandezza, € I'energia assorbita al secondo dal sistema atomico, quindi direttamente
misurabile.

Il punto da chiarire2 come la teoria dei quanti descrive il fenomeno della dispersione.
Consideriamo un atomo in un dato stato.

Per sistemi quantistici I'energia assorbita al secondo dalla radiazione in un processo
n' — n’ & descritta dal coefficiente di EinsteR),_.,,. Supponendo per sempligithe
tutti i pesi statistici in gioco siano 1:

L, = prob. di assorbimenta energia di un fotone= (B, I,) % (hu;‘f,)

1A regime significa dopo che passato un transiente in cui la soluzione dell'equazione omogenea
proporzionale a- e~7*/2 diventa trascurabile.



1.19. INTERAZIONE LUCE MATERIA. 91

e utilizzando le relazioni di Einstein:
3 3

C ’ C
——— Ay (W) = ————= A _pn (1.300
S A (i) A (1.300)

L, = (hv" )BT, =

La cosa pil semplicee identificare la formula di assorbimento classica con I'energia as-
sorbita quantisticamente nelle transizioni indotte da fotoni[Ladenburg]. Se identifichiamo
I'espressione classica (1.299) con quella quantistica (1.300) abbiamo

8n? e?
n’'—n!’ — -y 7 1301
A = ) i (1.301)
Notiamo che la combinazione che moltipli¢anella (1.301)¢ esattamente I'analogo della
“larghezza”y introdotta classicamente. Ora noi sappiamo esprimere i coefficienti di Ein-
stein tramite le “ampiezzeA},, e quindi possiamo colegare queste ultime direttamente alla
formula di dispersione e quindi ai dati sperimentali. Dalla (1.284) e dalla (1.286) segue

167*
Aw—n = =3 hc () ‘A””
e quindi
fi = @w,ﬁ’, m, (1.302)
e per la relazione di dispersione, relativa alla costanti di polarizzazione nella:stato
‘A;,, v,
an = o Z TATIETY (1.303)

n'’

Il punto interessante che la (1.303hon puo essere verall motivo &€ che non soddisfa
al principio di corrispondenza, infatti s€,n” > 1 eh — 0 la (1.303) non pa avere
un limite classico, per@hA”,, dovrebbe tendere ad un’ampiezza classica ed il fattohe
rende divergente I'espressione €@nche un altro motivo, chéda chiave per la modifica
della (1.303) in un’espressione corretta. Le quan‘ﬁigﬁ,, benclke ancora non sappiamo
come calcolarle, descrivono un’ampiezza di oscillazione per un oscillatore in assenza di
campo, infattia € calcolata all’ordine pi basso inEy, ma classicamente il dipolo indotto
non dipendedall’ampiezza di oscillazione imperturbata, come si vede molto chiaramente
dalla (1.294).

La soluzione del paradosso si trova nella formulazione di Kramers della relazione di
dispersione e si basa sul fatto che quantisticamente in presenza della radiazione incidente
esistonadue tipi di processi che possono dar luogo alla polarizzazione

a) L'atomo assorbe un fotone a passa dallo staailo staton”, conE,,» > E,,» quindi
riemette un fotone passando dallo statoallo staton’'.

b) L'atomoemette un fotone per emissione indqtessando ad uno stait conE,,» <
E,, dopodicle assorbe un fotone e ritorna allo stato di partenza.

Il processo di emissione indotta, come abbianiofgito notare nella discussione sui coef-
ficienti di Einsteine proprio la cosa che caratterizza I'interazione quantistica con la radia-
zione dall'interazione classica.

Notiamo che sia nel processo a) che in quello b) @aetto che 'atomo nello stato finale si trovi di
nuovo nello stato di partenza, potrebbe risultare in un altro stato, questo significa, per la conservazione
dell’energia, che il fotone diffuso ha energia, €ivequenza, diversa da quella iniziadd) fenomeno

della diffusione Raman, scoperto proprio proprio nello stesso periodo. Nella formula classica (1.290)
non ce traccia di questo effetto, mentre quantisticamentr effetto previsto. nel seguito comunque,

per semplicid, ci limiteremo al caso in cui non si abbia cambiamento di frequenza.
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Il processo di emissione indotéamolto peculiare: I'atomo emettendo un fotanenenta
I'energia della radiazione, mentre il processo di assorbimento la fa diminuire: solo que-
st'ultimo & quello previsto classicamente. Si ha allora una sorta di “assorbimento negativo”
e la proposta di Krame#s appunto quella di modificare la (1.303) nella forma

n/ 2 nl n/ 2 n/l
2 ‘An,, v ‘An,, vy 1304
n’ = op Z W2 —12 Z (V)2 — 12 (1.304)

TL”,E,,L/ >Enu n' n”,En/ <E,n// n’
In termini di coefficientif;:
2
€ fi Z fi
= — 1.305
4m2m Z v:i—p2 . v2 — 12 ( )
i,a8s. U i,em.

Le abbreviazionuss., em. stanno per assorbimento ed emissione.

1.19.2 Relazione di Thomas e Kuhn.

| coefficienti f; soddisfano un’importante regola di somma, stabilita da Kuhn e Thomas[Thomas,
Kuhn]. Consideriamo un’onda elettromagnetica a frequenzenlto piu grande di tutte le
frequenze proprie del sistema. In questo regime gli elettroni possono essere considerati
come elettroni liberi. Per un elettrone libero I'energia irraggiata, e quindi persa dalla radia-
zione incidente, si scrive facilmente. L'equazione del motoa = eE quindi, usando la

(1.279):

26 o2 — 2¢? = et 2
= 1.306
T 33Y T 3m2s 3m2¢3 0 ( )
Al solito il campo elettriccg stato scritto nella form& = Ej cos(2nvt).
D’altronde sempre la (1.279) si puiscrivere nella forma
J (1.307)
- 3¢3 )

doved ¢ il dipolo elettrico del sistema. Pers v; si ha, dalla

2 1 21 /
O i | 2 f = g Y

quindi
. e
d = aF = aEy cos(2rvt < )
o aEq cos(2mvt) m(z f)

e per la perdita di energia

4 2 EO 4
303 m2 (Z fl) o 363 m2 (Z fz)

Supponendo per sempligithe ci sia un solo elettrone irraggiante per atomo dal confronto
con la (1.306) si deve allora avere la relazione:

SNofi=> fip=1 (1.308)

1,aSSs. i,em.
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ovvero, in termini delle ampiezz4”,,:

"

vy =1 (1.309)

2’2“2 3 ’An,, VDY ‘An,,

n'" B 1>E n n'' B 1 <E,n

1.19.3 Principio di corrispondenza.

Per completare I'analisi dell'interazione luce-materia nell’ambito della vecchia teoria dei
guanti possiamo fare vedere esplicitamente che la formula di dispersione di Kramers e la
relazione di somma di Thomas e Kuhn si possono inferire dal principio di corrispondenza,
in una versione pi sofisticata, formulata essenzialmente da Born[Born24].

Il principio di corrispondenza asserisce che la frequenza relativa ad una transizione che
avviene fra stati con grandi numeri quantici deve essere approssimata da un’armonica della
frequenza classica del moto. Consideriamo per fissare le idee un moto periodico ia cui si
operata la quantizzazione con la regdla- nh. L'energia in generalé una funzione dif
ed il principio di Bohr per le frequenze di transizione si scrive

E(nh) — E((n—7)h)  dE(n) 1 dE4(J)

Upnpor = - ~T = ET 0 (1.310)

Ricordiamo chM e proprio la frequenza classica del moto riferita ad una variabile di
azioneJ, quindi Ia (1 310) esprime correttamente il principio di corrispondenza.

L'ipotesi di Borne quella di estendere il tipo di relazione (1.310) a qualunque gaantit
che si riferisca ad uno stato stazionario, e quindi dipendente solo da

d®(n)
4 dn

do(J)
dJ

— ®(n)—d(n—71) owero — (B(n)—d(n—71)) =71

(1.311)

S

Si tratta ci@ didiscretizzarde derivate.

Una immediata generalizzazione, che ci senir seguito,e la “quantizzazione” di
quantit che si riferiscono in modo picomplicato allo stato. Consideriamo la frequenza di
transizione classica corrispondente alla armoniesima

TdEcl(J)

Ve (n, ) = 0

si ha, sempre sfruttando la (1.310):

Valn,7) _d [1 dE]

dn dn |k dn

cioe laderivata seconddella grandezz#, vale a dire, sempre per discretizzazione

dve(n, ) 1 .
TT — E [(E(TL + 7') - E(n)) - (E(TL) - E(’I’L - 7-))} = VUn4rmn — Unn—1

che generalizzeremo nella forma
qu)cl (TL, 7')
dn

Consideriamo ora un sistema atomico, che schematizziamo come un sistema sempli-
cemente periodico, interagente con un’onda elettromagnetica esterna. L'Hamiltoniana del
sistemae scrivibile, in approssimazione di dipolo, nella forma

=®(n+7,n)—P(n,n—r1) (1.312)

H=Hy—d-FE E = Ej cos(2mvt) (1.313)
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In assenza di interazione si hanno coordinate canoni€hg® ed il dipolo, genericamente,
ha un’espressione del tipo

1 0
do = e Z: Cre?™' T dreale = C_,=C; (1.314)

La normalizzazione usata per scrivere la (1.3 stessa usata classicamente nelle equa-
zioni (1.280) e (1.282). Tenendo conto della perturbazione dovuta al campo esterno il
dipolo subisce un cambiamento, scrivibile, al primo ordine perturbativginella forma

d:d0+d1 dlo(Eo

dy e il dipolo indotto nel sistema puessere facilmente calcolato per mezzo della teoria
perturbativa classica:

cos (2mvt ZT g |C | 0 (1.315)

d
1) = = 0J (voT) (vo1)? — 12

il lettore pw trovare una dimostrazione del risultato (1.315) nell’'appendice 1.G. La (1.315)
dice che la polarizzazione classiea

8 |C | TV
1.316
(9J (vo71)? — (vo7)2 — 12 ( )
L'argomento della derivata nell’espressione (1.316) si riferisce ad una transiziere
n + 7 e g7 € 'armonicar-esima della frequenza fondamentale, quindi quantisticamente
va interpretato come
|CT|2TVO ‘A(n + 7, n)|2Vn+‘r,n

(1.317)

(VOT)Q -2 V'i-‘rT,n —v?

Dove A ¢ il corrispettivo quantistico dell'ampiezza classi€aApplicando ora la regola di
corrispondenza (1.311) si ottiene

A(n+ 7,0)|*Vntrn An,n —7)|*vpn_r
wm gy (AP AP} g

2 _ 1,2 2 _ 1,2
>0 Vn-i—‘rn v Vn,n—T v

che coincide, a parte le notazioni leggermente diverse, con la relazione di Kramers (1.304).

1.20 Latransizione alla meccanica quantistica.

Dai paragrafi precedenti dovrebbe ormai risultare chiaro che il problema cenitalal-
colo delle ampiezze di transizion®&(n + «,n) analoghe alle ampiezze classiafig. E
guesto il problema affrontato e risolto da Heisenberg nel fondamentale lavoro[Heis25].
Consideriamo per sempliéitun sistema periodico, unidimensionale, ad esempio un
oscillatore anarmonico. Classicamente le grandézzeono definite dalla soluzione delle
equazioni del moto:
i = f(x) (1.319)

dove f(x) €, ad esempio, un polinomio in La soluzione classica ha la forma

1 .
=5 D Cae®me! (1.320)

La notazionee identica a quella usata nella (1.314), ora indichiamo cda frequenze
esatte del sistema. Usiamg ... come interi al posto di per evitare confusioni tipo-
grafiche con il tempe. Classicamentar e la fequenza che corrisponde al salto quantico
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n — n + «, qundi scriviamolav,(n, ). A questa frequenza corrisponde una frequen-
za quantistica tramite la regola di Bohry(n, «). Lidea usata nei paragrafi precedenti
e di fare corrispondere @, una “ampiezza quantistica(n,n — «) e quindi scrivere,
guantisticamente

1 , ,
q(t) = 3 Z A(n,n — a)e?mvinn-a)t — Z q(n,n — a)e?mvinn—a)t (1.321)
« «

Questoe molto ragionevole dal punto di vista fisico: le quantisservate, via ad esempio
la relazione di dispersione, sono le quantl(n, n — «) edé quindi giusto concentrare la
nostra attenzione su queste quantityn sistema come I'oscillatore anarmonggerio-
dico, quindi nel linguaggio classig®integrabile ed ha solo stati stazionari. Limitiamoci
a questo tipo di sistemi per sempleitIn questo caso qualunque dipendenza temporale,
perqualunque osservabiledeve corrispondere a transizioni fra stati stazionarg taopil
generale dipendenza temporaleroprio della forma (1.321):

Q) = Z B(n,n — a)eiQ‘n'u(n,n—a)t (1.322)

possiamo quindi dire che qualunque osservabile deve essere rappresentabile da coefficienti
deltipoB(n,n — ).
Torniamo ora al problema di determinare i coefficietifin, n — «) per la variabile.
In linea di principio basta sostituire I'espressione (1.321) nella (1.319), riscritta, @ek
avere delle equazioni pet. Ma c’e un grosso problema. Se, ad esempia;) = 22 cosa
si sostituisce al posto @#? Quale cic2 la regola per costruire i “coefficient perq¢? se
si conoscono quellid, perg? Consideriamo proprio il casf(z) = z2. Si av@a

1 ) )
2 _ - _ 2nv(n,n—a)t — 2 _ 2nv(n,n—a)t
¢ =7 %y B(n,n—a)e = E [¢°](n,n — a)e (1.323)

«

NOTA: attenzione a non confondere[¢®](n, n — «) che indica il rappresentante della quantjit
con I'espressionég(n, n — «))? chee il quadrato del numerg(n, n — ).

Qui si coglie un primo punto importante: se si deve soddisfare un’equazione come la
(2.319) si avranno relazioni del tipo

A(n,n —a) ~ B(n,n — a)

il che significa che non solo il modulo, ma andaefasedei coefficientiA(n,n — «) &
importante, perah naturalmente si deve avere uguaglianza anche in fase. Questo ci aiuta
a capire la situazione. La fase dei coefficienti si comporta come la dipendenza temporale.
Ora per le frequenze classiche si ha

ver(n, a) +va(n, ) = va(n, a + 3) (1.324)

trattandosi di armoniche. Quantisticamente invece la legge di Bohr sulle frequenze, o se
vogliamo il principio di combinazione di Ritz, ci dice che deve valere

v(n,n—0) =v(n,n—a)+vin—an-—_7) Vo (1.325)

Classicamente chiaro come costruire?, basta fare il prodotto di due serie di Fourier, che
sono serie di potenze,

3?2 — % ; Z CaCﬁ,aem’”’Bt — i % Z CQCB,aeiZTW“l(n’"_B)t
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Cioe classicamente la-sima componente di Fouriér

1 )
(%) = ; D CaCppelmretnn=ht (1.326)

chee ovviamente compatibile con la legge di composizione (1.324) per le frequenze:

6i27rt1/d(n,a)eiZTrtan,(n,ﬁfa) _ 6i27rt(ucl(n,a)+ucz(n,ﬁfa)) _ 6i27rt1/c;(n,[3)

La legge di composizione quantistica (1.325) invece, scritta per le fasi, diventa
ei27r1/(n,n—ﬁ)t _ ei27rt(u(n,n—a)+l/(n—a,n—ﬁ)) — ei27rtu(n,n—(x)ei27rt1/(n—a,n—ﬁ) (1327)

Visto che le fasi dei coefficienti(n,n — ) devono combinarsi come le fasi temporali
esplicite deve allora valere, quantisticamente

[4°](n,n = B) = q(n,n —a)g(n —a,n - B) (1.328)

[e3%

Ponendon = i,n — « = k,n — 8 = j il lettore riconoscex nella (1.328) la legge di
moltiplicazione di due matrici:

(@®)ig = Y qindrj (1.329)
k

Notiamo anche che la relazione di Bohr fra frequenze di transizione e livelli atoanici d
v(n,n —a) = —v(n — a,n), quindi per le fasi si ha

ezZ'n’u(n,nfa)t — 67127r1/(n7a,n)t — |:ez27ru(n7a,n)t

Imponendo di nuovo che le quagtiti(n, n — «) si trasformino come le fasi temporali
A(n,n —a) = [A(n — a,n)]" (1.330)

che sostituisce la relazione classt¢a = C* .

E chiaro che rappresentare una coordinata classica con un oggetto che non soddisfa ad
un’algebra commutativa, una matri@eyna cosa piuttosto lontana dalla intuizione classica
ma questo punto veardiscusso pi ampiamente nel resto del libro. Diamo ora per buo-
na la prescrizione (1.329) e la sua ovvia generalizzazione a potenze superiori, in linea di
principio possiamo ora sostituire nella (1.319) e ottenere un’equazione per le grandezze
g(n,n — a). Ma resta un problema: nella vecchia teoria fra le infinite soluzioni classiche
dell’'equazione differenziale (1.319) ne venivano selezionate alcune tramite la scelta delle
costanti del moto, o meglio degli invarianti adiabatiti Cosa prende il posto di questa
procedura?

Nel caso in esame la condizione di Bohr-Sommerfeld siigcrivere nella forma

1/v
J=nh= f pdg = / dtmi? (1.331)
0

Dalla (1.320) si ha
T =im Z(au)CaeiQ”“”

e quindi, effettuando I'integrale che compare nella (1.331)

1
nh = mm? Z(au)QCaC_@; = mm? Z a(av)|Cy? = 2mn? Z aav)|Cyl?
« «a a>0
(1.332)
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Per tradurre questa relazione in un’affermazione “quantistica”, usiamo la procedura di Born
vista nel paragrafo precedente, operando una derivata rispetto ad

= 2mn? Za [[Cal?(av)] (1.333)

a>0

Questa espressione ha esattamente la forma che abbiawistginell’analisi della formula
di Kramers, quindi possiamo scrivere immediatamente la trascrizione tramite la procedura
di Born:

h = 2mm? Z [JA(n+ a,n)Pv(n+ a,n) — |[A(n — a,n)]*v(n,n —a)]  (1.334)
a>0

ma quest& esattamente la relazione di Thomas e Kuhn (1.309)letheessere soddisfatta
come regola di somma. Quindi da un lato abbiamo verificato che la (1.309) discende di-
rettamente dal principio di corrispondenza esteso nella maniera di Born, dall’altra abbiamo
trovato un vincolo che sostituisce la relazione semiclassica (1.331). Notiamo che, usando
la relazionev(n,n — a) = —v(n — a,n), la (1.334) po essere scritta pisemplicemente

nella forma di una serie non vincolata:

h= 2mﬂ-2Z|A(n+a,n)\zy(n+a,n) (1.335)

A questo punto il problemaben definito. Nel lavoro[Heis25] Heisenberg sfrutta questa
relazione e le equazioni del moto per risolvere il problema dell’oscillatore armBraai
una trattazione perturbativa di quello anarmonico. In breve tempo Born e Jordan[BoJo25]
riconoscono nel formalismo di Heisenberg la struttura di algebra delle matrici e fanno
vedere che la relazione (1.334) corrisponde alla regola di commutazione

lq,p] = z% (1.336)

Dalla relazione (1.321) segue

p=mj=1in Z A(n,n — a)v(n,n — a)e 2™ mn=at = Z[p (n,n — a)e 2™ mn=at
«

(1.337)
La regola di moltiplicazione (1.328) impone

{qp}(n,n—ﬁ):Eq(n,n—a)p(n—a,n *ZmWZAnn—a (n—a,n—B)rn—an—7)

@

{pa}(n,n—B) =Y p(n,n—a)g(n — a,n — §) = WZA (n,n — a)v(n,n — a)A(n — a,n — )

Il termine “diagonale”8 = 0, delle relazioni precedentid

ian > (JAMm,n = @) v(n - a,n) — [A(n — a,n)* v(n,n — a))

[e3

= ’imﬂ'Z |A(n + a,n=) > v(n + a, n) (1.338)

{ap — pq} (n,n) =

Nell'ultimo passaggio abbiamo cambiato 'indice di somma-» —«. Usando la (1.335) si ha

h

{ap — pq} (n,n) = imm - % =i — (1.339)
2mm 2m

32| lettore & invitato a leggere almeno per sommi capi il lavoro in questione. Alcune parti, quell relative allo
sviluppo perturbativo, saranno riviste nel capitolo sulla teoria perturbativa.
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chee esattamente il termine diagonale della (1.336). Nell'articolo[BoJo25] si fa vedere che i termini
non diagonali sono nulli.

Subito dopo in un famoso articolo Born, Heisenberg e Jordan[BoHeJo25] forniscono diver-
se applicazioni del formalismo e sviluppano la teoria perturbativa. A brevissima distanza
compare una formulazione completamente diversa della teoria, quella didBaer, che

verra trattata pi diffusamente nel testo principale del libro. In pochi mesi, fra il 1925 e il
1926, si ha la transizione dalla vecchia alla nuova meccanica.

Breve nota bibliografica.

Alla fine del capitolo si trova un breve elenco delle opere e degli articoli citati nel testo e
nelle appendici. Abbiamo cercato, quando possibile, di fornire I'indicazione di versioni in
lingua italiana o inglese degli articoli originali.

Fra i testi citati vogliamo qui segnalare i libri di M. Born[Born32] e quello di S.
Tomonaga[Tomonaga], dove il lettoredtrovare un’esposizione molto chiara, tra le altre
cose, degli argomenti trattati in questo capitolo.

Per il lettore che voglia approfondire la parte storica consigliamo i testi di J. Mehra e
H. Rechenberg[Mehra], di M. Jammer[Jammer] e di A. Pais[Pais1, Pais2]. In questi testi,
fra I'altro, il lettore pub trovare un’ampia bibliografia.

Gli articoli di Einstein citati nel testo si possono reperire tradotti in inglese nei “Col-
lected Papers”[Einstein]. Alcuni articoli tradotti in italiano si possono trovare, ad esempio,
in[Einstein2].



Appendici e Complementi

1.A Termodinamica del corpo nero.

Consideriamo alcuni semplici aspetti termodinamici della radiazione di corpo nero. Il

lettore che voglia approfondire I'argomentogeonsultare il testo di Planck[Pla-H.R.].
Consideriamo un corpo a temperatdran equilibrio termico con la radiazione. Una

situazione di questo tipo puessere idealizzata come una cavion pareti riflettent?.
Dall’elettromagnetismo sappiamo che possiamo definire una detiséinergiau, ed

una densi di impulso,g = u/c. In termini del vettore di Poynting, si hag = S/c?.

E allora immediato calcolare la quaatitli dQ
energia che arriva al secondo su una super-
ficie dS, da un angolo solidd(2 in direzione //

6, in un tempodt (vedi figura), e la quantt

di impulso, sempre nella direzioe d

/
/
e/
/

Q
OF = uj— [edtdS cos 6] (1.340a)
T

u dS)
P = e [edtdS cos 6] (1.340Db) dS
Nella cavit la radiazione isotropa, cié v non dipende d&. Dalla (1.340b) si pa cal-
colare la pressione di radiazione: in una riflessione su una parete I'impulso trasferito in
direzione ortogonale alla pare@® P cos 6 quindi per la pressione si ha:

20P cosf aQ u

I'integraleé stato fatto sull’angolo azimutalé,< ¢ < 27, e sulla parte interna alla caaijt
0 < 6 < x/2. D'orain poi indicheremo questo tipo di integrale con la notazione

27 /2
/dQE/d(p/ sin 0d6
< 0 0

Teorema di Kirkhhoff.  La densia di energia: dipende dalla temperatura. La sua com-
posizione spettralé definita come I'energia per uaiti volume con frequenza compresa
nell'intervallov, v + dv, e indicata com, (v, T')dv. In ternmini della funzione, (v, T') si

ha:

u(T) = /OOO w, (v, T)dv = /OOC w, dv (1.342)

33per pareti perfettamente riflettenti la radiazione riflessa ha la stessa frequenza della radiazione incidente e
quindi non si potrebbe raggiungere I'equilibrio termodinamico a partire da una situazione generica. Possiamo
pensare di aggiungere un “granello di polvere” che assorbendo e riemmettendo radiazione catalizzi il processo di
equilibrio: & lo stesso procedimento che si utilizza quando si tratta un gas perfetto in una scatola con pareti liscie.
Il granello di polvere chiaramente non ha influenza sulle funzioni termodinamiche.

99
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Il primo risultato importante, dovuto a Kirkhho®, che la funzion&, (v, T') non dipende

dal tipo di cavita. Supponiamo infatti di avere due cayitd, B se la funzione nog uguale,
allora una delle due, ad esempig ha, in un certo intervallo di frequenza, una demsii

energia maggioreus (v, T) > ug(v,T). Consideriamo ora una fibra ottica di sezighe
che lasci passare solo I'intervallo di frequenza in questione e connetta le due tluisi

di energia dad versoB e viceversa, in un tempdt, sono, dalla (1.340a):

Q Q
Py p= / uA(V,T)d— [edtS cos 0] dp_4= / uB(u,T)d— [edtS cos 6]
< 47 < 47

Nelle ipotesi fatteb 4.5 > ®Pp_, 4.

Si ha quindi un flusso di energia dha B: la seconda cavt allora aumenta la sua
temperatura in modo da equilibrare il flusso. La differenza di temperatura ottenut@ si pu
utilizzare in una macchina termica funzionante fino a porfaedla temperatura originaria.

In questo modo si sarebbe ottenuto lavoro a partire da una sola sotdeseeza altri cam-
biamenti, e @ contraddice il secondo principio della termodinamica, quindi deve essere
ua(v,T) =up(v,T).

Definizione di corpo nero. Consideriamo ora un qualunque corpo a temperdiyra
supponiamo che emetta radiazione in modo dipendente soltanto dalla tempér&thia-
miamo J (v, 0) I'energia emessa al secondo per intervallo di frequenza e di superficie
nell’angolo solidad(2:

5Wem o
T = J.0)ds (1.343)

Il coefficienteJ si chiama coefficiente di emissiolfe Questo stesso corpo, sottoposto a
irragiamento, pa assorbire una certa percentuale della radiazione incidentéd, (8ee

la densih spettrale della radiazione incidente per anit angolo solido, ragionando come
nella (1.340a) si ha che I'energia al secondo incidente dall’angolo sé{idsull’'unita di
superficieg

i;/::; = cl, cos 9% (1.344)
di questa una fraziond(v, §) saa assorbita. Il coefficientd si chiama coefficiente di
assorbimento.

| coefficienti J, A dipendono dal corpo chiaramente. Supponiamo per sengptibit
il corpo non sia fluorescente, e che tutta la radiazione incidente venga assorbita o rifles-
sa. In questa situazione all’equilibrio termico per ogni angolo solido e per ogni interval-
lo di frequenza si deve avere un bilanciamento fra energia assorbita e energia riemessa.
All'equilibrio termico la radiazione ambienteu,,, isotropa, quindi si deve avere

J(v,0) = A(v,0) - iuy cos 6 A, 0)

= iu,, cos 6 (1.345)
47

cioe il rapporto fra il coefficiente di emissione e quello di assorbimeéniniversale non

dipende dal corpo ma solo dalla deasdipettrale della radiazione all’equilibrio termico,

u, (T'). Queste il contenuto di un secondeorema di Kirchhoff (1859)Si definiscecorpo

nero un corpo che assorbe tutte le frequenze, in cwd eio= 1. u, & quindi direttamente

connessa al coefficiente di emissione di un corpo nero.

341 caso pii sempliceg quello in cui il corpo non cambia durante I'emissione, ma possono anche avvenire
reazioni chimiche, purehla temperatura sia 'unico parametro di regolazione.
35Spesso si usa la notaziode= K cos 6.
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E istruttivo presentare una deduzione elementdfe !
della (1.345), ch&ostanzialmente la prima dimo- A 3 B ; C
strazione di Kirchhoff. Consideriamo una situaj ‘ ‘
zione come quella illustrata in figur&y, So sono
due specchi perfettamente rifletteri; , K> sono
due corpi trasparenti a tutte le frequenze eccetjo
quelle comprese nell'intervalle/, v + dv). Pos-
sono emettere o assorbire luce in questo intervafo
di frequenza attraverso le superfici tratteggiate — —
figura. 1 Ki Ky S>

| poteri emissivi ed assorbenti sofw a) e (E, A) rispettivamente. Sianbf‘), I,({‘) le intensit
luminose, nell'intervallo considerato in frequenza, che si propagano verso sinistra e verso destra nella
regioneA. Grandezze analoghe siano definite nelle regidni'.

All'equilibrio deve esserdEA) = If{‘) e l'intensi@a verso sinistra iM € quella non assorbita
proveniente dalla regionB, cioé I(LA) = I(LB) (1—a). Lo stesso ragionamento vale nella ragiéhe
si hanno dunque le relazioni

I£A> _ I(RA) [E/C) _ I}(%C)
[ TR R VR I

¢=

Nella zonaB il corpo K1 emette radiazione verso destra e quéllpverso sinistra, inoltré presente
la radiazione proveniente dalle zoHeC"

{[,(f) —et+ I =e+1P(1-a)

1P —p+19 =E+1P01-4)

All'equilibrio i corpi devono emettere la stessa quantif energia che assorbono, quindi
e=al”  E=AI

Sostituendo nelle relazioni precedenti si ottiene

(&

_E
a A

che esprime appunto I'universalitel rapporte/a.

L'energia totale emessa dall’'uaitli superficie di un corpo nero al secondo,

W= [ dv /dQ J(v,0) :/ dQ - wucosh = Su (1.346)
0 < < 4m 4
Sperimentalemente Stefan, nel 1879, ha trovato lelggé¢ di Stefan
W =oT? (1.347)
Il valore attuale div &
erg

o = 5.670400(40) x 10~° = 5.670400(40) x 1078

sec cm K4 m? K*4
Questa legge stata dedotta teoricamente da Boltzmann (1884¢ gdindi nota come
legge di Stefan-Boltzmanla costanter si chiama costante di Stefan-Boltzmann, e, come
vedremo g deducibile da altre costanti fondamentali.

Il secondo principio della termodinamica, eibesistenza dell’entropia, applicato alla
radiazione, si scrive
TdS = dU + pdV

U = uV e l'energia interna. Utilizzando I'equazione di stato (1.341) e ricordanda éhe
una funzione solo dr":

1 lu, V du oV, 4
ds = T(VduJFUdV) + ngv = Tdu+ 3TdV_ T (T)dT + 3udV
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Imponendo che.S sia un differenziale esatto:

9 (V. ,%i(ﬁ) I S R
av\7") T 30T \T 3T 372

da cui, imponenda/(0) = 0:

uw=al? (1.348)
Dalla (1.346) segue
c=%a = a=3s (1.349)
4 c
Sostituendo nella definizione 8t
4 4 .
ds = gaT?’ +4aT?VdT = S= gaTW (1.350)

La (1.350) esprime il fatto, probabilmente noto al lettore, che in un’espansione adiabatica la
temperatura decresce coivie /3, cioé con le dimensioni lineari del sistema, fatto questo,
ad esempio, all'origine del “raffreddamento” della radiazione fossile dell'universo.

Il secondo principio della termodinamica implica anche un importante risultato sulla
distribuzione spettrale, (v, T'), la legge di Wien (1893).

1.A.1 Legge di Wien.

Legge di Wien: La forma generale della funziong (v, T') & data da

W, T) =3 f (%) (1.351)

In questo capitolo daremo tre diverse dimostrazioni di questa legge, ognunaanmetter
luce aspetti diversi del problema. La prima dimostraziergella classica di Wien, vedi
ref.[Pla-H.R.].

Consideriamo una cavita temperaturd@, con pareti perfettamente riflettenti, e suppo-
niamo di comprimere lentamente, con veladit- una delle pareti, di ared. Per velocia
Vp infinitesime questa compressiogeadiabatica, peréhnon c& scambio di calore, e
reversibilé®.

Consideriamo un singolo raggio di luce che incide sulla parete mobile con un angolo
6. Nel processo di riflessione avvengono due fenomeni: la frequenza della luce cambia per
effetto Doppler e I'energia del raggio cambia. Possiamo pensare alla luce riflessa come
proveniente da una sorgente virtuale posta ahdiélla parete, se la sorgente reala
distanzar dalla parete la distanza fra la sorgente virtuale e quella ale quindi al
muoversi della parete la veloaie 2 dz/dt = 2Vp e l'effetto Doppler al primo ordine
fornisce per la frequenza della luce riflessa

VvV =v <1 + 2E cos 9> (1.352)
c

Una dimostrazione alternativa si pwttenere passando al sistema di riferimento solidale
alla parete. In questo sistema la luce riflessa e quella incidente hanno la stessa frequenza.
Effettuando la trasformazione di coordinate dal laboratorio al sistema mobile e viceversa,
prima e dopo la riflessione si riottiene il risultato (1.352).

36Non tutte le trasformazioni lente sono necessariamente reversibili, in questd ahbastanza ovvio che la
trasformazione piessere pensata avvenire attraverso stati di equilibrio, la forza esterna che spinge kiparete
equilibrio con la pressione di radiazione all'interno della cavitna dimostrazione formale di questo fatto sbpu
trovare nel testo di Planck, noi verificheremo la cosa a posteriori.



1.A. TERMODINAMICA DEL CORPO NERO. 103

Consideriamo ora I'energia di un singolo raggio. La quanditenergia che incide da
un angold con frequenza sull’'areaA in un tempadt €

I(v,0)dvdt = u, Z—Q [Acdt cos 0)dv (1.353)
7T

Quindi Idv € I'energia al secondo che incide sulla parete e corrispondentethénte e
I'impulso. Per la conservazione dell’energia, I'energia riflessa data da quella incidente

piu il lavoro della forza esterna. La forza corrispondente ad una trasformazione quasi-
staticae la stessa della forza di equilibrio (si pensi ad una compressione lenta di un gas,
la forzae pA dovep € la pressione di equilibrio). Come abbiamo visto nel calcolo della
pressione di radiazione I'impulso inciderfiév /c, in condizioni di equilibrio, @ luogo ad

una variazione di impulso al secondo,&iad una forza

Id
F = 2?1/ cos

ed un corrispondente lavorb = F'Vpdt. Quindi I'energia riflessa in un tempd in
seguito allincidenza del raggio (1.358)

I
I(v,0)dvdt + 2% cos OVpdt = I(v,0)dv (1 + 2V—CP cos 9) dt (1.354)

In una trasformazione adiabatica si ha p&nen travaso di energia fra le diverse compo-
nenti spettrali della radiazione. Quello che vogliamo scrieeappunto il bilancio energe-
tico del processo, calcolare éd cambiamento dell'energia della componente spetirale
§(u, V)dv.

Tutta I'energia che incide sulla parete viene rimossa, a causa dell’effetto Doppler, dalla
componente in esame, si ha&iona perdita:

d_ = / I(v,0)dt (1.355)

dove al solito I'integrale® fatto per raggi incidenti, quindi < /2.

Si ha poi un guadagno dovuto al travaso da modi di energia diversa, sempre per effet-
to Doppler. Consideriamo una incidenza ad angblghe non ha niente a che fare con
I'angolo di incidenza considerato prima, ¢ue un angolo generico su cui integreremo).

Le frequenze che dopo riflessione diventansono date, al primo ordine ilip/c dalla
relazione inversa alla (1.352)

vy =v (1 — 2% cos 9) (1.356)
Il guadagno in energia in questo processo si legge direttamente dalla (1.354)
Vp
O, = [ I(vy,0)dvy | 14+2—cos@ | dt ~ [ I(vy,0)dvdt (1.357)
J< c <
Abbiamo sfruttato il fatto che al primo ordine I,
di (1 + 2% cos@) =dv <1 — QV—CP cosG) <1 + 2% cos0> ~ dv

Sviluppando in serie di Taylor

Ou,,
ov

I(vy,0) =~ 1(v,0) + (—QVP COSOV) Z—Q[Acdtcos 0]
c T
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Usando
/ aa 1
COS =
< 4n 6
si ha allora o 1 -
u, u,
O, =0 — —Z-[AVpdt]dv = ®_ “v=dVd 1.358
n ey 3[ Vpdt)dv + % V3 Vdv ( )
dV = —[AVpdt] & la variazione di volume, il segno megadovuto al fatto che stiamo

considerando una compressione.
Quindi la variazione di densitspettrale di energia

10u, 0w,V 10u, _
“300 " v 3o’ ~ Vv —3as v 139
La (1.359)e lineare indV/, quindi in d¢, cioe cambiando il segno del tempo l'effetto cam-

bia segno, si ha quindi in effetti un processo reversibile. La (1.858pa equazione
differenziale pew intesa come funzione die V. E immediato verificare che la posizione

Oou, vou,

0(u, V) oV

u, (1, V) =3 fL(VPV)

fornisce la soluzione. In una trasformazione adiabatica reversibile, vedi (113%8) =
cost., quindi al posto di possiamo sostituir& 3 ed ottenere infine

u,(v,T) =13 f(v/T) (1.360)
cioé la legge di Wien (1.351).

Particelle a massa nulla. Come probabilmente il lettore@i, uno dei principali risultati

che otterremo nello studio della meccanica quantistida descrizione della radiazione
elettromagnetica attraverso particelle a massa nulla, i fotoni, con energia data-da

ed impulsop = E/c = hv/c. In vista di questo risultato facciamo vedere come la legge

di Wien si possa ottenere in modo elementare con un procedimento noto dallo studio delle
trasformazioni adiabatiche di un gas perfetto.

NOTA. Il lettore intenda la trattazione seguente come una trattazione puramente euristica dell’ar-
gomento. | fotoninon sono trattabilicome particelle statisticamente indipendenti nel senso della
statistica di Boltzman. Il motivo per cui i risultati seguenti danno il risultato coreettbe in reali

tutte le relazioni sono basate sulle propidella densit di energia, il numero di foto® una quanté
puramente ausiliaria definita fra qualche riga.

Consideriamo un gas di particelle a massa nulla.n$#)dE il numero di particelle
per unig di volume con energia compresa flae £ + dE. Supponiamo la distribuzione
isotropa, come ovvio. In questo linguaggio la dersiti energia e la densispettrale sono
date da

u= / dEn(E)E = / dEw(E)  u(E) = En(E) (1.361)

Il lettore esperto avr notato che assumere I'esistenza di una funzigiie)dF per il nu-
mero di particelle2 un’ipotesi piuttosto azzardata, nel senso che in generale il numero di
particelle per uné di volume dipende anche dal numero totale di particelle, ad esempio.
Nei calcoli seguenti 'unica grandezza che eritrier giocoe u(E), la densik di energia,
quindi si pw considerare.(E') come una variabile ausiliaria, in effett(E) = U(E)/E
per definizione. Commenteremo in seguito cosa succede per un gas composto da particelle
diverse dai fotoni.

Con un procedimento ben noto dallo studio di un gas perfetto, il numero di urti di
particelle provenienti da un angaoficsu un’arealA e

N(E,0)dEdt = n(E)dEZ—Q[dAcdt cos 0]
T
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Per urto elastico contro una parete si ha un trasferimento di implgsmse e quindi si
ha una pressione

E
/dE/ dE—ccosH 2— cosf = g (1.362)
Quindi questo gas soddisfa alla stessa equazione di stato della radiazione.
Passiamo ora alla legge di Wien. L'urto elastico contro una parete riflettente mobile
porta ad un cambiamento di energia
2
E'=E <1 + e cos 9> (1.363)
C

Basta ragionare come per la radiazione: nel sistema di quiete della parete I'energia nell’urto
resta invariata, effettuando la trasformazione di Lorentz segue la (1.363).
L'energia dei fotoni “persi’e, come nel calcolo precedente:

= / N(E,0)dtdE - E (1.364)
<
| fotoni che, dopo riflessione, hanno ener@igrovengono da energie:
FEi=F (1 — VPCOS@)
C
Quindi il guadagno di energig, usando la (1.364):
2Vp
b, = | N(E1,0)dtdE; - Ey- [ 1+ — cos @ (1.365)
<

Di nuovodE; (1 + 222 cos ) = dE e quindi

D, = / N (E1,0)dtdE - Ey (1.366)
<
Usando ora la definizione(E) = n(E)E siricava di nuovo la (1.359):
S(uV) = SEng(sv =  w(B,T)=E3f(E/T) (1.367)

Quindi la legge di Wierg consistente con un gas di particelle a massa nulla di energia
proporzionale alla frequenza.

Torniamo ora al punto segnalato all'inizio del paragrafo. Per particelle materiali la @spsitrale
dipende anche dalla deriti materia, in generale, quindi conclusioni analoghe alla (1.367) non
sono ottenibili. Un caso in cui gisi pw faree quando il numero di particelle semplicemente un
fattore moltiplicativo per tutte le quandit in altre parolee come ragionare con una sola particella
moltiplicando alla fine pefV, numero di particelle, i risultati per quaritiestensive. Questovero
nell'ipotesi di indipendenza statistica, éimel caso della statistica di Maxwell-Boltzmann. Come il
lettore sapa per gas quantistici degeneri di Bose o Fermi non valgono relazioni ddli{ipg 7') =
NU(1,T) per I'energia, si hanno quindi delle correlazioni fra le varie particelle. Questo discorso
apparia piu chiaro quando si studi@ta meccanica quantistica di particelle identiche.

Consideriamo comunque per esercizio il caso di particelle con massa, non relativistiche per
semplici&. [l numero di urtie, in ogni caso

2
N(E,0)dEdt = n(E)dE - sy —[dAvdtcost] B = m2”

Il trasferimento di impulso in un urté 2mu cos 6 e si ricava facilmente per la pressione

(1.368)

_ dQ o 9, 22U
pf/ndE4ﬂ_2mv cos” 0 = SU= 3y (1.369)
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chee l'usuale relazione fra energia e pressione per un gas perfetto. Nel caso di Boltzmaan si pu
andare un 9 oltre. Sappiamo che la distribuzione deve risultare:

dPoe PFT o EY2qEe PR o W(E)dE ~ E*?e EME

Consideriamo di nuovo una compressione adiabatica reversibile. In un urto elastico contro la parete
mobile si ha una variazione di energia

E' = E+ 2muvVp cos @ (1.370)

e questo meccanismo fornisce il meccanismo di bilanciamento fra le varie componenti sp@ijali
come nel caso radiativo. La “perdita” di energia negli ertusando la (1.368)

b — / B n(B)AE S [dAvdt cos ) (1.371)
<

Per il calcolo del guadagno notiamo che dalla (1.370) segue che le particelle che dopo I'urto hanno
energialy devono avere, prima dell’'urto, una energia

Ei=F —2muVpcosf = E (1 - 2%\/,3 cos 9) (1.372)
Segue
Y 1 S S
v = el ) (1 5 Vp cos 9) (1.373a)
muv
dE, = dE ((1 — Vi cos 0) (1.373b)
E, =E~E (1 + %”T”vp cos a) (1.373c)

Il guadagno di energia

Dy = / E; - n(El)dEli—Q[dAvldt cos 0] (1.374)
< 7/
ed usando le (1.373)
D, = / (FA -n(El))dEi—Q[dAvdt cos 0] (1.375)
< 7y
Lo sviluppo di Taylor diu(E) in questo casoal
ou
u(E1) = E1-n(Eq) ~u(E) + a—E(meva cos 0)
e quindi per il bilancio energetico si ha
1 5,0u _2_0u
e I'equazione differenziale
ou 2 _Ou

Supponendo che dipendasoloda E, V' la soluzione della (1.37&®
uw(E) = B2 fi(VE®?)

In una trasformazione adiabati@@/ ?/® = cost., come il lettore ricorder dalla teoria elementare
dei gas perfetti, quindi al posto #i si pud sostituirel’ ~3/2 ed ottenere

uw(E) = E**f(E/T) (1.377)

chee il risultato aspettato.




1.A. TERMODINAMICA DEL CORPO NERO. 107

1.A.2 Entropia e spettro.

Consideriamo una cavitriflettente ideale. Per riflessione la luce non cambia frequenza,
quindi, in assenza del “granello di polvere” introdotto all'inizio del capitolo, non si hanno
processi di termalizzazione. Continuiamo a supporre una radiazione omogenea ed iso-
tropa, in modo che 'unico parametro macroscopico che descrive il sistelmalensa
spettrale, . Dalla meccanica statistica sappiamo che in ogni éggossibile definire una
entropia, anche per stati di non equilibrio, tramite la formula di Boltzma&ns, & log W,

dove oral// rappresenta il numero di microstati corrispondenti alla realizzazione dello stato
macroscopico, non di equilibrio. Per ogni intervallo di frequenza avremo allora una cor-
rispondente entropia. Lomogengitiel sistema implica sempre che questa entrépiaa
guantit estensiva, quindi in termini della variabile intensiyasi pot@ scrivere:

S = V/ s, (4, v)dv (1.378)
0

La distribuzione di equilibrio termico, per questo sistema, quindi con data energialfotale
corrisponded alla situazione di massima entropia:

massimas) U fisso

Il punto di massimo deve essere pércivariante rispetto a cambiamentiiia fissa energia
totale. Introducendo il vincolo con un moltiplicatore di Lagrange:

/ {8? Su, — Aduu} dv =0 (1.379)
0 81.11,
La distribuzione di equilibriofi, = u, deve soddisfare la (1.379) per ogni valoreidj,,
deve quindi essere
Os,
ou,

cioe all’equilibrio la derivata della densitdi entropia rispetto alla denaitli energia deve

essere indipendente dalla frequenza. Per determinare questa costante, consideriamo una
piccola variazione di temperatura, reversibile, del sistema. In questo processo la distribu-
zione di equilibrio sub#é una variazioneAuw,. La corrispondente variazione di entropia

e

— (1.380)

AS = V/ [sp(uy + Auy,v) — s, (uy,, v)] dv ~ V/ Osy Au,dv
0 0 8UV
Usando il fatto che la derivatacostante nella frequenza
As — v / Auydv = 25 AU (1.381)
3uy 0 5‘uu

Per questa trasformazione isocora il secondo principio della termodinamica sila¢five
dU, quindi la (1.380) implica

Os 1
Y == 1.382
Ou, T (1.382)

Notiamo chee possibile formalmente definire una “temperatura” per qualunque distribu-
zione spettrale, questa dipendém generale dalla frequenza:

Os, 1

o, T,

Si ha equilibrio termico, cie una radiazione di corpo nero, quando tutte le temperature
T, sono uguali.E I'analogo del fatto che sistemi diversi, qui le varie bande in frequenza,
all'equilibrio termico hanno la stessa temperatura.
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1.B Fluttuazioni classiche del campo di radiazione.
La fluttuazione dell’energia in un intervallo di frequenizae data dalla equazione (1.69a):

(E)

(AE?) = vovZ(v)

3
+ h(E) = | hvu, + Ciu?, vV (1.383)
82

Nel paragrafo 1.6 abbiamo dato una motivazione intuitiva del primo termine ed abbiamo
accennato al fatto che potrebbe essere ottenuto calcolando la fluttuazione nell’ambito della
teoria classica del campo elettromagnetico. Vogliamo qui delineare brevemente una pro-
va di questa affermazione. La prima dimostrazione comgetavuta a Lorentz[Lor16].
La prima trattazione quantistica di un modello semplificato (unidimensionale) del proble-
ma dal punto di vista ondulatori® contenuta in[BoHeJo25] e nel libro[Heis], la versione
classica corrispondente si trova, ad esempio, nel testo [Tomonaga].

La densia di energia elettromagnetica si scrive

1

. 1
(E* + B?) perlaradiazione: — E*
8T 4dr

Consideriamo una cawtriempita di radiazione termica a temperatiftall calcolo che
faremo si riferisce ad un piccolo volume contenuto nella éaabbastanza grande per par-
lare di energia macroscopica ma lontano dal bordo. La termodinamica e le fluttuazioni di
guesto volume non dipendono dalle condizioni al bordo della &agitindi per sempliét
assumiamo condizioni al contorno periodiche per il campo elettromagffeti€onside-
riamo per comod# una cavi di forma cubica, con latd. Il campo elettricoé allora
scrivibile in serie di armoniche nella forma

E = cheikzm
k

dove )
k= %(nw, Ty, M) ng, Ny, N, - INteri positivi e negativi (1.384)

Poiche E soddisfa I'equazione delle onde, i vett@ry, devono soddisfare a
Ck +wi0k =0 wp= C|k3|

sono ci@ funzioni armoniche. Si guallora considerare lo sviluppo in termini di onde
progressive

E=Vir)  (ape™™ + ape~*") (1.385)
n

Il fattore /47 & introdotto per comodit | fattori a;, dipendono dal tempo cog *x?,
Chiarament&y, o< ar, + a* 4.

| vettori k sono i numeri d'onda, pivolte usati nel testo. La somnéantesa sui modi
ng, Ny, M. Peruna cavit grande si pdi sostituire la somma con un integrale e usare

Bk 2
AngAnyAn, = L3 G = L3S dv  w=clk| = 2mv (1.386)
i C

Noi vogliamo scrivere la densitdi energia spettrale, attorno ad una frequenzdel-
I'energia contenuta in un piccolo volume dobbiamo ci@ considerare un elemento infi-
nitesimo dello spazio dei vettori d’onda, e integrare sull’angolo solido. In pratica stiamo
considerando una sottile corona sferica di raggio D’ora in poi le somme sui vettori

37| lettore pw provare facilmete che usando l@igionsuete condizioni di annullamento al bordo del campo
non cambiano i risultati.



1.B. FLUTTUAZIONI CLASSICHE DEL CAMPO DI RADIAZIONE. 109

d’onda saranno esteseloa questo dominio. Useremo la stessa notazione per l'integrale
nel piccolo volumev. La quantia che ci interessa allora

£ LB = Y (e e ) (o ) (1380
x x k,q

La radiazione ha due polarizzazioni, che possiamo considerare statisticamente indipenden-
ti. Quindi per semplicé nel seguito considereremo una sola polarizzazione, alla fine del
calcolo sag¢ evidente come inserire I'altra polarizzazione. Avendo un solo grado didibert
considereremo tutte le quartitcome se fossero scalari. Indicheremo alla fine una traccia
che il lettore po seguire per fare il calcolo direttamente in forma vettoriale e tenendo conto
nei passaggi intermedi della polarizzazione.

Notiamo un punto essenziale per il seguito. Nella (1.387) tutte le frequenze sono vici-
ne, visto l'intervallo di integrazione. Nei prodotti ci sono dei termini rapidamente variabili,
a-a,a* - a*, e dei termini variabili lentamente,- a*. Per parlare di una quargitermodi-
namica dobbiamo fare la media sui termini variabili rapidamente, altrimenti non possiamo
in nessun senso considerare una quamitequilibrio o di quasi equilibrio macroscopica.
| termini rapidamente oscillanti hanno media nulla, quindi la quamtiacroscopica di cui
considereremo le fluttuazioni si riscrive, usando la simmetria it

E=>"3 2apaye’tm V" (1.388)

z k,q
Ora si pw procedere in due modi:

¢ Si fa la media sui tempi lunghi, quindi la media temporale dell’espressione (1.388).
A noi interessa la media statistica, té@cendo assumiamo che la media temporale
e quella statistica coincidano.

e Si assume che le fasi dei numeyi siano casuali. Ques#una forma molto sem-
plificata del criterio di Boltzmann di equiprobabidlitiei microstatiE un'assunzione
naturale visto che abbiamo di principio integrato sui tempi veloci, ed infine senza
questa ipotesi sarebbe difficile comprendere la equivalenza fra media statistica e me-
dia temporale. Questa ipotesi, in concretocio che si intende classicamente per
radiazione casuale, e la radiazione terngicasuale.

Noi adotteremo il secondo criterio, la media statistica quindi conaisteuna media sulle
fasi, cice in un integrale della fase ffa 2.
Per una qualunque fage

1 2m )
— e'“da =0

27T 0
quindik # q la media del prodottaxa; € nulla, mentre sk = g le due fasi si cancellano,
si ha perad:

aray = |ak|2(5k7q (1.389)
In questo modo nella somma (1.388) sopravvivono solo i terminikceng e si ha
&) =>"3 2faxl? (1.390)
x k

Lisotropia della radiazione implica chig| dipende solo dal modulo d&, cioé dalla
frequenza. Essendo l'intervallo di integrazione a frequenza fissata, &ntmmossiamo
considerare questo fattore costante e portarlo fuori dalla somma, ottenendo:

2
©=2aP3 3 1= z\ay\%LMw%w (1.391)
x k
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La quantia Q r, definita da:
2
v 3
Qp = v47rc—361/ Em Ek 1=LQp (1.392)

e in pratica la fetta di spazio delle fasi che stiamo considerando (ricordiamo che stiamo
considerando una sola polarizzazione).

Passiamo ora al calcolo della fluttuazio@@) — (€)2.

Abbiamo, dalla (1.388):

E2 =433 apaye 0 aqpay, KTy (1.393)
z.y k.q k'.q'

Nella media sulle fasi ci sono solo due casi in cui il risult2t@on nullo:
(k=q,k'=q') oppure (k=g k' =q)
Due delle quattro somme sui modi in questo modo si eliminano e si ha:

(€2) =433 lanPlagl? (1+ ik @w) (1.394)

z,y k,q

Il primo termineé proprio(£)2. Al solito possiamo portare fuori dalla somma i moduli
delle ampiezze e scrivere

(%) = (€)% +4a,[* Y elkra=—y) (1.395)

z,y k,q

il vettore k — q €, genericamente, “grande”, nel senso che i vettori possono stare in qua-
lunque posizione relativa sulla sfejfal = 27v/c nello spazio dei modi. L'esponenziale
quindi e rapidamente oscillante. Se il volumett@ macroscopico rispetto alle lunghezze
d’onda, cosa che supporrefigintegrale iny, ad esempio, si valuta faciimente. Passando
dalle somme agli integrali

3 3
[=Y" Y eltk-aew _ 1o Ak da [ 1 [ gyeit-aa—v)
(2m)? (2m)?

z,y k,q

Nell'ultimo integrale possiamo estendere il dominio di integrazione a tutto il volume e
usare la rappresentazione della distribuziéne

/dyevz(k—qxw—y) = (27)%0(k — q)

Si ha allora

3k
I=1° =03 = L5Q
[ s [ = R =
Quindi, sostituendo nella (1.395)

[

(€%) = (6)* = lay|'L°Qp = -
F

(1.396)

Per due polarizzazioni I'unica cosa che cambia spazio delle fasi a disposizione, &€ib
gradi di liberg, che diventano il doppi®r — 2Qx, ma

2
20 =2- v47r—3dy =vZ,dv
c

38In caso contrario si avrebbero logicamente degli effetti diffrattivi e non avrebbe alcun senso parlare della
densia di radiazione nel volume.
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e si ottiene il primo termine della (1.383).

Concludiamo 'argomento con una nota: se non avessimo distinto i modi veloci da
quelli lenti, se ci@ non fossimo passati dalla (1.387) alla (1.388) si sarebbe ottenuto un
risultato sbagliato per un fattore 2.

Se si vuole tenere in conto esplicitamente delle polarizzazioni, la decomposizione di Fourier del
campo elettrico (1.385) si scrive:

E=\iry {a(k, Nexre™ + a* (k, A)ejei’”} (1.397)
kX

L'indice A = 1,2 indica le due polarizzazioni indipendentk i versori di polarizzazione, che
possono per sempliéitessere considerati reali e ortogonali fra larp, e2 = 0. | vettori e sono
ortogonali alla direzione di propagaziore; k = 0, quindi costituiscono una base ortogonale nel
piano ortogonale al vettorle. Da questo segue I'utile relazione di completezza:

D eel = (6ij - T’;TQJ) = Proiettorel k (1.398)
A

Le fasi delle ampiezze(k, \) sono indipendenti per ogni polarizzazione, di modo che la (1.389) va
sostituita da
a(k, A1)a* (g, Xa) = |a(k, N)[*k.q6x, 2, (1.399)

Il resto del calcolo procede nello stesso modo.

1.C Assorbimento di un oscillatore.

Il campo elettromagnetico all'interno di una cavih equilibrio termico soddisfa le equa-
zioni di Maxwell nel vuoto. Quindi in un dato punto, diciamc= 0, ogni componente del
campo elettrico, ad esempio la componente scrivibile nella forma

Eg::Re[E:fﬁw”]

la sommee effettuata sulle frequenze compatibili con le condizioni al bordo. La (1.400)
non ha molto contenuto, perehualunquesoluzione delle equazioni di Maxwell ha questa
forma, la forma concreta della soluzione dipende dalle ampgzze dalle fasid;, che

sono determinate dalle condizioni iniziali e dall’interazione con le pareti. Per una radia-
zione termica le fasi; vanno intese come variabiasualie in ogni osservazione occorre
effettuare una media su queste fasi. Se immaginiamo, ad esempio, che il processo di intera-
zione avvenga tramite un accoppiamento di dipolo elettrico la¥adgpende dalla fase di
oscillazione del dipolo, che appungéaasuale all’equilibrio termico. nel processo di media
statistica sulle fasi, tutti i termini di interferenza che possono avere origine dalla (1.400) si
mediano a zero:

Re [Z |fi|eiwit+i5i1 = Z | fil cos(w;t +6;)  (1.400)

2

=3I (1401

[Z | fi] cos(wit + d;)

dove abbiamo sfruttateos?(z) = 1/2. Ad esempio per la densitdi energia, sfruttando
l'isotropia della radiazione:
l———5 1—5 3—5 31

E’+H?= —FE*= —"F*>="2Y _|f]? 1.402
81 + A7 4% Arw - 2|f| ( )

u =

La densia di energia sulla singola frequenzallora

w = IR (1.403)
™
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Consideriamo ora un oscillatore armonico di frequengache oscilla lungo I'asse per
fissare le idee. Ques# sottoposto al campo di radiazione (1.400), esegue quindi un'o-
scillazione forzata ed emette radiaziong. noto dall'elettromagnetismo che una carica
accelerata emette un’energia al secondo pari a

dE:I 2 e? o2

T 3¢ (1.404)

dovea = i = accelerazione & ¢& I'energia dell'oscillatore. Per un oscillatore, sup-
ponendo piccola la perdita di energia per oscillazione, I'effetto (1.40d)gssere incluso
nell’equazione del moto tramite una forza di attrito effettiva, la forza di frenamento di
Lorentz:

e?. 2 e2w?
== S 4 1.405
f= 3 c3 3 3 ( )
Infatti mediando su un periodo di oscillazione la potenza dissipata per irragiamento:
dE 1 2 e? 1 2 e? 2
— == =—= —= S —afdt =1
dt T/O 3 c3 / 3 c3 T/O 33"
L'equazione del moto per un oscillatore di frequengai scrive allora
2 2,2
Pt tyi= —E wo=2mv = o (1.406)
m 3 mc?

La soluzione omogenea della (1.406) decade esponenzialmente nel tempo, quindi dopo un
transiente possiamo assumere come soluzione quella “a regime”, proporzionale al campo
esterno. Scrivendo la soluzione in termini di esponenziali complessi:

= fR it 1.407
ez (w2 —wd —wwe ( )

Sfruttando la relazione (1.401)

2
*2:671 ‘fz|
v mQQZ(wg—w)—i—va

K2

Per~v — 0 le uniche frequenze rilevanti sono ~ wqy quindi fra tutte le componen-
ti f; viene selezionata quella a frequenzache pw essere fattorizzata. Effettuando le
approssimazioni

(Wi — w?)? ~ 4w (wy — w)? Yw ~ YW

si ottiene

2|fV0| Z—2=

(wo —wi)? + I
1

2 21
8w0m2 [fiol / 27 (wo — w)? + “Y 8w 2m? |f,,0|

Per I'energia media dell'oscillatore di frequenza chee il doppio dell’energia potenziale
media, si ha peroi

3c3 c3

1 — e?
Euo =2 imwg x? = 7|fu0‘2 = W ‘fy0|2 Vo o 2 Uyy (1.408)

Quindi per una frequenza qualsiasi la relazione fra la componente dellazdénsitergia
della radiazione di corpo nero e I'energia di un oscillatore

2
w, (v, T) = —87;3” E, (1.409)
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1.D Entropia di Sackur-Tetrode.

L'analisi della distribuzione microcanonica per 'oscillatore armonico, par.1.4.1, ha una
interessante interpretazione geometrica. Consideriamo l'ellisse

2
1
Py ke =E (1.410)
2m 2

L'area di un’ellisse di semiassi b € A = wab, quindi I'area delimitata dalla curva (1.410)

e
= m/2m ,/ 2E\/7 Ty = (1.411)

Il fatto che I'energia sia quantlzzatE = nhv, pW essere mterpretato dicendo che lo
spazio delle fasi accessibile all'oscilat@eomposto da “mattoncini” di grandezizaciog

] ApAg=h = QM\ (1.412)

A livello statistico sembrerebbe quindi che la navibndamentale introdotta sia quella di
dare una dimensione minima alle celle dello spazio delle fasi. Nel mettere in relazione gli
ensembles statistici con il conteggio degli stati alla Boltzmann spesso si fa uso di una di-
mensione elementare delle celle nello spazio delle fasi, sembrerebbe che questa granularit
abbia un significato fisico e non si possa mandare a zero la grandezza di queste “cellette”.
In seguito vedremo come questa granudadello spazio delle fasi trovi applicazione in
molte situazioni fisiche, qui vogliamo ancora insistere su un aspetto statistico. Nella di-
stribuzione microcanonica la definizione completa di entropia per un gas perfetto, v. eq.
(1.45), tenendo conto della granular

3 3
S = klog(W) = =5 /H EH d pd (1.413)

A e I'area della celletta elementare nello spazio delle fasi, che d’'ora in poi porremo uguale
adh. Il fattore 1/N! & una costante per I'entropia, rdaessenziale per evitare il noto pa-
radosso di Gibbs: se si uniscono 2 gas uguali I'entropia del sistema non deve cambiare, se
non ci fosse questo prefattore camberebbe. In meccanica classicenomac/era giusti-
ficazione per questo fattore: intuitivamem@elovuto al fatto che permutando le particelle
nelle celle dello spazio delle fasi lo stato macroscopico non cambia, ma classicamente le
particelle sono distinguibili I'una dall’altra, quindi formalmente una loro permutazione do-
vrebbe corrispondere ad un diverso stato microscopico. Per ora teniamoci il fgthére
senza approfondirne l'origine. |l fattord =3V = h =3V presente nella (1.413) cambia
anch’esso la costante dell’entropia. Questo fattore costante, €owi®, entra nelle equa-

zioni di bilancio delle reazioni chimiche, o in generale nelle reazioni in cui il numero di
particelle cambia. Consideriamo allora un gas monoatomico. Nella (1.413) la superficie ad

energia costante
N
3 P
T 2m

cioe una sfera di raggio = v2mU in uno spazio 8 N dimensioni. In generale il volume
di una sfera iR™ &

/2
Sp = mr” I'z) = (xz—1)!
Si ha allora, indicando coW il volume del gas di elettroni,
1 VN (2m2mU)3N/2
N! h3N F(%N +1)
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Applicando la formula di Stirling si ha la formula di Sakur-Tetrode[Sack13] per I'entropia
di un gas monoatomico:

vV 3, 22U 2mm)3 /2e5/2
S =kN logﬁ—&—flog——klogm (1.414)

2 °3N h3
Questa espressiogan accordo con I'esperienza. Notiamo dhgV eU/N sono quanta
intensive, ed in particolare possono essere espresse tramitessando le equazioni

U:NE:Nng pV = NkT
quindi I'entropia (1.414¢ additiva:
S(N17p7 T) + S(NQapa T) = S(Nl + NQapT)

e questa dovuto alla presenza iV’ del fattorel /N!, come accennato in precedenza.

Un caso particolare di gas monoatoméan gas di elettroni (trascuriamo l'interazione
eIettrostatica).E noto che una schematizzazione con un gas perféttoodto qualitati-
vamente delle propriatdi conduzione in un metallo, maecun problema: come si pu
ricavare dalla solita equazionS/dU = 1/T aV costante, la (1.414) implica la nota for-
mulakE = U/N = %kT, cioe I'equipartizione dell’'energia, e questo a sua volta implica
un contributo al calore specifid@, = 3/2Nk, in realt non si osserva un calore specifico
costante a basse temperature, ma un calore specifico che va a Z&re-per D’altronde
ad alta temperatura la (1.41d)corretta, e, nel caso degli elettroni, descrive bene I'entro-
pia nelle reazioni di eqilibrio di ionizzazione, in cui si ha un equilibrio fra ioni e gas di
elettroni, come in una reazione chimica.

1.E Regole di quantizzazione.

Richiamiamo brevemente alcune nozioni di meccanica analitica. Le equazioni di Hamilton
OH . OH

)i = — P = 1.415
b 9qi " ops ( )
possono essere ricavate da un principio variazionale

g / dt (pigi — H(g,p,t)) =0 (1.416)

Nella (1.416) e nelle prossime formule gli indici ripetuti si intendono sommati. Quindi tutte
le trasformazioni di variabil{¢, p) — (Q.P) per cui l'integrando cambia per una derivata
totale lasciano la fisica invariata, sonottasformazioni canoniche Le trasformazioni
canoniche possono essere espresse tramite funzioni generatrici, iltijgombdo per i
nostri scopie dato da

. d . d

Nell'ultimo termine possiamo pensagkriespresso in termini dj e P e porreS(q, P, t) =
F(qv P, t) - QiF;, qu|nd|

. ds . oS as . 08
Y — —_ . PR ! —_ = . e — 4 - —_ . —_
piGi—H(q,p,t) QiPi—H'(Q, Pt)+ o QiPi—H (Q,P.t)+aqiqz+apiPZ+ 5
confrontando i differenziali delle due espressioni si ricavano le leggi di trasformazione:
oS oS
pi = 94 Qi = P, (1.417a)
, oS

ot
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Nella (1.417a), una volta conosciuta possiamo invertire la seconda equazione e scrivere
P intermini diQ e q, in questo modo aggiungendo e sottraendo la derivata tot&t€)di

. . d
piQi_H:PiQi‘F%(S_QP)
postoS* = S — QP ed uguagliando di huovo i differenziali si ricava

0S* 0S* 0S*
;= P =— H=H —
Pr= "0, "7 Qs ot

(1.418)

S* efunzione diye@: S* = S*(q, Q). ll lettore probabilmente ha riconosciuto nell’'ultima
trasformazione di variabili unaasformata di Legendre.

NOTA Le equazioni (1.417b) e (1.418) per 'Hamiltoniana significano: esprimiamo

in funzione diP, @, in questo modo otteniamo una nuova funziéhg(Q, P),p(Q, P)) =

f(Q, P). Sela trasformazione indipendente dal tempo I’'Hamiltoniana nel nuovo sistema
di coordinated proprio questa, altrimentidata, a seconda del tipo di trasformazione usata,
da:

H(QP) = H(QPLpQ.P) + 5 HQP)=H+ % (1419

1.E.1 Sistemi periodici unidimensionali.

Come spiegato nel paragrafo 1.13 nei sistemi periodici unidimensionali la vajabden
angolo, nel qual caso le variabili dinamiche devono essere periodiche di periagpure
descrive un’oscillazione fra un valore minimo ed uno massimga;.. In entrambi i casi la
topologia in gioca quelli di un cerchio, o toro unidimensionale.

La motivazione fisica per studiare questi sist&ndiuplice:

1) Siimmagina che il sistema classico corrispondente a un sistema quantistico con ener-
gia fissata abbia una frequenza di oscillazione fissata, in modo che si possa parlare di
una frequenza caratteristica del sistema ed eventualemente connetterla alle frequenze
di transizione quantistiche. Questa connessi@mdbligata nel caso di alti numeri
quantici se si assume il principio di corrispondenza: in questo caso la frequenza di
transizione deve coincidere con la frequenza classica del sistema Deve quindi esistere
una frequenza di oscillazione classica gcilomoto deve essere periodico.

2) Se si assume il principio delle adiabatiche di Ehrenfest il sistema quantistico deve
essere colegato tramite una trasformazione adiabatica ad un oscillatore armonico,
chee naturalmente periodico.

Questi sistemi possono essere studiati adattando una tecnica generale per la soluzione
delle equazioni di Hamilton. Se si trova una trasformazione canonica in modo tale che
la nuova Hamiltoniana dipendsolo dagli impulsi le nuove coordinate sono cicliche e
le equazioni del moto si risolvono banalmente. Chiamiamd le nuove coordinate ed
i nuovi impulsi, che prendono in questo caso il nome di varigd®ibne-angolo Dalla
(1.417) abbiamo che la funzione cercatdg, J), per Hamiltoniane non dipendenti dal
tempo, deve operare la trasformazione

98 5

p= % w= o7 H'(J)=H(p,q) (1.420)

Le equazioni del moto sono banali per le nuove variabili

! /
j= _%fi 0 = _%{If = u(J) (1.421)
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La prima equazione dice chke costante, quindi la seconda impone e¢h&a una funzione
lineare del tempo, in pratica un angolo. Possiamo ancora sfruttare delle trasformazioni
canoniche che lascino invariata la struttura trovata per scegliere la normalizzazione delle
variabili w, scegliamo le variabili in modo tale che I'incremento dopo un pefdsalga

1. SeT ¢ il periodo del moto:

wt+T)—w(t) =wy —w; =Aw=1 (1.422)

Alle variabili cos selezionate sid@il nome divariabili azione (/) - angolo ) .
La normalizzazione (1.422) permette di esprimere la variabitetermini delle varia-
bili ¢, p. Scriviamo la variazione db in un periodo/T":

t1+T t1+T d 88
Aw = dtw = dt——
v /t v /t dt 9.7

1 1

Poiche J & una costante del moto, I'unica dipendenza ufaS ¢ attraversg, quindi

o (Mt as o [hT )
1 = A = — —( = — y = - 142
w 5J/t aqth 8J/t pqdt ajj{pdq ( 3)

1 1

Quindi, riassorbendo una eventuale costante additiva con una trasformazione canonica,
possiamo scrivere

J = f{ pdq (1.424)

Nella (1.424)p e una funzione dij. Nel caso unidimensionale possiamo determinare
dalla relazione )
P g =E (1.425)
2m
In questo modo la (1.424) fornisckin funzione diE, invertendo la relazione si h& in
funzione diJ, il che coincide con I'Hamiltonian&l’(.J). Un altro modo per ottenere la
stessa cosa notare che I'ultima equazione delle (1.420)n’equazione differenziale per

S

H(q, —8S) =H'(J) (1.426)
dq
Per definiziongd’(.J) & costante, e possiamo chiamakla
1 (08
— = =F 1.427
2m(aq)wm) (1.427)

Questa equazione prende il nomeedjuazione di Hamilton JacobilLa (1.426) ha una
soluzionef(q, E):

(1.428)

_ /[ dq
f@E”iL\hmem»

La scelta digy determina solo una costante additiva che non gioca alcun ruolo. La derivata
rispetto ag della soluzione precedenéovviamente una radice dell'equazicalgebrica
(1.425). Nel seguito non useremo mai la forma esplicitd dijuello che interessa che
la soluzione dell’equazione di Hamilton Jacobi, (1.427) dipende da una costante, in questo
caso l'energia.

Ci interessano invece alcune propgigenerali diS, qualunque sia la sua forma. Rifa-
cendo lo stesso ragionamento fatto per il calcold\di, abbiamo, per la variazione su un

periodo diS

t1+T t1+T

AS = / a5 4 / 08 st = j{pdq y (1.429)
t1 dt t1 aq

39si sarebbe potuto sceglie2e come incremento, la sceltadiw = 1 & puramente convenzionale @dovuta
a motivi storici.
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S e una funzione dj e g & periodica, quindi al variare di S si comporta come un angolo,
cioé comew. Ricordando che lo spazio delle configuraziondomssere assimilato ad un
cerchio, S € una funzione non monodroma su questo cerchio, incremenfaadi ogni
“giro”.
Invece la funzione
S*=85—-wJ (1.430)

cioe la sua trasformata di Legendeeperiodica percte w aumenta di 1 in un periodo e
quindiAS* = AS —J =0.

Dimostriamo ora che la variabile di aziodeé un invariante adiabatico. Supponiamo
di avere un sistema con un parametro variabilg). Scriviamo la soluzione del siste-
ma dinamico usando le stesse variabili usate nel casoctistante. Questa procedwra
semplicemente la generalizzazione del noto metodo di variazione delle costanti usato nella
risoluzione delle equazioni differenziali. Effettuiamo quindstassarasformazione di va-
riabili, con la stessa funzion®. Per convenienza usiamo qui la variaste definita dalla
(1.430). Questa trasformazioeedefinita in modo tale che sostituendo le funzigm, in
termini di J, w la funzione hamiltoniandl (¢, p) & funzione solo di/. Nel caso in esame,
pemw, la funzione di trasformazione dipende esplicitamente dal tempo, tramite il parametro
A, quindi 'Hamiltoniana per le variabili trasformagequella definita nella (1.419):

H’:H+aai ;. H=H(J) (1.431)
Le leggi di trasformazione e le equazioni del moto sono
05* 05*
p = o4 =3 (1.432a)
. H/ H * *
j_ oH'" 0 008" 008 (1.432b)

Cow w0t ow Ot Ow

La (1.432b) naturalmente segue direttamente dalla definiziong @i stata scritta per
mostrare la consistenza e chiarire che tutta la variaziodepdoviene dal parametrd.
Quindi per la variazione di su un intervallaty, t5 si ha:

to * .
Jy—Jy = — / 4 (65 ) Adt (1.433)
t1

dw \ oA

Noi siamo interessati al limité — 0, )'\(tg —t1) — finito. La funzione\ & lentamente
variabile, possiamo a tutti gli effetti considerare una espansione di Taylor del tipo

Mt) = A+t +... (1.434)

Alla fine del calcolo sax semplice verificare che gli ordini superioritimon modificano le
conclusioni, se\ & continua e limitata. Possiamo allora scrivere

Jo—Ji [0 [0S*
. /tlaw<8)\>dt (1.435)

cio che dobbiamo dimostrageche nel limite considerato il secondo membro della (1.435)
resta finito, malgrado l'intervallo temporale diverga.

Se il motoé periodico inw, a fisso), ogni quantid periodica ha un’espansione in serie
di Fourier della forma

=Y A,(\)e?m (1.436)

Notiamo che in generale nella (1.436) compare un termine costante, corrispondeste a
0. Abbiamo g& dimostrato ché&* e periodica, quindi anche la sua derivata rispettd@e.
Il punto importantes che nella (1.435) compare la derivata rispett@ guindi I'eventuale
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termine costante nello sviluppo di Fourier non contribuisce, in altre parole lo sviluppo di
Fourier per l'integrando della (1.435) si scrive nella forma generica:

a aS* o ! 12Tnw
~50 ( (,M) = ; A,(Ne (1.437)

I'apice sta ad indicare che nonecll terminen = 0 nella somma. Queste importante
percte significa che tutti i termini sono rapidamente oscillanti, come nell’esempio dell’'o-
scillatore armonico nel paragrafo 1.13. A questo punto, sviluppando in serie di Pasilor
puo scrivere:

—_— t2 . t2 . .
J2 < S _ / A (0)em 0 dt 4 / AtA! (0)e? ™ dt (1.438)
t1 t1

Ora si pw suddividere l'intervallats — ¢; in N multipli del periodoT piu un restoéT’,
minore diT. Il contributo sul rest@ ovviamente finito. Sugli intervalli di periodd, il
primo integrale nella (1.438) si annulla pegch

t
=vt+d=—=+96
w=vt+ T +
e l'integrale di una funzione trigonometrica su un periédaullo. Su ogni singolo periodo
il secondo integrale & al massimo un contributo dell’ordingl” o ¢72. EssendociV
periodi
Jo — J1
A

cheé proprio quanto volevamo dimostrare. Notiamo che si il sistema ha una frequenza
propria nullay — 0,7 — oo e la dimostrazione cessa di valere.

Questa dimostrazione di invarianza adiabagcguella “classica”, vedi es. [Born25]. Una di-
mostrazione molto dettagliata ed istruttiva si trova nel libro di Tomonaga[Tomonaga]. Il lettére avr
notato che I'essenza della dimostrazi@gnpassare da un integrale temporale ad ua media sulle fasi
w, € questo quello che si ottiene integrando sui singoli periodi. Questo tipo di procedimento, molto
comune ed implicitamente alla base del ragionamento fatto nel paragrafoelfd@nalizzato, ad
esempio, nel testo di Arnold[Arnold].

La procedura di quantizzazione consiste ora nell’assegnare valori interi alle variabili di
azione,J = nh. In questo modo, dalla relaziode = F(J), si ricava una quantizzazione
dell’energia.

= O(NaT) = O(a(ta —t1)) — costante

1.E.2 Esempi espliciti.

Trattiamo esplicitamente ancora una volta I'oscillatore armonico per evidenziare i vari
punti del procedimento. Scriviamo I'Hamiltoniana nella forma
o1
H(g,p) = =— + —mw?q? (1.439)
2m 2

Fissato, arbitrariamente, il valore dell’energia, possiamo scrivere

p = £v2mE — m?w?q® (1.440)

il radicando ha due radici, che delimitano la zona del moto:

2K 2K
o=\ ©=\—3 lal=lel=a (1.441)
mw mw
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Come vediamo la funziongq) noné una funzione univoca sul segmenig, ¢-], la si pw
rendere univoca sullo spazio delle configurazioni “duplicdte’ ¢=] U [¢2, ¢1], che ha la
topologia di un toro. Per la variabilési ha

% E [T 2rE _ E
J = 2/ V2mE — m2wiq?dg = 4— / V1—22dz = ooz (1.442)
q1 wJa

w IZ0)

vy = w/2m & cio che si chiama frequenza dell'oscillatore. La nuova Hamiltoniana
H'(J) = v, quindi

ﬂJ:?VO
cioé vy € proprio la frequenza della variabile “angolo’w. La (1.442) basta per effettuare
la quantizzazione del sistema, se vogliamo andare oltre possiamo calgolaxrsoluzione
(1.428) dell’equazione di Hamilton Jacobi si scrive, ponendo arbitrariamentelianite
inferiore dell'integrale per fissare la costante additiva arbitraria:

qw 7n/2E

S:/ V2mE — m2wiq dq*— V1 —22dx
0

q° q
1 — = + arcsin < ) (1.443)
QL qL qL

Come si vede la funzion§ non e monodroma. Un periodo corrisponde alla variazione
0 —qr — 0— —g— L — 0, in questo percorso la funziomecsin varia di4 - 7/2 = 2,

e quindiAS = 2xE/w = J, come aspettato. Una volta scrittb = J - v possiamo
effettuare la derivata rispettoJaper ricavarew:

q/qL

= \/1—x2dx——

w W

_0S _ arcsin(q/qr) B
W= = q = qr, cos(2mw) (1.444)

ed effettivamente, su un periodtyw = 1. Infine

J 2 J J
S*=8—-wJ=— 4 1-— q—2 -+ arcsin <q> — — arcsin (q> = — sin(4rw)
27 | qL qaz qr 2w qr 4m

ed si ha una funzione periodica in, come aspettato. Per referenza scriviamo anche
I'espressione dp: dallaegrefgreg24 si ha, scegliendo le due detreminazioni della radice,

2
p=V2mE,[1— q—z = mwqy, sin(2mw) (1.445)
ar,

Il lettore pw provare come esercizio a studiare Ia quantizzazione dei maéde#i gz,
oppure l'oscillatore anarmonidd = mw2x2 + g2*, nel limite di piccola anarmonigit

1.F Calcolo di alcuni integrali.

Nel paragrafo 1.15 abbiamo incontrato I'integrale

Tmazx 2
Jr = 2/ \/2mE — —‘p m2w2r2dr (1.446)

Perp, = 0 si ha lo stesso integrale di un oscillatore unidimensionale,gon = 0 e
Tmaz = (2E/mw?)'/2, Lavariazione da 0 a,,,, € 'analogo di 1/4 di oscillazione quindi,
tenendo conto del fattore 2 nella (1.448),e la me& dell'invariante per I'oscillatore:
_1FE E
=7 Py =0 (1.447)

: =
2V w
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Perp, # 0 il radicando si annulla per

o 2mE + \/(ZmE)Q — 4pZmAw? _E -
N 2m2w?  mw?

e quindi sono determinati,,;,, = R1, Tmax = Ro.
Si ha allora, fattorizzando il polinomio

Rz q RS iy
—9 2 2 P2y (R2 _ p2) — ar CP2Y(P2 ) —
Jr mw/R1 drr\/(r R})(R3 —r?) mw/R% . \/(:c R})(Rs — x)

(R2/R1)* 4 2
:me%/l i (zl)((ij) —2)

z
Siha a
L= [ EVe e n =5 (va-1)’ (1.449)
1
Lintegrale pw essere fatto usando le sostituzioni:
a+1l a-1
2 + 2
Dalla (1.448) risulta quindi:

2
oo (B o TE () pelw _TE
gy = 2mel <R1 1) = gmw = — <1 o0 mp,|  (1.449)

sina — - <a<

[0
x = e dopo: u = tan )

T
2

IV

Nel limite p,, — 0 ri riottiene il risultato (1.447).

Lintegrale (1.447) e tutti gli altri che si trovano nel testo, possono essere effettuati in
modo molto istruttivo utilizzando l'integrazione nel piano complesso. Tutti gli integrali
considerati possono essere ridotti ad una forma del tipo:

I = ]{R(z)\/ (z —e1)(ea — 2)dz = %R(z)\/Q(z) e; < ez R razionale
(1.450)
La radicee reale nell'intervallde;, e>] € qui ha due determinazioni, in pratica I'integrando
e una funzione definita su una superficie di Rieman a due fogli, ed ha singolarpunti
singolari diR, e all'infinito. PerR > z > e il radicandoe negativo e la fase di— e; &7

V@ = ViQle =i/

Passando all'intervallfz;, e;] attraverso il semipiano complesso superiore, il fattoree,
acquista una fas€™, quindiQ — |Qle*™ e

VQ = —Vial

Viceversa nel semipiano inferiore si ha, acquista@dana fase—"",

V@ =+l

Infine sull’asse reale, per< e il fattore Q acquista una fase di™, in quanto cambia di
segno anche il termine— e; e quindi

V@ — —iV/Q)|

Le varie situazioni sono illustrate in figura 1.F. L'integrale (1.450) equivale dunque all'in-
tegrale sul contorno del taglio indicato in figura.
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Figura 1.10: Determinazioni della radice (1.450) nel piano complesso.

Il teorema di Cauchy impone:

I+2mi ) Resq(R-+/Q) + 2miReso(R-/Q) =0 (1.451)

da cui si deduce il valore di. per calcolare il residuo alio basta effettuare la sostituzione
di variabiliz — 1/z.
Come esempio consideriamo l'integrale della forma (1.448):

EVE =0 a1 (1.452)

In questo case; = 1,e; = a. La funzione ha, al finito, un polo in = 0. Il residuo al
polo & semplicemente il coefficiente del termihé: nello sviluppo di Laurent, quindi

Resg = —iy/|q| (1.453)
Il fattore —i & quello determinato nella discussione precedente. Per il residuo all'infinito
poniamoz = 1/xz,dz = —1/x%dx e scriviamo I'integrando nella forma
d /
/ < / V(1 —2)(—1+ azx)
Perz — 0 .
1 1 a+1

(1—x)(—1+ax)~—;(1— z+...)

)

T 2
Il segno della radice+i, € stato preso in accordo con quanto mostrato in figura 1.F. |l
residuo & — oo, cioé az = 0 & allora:

a+1

(1.454)

Res =1

Sommando i residui e usando la (1.451):

a+1
2

I = —2mi(—iv/|a| +1i y=mn(a+1-2Va)=n(a—-1)>=2I, (1.455)

Come secondo esempio consideriamo l'integrale (1.260c) per I'atomo di idrogeno:

7 L? d
Jr = %dr\/ZM E+ 78 — 2= %\/—2u|E\T2 +2uZe?r — L2 (1.456)

| due punti diinversione sono reali pé&f = —|E| < 0. Le singolari& sono inr = 0 e
r = oo. Dalla (1.451)
Jr = —27i (Resg + Reswo) (1.457)

Perr — 0, con la prescrizione delle fasi vista precedentemente:

1 .
—/=2u|E|r? 4+ 2uZe?r — L2 — —3|L| = Resg = —i|L]
r r
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Perr — oo, postor = 1/y, dr/r = —dy/y:

d 2ulE|  2uZe? d
_dy | 2y +'ue_LQZ_ZJZ\/_QME+2MZ€2y_L2y2:

Yy y? Yy
dy 1 2uZe? _\//7Ze2
= —j— 2u|E| — = + ... = Res, =1
% [W 2 /241" R
Quindi
V2uZe? V2nZe?
Jp = —2a|L + 7R gy |+ r RS (1.458)

VIE| VIE|
che coincide con il risultato (1.267). Lo stesso procedimentogssere usato per gli altri
integrali presenti nel testo.

1.G Calcolo perturbativo del dipolo elettrico.

In questo paragrafo tratteremo in modo molto succinto una elementare tecnica perurbativa
che ci permetter di ricavare I'espressione per il dipolo elettrico indotto in un sistema clas-
sico. Per semplicit di notazione tratteremo un sistema periodico, i calcoli per un sistema
multiperiodico sono praticamente identici.

Supponiamo di avere trovato le variabili azione angolo per il sistema iseldta]®.
Hy(J?) & la corrispondente Hamiltoniana. Il sistegnara sottoposto ad una perturbazione,
che scriviamo\H; (w®, J°, t):

H = Hy(J°) + MH, (w°, J°, ) (1.459)

A & un parametro di sviluppo che porremo uguale ad 1 alla fine dei ca@ip un modo
per descrivere il fatto chél; e trattata come una “piccola” perturbazione.

Per risolvere il sistema (1.459) possiamo cercare una trasformazione candhidd) —
(w, J) in modo tale che nelle nuove variabili 'Hamiltoniana dipenda soloJdaSia
S(w?, J, t) la funzione di trasformazione:

_os
- 0J

05 g 95wy (1.460)

0_ 7
J_Bwo ot

w

Le (1.460) sono identiche alle (1.417).(J) indica la nuova Hamiltoniana. Cerchiamo la
soluzione in forma di serie in

S=uw'J+ S + ... W =Wy+ AW +... (1.461)

La trasformazioneS, = w"J corrisponde alla trasformazione identica, come si verifica
immediatamente dalle (1.460). All'ordine 0 insi ha dunquéV, = Hy. Al primo ordine

J0:J—|—)\?; w:wo—i—)\% = wozw—)\% (1.462)
w

Quindi, ricordando chéf,, dipende solo da®:

051 051
ed al primo ordine im
051 0Hy 051

Do BJ +W+H1(w,J)=W1(J)
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Per le equazioni di Hamiltom; = w = % e la frequenza del sistema, quindi

85 051

In generale le derivate di; sono funzioni periodiche, menti&; € una costante, quindi,
prendendo la media della (1.463) sulle fasi e sul tempo:

Wi(J)=H;
Nel caso che ci interessa si aii; = 0, comungue in ogni caso si ha I'equazione

L 081 05 _ —
mg ot =~ (H ~ ) (1.464)

che pw essere risolta ricavando peércy;. Ci limiteremo al primo ordine perturbativo,
quindi la (1.464% sufficiente per i nostri scopi.

Per il calcolo del dipolo indotto in presenza di una radiazione elettromagnetica, li-
mitandoci come al solito alcaso unidimensionale, possiamo scrivere l'interazione nella
forma

H, = —dE E = Eycos(2mvt) (1.465)

d e il dipolo elettrico del sistema, @ in praticaex nel caso unidimensionale. Usando la
stessa notazione del paragrafo 1.19 possiamo scrivere

1 i2rw’r
d=c; 2 Cre (1.466)

La sommee estesa a tutte le armoniche, posiive e negative. pdiéhreale si ha
C_,=C: (1.467)
Per un oscillatore armonico, in cui compare solo la prima armonica,
d = e|C| cos(2m1t + arg(C))

Evidentemente se operiamo la media sulle fasi e sulla dipendenza esplicita dal tempo (che
compare nel campo esterno) o
dE =0

Al primo ordine perturbativo possiamo sostituit€, .J° conw, J nell’espressione di,
'equazione pess; e allora:

851 651 eEo 1270 (4 i wT—
_ C { 27 (wr+vt) 27w (wT Vt)}
" ow 8w ot Z te

che ha come soluzione

27 (wr+vt) 27 (wr—vt)
€ € } (1.468)

1 eEy
S :——E C-
Y7o 4 . { nT+v + MT—V

Per calcolare il dipolo elettrico dobbiamo ora esprimefe J® in termini diw, J e sosti-
tuire nella espressione (1.466)djiotterremo

d=dy+ My + ...

d1, proporzionale al campo elettrico esterad,dipolo indotto. Usando le relazioni (1.462)
si ha
0d 9SS, 0d 05

0 0\ ~ -
dlw?, J) = d(w, J)+ M 55~ 50 97
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quindi
0d 05, 0d 05

Scriviamo per chiarezza le varie derivate:

od "' z27rw'r od € . P2TWT
57 ,Z 0 = 527TZZT:TC'T6
851 eFo ei27r(w7-+ut) ei27r(w7-—z/t)
—_— = — T7C; +
ow 4 . { nT+v VT —V }
851 1 BE() ei27r(w‘r+ut) i OT + ei27r(w‘rfl/t) ﬁ CT
0J 2w 4 oJwnt+v oJ vt —v

Nello scrivere le derivate abbiamo tenuto in conto del fatto che in generaeuna fun-

zione diJ, mentrew, J sono considerate variabili indipendenti. Nell'espressione (1.469)
compaiono diverse dipendenze temporali, che corrispondono ad oscillazioni con diverse
frequenze e, cassicamente, danno luogo a diffusione della luce con cambiamento di fre-
geunza (effetto Raman). A noi comunque interessa in particolare il termine corrispondente
ad una oscillazione con la stessa frequenza del campo incidente, quindi nei prodotti che
compaiono nella (1.469) dobbiamo solo tener conto dei termini in cui la dipendenza da

si cancella (ricordiamo che = 14t). In questo modo nei prodotti solo i termini con
opposti contribuiscono e si ha:

@% _ 62E0 aci‘r 6i27rut N efizm,t

dJ dw § <~ 0J T

ad aSl 62E0 12Tt a CT —i2nut 8 CT
owas 8 2 (e oJmr+v  © oJ T —v

nmT+v nmT—Vv

Per la parte a frequenzadel dipolo segue, ricordando che , = CZ:

e?E |Cr 2T 9 |Cr°1 |27
d — 12mvt —i2mvt
1) 8 Z:{e 6JV17+V+6 8]1/17'—u

cambiando indice nella seconda sommas —7:

62E0 |C | T

ed infine, sommando esplicitamente i termini eodi segno opposto:

e?Ey o |C- | TV
(2 1.47
cos(2mvt) ;T&] =07 ( 0)

di(v) =
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