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Summary. We formulate anomalous chiral and related Ward-Taka-
hashi identities in supersymmetric-gauge theories, by generalizing Fuji-
kawa’s functional-integral method to superspace. Our approach provides
a manifestly supersymmetric and gauge-covariant treatment of the super-
space Abelian anomalies, and is applicable to chiral- as well as to left-
right symmetric theories. Non-Abelian anomslies are also discussed
briefly. Superspace Abelian anomalies imply that particular composite
operators, i.¢. those containing the associated U, currents as a compo-
nent, exhibit an anomalous supermultiplet structure. We discuss how
this leads to various exact relations between scalar and gauge fermion
condensates, thereby imposing strong constraints on possible chiral-
symmetry realizations in supersymmetric-confining theories.

PACS. 12.40. — Models of strong interactions.

1. — Introduction.

An interesing class of theories, which might find an application in the
construction of a realistic model of particle physics at mass scale above
0(260 GeV), and whose dynamical properties are not yet fully explored, are
supersymmetric gauge theories of strongly interacting particles. Recently a
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112 K. KONISHI and K. SHIZUYA

considerable improvement in our understanding of nonperturbative dynamics
in these theories was made possible by combining the results of i) explicit
caleulation of instanton effects (%), ii) analyses of the U, and related anom-
alies (¢#), iii) studies on effective Lagrangians (*''), and of iv) index analyses
& la WITTEN (2). The emerging picture of chiral symmetry realizations in super-
symmetric gauge theories (see, e.g., ref. (*) and sect. 5 below) bears quite dif-
ferent features as compared to what one knows about the low-energy dynamics
of conventional theories such as quantum chromodynamics (QCD).

It is the purpose of this paper to elaborate on one of the above-mentioned
studies: chiral and related anomalies (%8). In the first part (sect. 2-4), we for-
mulate the anomalous chiral Ward-Takahashi (WT) identities by usc of a super-
symmetric generalization of Fujikawa’s functional-integral method (**). We
present the derivation for sypersymmetric QCD (SQCD) first. The result will
then be generalized to chiral theories. The case of the Abelian anomalies which
generalize the well-known axial U; anomaly (*¢) will be studied in detail.

Importance of the particular regularization employed here will be em-
phasized, in connection with the absence of non-Abelian gauge anomalies in
chiral theories.
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The method of this paper can be used also in a more general study of non-
Abelian anomalies (**1?). In this paper we limit ourselves, however, to a simple
case, namely the supersymmetric generalization of Bardeen anomaly in SQCD
with external vector 80U, fields.

There has been a renewed interest (¢) recently in chiral anomalies in gauge
theories, partly triggered by the observation that anomalies, though seen asg
ghort-distance effects in perturbation theory, have a topological origin related
to the global structure of gauge theories.

On the other hand, FujtkAwA developed some time ago an elegant method (12)
for formulating chiral anomalies within the functional-integral approach, that
made the topological origin of anomalies manifest.

In view of the important role the functional-integral method plays in general,
and in particular of the systematic manner in which it deals with anomalies,
we feel it worthwhile to generalize this method to superspace, and formulate
some of earlier results in a manifestly supersymmetric way.

The second part of the paper (sect. 3) is dedicated to a discussion of those
aspects of the superspace U, anomalies, that are specific to supersymmetric
gauge theories. In fact, superspace U, anomalics imply (¢) anomalous super-
symmetry commutation relations among the components of particular com-
posite vector supermultiplets, the ones containing the relevant U; current
operators as a component.

It will be shown how these anomalous commutators can be used to obtain
rigorous relations involving various scalar and gauge-fermion condensates.
They are combined consequences of two symmetrics: anomalus chiral U, sym-
metry and supersymmetry.

When used together with dynamiecal information sueh as about instanton
effects, thesc relations allow us to compute the vacuum properties from the
first principles, as in the cxamples of SQCD (23), a chiral SU; model (]) and a
chiral 8U,; model (18). In sect. 3 we review and discuss this important develop-
ment, which is principally due to the authors of ref. (25).

Section 6 contains the summary and concluding remarks. Scveral technical
details arc grouped in appendices A-C.
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2, — Preliminaries.

In this section we review briefly Fujikawa’s functional-integral formulation
of axial anomalies in conventional gauge theories (12).

Let us consider quantum electrodynamics. The matter part of the action
is given by

(2.) § = [a% (471 Dy — mpy),

where b:y“(a,,— iedy). The kinetic part of eq. (2.1) is invariant under
global axial transformations

(2.2) w(@) — y' (@) = exD [iorys] w(w) .

FuskAwA observed that the functional integral measure Dy 24, properly
defined, is not invariant under the axial transformations and showed how the
correctly treated Jacobian gives rise to the axial anomaly.

In Euclidean space-time, D is a Hermitian operator, whose eigenfunctions
@a(2) form a complete orthonormal set

(2.3) D(A)po(z) = Augpal®) f Aot (@), (2) = 6,

By using the eigenmode expansion
(2.4) v=73 o), $=3b,p}@),
the functional measure Py 2y can be defined as

(2.5) Pyp=]]da., 2p=]]ab,.

In the formulation of the axial U, WT identities, one needs to consider
local transformations, i.e. eq. (2.2) with a space-time dependent parameter
af{w). The Jacobian of the infinitesimal transformation is found to be

(2.6) exp [— 2% f dig a(x)m(x)] ,

(2.7) Alz) = 3 pl(2) yspa(@) .

%(x) is an ill-defined conditionally convergent quantity: the crucial step is
to regularize it by suppressing the large eigenvalues of the operator D (which
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does not commute with y,). Thus one finds

(2.8) W (@) = lim 3 gl(@)ysp(e) exp [—wdi] = Bm trdaly, exp [— v Dla) =
= (62/16752) %Sﬂ'aaFquga .

The result can, furthermore, be shown to be independent of the particular
(Gaussian in eq. (2.8)) cut-off employed. This stability of the axial anomaly
is a reflection of its topological origin. Equation (2.7), integrated over x is
formally equal to

(2.9) j Ao W(w) = n, —n_,

where n,(n_) is the number of the zero eigenvalue modes of positive (negative)
chirality. The index of the Dirac operator D, 7, — n_, is thus related via
Atiyah-Singer theorem (*) to the topological charge density, (¢%/327%)-
e F .

3. — Functional-integral formulation of anomalous chiral WT ijdentities in
supersymmetric gauge theories.

In this section we analyse the chiral anomalies in supersymmetric gauge
theories by generalizing the functional-integral method to superspace.

For the clarity of presentation, we first treat the specific case of the U,
anomalies in supersymmetric quantum chromodynamics (SQOD) in detail.
Generalization to non-Abelian anomalies in SQCD and U, anomalics in chiral
theories, and the question of the non-Abelian gauge anomaly cancellation in
chiral theories, will be considered subsequently (see after eq. (3.18)).

SQCD is a supersymmetric version of QCD with 8T, gauge group. The
matter fields are N, pairs (flavours) of chiral superfields {®,, X*} (i = 1, ..., N,)
transforming as {N,, N} multiplets of the colour group. The gauge fields
are contained in the vector superfields V* (k =1, ..., N*— 1),

The generating functional of SQCD is given by

(3.1) exp Z[J] = f@@ DB ... exp [(8 e + 8,001,

where the part of the action containing the matter fields is of the form (°)

(*) M. Arivan and I. SINGER: Ann. Math., 87, 484 (1968).

(*) Our notation is that of ref. () except that we use the Bjorken-Drell metric. The
superspace co-ordinate is denoted by z= (z, 6, §) and integration measures by d%¢ =
= d%rd?®*0d%, d% = d*zd%0, and d% = d4xd2h. Also, D, = (3/36%) + i(c*0),0,; D; =
= — (8/3bx) — i(fon); 2,. Here and whenever possible, the colour and flavour indices
will be kept implicit.

(*) J. Wess and J. BAGGER: Supersymmetry and Supergravity (Princeton University
Press, 1983).
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(3.2)  Spue =% (Boxp [V1O+ X exp[— V1K) + [as2 XmB+ ho 48 s
where

(3.3) V=V

(T* = the 8U,, generators appropriate for & fields). For convenience, we have
introduced in eq. (8.2) source terms for colour-singlet composite operators.
For instance, they can be taken as

(3.4) 8= f %z (J,) X*D, + h.c. + f AP ,) @ exp [V1D, + ...

The action eq. (3.2) is invariant under the local 8U, (generalized) gauge
transformations,

(@, D) - (exp [—id] D, P exp [i4]),
(3.5) (X, X) - (X exp [i4], exp [— i4] X),
exp [V] — exp [— id exp [V] exp [i4],

where A4 = A*T* and A¥s are arbitrary chiral superfields.
The global axial U, transformation is defined as

(3.6) (B, X) — exp [i] (D, X}, (D, X) - exp[— ia] (D, X).

Now, in order to derive the WT identities, one must consider a local version
of eq. (3.6),

{ (P, X) - exp [tA(2)(P, X)],
(8.7)

(B, X) — exp [— id(2)(D, X)],

where A(z) is an arbitrary chiral superfield proportional to a unit matrix in the
colour and flavour spaces.

Instead of considering directly eq. (3.7), however, we ghall proceed as follows.
In the functional-integral formalism, @, @, X and X are all independent integ-
ration variables. Therefore, the effects of change of each variable can be
and in fact will be studied separately, leading to four independent sets of WT
identities. Of these four, two involve the U, associated with &, or U, ,,,
the other two the U, ,, related to the X fields. The axial U, identities can be
found by taking an appropriate combination of the four (see sect. 4 below);
the point, however, is that each set of the identities contain independent infor-
mation about the theory and we wish to keep them all (see the applications
discussed in sect. 3).
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Also, the reality of the matter-field content plays no essential role in this
approach, hence the generalization of the results to chiral models is straight-
forward.

Keeping these points in mind, let ns consider the following change of va-
riables (°):

(3.8) D — exp [14(z) D(2)], &, X, X invariant,
in eq. (3.1). For an infinitesimal A4(2), the action transforms as

(3.9) 88 puyiee = [ 4% B 0xD [V] 140 + [awidXmd + 88

sources *

On the other hand, the Jacobian of the transformation is given by

(3.10)  J(P'/P) = det, |8D../30,| =
= det, <#'| exp [14] (— D?*/4)[) = exp [tr, {iA(— D*/4)}].

A co-ordinate representation in superspace (**) has been introduced above
(J&> = |2, 6, 6y is the eigenstate of the co-ordinate operator; (&'|z) = 88(z'— 2),
etc.), and we have used the fact that

(3.11) 88,./8B, = ('|(— D2/4))2D

which acts as a delta-function in combination with a chiral measure d%. The
subscript ¢ in eq. (3.10) means that the sum (integral) over z is taken with the
chiral measure.

The exponent in eq. (3.10) is apparently vanishing, since {z|Dled = 0.
This is, however, analogous to the naive result, tr ¥s = 0, for the exponent of
the Jacobian in the QED case, eq. (2.7). There, the correct Jacobian is found
by regularizing the large eigenvalues of the operator D, which does not com-
mute with y, (eq. (2.8)).

We find that an appropriate supersymmetric generalization of Fujikawa’s
procedure is provided by the regularization

(3.12) trie0 i A(— D*4)} = Jim_ tr.{id exp [L/M?)(— D*/4)},

(*) Of course, an analogous treatment is possible in the case of conventional theories,
by considering the change of variables y— exp [4x(1 + y,)]v, $ > 9. The Lagrangian
must be taken in the Hermitian form, (i/2)¢y”5“1p, not i9y*D,y. However, in QED,
no new information will be obtained by doing this.

(*') K. SHizuva and Y. Yasvr: Phys. Rev. D, 29, 1160 (1984).
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where

(3.13) L =Dtexp[—~ V]D2exp[V]16.

Indeed, L is the simplest operator that respects i) manifest supersymmetry,
ii) chirality and iii) gauge covariance, and that contains D* as a component.
Note that L transforms as L — exp [— 4] L exp [i4] under the gauge trans-
formation, eq. (3.5).

Computation of the matrix element appearing in eq. (3.12) is described in
appendix A. The answer is

(3.14) tr0f A (— D*ja)} = 4 j 3%z (9°/320%) Tr{A(W=W,)}

where W* = — }Dtexp[— V] D*exp [V], and Tr stands for a trace in the
colour space.

The last step in obtaining the WT identities is to collect all variations under
eq. (3.8). Because a change of (functional) variables does not modify the
integral itself, we find finally the desired relations (*)

(3.15) 0 = 3Z/i SA(2) =

8SIOI'I.POOI {J}
isd |

-+

where 388, ...../284 is inferred from eq. (3.4).
Up to now we studied the consequences of the invariance of the generating
functional under the change of integration variable, eq. (3.8). In an analogous

fashion, we obtain another set of WT identities

88!0!1?00! {J}
184 |

(3.16) 0= (——Xexp [— Wa+

from the consideration of the change of variables, X —exp [(¢4) X, all other
fields remaining invariant.

Furthermore, the study of change of variables, & — ® exp[— i4], and
X - X exp[— i4] lead (by use of the regularization kernel L = (D* exp [V]-
-Dexp[— V])/16 in the computation of the Jacobian) to the Hermitian
conjugates of eqs. (3.15) and (3.16),

{3
Tr W‘ W& _|_ 8 loluoeo

(317) 0= <——<1>exp [V]®+ &mX + T s

327*

(") We remind that the coupling constant g has been reinstated by the replacement
V- 2gV.
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and

Wa souroes v
+8(—@A)> )

(3.18) 0= (—%2 X exp [—

Equations (3.15)-(3.18), altogether, represent the anomalous U, , and non-
anomalous U,, WT identities of SQCD, and their supersymmetric partners.
Xm® term is the usual soft breaking term, (¢2/32x%) Tr WW is the anomaly.

These identities have first been obtained for supersymmetric QED by
CLARK, PIGUET and SrBoLDp (), who worked with BPHZ renormalization
scheme. For SQCD, eqs. (3.15)-(3.18) have been found in ref. (3) and ref. (%)
by using the point-splitting method and Pauli-Villars regularization (in ref. (%),
these methods were employed in the component formalism). For completeness
we briefly describe these methods in appendix B.

The WT identities of the nonanomalous 8U, X8U, (namely, with no
weak gauging of the flavour group), can be immediately found by taking 4(z)
a8 g matrix in the flavour space,

Ni—1

(3.19) Afz) = 3 A%@)t

a=1

where ¥s are the generators of 8U, , in the analysis made above. One finds

)
(3.20) 0 =23%Z/34°= (—— P exp [V]ieD + Xmied + g_'z‘;“)

and there other sets of identities analogous to eqs. (3.16)-(3.18). The identities
used in the derivation of Dashen’s formula and its supersymmetric generalization
due to VENEZIANO (®2), for instance, can be readily found by taking the first
derivatives of these with respect to J,(z).

Because our regularization conserves the vector gauge invariance it can
be used to find the supersymmetric generalization of Bardeen anomaly (1),
in the presence of external SU,, fields (but with no external axial fields).

One gets instead of eq. (3.20) an anomalous SU,, ., identities,

—_ a a é a lomnl (J)
(3.21) 0= (——Q‘)exp [V]ted + Xmi ¢+(32 )t (e WW) + MAa ) ,
where § and W refer to the external 8T, ,, vector superfields and tr stands for
a trace in the flavour space. Combined with three other identities, analogous
to egs. (3.16)-(3.18), eq. (3.21) leads to nonanomalous 8U, , X U, , and anomalous
8U, 5, WT identities. Equation (3.21) agrees with ref. (*7).

(22) G. VENEZIANO: Phys. Leti. B, 128, 199 (1983); see also G. SHORE: Nucl. Phys. B,
231, 139 (1984).
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As has been already emphasized, our method does not depend on the reality
of the matter fields with respect to the gauge group, and as such, can be gen-
eralized to chiral theories in a straightforward manner. Consider a generic
theory with a set of matter chiral superfields {®}, and with a superpotential
P({P}). Following the example of SQCD, the effect of the change of functional
variables can be studied separately for each matter field @, (i denoting all the
«flavour » indices, in particular specifying the representation of the gauge
group according to which @; transforms). The associated Jacobian can be
computed as in egs. (3.10)-(3.12), with the substitution

(3.22) V>V,=3 VT
E

in L, where T% are the gauge group generators appropriate for &,.
With this regularization, we find the following U, WT identities (no sum
over 1) (°)

D* = ©
(328 0= (2B exp(v0,+ 0 20 4 L meyy, g, 4. Do)

50, T 3am 5id,

where W& = — } D*exp [— V,] D*exp [V,]. Equation (3.22) generalizes eq. (3.15)
of SQCD. Simplest examples of eq. (3.23) have alrcady been considered
in ref. (5) for a chiral SU; model and subsequently for a chiral SU,
model in ref. (18). (See sect. 3.) In ref. (%), the full WT identities eq. (3.23)
have been taken into account in a study of low-energy effective actions, within
a general class of supersymmetric confining theories, leading to the idea of the
effective gauge symmetry.

That egs. (3.12), (3.13) and (3.22) provide a correct regularization method
in a chiral theory, is by no means a trivial statement. A justification of this
method (hence of eq. (3.23)) comes from studies based on the point-splitting
regularization (%2%%4). (See also appendix B.)

A further and crucial support comes from the following observation: the
regularization based on eqs. (3.12), (3.13) and (8.22) is the one that guarantees
the gauge invariance of the theory. Indeed, by using the same regularization
and repeating the analysis by considering a gauge transformation, ¢.6. with
A(z) = A*(2)T%, where T%'s are the generators of the gauge group, we get

k
the gauge anomaly, ((g?/32n?) times)

(3.24) > Tr (TWiW,,) =4 2 Tr (THTLIE) W Wy
(o) {@

(*) Summation over colour indices i8 implicit in the second term in eq. (8.23).
(2®) Y. MEURICE: Ph. D. Thesis, in preparation.
(#) K. KoxN1sHI: unpublished.
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This, being proportional to the symmetric trace of three generators, can be
cancelled among an appropriate set of the matter flelds (such as between 5
and 10* in ST;) in a usual manner (*).

We conclude this section by noting that the same method as presented
here can be used in a more general study of non-Abelian anomalies; the precise
form of the regulator kernel, eq. (3.13), however, depends upon the constraints
on the anomalies one wishes to impose. These constraints, in turn, will depend
on the physics one chooses to study. These issues, including the explicit com-
putation of the « consistent» anomalies, will be discussed in a forthcoming

paper (*¢).

4. - Axial U, anomaly in SQCD.

In this section we come back to the specific case of SQCD and study :ts
axial U, identity. It is not difficult to extract from eqs. (3.16)-(3.18) the part
corresponding to it. Applying D* on egs. (3.15) and (3.16) and D? on egs. (3.17)
and (3.18), and using the formula

(4.1) (D%, D¥) = —i0s(Do,D — D5, D),

one finds (summing over flavours)

(4.2) 0 = (*Is — 2 M — a + sH,

where

(4.3) I = (DouD — D5, D) (P exp[V]P + X exp[— V) X)/4,
(4.4) M = —{D¥Xm®) — D*®mX)}/4,

(4.5) o= —ZN'iga‘Tr(DZW’—E* w24,

3272

and s is the contribution from the source terms.

(*) It is seen that our regularization automatically leads to the « covariant» rather
than ¢ consistent » anomaly (2§). The same holds for the point-splitting method dis-
cussed in appendix B. Note that (2¢) the criterion for the gauge anomaly cancellation
is the same in the consistent form of the anomaly, although the explicit form of the
latter obtained so far (N. K. NIELSEN (1) and ref. (2¢)) is rather complicated. We
thank S. FERRARA, E. GuaDaGNINI and M. MINTCHEV for discussions on the anomaly
cancellation in supersymmetric theories.

(2%) W. A. BArRDEEN and B. Zumino: Nucl. Phys. B, 244, 421 (1984).

(*®) E. Guapsgrini, K. Koxnisur and M. MintcrEV: Phys. Lett. B, 157, 37 (1985);
see also related works, O. P1GUuET and K. Sisorp: Nucl. Phys. B, 247, 484 (1984);
L. BoNora, P. Pastr and M. Towin: Phys. Lett. B, 156, 341 (1985); G. GIRARDI,
R. Grimm and R. Stora: Phys. Lett. B, 156, 203 (1985).
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Alternatively, eq. (4.2) can be obtained by considering the axial transfor-
mation, eq. (3.7), with («(z) real)

2

(4.6) Afz) = —

| S

(Oa(z)), A(s) = —-% (62a(w))

and by setting 8Z/3x(z) = 0.
The lowest component of eq. (4.2) reduces to the standard axial U 4,11dentity
of SQCD, with

2 -~
(4.7) oo = 2N, %ﬁ Tt (Fous v — 38Ty, s 1))

(2 is the four-component Majorana gauge fermions, 1= (A%, 2,)+).

To make explicit the topological origin of the superspace axial anomaly,
let us write the action eq. (3.2) in the form (for the use of the following notation,
see ref. (21)),

(4.8) 8 =P*Q[VIe¥,
ml, — (D*/4) exp [V]1__
(4-9) AV = [~ } Dexp[— V]1,, ml__ !
where ¥ = (X, )" and ¥* = (&, X) and 1__ ~ — D%, 1., = — 1D The

dot o implies a summation over Superspace~co-ordinate labels using appropriate
chiral or antichiral measures. In this notation, the chirality operator is a diag-
onal matrix

(4.10) Iy= diag (1,,,—1_),
which satisfies the relation
(4.11) Qoly + o2 = o2mT .
There ig clear one-to-one correspondence between the superfleld action

eq. (3.2) and the QED Lagrangian eq. (2.1) expressed in terms of two-com-
pounent spinors

(4.12) S =gy,

g sk a8
(4.13) F=ib—m= [ mot D ] ,
iDa,é — mo?

where y = ({4, £)* and ¢ = (£,, %) y, is diagonal in this basis,

(4.14) ys = diag (o5, — &%),
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and obeys the relation

(4.15) {ys, I'} = —2 my, .

To z’f), in particular, corresponds the superspace operator (V; m = 0)

(4.16) iD[A)<=Q[V;m=0].

Similarly, to the squared operator D* corresponds the superspace operator
— o0 (for m = 0):

(417) DfA] e —

— dia,g(ll—6 D2exp[V]D®exp[—V]1,,, 11—6 D2 exp[— V]D?exp [V]x__) .

This provides a simple way, in the specific case of SQCD, to obtain the regulator
kernel eq. (3.13) and its antichiral partners.

Noting the above correspondence, we use the operator £2? to regularize
the Jacobian associated with the axial rotation eq. (4.6). Then the (regularized)
integrated axial anomaly, appearing in the exponent of the Jacobian, is cast
in the form

(4.18) _f d#za(x) U(s) = lim Tr[aljoexp [7Q%(m = 0)]]

in exact analogy with eqs. (2.6) and (2.8). Equation (4.18) may be formally
interpreted as relating the superspace axial anomaly to the topological index
of the operator 2(V; m = 0), the superspace analogue of the Dirac operator iD.

5. — Anomalous supersymmetry commutators and properties of vacua in SQCD
and in a chiral ST, model.

We turn in this section to the features more specific to supersymmetric
theories, involved in the WT identities obtained in sect. 3. The operator equation
(corresponding to eq. (3.15) of SQCD)

(5.1) (D2/4) B exp [V] By = X‘m, D, + (¢*/3271) Tr WW

(for each 4: 4 =1, ..., N, is the flavour index) can be easily written in com-
ponents, in the Wess-Zumino gauge (see appendix C). From these equations
(eqs. (C.1)-(C.3)) it follows that the higher components (62, 62 928, 626
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and 6°62) of the composite operator @ exp [V]® contain anomalous terms
involving the gauge multiplet (see eq. (C.4)) (7).

On the other hand, the lower components (§ = § = 0, 6, § and 68) cannot,
and in fact do not, contain anomalous terms because there exist no gauge-in-

variant operators formed out of gauge and gauge-fermion fields that have the
right dimension and chirality.

As a consequence, the lowest component of eq. (5.1) can be cast into the
form of an anomalous anticommutation relation (¢), (*%)

(5.2) {Q&, ¢&"¢t}/2\/2_ = — mm'e; + (9°/32n2) A4

valid for each 4.

This relation was obtained in ref. (®) by working directly in the component
formalism.

Taking the vacuum expectation value of the both sides of eq. (5.2), we get
a rigorous result (8)

(5.3) by = (9°[32m*)<AAY
since supersymmetry is not spontaneously broken for m 7= 0 (1), (**°).
An analogous reasoning, starting from the nonanomalous 80U, x8T,,
identities, eq. (3.20), leads to
(5.4) n’g>=0 (¢ )

in the basis in which the mass matrix is diagonal.

(*) A detailed study in the Pauli-Villars regularization metbod in the component
formalism (%24) confirms these statements. More precisely, gauge-noninvariant « anom-
alous » terms in the lower components arige from regulator loops that are divergent,
and are taken care by the ordinary subtraction procedure of divergent contributions.
On the contrary, the anomalous pieces in the higher component (which are gauge-
invariant) come from finite graphs involving regulator loops. It ig this situation that
makes the separation between the nonanomalous and anomalous parts of $exp[V]P
look apparently nonsupersymmetric. Actually this anomaly is perfectly compatible
with supersymmetry as is evident in the present approach.

(**) We use the following notation for the component fields of SQCD:

&7 = (¢ + V20p + 6°F4 + ...)7,
X, = (n+ V20 + 02F, + ...), (i=1,.., N3 a=1,..,N),

1
W= —ii* + 3 (a* &")"pFw,Oﬁ 4+
Also, the mass matrix was taken, without losing the generality, to be flavour-diagonal.

(***) Note that if it were not for the anomalous right-hand side of eq. (5.3) one would
have (incorrectly) concluded that {(n‘$,> = 0 for all maesive flavours.
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Furthermore, in the massless case (or if at least one of the flavours is mass-
less), one gets (from eq. (5.2))

(5.5) Ay =0

if one assumes supersymmetry not to be broken dynamically.

Bquations (5.3)-(5.5) strongly constrain the possible low-energy realization
of the chiral 8T, x8T,, XU, symmetry of SQCD.

Important as it may be, eq. (5.3) gives only relations among the condensates
and tells nothing about their absolute values. Crucial information in this
sense came from the recent study of instanton effects (**) in supersymmetric
gauge theories. For SQCD, they imply (%?)

(5.6) ARy ﬁ (y'py = const A*FeF

=1
where / ig the renormalization invariant mass scale of the theory.

‘When eq. (5.6) is combined with eqs. (5.3)-(5.5), one arrives at the following
picture of SQCD vacua (*).

Xt
i) Massive theory. The symmetry of the theory is reduced to [ U,,

(=1
(for unequal masses). The scalar and gauge-fermion condensates are determined

to be

XN
(B.7)  mdniod = (g2/32n?)<AAy = const T mi/me. A5=% oxp [i9k([N ] .
n'e ]

=1

There is a N_-ple degeneracy of the vacua (k=1,..., N) corresponding to
Witten’s index. The remarkable formula eq. (5.7) was originally obtained in
an effective Lagrangian approach ().

ii) Massless theory. In the massless theory, the net result can be sum-
marized by eq. (5.5) and

541...zn°<¢«. ¢‘Nc> = e‘lm%@“ ... ™oy = const A¥ (for N,=N = N),

&8 —0 (otherwise),
and by
eo for N, < N,
(5.9) ﬁ (¢ = | const A for N,=N,,
- 0 for N,> N,.

(*) In this discussion we shall restrict ourselves to continuous global symmetries com-
muting with supersymmetry.
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Each of {n‘¢,), however, remains undetermined. There exist thus large
degeneracy of possible vacua, which can be interpreted as being related by
8L, cX8Ly cxU,, ()(**), a complex extension of 80U, x8U, xU,,. Note
that these possible vacua are not all equivalent under § Uy X80, xU,,;
this is a reflection of the flat directions in the scalar potential in the perturbation
theory.

Nonetheless, not all the perturbative vacua survive the nonperturbative
effects, according to eq. (5.9). For N, <¥N_, eq. (5.9) shows that some of the
perturbative vacua (e.g. ¢, = n* = 0 for all ) are not found in the true vacua:
the nonrenormalization theorem (2¢) is thus invalidated (»3).

For N, > N, eq. (5.9) alone might suggest (4) the full perturbative degeneracy
of vacua to survive. However, the result of the massive case, eq. (5.7) (which
was shown to hold for all ¥, and N, (%)), indicates that the nonperturbative
effects invalidate the nonrenormalization theorem in this case as well 9.

On the other hand, eqs. (5.7)-(5.9) do suggest the dynamical possibility
of chirally symmetric vacua when N,> N,. In this respect, it is interesting
that, for the particular case of N, = N, 4+ 1, there exists a simple plausible
set of massless composite chiral superfields. Indeed, the following set (¥, = N, ,
N =N+1)

T:EX’Qj(’

{ — offef &« &,
Bf =gt "e‘,lm“” Qs‘li ave ¢‘: 9

0, =¢,,, 4, &P Xp. X,

satisfies the 't Hooft anomaly matching equations with respect to the full
global symmetry group, 8U,,, x 8 Uy XUy x Uy, for any N.

It is also interesting to compare eq. (5.5) with the result for pure Yang-
Mills theory (?:28)

(8.10) ARy =0(A%) £ 0 (no matter fields).

How can magsless matter loops, which are suppressed by powers of 1/N,,
modify the large-N, result eqs. (5.10) to (5.6)1 The formula eq. (6.7) suggests
the answer: the 1/N_ expansion is invalidated by infra-red divergences in the
massless limit.

(*) The condensates of eq. (5.7) suggest a larger symmetry of the vacuum: a GLy, ¢.
This is, bowever, not the case, because of the presence of other types of condensates
such as {$*¢> and <(n*n>, which break this GLy, ¢ completely (18).

(*) M. T. Grisarvu, W. S1EcEL and M. RocEr: Nucl. Phys. B, 159, 429 (1979).
(**) Uy, factor iz absent for N,= ¥,.

(***) In this respect we disagree with the conclusions of ref. (*) for the cases N, > N,.
(*) E. Comex and C. GomEz: Phys. Rev. Lett., 52, 237 (1984).
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Importance of the mass singularities was also pointed out, in explaining
how the result such as eqs. (5.3) and (5.4) can be smoothly connected to the
massless SUy, x 8T, symmetric limit (2).

This concludes our discussion on the properties of the ground states of
SQCD.

As an example of application of the WT identities eq. (3.22) to a chiral
theory, let us consider a §U; model studied in ref. (¢). The matter chiral multiplet
of the model are

(6.11) &7  and X,=—X;, (¢ f=1,..,8;i,a=1,2),
namely, two sets of (5 + 10*)’s. The SU,-invariant superpotential

(6.12) PP, X)=h!DP X =h ODX

is assumed to be present (A = — b/ = ¢“h).

The simplest of the WT identities eq. (3.22) for this model can be cast into
the form (following the same reasoning as in the SQCD case) )

(5.13) (@a F )22 = — 2> + T any,
(5.14) Qe T2/ = — s> + 3 I any

Furthermore there exists a (nonanomalous) anticommutation relation (for each
%, a, and b) (¥)

(5'15) <{Q&’ q)‘%;‘ %xﬁ- ﬂ%‘ﬁl eﬂlmﬁ.}>/2 \/ﬁ = 2h:’<¢7 77314 ’73.;9. 77;4.35> ghrbr,

MEURICE and VENEZIANO (%) have, furthermore, computed the instanton
effects in this model, which imply

(5.16) Eap i CAAD - (A2 APy = const A 52 0 |
where
(5'17) A: =&y splmﬁ'n;ﬂxn;:ﬁanzml¢? :

(*) We use the following notation below for the component fields:
Of= (¢ + V20p +...);, Xi= (n+VI0x+ )ag -
Gauge fermions are denoted by 2 as in SQCD.
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As noted by the authors of ref. (%), there are no «solutions » of eqs. (5.13)-
(5.15) for the condensates, if supersymmetry is to remain unbroken. The only
way out seems to be to conclude that supersymmetry is, actually, dynamically
broken in this model (°).

If supersymmetry is indeed spontaneously broken, one finds from egs. (5.13)-
(5.15) current-algebra~type formulae (°)

(6.18) 1.8l $10>/2V/E = 2k (P> + (9°[327°)CARY
(5.19) 1.£alZ* |02 V2 = h (pon’> + 3(g*[322°)AL)
and

(8.20) 1 alg@ e [0)/2V/2 = — 20 gm0’ n*

where |&) is the massless Goldstone fermion and f, is the strength of the super-
symmetry breaking

(5.21) <o[S8lay = 1,04,

(8% = the supersymmetry current). The derivation of eqs. (5.18)-(5.20)
employs the standard current algebra techniques.

Furthermore, according to eqs. (5.18)-(5.20), the low-energy effective La-
grangian of the present model will contain, as effective degrees of freedom,
composite supermultiplets of general types, @ exp [V1P, X exp [V] X and
P exp [V]XX as well as a few composite chiral supermultiplets (%) (**).

A few other simple models have been studied along the line of analysis
sketched here; they suggest that a rich variety of patterns of realization of
chiral symmetries and supersymmetry are possible, depending upon the details
of the model considered.

6. — Summary and concluding remarks.

In the first part of the paper, we discussed a (superfield-) functional-integral
formulation of anomalous chiral WT identities in supersymmetric gauge
theories. The gauge covariance and supersymmetry have been kept manifest
throughout. Our U, identities have thus gauge-invariant form.

Supersymmetric generalization of axial 8T, , anomalies have been ob-
tained, in the simple case in which only the external vector 8T, , fields are

(*) Equation (6.18) was first derived in AFFLECK et al. (5).
(**) In fact, simple effective Lagrangians which contain composite chiral superfields
only lead to incorrect results in this model (*).
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present. Our discussion also included the gauge anomaly cancellation in chiral
theories.

In the second part (sect. 5), we have shown how the supersymmetric partners
of the U, ideutities lead to exact relations among scalar and gauge-fermion
condensates. When combined with dynamical information based on explicit
instanton caleulus, they make it possible to compute the vacuum properties
starting from the first principles. We discussed two examples, SQCD and a
chiral §U; model, following the works of ref. (*9).

We conclude with a few general remarks.

We are aware of the formal and somewhat heuristic nature of our discus-
sions; in particular, the effects of renormalization have not been properly
discussed. Also, our considerations based on the functional integration do not
tell whether or not the anomaly term receives corrections of higher orders
in g. The only result concerning this point we know of comes from the work
on SQED by CLARCK, PIGUET and SIBOLD (7), done within the BPHZ renor-
malization scheme. Their result suggests that the form of the superspace
WT identities is not modified by renormalization .

It is, of course, easy to check that each term of eq. (6.2), for instance, is in-
variant under renormalization, to one loop. To higher orders, the first term
on the right-hand side of eq. (6.2) (also in eqs. (5.13) and (5.14)) remains in-
variant, due to the nonrenormalization theorem. The other two terms will
mix under renormalization, but we have assumed that the form of the squation
remains unchanged after renormalization, just as in the case of usual axial-
current divergence equation (**).

Finally, we wish to point out that the superspace U, WT identities
(egs. (3.15)-(3.18), eq. (3.20), eq. (3.23)) contain actually more information
than has been taken into account in the discussion of sect. 5. Recently, the
full information contained in such superspace WT identities was exploited
in a study of the structure of the low-energy effective action, in the context
of general supersymmetric confining theories (**). The outcome, emergence of
the «effective gauge symmetry » (an exact local symmetry structure at the
tree level of the low-energy effective action) and of a generationlike structure
of composite matter multiplets (18), secms to be an encouraging sign that super-

(*) According to S18oLD (private communication) this can be proven for SQCD as well.
(**) In fact, a plausibility argument can be given for the form invariance of the WT
identities under renormalization. We first consider the component containing the cur-
rent divergence equations, and generalizo the usual argument for the softly broken
current divergences (**) (by using the nonrenormalization theorem) and for the anom-
alous U, , current divergence (20) (by using the form of the anomaly, eq. (4.7)); we
then invoke supersymmetry. .

(*) See, e.g., D. GrRoss: Les Houches Lectures, 1975, edited by R.Barian and J. Zinwn-
JusTiN (North Holland Publishing Company, 1976). '

(*®) See, e.9., R. CREWTHER : Status of the U, problem, CERN preprint, TH-2546 (1978).
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symmetric gauge theories might one day find their place within a realistic
composite theory of particle physics.

kK %k ok

This work started when both of us were visiting CERN for a short period.
We thank its theory division for hospitality.

APPENDIX A

In this appendix we describe the calculation of the matrix element
(A1) (2liA exp [L|M*)(— D*/4)[e>

appeared in eq. (3.12). (For SQED, this matrix element has been known (2!) ).)
The first step is to observe that the operator L = D? exp [— V] .D* exp [V]/16

always acts on D*(...) so that L can be rewritten as (1__ = — D#*/4)
(A.2) Ll1__ = (P*—}WaD, + CsP, + F)1__,
where

We=—1} (ﬁ’ exp [— V] Dsexp [V]),
(A.3) 0* = —1} oky(D% exp[— V1 D* exp [V))
P = (D*exp[— V]D2exp[V]),

and P# i3 the momentum operator which acts as (z|P*... = fdyi-o#d(z—y)-
{y|.... The brackets in eqs. (A.3) mean that the covariant derivatives De
and D“ do not aet outside them.

To evaluate the finite (a8 M? — oo) part of eq. (A.1), we observe the
following two facts. First, in order to get a nonvanishing diagonal elerent
(60)|...|68> we need preclsely two D’s and two D’s operating on |66), e.g.

(A.4) <0,6|DaDsD2(6, 5> = 8 e4p.

It means that the W«D, term in the exponent should be expanded at least
to second order.

On the other hand, the matrix element (x|...|z) is at most of order O(M*),
since

(A.5) (z|exp[P? 4 lower order in P}/ M2z} =

as
_ f (< OXP [ B/ (14 0(1/0)) = i34/167* + 0(30%).
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Since the expansion in — }§ WaD, + C#P, + F brings down a factor of
1/M? per each power, it follows in the light of the above observation that the
finite part of eq. (A.1) comes exclusively from the second-order expansion
of — 4 WaD, (and zeroth order in C+P, + F). A simple calenlation, by
using eq. (A.4) and eq. (A.5), leads to the answer (after rescaling, V— 2gV),

(A.6)  lim Calid exp [L/M)(—Drfa)ley — id(2)(g*/327) Wo(z) Walz) .

It is easy to check the stability of the answer, when the Gaussian cut-off
is replaced by an arbitrary function f(L/M?) that satisfies
floo) = f'(o0) =...=0 and
(A7) {

f0)=1.

Indeed the only change would be in eq. (A.5) which, however, leads to the
same result as before

d‘k 24 2 2\
(A.8) f(2—at)‘f ({k2 + O(k)}/ M) =
3 i
T 16n®

N 3
T 1652

J.dk*k’ (k2 My 4 ... + O(M2).

o

APPENDIX B

In this appendix we describe the derivations of eq. (3.15) by the point-
splitting and the Pauli-Villars regularization method, both of which were
employed in ref. (%) in the component formalism. These derivation are close
to those given in ref. (8).

In the point-splitting method, we start with the definition

(B.1) Dexp V1@ =1im&,, Uz + ¢, v—2) (exp [V] D)oy,

where U is the string operator
_ ota
(B.2) U+ e, v—e) — P exp [ f dqu,.(y)]

with F, =i} Do, exp [V]D exp[— V]. Here only the space-time co-ordinate
has been point-gplit. U is constructed in such a way that the nonlocal opera-
tor @Dy, U(exp [V]D),, is invariant under the gauge transformation, eq. (3.5) ().

b
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Applying } D?® to eq. (B.1), one finds that
(B.3) 3 0P, U(exp [V]D)e-s} =
=13..,(D*U) exp [V]D + } D, o(D*U) Da(exp [V] D) + mB,, X, _, .
It is easy to show, using eq. (B.2), that

De = 2e2DoF O(e2),
(B.4) { [ u 1 O(e?)

DU = 4eue?(DF ) (DaFy) - O(e°) .
Hence the problem is now reduced to calculating the singular parts of the
propagator { T(exp [V]®D).—,P.+, » in the presence of the external gauge super-

field V. For an actual calculation, one may use the explicit representation
of the propagator (21)

(B.5) {T(exp [V D)oy B> = 1’—6 (x—e, 8, Blexp[V]-

‘(mi_D* exp [— 1176] D2 exp [‘7])_1 Dt exp [V] Dz +¢, 6, 65,

or use the superfield Feynman rules. We quote only the result
(B.86) {T(exp [V]D)sey By, > = (162262)~2 {1 — 2euFy + O(e?)},

which is combined with eq. (B.3) to give eq. (5.1).

We emphasize the importance of the point-splitting method in deriving
the anomalous U, identities for chiral theories, benee justifying the regulariza-
tien, egs. (3.12), (3.13) and (3.22), for such theorics. Note that the Pauli-Villars
regularization cannot be used in these cases. (For simplicity of calculation,
we have used the expression eq. (B.5) valid only in SQCD, but this can be
avoided. Evaluation of the matrix element eq. (B.5) has been done, without
using the right-hand side of it, by MEURICE (2%)).

In the Pauli-Villars regularization method (useful only in left-right symmetric
theories) all operators are local but the regulator chiral superfield X, and @,
also contribute to the regularized equation

(B.7) 1DYPexp[V]D) = mXD— MX, D, .

Accordingly, it is necessary to extract from the Green’s function (7(X,®,)...>
the part which behaves as 1/M as the regulator mass goes to infinity. The
functional representation of <X, ®,> is given by

(B.8) iM(X,®,> = M«z,0,0)| (Mz—Ilg D?exp [—V] D2 exp [V])_11_|:v, 0,85,

which turns into the anomaly term of eq. (5.1) in the M — oo limit, as readily
verified by following the reasoning similar to the one in appendix A.
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APPENDIX C

Equation (5.1) can be written in components in the Wess-Zumino gauge
as (C=Dexp[V]D),

(C.1) — O®Y = myp — (92/32a2) A4,
(C.2) — @ — 5’ (0680, 0F) 5 =
a
= '\/Em(ﬂwa + xa¢) + 3gn’ {_ 2'&/1“.D + (O'”'&’).)aFuy} y
(03) — ('Y - 21 on 02‘00"31 -+ g Cloy — m(nF¢ -+ F"¢ — x‘lp) +
9 Ipha_ s 1 i
+ 327;“ D —ZzlG’D,Z—éFWF“” + Zfﬂ,yechnga’ .

Other components of eq. (5.1) prove to be either vanishing, equivalent to one
of eqs. (C.1)-(C.3), or Hermitian conjugates ot them.
Equations (C.1)-(C.3) agree with the result found in ref. (¢),

(C.4) Dexp[V]D =
= (D exp [V]1D)narvo — i [62 WeWa + h.c. —-6%6—2 (WW|p + WWia.)] ,

32,2

where (P exp [V]P)uay. means that the components of the first term are the
operators obtained by the usual expansion of @, @ and exp [V] in terms of
the component fields.

® RIASSUNTO (%

Si formulano le identitd anomale chirali e correlate di Ward e Takahashi nelle teorie
di gauge supersimmetrica, per mezzo della generalizzazione del metodo dell’integrale
funzionale di Fujikawa al superspazio. Il nostro approccio fornisce un trattamento
manifestamente supersimmetrico e di gauge covariante delle anomalie abeliane del
superspazio, ed & applicabile a teorie chirali come pure a teorie simmetriche destre-
ginistre. Si discutono anche brevemente le anomalie non abeliane. Le anomalie abeliane
del superspazio implicano che particolari operatori composti, ¢iod quelli contenenti le
correnti associate di U, come componente, esibiscano una struttura di supermultipletto
anomalo. Si discute come c¢id porti a varie relazioni esatte tra scalari e condensati di
fermioni di gauge, imponendo cosf forti vincoli sulle possibili realizzazioni di simme-
tria chirale nelle teorie a confinamento supersimmetrico.

(") Traduzione a cura della Redazione.
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ITogxon ¢ BCHOJL30BAHMEM (QYHKIHOHAIGHOIO METErPHPOBAHHA K KAPAJILHRIM AHOMAJIASM
B CYNePCHMMETPHYHLIX KAJTHGPOBOYHLIX TEOPHSX.

Peatome (*). — O606mass MeTon (GYHKIMOHATBHOTO HHTerpEpoBammsa Pyniw@kaBel Ha
CyIepnpoCTPAHCTBO, HOIYYAIOTCH KAPATBHEIE TOXASCTBA M TOX/ECTBA, DPOJCTBEHHEIE
ToxnecTBaM Yoppa-Takaxanm, B CyDepcAMMETPHIEBIX KAMMO6POBOYHEIX TeopHaX. IIpen-
JIOXEHHB B 3TOM paboTe NOmXOn g aGeNeBBIX AHOMAIHMX SBJISETCH B SBHOM BHIE
CyDepCHMMETPHIHEIM ¥ IPEMEHIM K TEOPHSM C KEPAJIbHOK CHMMETpHER H ¢ JIeBO-IpaBo#
cavmMeTpredt. HeaGesleBs! aHOMANHE MOTYT GbITh PAacCMOTPCHBI aHANOMAYHEIM 00pa3oM,
HO B 3T0OM pa6oTe 06CYXKNAIOTCS TOBLKO BKpATIle. AOeneBhl aHOMANMH B CyIepIpOCTpaH-
CTBE DOJPa3yMEBAIOT AHOMALHYIO CYNepMYIbTHIUIETHYIO CTPYKTYpPY IJII HEKOTODRIX
COCTABHBIX omepaTopoB. OGCYxAaeTcs, Kak 3TOT HONXOX IPABONHT K PA3IHYEbIM TOTHBIM
COOTHOIIEHASM, BKITFOYAIOIMM CKAJMPHEDA M XaAOPOBOYHO-(HepMHORHBIN KOHTEBECATEI
H, CIIENOBATENbEO, HAKIAJLWBAIOIIMM CHIbHbIE OTPAHMYCHHS Ha Pead3aldH KEpaTLHEN
CAMMETPHE (X CYHEDCHMMETDHH) B CYDEPCHMMETPHIHBIX YAEPXXHBAIONIAX TEODHSX.

(*) [IIepesedeno pedaryueii.

K. KONISHI, et al.
21 Novembre 1985
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