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“ondulatoria” (8.60) della funzione d’onda la monodromia è proprio all’origine della
quantizzazione di L, nell’interpretazione “corpuscolare” (8.62) questa periodicità è evi-
dente solo se si somma su tutte le possibili traiettorie θ′ → θ, ognuna topologicamente
non riconducibile all’altra. Questo tipo di considerazioni compaiono spesso quando,
con tecniche mutuate dalla regola di Poisson, si riesce a dare una descrizione “duale”
dei modelli.

Una piccola generalizzazione di questo modello sarà fornita nel complemento 8.B.

8.3 Effetto Aharonov-Bohm
Un effetto, sorprendente dal punto di vista classico, ma che rivela chiramente la natura meccan-
ico-quantistica dell’elettromagnetismo e la sua interazione con la materia, è il cosìdetto effetto
Aharonov-Bohm, scoperto nel 1959 [AB59], trenta anni dopo la formulazione della meccanica
quantistica. Nonostante che la sua correttezza fosse accettata da tempo, la sua conferma spe-
rimentale definitiva è avvenuta molto più recentemente, nel 1998, grazie agli esperimenti fatti
da Tonomura et. al. [To1],[To2].

Consideriamo la classica esperienza à la Young, l’inteferenza di un fascio elettronico con
una doppia fenditura, discussa nell’Introduzione. lo schema è riportato in figura 8.2. Ricordia-
mo che nel caso usuale, senza campo magnetico, la funzione d’onda ψ è approssimabile nella
forma

ψ = ψ1 + ψ2 (8.64)

dove ψ1 e ψ2 sono le “onde” corrispondenti al passaggio nella parte superiore e inferiore della
figura 3. La differenza di cammino ottico fra i due termini provoca, vedi cap.1, uno sfasamento
relativo

∆φ =
2π
λ

∆` ∆` =
2xd
L

(8.65)

dando luogo alle note frange di interferenza nella misura di |ψ|2 = |ψ1 + ψ2|2.

Figura 8.2: Interferenza senza flusso magnetico e con flusso magnetico.

Consideriamo ora l’identica situazione ma con l’aggiunta di un solenoide, infinitamente
lungo per semplicità, dietro allo schermo in figura 8.2. Il solenoide può essere considerato
impenetrabile al fascio elettronico. Classicamente il suo effetto dovrebbe essere totalmente

3Vedi anche l’appendice 8.C
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nullo: il campo magnetico al di fuori del solenoide è nullo. Quantisticamente la situazione è
completamente diversa. Al di fuori del solenoide è presente un campo A 6= 0. Il termine ψ1

nella (8.64) si riferisce alla propagazione (semiclassica) nella regione superiore della figura
8.2, in questa regione, che è semplicemente connessa, l’effetto del campo A è semplicemente
quello di aggiungere una fase alla funzione d’onda ψ1, cioè in presenza di A:

ψ1 → exp
(
i
e

~c

∫
1

A · dx
)
ψ1. (8.66)

Ricordiamo che l’integrale nella (8.66) non dipende dal cammino, finchè restiamo nella zona
che non circonda il solenoide.

Analogamente la funzione ψ2 viene modificata da

ψ2 → exp
(
i
e

~c

∫
2

A · dx
)
ψ2. (8.67)

Vediamo allora che la differenza di fase fra i due termini nella (8.64) viene modificata per un
fattore

e

~c

∫
1

A · dx− e

~c

∫
2

A · dx =
e

~c

∮
A · dx =

e

~c
Φ. (8.68)

Corrispondentemente le differenze di fase (8.65) diventano:

∆φ = ∆φ|Φ=0 +
e

~c
Φ, spostamento: δ x =

e λLΦ
4π c ~ d

. (8.69)

Si ha quindi uno spostamento delle frange di interferenza, modulato dal flusso Φ del campo
magnetico nel solenoide. Notiamo che per

e

~c
Φ = 2nπ (8.70)

l’effetto scompare.
Sottolineiamo che l’effetto di spostamento delle frange non solo mette in luce l’importan-

za del campo vettoriale A, ma specifica che esso interviene solo nella forma gauge invariante
(8.66) e solo nella forma di fase, infatti l’effetto scompare per valori della quantità eΦ/~c
multipli di 2π. Della differenza rispetto alla meccanica classica abbiamo già parlato, bisogna
anche aggiungere che all’epoca dell’analisi di Aharonov e Bohm, che hanno proposto un espe-
rimento simile a quello di figura 8.2, molti non erano convinti della necessità di introdurre i
potenziali vettori nella descrizione della meccanica quantistica. I primi risultati sperimentali
erano a favore dell’ipotesi di Aharonov e Bohm confermando la presenza di frange di interfe-
renza che si spostavano al variare del flusso di campo magnetico, ma alcuni aspetti teorici e
sperimentali lasciavano aperta qualche spegazione alternativa. Tale diatriba è stata risolta in
modo definitivo in una recente serie di esperimenti sorprendenti fatti al Laboratorio centrale di
Hitachi, da Tonomura e dai suoi collaboratori.

La diatriba nasceva dai seguenti aspetti piuttosto delicati, sia sperimentali che teorici, del-
l’effetto A-B. Prima di tutto, in meccanica quantistica, l’elettrone è descritto da una funzione
d’onda, ed è difficile escludere completamente che esso penetri anche nella regione dove è
situato il solenoide, B 6= 0. Un altro problema sperimentale è che un solenoide non è mai
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ideale, non è mai infinitamente lungo, il campo magnetico non è mai completamente conte-
nuto all’interno del solenoide. Inoltre, dal punto di vista teorico, ci sarebbe la possibilità di
scegliere la gauge di modo che nelle equazioni appaiono soltanto il campo magnetico B (o le
sue derivate), e non più il potenziale vettoriale A (gauge di Schwinger). Se tale scelta di gauge
fosse legittima, non ci si dovrebbe aspettare nessun effetto A-B, se l’elettrone non passa mai
nella regione con il campo magnetico (o se l’apparato sperimentale è costruito di modo che
tale probabilità sia comunque trascurabile). Ogni effetto osservato sarebbe da attribuire alla
non perfezione dell’apparato.

A quest’ultima obiezione teorica può essere risposta osservando che una gauge in cui il
potenziale vettoriale viene eliminata in favore di B è necessariamente singolare, e perciò non
è una scelta accettabile.

Le prime obiezioni sono però più insidiose. L’idea brillante che ha permesso al gruppo di
Tonomura di ovviare a questi problemi, con il suggerimento di C.N. Yang, è stato quello di
ricoprire completamente un anello magnetico microscopico con uno strato superconduttore di
Niobio, (Fig.8.3). Si veda la nota seguente su alcuni aspetti salienti della superconduttività e
del fenomeno della quantizzazione del flusso magnetico.

Ricoprimento
Superconduttore

H

Interferenze

e e

H

J

Figura 8.3: Lo schema dell’esperimento di Tonomura et.al. . (Il “toro di superconduttore” della
Fig. 8.6 corrisponde ad una sezione (fetta) di questo doppio toro).

Facendo attraversare il fascio di elettroni parzialmente dentro e parzialmente fuori il foro
e osservando la frange dell’interferenza, si osservano gli effetti à la Aharonov-Bohm. Ma
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Figura 8.4: Verfica dell’effetto Aharonov-Bohm (Tonomura et. al. [To1], [To2]).

l’osservazione determinante è il fatto che lo spostamento di fase diventa o zero o π (Fig. 8.4),
quando il ricoprimento superconduttore dell’anello diventa superconduttore (al di sotto della
temperatura critica per Nb, Tc = 9.2K), mentre al di sopra della temperatura critica, ∆φ
prende un valore generico casuale, dipendente da come il campione è stato preparato.

Si osservi in particolare che

(i) Il campo magnetico è contenuto all’interno dell’anello superconduttore e non può fuo-
riuscire (effetto Meissner). Forma un selenoide di forma anulare ideale, i.e., senza le
estremità.

(ii) L’elettrone è schermato dal ricoprimento esterno dell’anello e non può penetrare all’in-
terno.

(iii) Il flusso magnetico all’interno del anello è quantizzato:

Φn =
2π c ~
q

n =
π c ~
e

n; q = 2 e, n ∈ Z. (8.71)

Sostituendo questo nella formula (8.69) si ha che lo spostamento di fase è dato da un
multiplo di π, come è effettivamente osservato sperimentalmente. Si noti un fattore 2
determinante tra la carica della coppia di Cooper (q = 2 e), responsabile del meccanismo
della supeconduttività e che compare nella (8.71) e quella dell’elettrone.

È da notare che questo esperimento rappresenta una doppia verifica, da un lato dell’effetto
A-B (nei campioni con lo sfasamento π), dall’altro della quantizzazione di flusso magnetico.

8.3.1 Superconduttore
Riportiamo qui gli aspetti principali della superconduttività nei metalli a temperature estre-
mamente basse, in un campo magnetico esterno. Gli elettroni in un metallo risentono di una
interazione reciproca dovuta agli scambi di fononi (eccitazioni del reticolo cristallino) e pos-
sono formare stati legati, chiamate coppie di Cooper. A temperature estremamente basse (al
di sotto di una temperatura critica, che dipende dalla sostanza) le coppie di Cooper - bosoni -
condensano e sono descritte4da una sorta di funzione d’onda macroscopica Ψ.

4I bosoni identici debolmente accoppiati tendono a occupare lo stesso stato quantistico. A temperatura al di sotto
della temperatura critica, un numero macroscopico dei bosoni occupa lo stato fondamentale (condensazione di Bose-
Einstein). Il sistema in tale stato è descritto dalla distribuzione dei numeri di occupazione d(p) o dalla sua trasformata
di Fourier, Ψ(r). |Ψ(r)|2 rappresenta allora realmente la densità, non la densità di probabilità, delle particelle.
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Le equazioni di Maxwell e la corrente microscopica sono date dalle solite equazioni:

∇×B =
4π
c

j, B = ∇×A; (8.72)

j = q
1

4m

[
Ψ∗(p− q

c
A)Ψ− {(p− q

c
A)Ψ}∗ Ψ

]
, (8.73)

Abbiamo chiamato q = −2|e| la carica della coppia. m è la massa dell’elettrone, quindi 2m
è la massa della coppia di Cooper. In generale possiamo scrivere la funzione d’onda Ψ nella
forma

Ψ =
√
ρ ei θ, ρ(r) = Ψ∗ Ψ 6= 0. (8.74)

Lo stato superconduttore può essere caraterizzato da una densità costante di coppie, quindi
ρ = cost. 6= 0. Questo stato è descritto come condensazione delle coppie di Cooper.

La corrente (8.73) si scrive quindi

j =
q ρ

2m
(~ ∇θ − q

c
A). (8.75)

L’equazione di continuità allora implica ∇ · j = 0, i.e.,

∇2 θ = 0, (8.76)

dove è stata assunta la gauge ∇ ·A = 0. All’interno del superconduttore la (8.76) implica

θ = const. (8.77)

Segue la relazione

j = − q2 ρ

2mc
A, (8.78)

nota come equazione di London. Le equazioni di Maxwell per il campo B = ∇ ∧A danno:

∇2A = −4π
c

j =
2π ρ q2

mc2
A ≡ λ−2 A. (8.79)

Se consideriamo ora la superficie di un superconduttore, schematizzata come il piano z = 0 (il
metallo occupa la zona z > 0) la soluzione della (8.79) ha la forma

A = A0 e
−z/λ, λ =

(
2π ρ q2

mc2

)−1/2

. (8.80)

La (8.80) significa che il campo magnetico è fortemente depresso5 in un mezzo supercondut-
tore: B può penetrare nel corpo di superconduttore soltanto per uno spessore dell’ordine di λ,
chiamato lunghezza di penetrazione di London. Con dei parametri appropriati per il piombo,
per es., (assumendo che ognuno degli atomi dia un elettrone di conduzione), ρ ∼ 3. · 1022/
cm3, si ha

λ ∼
√

1
8π

mc2

e2
1

1022
∼
√

1
25

1
3 · 10−13

1
1022

∼ O(10−5) cm. (8.81)

Questo fenomeno, per cui il campo magnetico viene espulso da una sostanza superconduttrice
è noto come effetto Meissner.

5Nel gergo della fisica delle particelle, il fotone che media l’interazione elettromagnetica ha acquistato una massa
effettiva tramite il meccanismo di Higgs.
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Quantizzazione del flusso magnetico Accade una cosa molto interessante quando la ma-
teria superconduttrice ha la forma di un toro (la superficie è topologicamente una superficie
toroidale).

Poiché z è una variabile angolare, la (8.76) ammette ora una soluzione non banale 6,

θ(x, y, z) = c z, c =
2π n
T

, n ∈ Z, (8.82)

dove z è la coordinata lungo il cerchio del toro, T è il periodo, cioè la lunghezza della curva.
La situazione è schematicamente illustrata in figura 8.5.

z = T= 0
x

z

y z = 0

Figura 8.5: Coordinate del toro. Si pensi la superficie a z = T identificata con quella a z = 0.

In questo caso, j 6= A, ma vale ancora

∇2j = − ρ q

2mc
∇2A =

1
λ2

j. (8.83)

La (8.82) e la (8.83) implicano che la corrente j nella direzione z circola soltanto sulla su-
perficie del toro, i.e., in uno strato di spessore dell’ordine di λ; viceversa, all’interno del toro
abbiamo j = 0.

Quest’ultimo fatto significa che lungo il cerchio al centro del toro (la curvaC della Fig.8.6))
vale

~ ∇θ =
q

c
A, (8.84)

per cui integrando questa equazione lungo C si ha (Eq.(8.82))

q

c

∮
dxiAi = ~

∫
dθ = 2π n ~. (8.85)

L’ultima uguaglianza discende dalla richiesta di monodromia della funzione Ψ. D’altra parte,∮
dxiAi =

∫
dS ·∇×A =

∫
dS ·B = Φ : (8.86)

6Dal punto di vista matematico, le soluzioni non banali (8.82) rappresentano elementi del gruppo fondamentale di
S1, Π1(S1) = Z.
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C

J

Figura 8.6: Schema di un anello toroidale superconduttore. Il flusso quantizzato è quello concatenato
alla circonferenza C.

∮
dxiAi è uguale al flusso magnetico intrappolato dal toro. Segue perciò che il flusso magne-

tico che attraversa un toro di superconduttore è quantizzato:

Φ =
2π n c ~

q
, n ∈ Z. (8.87)

Questa è la relazione (8.71) usata nel paragrafo precedente.
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Complementi
8.A Formula di Poisson
La formula di Poisson è:

∞∑
n=−∞

f(θ + Tn) =
1
T

∑
k

f̃(
2π
T
k)ei

2π
T kθ, (8.88)

dove f̃ indica la trasformata di Fourier. In particolare per T = 2π

∞∑
n=−∞

f(θ + 2πn) =
1
2π

∑
k

f̃(k)eikθ. (8.89)

Dimostrazione. Consideriamo la funzione

F (θ) =
X
n

f(θ + Tn) :

questa è chiaramente una funzione periodica di periodo T sviluppabile in serie di Fourier

F (θ) =
X
k

cke
i 2π

T
kθ;

ck =
1

T

Z T

0

dθF (θ)e−i
2π
T
kθ =

1

T

Z T

0

dθe−i
2π
T
kθ
X
n

f(θ + Tn)

=
1

T

Z ∞

−∞
dθf(θ)e−i

2π
T
kθ =

1

T
f̃(

2π

T
k)

che è la (8.88).

Integrali gaussiani

Ci saranno utili i seguenti integrali∫ +∞

−∞
dx e−

1
2ax

2+bx =

√
2π
a
eb

2/2a;
∫ +∞

−∞
dx ei

1
2ax

2−ibx =

√
2πi
a
e−ib

2/2a. (8.90)

Il secondo è ottenuto dal primo con la sostituzione a → −ia, b → −ib e va inteso come
continuazione analitica.

Propagatore

Dalle (8.60) e dalla definizione (8.61) segue:

K(θ, t; θ′, 0) =
∑
`

ψ`(θ, t)ψ∗` (θ
′, 0) =

1
2π

∑
k

eik(θ−θ
′)e−it

~
2mR2 (k− eF

2π~c )2 . (8.91)
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Il secondo esponenziale nella formula precedente si riscrive usando il secondo integrale delle
(8.90) con

b = k − eF

2π~c
; a =

mR2

~t
,

nella forma

e−it
~

2mR2 (k− eF
2π~c )2 =

√
mR2

i2π~t

∫ +∞

−∞
dx ei

mR2
2~t x

2
e−i(k−

eF
2π~c )x,

cioè è la trasformata di Fourier della funzione

f(x) =

√
mR2

i2π~t
ei

mR2
2~t x

2
ei

eF
2π~cx. (8.92)

Quindi dalla (8.91) e dalla formula di Poisson (letta da destra a sinistra) si ha, con x = θ − θ′
nella (8.92):

K(θ, t; θ′, 0) =

√
mR2

i2π~t
∑
n

ei
mR2
2~t (θ−θ′+2πn)2 ei

eF
2π~c (θ−θ′+2πn), (8.93)

che coincide con la formula (8.62) usata nel testo.

8.B Oscillatore e stringa magnetica
Come semplice generalizzazione della particella vincolata ad un cerchio, consideriamo ancora
il modello (8.53) in cui il campo magnetico è confinato nell’origine, mentre si ha un potenziale
esterno V di tipo armonico che confina il moto. L’Hamiltoniana è perciò

H = − ~2

2m
1
r

∂

∂r

(
r
∂

∂r

)
+

1
2mr2

(
Lz −

2πe
c
F

)2

+
1
2
mω2r2. (8.94)

Poniamo per brevità

κ =
Lz
~
− 2πe

~c
F ; x =

√
mω

~
r;

∂

∂r
=
√
mω

~
∂

∂x
; ε =

2E
~ω

.

L’equazione agli autovalori prende la forma

εψ = − 1
x

∂

∂x

(
x
∂

∂x

)
ψ +

κ2

x2
ψ + x2ψ = −ψ′′ − 1

x
ψ′ +

κ2

x2
ψ + x2ψ. (8.95)

Posto
ψ = xκe−x

2/2f,

si ha
xf ′′ + (1 + 2κ− 2x2)f ′ + (ε− 2(1 + κ))xf = 0. (8.96)

La soluzione generale della (8.96) è

f(x) = Ca 1F1(
1
2
− ε

4
+
κ

2
, 1 + κ, x2) + Cb(−1)κx−2κ

1F1(
1
2
− ε

4
− κ

2
, 1− κ, x2),
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dove 1F1(a, c;x) è la funzione ipergeometrica confluente:

1F1(a, c; z) = Γ(c)
∞∑
n=0

a(a+ 1) . . . (a+ n− 1)
Γ(c+ n)

zn

n!
. (8.97)

Quindi

ψ = e−x
2/2
[
Cax

κ
1F1(

1
2
− ε

4
+
κ

2
, 1 + κ, x2)+ (8.98)

+ Cb(−1)κx−κ1F1(
1
2
− ε

4
− κ

2
, 1− κ, x2)

]
.

La regolarità nell’origine impone Cb = 0 per κ > 0 e Ca = 0 per κ < 0. Asintoticamente

1F1(a, c; z) ∼ ezza−c

quindi se si vogliono soluzioni a quadrato sommabile la serie deve troncarsi, questo può acca-
dere se a = −n, nel qual caso la funzione ipergeometrica coincide con i polinomi di Laguerre.
Si deve perciò avere

κ > 0 : (1 + κ)− ε

2
= −2n,

E

~ω
= 2n+ κ+ 1;

κ < 0 : (1− κ)− ε

2
= −2n,

E

~ω
= 2n− κ+ 1.

Gli autovalori dell’energia sono perciò

E = ~ω
{

2n+ 1 +
∣∣∣∣`− 2πe

~c
F

∣∣∣∣} . (8.99)

Anche in questo caso l’effetto della stringa magnetica è stato quello di uno shift sugli autovalori
dell’energia. Poichè ` ∈ Z le autofunzioni sono monodrome.

8.C Complementi sull’effetto Aharonov-Bohm
In questo paragrafo presentiamo per comodità del lettore i risultati principali ottenuti da Aha-
ronov e Bohm, e perfezionati in lavori successivi, nel caso di un modello esattamente solubile.
Lo scopo è quello di mettere in luce i punti delicati ed alcune questioni di principio su cui non
abbiamo ritenuto opportuno soffermarci nel testo principale.

Il modello è quello di stringa magnetica, già incontrato nel testo: un solenoide infinitamen-
te sottile che trasporta un flusso di campo magnetico Φ. Si tratta di un problema bidimensio-
nale. Il potenziale vettore ha solo una componente azimutale:

Aθ =
Φ

2πr
, Φ = cost.; Ax = −y

r
Aθ, Ay =

x

r
Aθ. (8.100)

L’equazione di Schrödinger ha la forma:

i~
∂ψ

∂t
= − ~2

2m
1
r

∂

∂r

(
r
∂

∂r

)
ψ +

1
2mr2

(
Lz −

e

2πc
Φ
)2

ψ. (8.101)
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Per situazioni stazionarie, posto come di consueto E = ~2k2/(2m) l’equazione diventa[
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

(
∂

∂θ
+ iα

)2

+ k2

]
ψ = 0, α ≡ − eΦ

2π~c
. (8.102)

La situazione che vogliamo descrivere è quella stazionaria: un fascio elettronico incidente da
x = +∞, incontra la stringa magnetica. L’elettrone non può penetrare nel solenoide, e questo
è schematizzato dalla condizione

ψ(0) = 0. (8.103)

Se i potenziali hanno un effetto fisico si deve osservare una diffrazione dalla stringa, dipendente
dal flusso Φ. La diffusione del fascio elettronico viene decritta in questo modo: la funzione
d’onda asintotica, per grandi r, è scrivibile nella forma7

ψ = ψinc. + ψdiff ∼ ψinc. + f(θ)(kr)−1/2eikr. (8.104)

La dipendenza da r in ψdiff è quella di un’onda sferica in due dimensioni. Il numero di
particelle al secondo che vengono diffuse ad un’angolo compreso tra θ e θ + dθ è |f(θ)|2dθ,
come si verifica immediatamente calcolando il flusso dell’onda diffusa. Matematicamente
quindi bisogna procedere in questo modo:

1) Scrivere la funzione d’onda ψin che corrisponde alla situazione fisica che abbiamo
scelto.

2) Risolvere l’equazione di Schródinger (8.101). ψin è la condizione al bordo.

La determinazione di ψin è il primo punto delicato. In assenza di stringa un elettrone libero
che viaggia lungo l’asse x in direzione negativa sarebbe descritto da una funzione d’onda
ψ = exp(−ikx). Questa funzione però non è consistente come condizione al bordo, non
soddisfa asintoticamente l’equazione (8.101) e non è consistente con l’invarianza di gauge.
Infatti se si vuole descrivere un flusso costante di particelle occorre fissare ψ in modo che la
corrente gage invariante, vedi eq.(8.18):

j = i
~

2m
[(∇ψ)∗ ψ − ψ∗(∇ψ)]− e

mc
A |ψ|2 (8.105)

sia costante. La soluzione è considerare

ψin = exp(−ikx− αθ) = exp(−ikr cos θ − αθ). (8.106)

L’intervallo di variazione di θ è −π ≤ θ ≤ +π. La (8.106) non è periodica in θ, e su questo
commenteremo in seguito, ma comunque descrive nella zona θ ∼ 0 un’onda incidente che dà
luogo ad una corrente gauge invariante costante, come si può verificare usando le componenti
cartesiane (8.100) per A, e le relazioni ∂xθ = −y/r2, ∂yθ = x/r2. Si ottiene jx = −~k/m,
jy = 0, che corrisponde ad un flusso di una particella al secondo che viaggia in direzione
dell’asse x negativo.

7Commenteremo in seguito su questa decomposizione.
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Cerchiamo una soluzione regolare, quindi monodroma, dell’equazione (8.102). La pe-
riodicità e la regolarità in θ significa che Lz ha autovalori ~`, con ` intero quindi si può
scrivere

ψ =
+∞∑
`=−∞

a`R`(r)ei`θ, (8.107)

e le funzioni d’onda radiali soddisfano a[
∂2

∂r2
+

1
r

∂

∂r
− 1
r2

(`+ α)2 + k2

]
R`(r) = 0. (8.108)

Passando a variabili adimensionali z = kr, vediamo che la (8.108) è l’equazione che definisce
le funzioni di Bessel, la soluzione generale è

AJ`+α +BJ−(`+α).

Poichè Jν(z) ∼ zν per z → 0 le soluzioni regolari, vedi eq.(8.103), sono J|`+α| e quindi:

ψ =
+∞∑
`=−∞

a`J|`+α|(z)ei`θ. (8.109)

I coefficienti a` devono essere determinati in modo da soddisfare la condizione al contorno.
Riportiamo ora i risultati principali di Aharonov Bohm, rimandando al lavoro originale per

le dimostrazioni:

1) I coefficienti a` valgono
a` = (−i)|`+α|; (8.110)

2) Separiamo la soluzione (8.109) a seconda del segno di `:

ψ = ψ1 + ψ2 + ψ3, ψ3 = (−i)|α|J|α|(z),

ψ1 =
+∞∑
`=1

(−i)|`+α|J|`+α|(z)ei`θ, ψ2 =
−1∑

`=−∞

(−i)|`+α|J|`+α|(z)ei`θ. (8.111)

Si ha subito:
ψ2(r, θ, α) = ψ1(r,−θ,−α). (8.112)

Utilizzando lo sviluppo asintotico delle funzioni di Bessel, è possibile valutare le somme
(8.111):

ψ1 →

{
0, θ < 0;
e−iαθe−ikx, θ > 0;

ψ2 →

{
e−iαθe−ikx, θ < 0;
0, θ > 0;

ψ3 ∼ O(r−1/2).

Questo è esattamente il risultato aspettato dall’analisi dell’esperimento di interferenza,
la soluzione nei due semipiani è asintoticamente una trasformata di gauge della soluzio-
ne libera. Notiamo che semiclassicamente i momenti angolari ` > 0 corrispondono a
traiettorie di elettroni con momento angolare positivo e quindi passanti nel semipiano
superiore (almeno per grandi `), viceversa ` < 0 corrisponde a traiettorie nel semipiano
inferiore.
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3) Per r → ∞ e |π − |θ|| > 1/r è possibile valutare lo sviluppo asintotico, compreso il
termine di onda divergente, ottenendo:

ψ → e−iαθ−ikr cos θ +
eikr

(2πikr)1/2
sinπα

e−iθ/2

cos( θ2 )
. (8.113)

Corrispondente ad una sezione d’urto

dσ

dθ
=

sin2 α

2πk
1

cos2 θ/2
. (8.114)

Notiamo che l’apparente non monodromia della (8.113) è dovuta solamente al fatto
che lo sviluppo asintotico delle funzioni di Bessel non è uniforme, usando sviluppi più
sofisticati, vedi ad esempio le referenze [Alv] si mostra esplicitamente che la funzio-
ne d’onda ψ è monodroma, come d’altronde è stato imposto sin dall’inizio. Notiamo
che la sezione d’urto è periodica nel parametro di flusso α, confermando le aspettative
dell’esperienza con le frange di interferenza.

Un’analisi alternativa dell’equazione (8.102) è fornita nella referenza [Ber1]: una tecnica si-
mile a quella vista nel paragrafo 8.A permette di ottenere la soluzione di Aharonov-Bohm
sommando su un intero che rappresenta il numero di “giri” attorno alla singolarità.

Nel caso particolare α = 1/2 la somma su ` nell’equazione (8.109) può essere effettuata
analiticamente il risultato è:

ψ = i1/2e−i(
θ
2 +kr cos θ)

∫ [kr(1+cos θ)]1/2

0

exp(iz2) dz. (8.115)

In questo caso la monodromia è evidente: la funzione d’onda ψ è nulla sulla linea θ = π.
Vogliamo infine citare il fatto che la soluzione può anche essere scritta nel caso in cui

la stringa magnetica sia circondata da un cilindro impenetrabile di raggio R > 0, nel limite
R→ 0 si riottiene la soluzione di Aharonov-Bohm.

A titolo di esempio riportiamo in figura 8.7 la probabilità |ψ|2 in funzione di θ a distanza
fissa z = |r cos θ| dal solenoide. Si nota l’immagine geometrica (allargata) del solenoide, cioè
l’ombra, e le frange di massima intensità ai lati. Ovviamente al crescere della distanza l’ombra
si riduce a un singolo punto e le frange si avvicinano all’angolo θ = π, quello centrale in
figura. A fissa distanza z la posizione delle frange dipende dal flusso magnetico.

8.C.1 Teorema di Eherenfest
Abbiamo visto che si ha diffusione in presenza di una stringa magnetica. Visto che il cam-
po magnetico è nullo, come è compatibile questa conclusione con il teorema di Eherenfest?
Consideriamo uno stato qualunque ψ e calcoliamo la variazione nel tempo del valor medio del-
l’impulso (meccanico), questo è quanto di più simile alla forza si possa definire in un contesto
quantistico:

f = m
d

dt

∫
[ψ∗vψ] =

i

~

∫
{(Hψ)∗mvψ − ψ∗mvHψ} =

=
i

~

∫
{(Hψ)∗mvψ − ψ∗Hmvψ}+

i

~

∫
ψ∗ [H,mv]ψ. (8.116)
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Figura 8.7: |ψ|2, eq.(8.115), per z = 200/k.

Usando le regole di commutazione (8.18) per il vettore v, il secondo termine della (8.116) si
riduce a

e

2c

∫
ψ∗ [v ∧B−B ∧ v]ψ

che è l’usuale forza di Lorentz. Questo termine è nullo nel caso di una stringa magnetica. Il
primo termine nella (8.116) è usualmente trascurato perchè se l’opertore H è autoaggiunto si
annulla. Nel nostro caso il problema ha una singolarità nell’origine quindi valutiamo questo
contributo isolando l’origine con un piccolo cerchio di raggio r, alla fine del calcolo faremo
il limite r → 0. Il dominio di integrazione è limitato da un cerchio di raggio r e da un
cerchio di raggio R che manderemo all’infinito. Gli integrali verranno trasformati in integrali
di superficie tramite il teorema di Gauss. Il contributo dal cerchio R è trascurato, è il caso che
si verifica, ad esempio, con pacchetti d’onda localizzati 8.

Consideriamo una singola componente della velocità, ad esempio vx, dobbiamo valutare

i

~

∫
{(Hψ)∗mvxψ − ψ∗Hmvxψ} . (8.117)

8Per il segno nelle espressioni seguenti ricordiamo che la normale esterna alla superficie di raggio r è diretta in
senso contrario a r.
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L’Hamiltoniana, usando ∇A = 0, ha la forma

H = − ~2

2m
∇2 − e~

imc
A∇ +

e2

2mc2
A2.

Il termine quadratico in A non dà alcun contributo alla (8.117). Il termine lineare si scrive:

e

mc

∫
d2x [(∇ψ∗)Amvxψ + ψ∗A∇mvxψ] =

e

mc

∫
d2x∇ (ψ∗Amvxψ) =

= − e

mc

∫
rdθ

∂

∂r
(ψ∗Armvxψ) = 0.

L’inegrale si annulla perchè Ar = 0. Passiamo ora al termine in ∇2.

− i~
2m

∫
d2x

{
∇2ψ∗mvxψ − ψ∗∇2mvxψ

}
=

= − i~
2m

∫
d2x∇ {(∇ψ∗)mvxψ − ψ∗∇(mvxψ)}

= − i~
2m

∫
rdθ

{
ψ∗

∂

∂r
(mvxψ)− (

∂

∂r
ψ∗)mvxψ

}
. (8.118)

Dovremo efettuare il limite r → 0 dell’espressione precedente. Nel caso della soluzione di
Aharonov-Bohm, avendosi ψ(0) = 0, i contributi finiti devono sorgere da singolarità nelle
derivate. Scriviamo l’espressione per gli operatori mv nel caso della stringa magnetica

mvx = px −
e

c
Ax =

~
i

[
∂

∂x
+ i

e~
c

Φ
2π

y

r2

]
=

~
i

[
∂

∂x
− iα y

r2

]
≡ ~
i
Dx; (8.119a)

mvy = py −
e

c
Ay =

~
i

[
∂

∂y
− ie~

c

Φ
2π

x

r2

]
=

~
i

[
∂

∂y
+ iα

x

r2

]
≡ ~
i
Dy. (8.119b)

Consideriamo per semplicità il caso 0 ≤ α ≤ 1/2. Dallo sviluppo in serie delle funzioni di
Bessel

Jν(z) =
(z

2

)ν 1
Γ(ν + 1)

(1 +O(z)) (8.120)

segue che i termini principali (con derivata divergente) per ψ nello sviluppo (8.111) provengo-
no dai contributi ψ2 e ψ3:

ψ2 ∼ e−i
π
2 (1−α)J1−αe

−iθ → e−i
π
2 (1−α)

(
1
2
kr

)1−α
e−iθ

Γ(2− α)
≡ C2r

−α(x− iy);

(8.121a)

ψ3 ∼ e−i
π
2 αJα → e−i

π
2 α

(
1
2
kr

)α 1
Γ(1 + α)

≡ C3r
α. (8.121b)

Le derivate si calcolano facilmente:

Dxψ = C2 (1− α)r−α + C3 αr
α−2e−iθ;

Dyψ = i
[
−C2 (1− α)r−α + C3 αr

α−2e−iθ
]
.
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Quindi, per piccoli r:

ψ∗
∂

∂r
Dxψ =

[
C∗2r

1−αeiθ + C∗3r
α
] ∂
∂r

[
C2 (1− α)r−α + C3 αr

α−2e−iθ
]

(8.122a)

→ α(a− α)
r

[−C2C
∗
3 − C∗2C3] = −2

α(a− α)
r

Re(C2C
∗
3 ); (8.122b)

ψ∗
∂

∂r
Dyψ =

[
C∗2r

1−αeiθ + C∗3r
α
] ∂
∂r
i
[
−C2 (1− α)r−α + C3 αr

α−2e−iθ
]

(8.122c)

→ i
α(a− α)

r
[C2C

∗
3 − C∗2C3] = −2

α(a− α)
r

Im(C2C
∗
3 ). (8.122d)

si verifica facilmente che il termine −∂rψ∗Diψ dà lo stesso contributo. Sostituendo nella
(8.118), effettuando il limite r → 0 e l’integrale in θ:

fx = − ~2

2m
2π [−4α(a− α)Re(C2C

∗
3 )] fy = − ~2

2m
2π [−4α(a− α)Im(C2C

∗
3 )] .

Dalle (8.121) segue

C2C
∗
3 = e−iπ/2eiπα

k

2
1

Γ(2− α)Γ(1 + α)
= (sin(πα)− i cos(α))

k

2
1

α(1− α)
sin(πα)

π

Da cui

fx =
2~2k

m
sin2(πα) fy = −2~2k

m
sin(πα) cos(πα). (8.123)

Vediamo quindi che nel calcolo quantistico la forza viene fornita da un termine di superficie,
che si aggiunge all’espressione classica del teorema di Eherenfest.

La forza lungo l’asse x ha un’interpretazione semplice. Una particella che diffonde ad
angolo θ ha un impulso px = ~k cos θ. L’impulso iniziale, nella configurazione usata, è
px = −~k, quindi la variazione di impulso è

∆px = ~k(1 + cos θ) = ~k 2 cos2( θ2 ).

Se Φ è il flusso iniziale, il numero di diffusioni al secondo ad angolo θ è Φdσ/dθ quindi

d〈px〉
dt

= Φ
∫
dθ

dσ

dθ
∆px.

Il flusso corispondente ad un’onda piana è ~k/m quindi

d〈px〉
dt

=
~2k2

m

∫
dθ 2 cos2( θ2 )

sin2(πα)
2πk

1
cos2 θ/2

=
2~2k

m
sin2(πα)

che coincide col risultato precedente. Per py non si può fare lo stesso ragionamento perchè si
ha una grossa variazione di fase della funzione d’onda lungo l’asse y nella regione θ ∼ π in
cui l’espressione asintotica (8.114) non vale.

NOTA: Per evitare fraintendimenti sottolineiamo che l’Hamiltoniana è un operatore autoag-
giunto, i termini di bordo che nascono nel calcolo precedente sono dovuti alla presenza degli
operatori vx, vy .
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Indicazioni bibliografiche

L’articolo di Wu e Yang [WY75] è la referenza standard per l’introduzione del concetto di integrale di
cammino del campo Aµ come variabile essenziale in meccanica quantistica.

Una trattazione relativamente semplice della superconduttività, e compatibile con una conoscenza
elementare della meccanica quantistica, si trova nel terzo volume delle lezioni di Feynman [Fey3].

La letteratura sull’effetto Aharonov-Bohm è molto vasta e ci contenteremo qui di indicare alcune
fonti che abbiamo trovato particolarmente utili. L’articolo originale di Aharanov e Bohm è del 1959
[AB59], negli altri articoli citati si può trovare una discussione degli autori su vari aspetti del problema.
Gli articoli del gruppo guidato da Tonomura [To1], possono essere utilmente integrati dall’articolo di
rivista [To2]. Una istruttiva rassegna, anche per gli aspetti sperimentali, è il libro di Peshkin e Tonomura
[PT], è altresì utile la rassegna di Olariu e Iovitzu Popescu [OIP]. In queste due ultime opere si trovano
molte referenze e discussioni, anche per quanto riguarda i risultati sperimentali precedenti i lavori di
Tonomura e non citati nella nostra brevissima presentazione.

Due articoli molto interessanti, soprattuto per gli aspetti che saranno trattati più in dettaglio nell’ap-
pendice 8.C sono quelli di Berry [Ber1] e di Jackiw e Redlich [JR83].
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