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0.1 Disuguaglianze di Bell, Disuguaglianza di CHSH e Quan-
tum Entanglement

0.1.1 Problema

L’aspetto probabilistico della meccanica quantistica, nonstante innumereboli verifiche spe-
rimentali, ci produce tuttora un certo senso di inquietudine. Il paradosso di Einstein-
Podolsky-Roseǹe stato infatti proposto per “dimostrare che la meccanica quantistica non
poteva essere una teoria completa, ma che essa doveva essere completata da variabili addi-
zionali, di modo che la natura probabilistica della predizione della Meccanica Quantistica
fosse dovuta alla media statistica su queste variabili (dettevariabili nascoste). Le ipotesi
fondamentali del loro argomento sono la località e la causalit̀a.

J.S. Bell ha formulato l’idea delle variabili nascoste matematicamente, ed ha dimostrato
che, indipendentemente dalla natura delle variabili nascoste, tale teoria non può riprodurre
completamente le predizioni della meccanica quantistica.

Le verifiche sperimentali successivamente escogitate hanno confermato l’esattezza del-
le predizioni della meccanica quantistica, escludendo cosı̀ qualsiasi tipo di teorie con va-
riabili nascoste.

L’esempio considerato da Bell (Physics1 (1964) p.195)̀e quello di un sistema di due
spin 1

2, in uno stato di singoletto,Stot = 0,

Ψ =
1√
2
[ |↑↓〉− |↓↑〉], (1)

dovesz| ↑〉 = 1
2| ↑〉, etc. Supponiamo che le due particelleA,B siano i prodotti di decadi-

mento di una particella parente conJ = 0 e che le particelleA,B viaggino in due direzioni
opposte, di modo tale che la misura eseguita sulla particellaA non pùo influenzare il risulta-
to della misura fatta sulla particellaB (o vice versa). Supponiamo inoltre che gli osservatori
A e B misurino la componente di spinA o B, i.e., (a ·σA), (b ·σB), dovea, b sono due
versori arbitrari.

Prima consideriamo il caso particolare,a = b. La misura di(a ·σA), dà o +1 o−1
come risultato. Supponiamo che la misura della quantità (a ·σB), sia fatta immediatamen-
te dopo quella diA. Nel caso(a ·σA) = 1 il risultato di (a ·σB), è predetto con certezza
ad essere−1, e vice versa. Visto che la misura aA non pùo influenzare dinamicamente
quella diB per ipotesi (la localit̀a e la causalit̀a), sembrerebbe che tale predittività del risul-
tato di singole misure contradisca con il principio della meccanica quantistica, secondo il
quale il risultato dovrebbe essere±1, conprobabilità 1

2 per ciascuno. L’unica via di usci-
ta sembrerebbe che in realtà le cose siano “predeterminate: l’aspetto probabilistico della
predizione della meccanica quantistica sarebbe dovuto alla mancanza della conoscenza -
nel senso classico - del processo microscopico. Perciò la meccanica quantistica dovrebbe
essere sostituito da una teoria più completa, con delle variabili addizionali, di modo che
le predizioni probablistiche della meccanica quantistica seguono come legge statistica su
quese ultime.

Questa argomentazione in realtà nonè corretta. Infatti, visto che i due eventi (le misure
di A e di B) non possono essere collegati causalmente, anche l’informazione che riguar-
da i risultati della misura diA risulta inutile (o meglio, inutilizzabile) per l’osservatore B.
Infatti, non avendo accesso ai risultati di A (almeno non immediatamente prima della mi-
sura), l’osservatore B troverebbe semplicemente per la metà delle volte il risultato+1 e per
l’altra met̀a delle volte−1, in accordo con la predizione standard della meccanica quan-
tistica. Inoltre, il concetto della successione cronologica dei due eventi nonè un concetto
relativisticamente invariante. Secondo la teoria della relatività speciale, si pùo realizzare
una situazione di modo che sia A che B vede, nel loro rispettivo sitema di riferimento, la
propia misura anticedente alla misura dell’altro osservatore. In questo caso l’impostazione
del “paradosso stesso non avrebbe senso.
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Resta tuttavia il fatto che, paragonando le registrazioni delle successive misure fatte a
A con quelle fatte a B, si pùo a posterioriverificare lacorrelazionetra i risultati dei due
esperimenti. Secondo la meccanica quantistica una successione di risultati ad A,(++−+
−− . . .), dovrebbe essere accompagnato dalla successione(−−+−++ . . .), trovata a B:
le due serie di risultati sono perfettamente correlate. Naturalmente questa predizione della
meccanica quantisticàe verificata sperimentalmente.

Dal punto di vista filosofico la situazione appare infatti un po’ paradossale. Per l’osser-
vatore B, la successione(−−+−++ . . .), appare completamente casuale. Ogni misura
dà il risultato o 1 o−1, con probabilit̀a 1

2 ciascuno, la funzione d’onda essendo la (2.154)
prima della misura. Se si dovesse considerare il collasso della funzione d’onda1 dovuta ad
ogni misura a B, per es.

1√
2
[ |↑↓〉− |↓↑〉] =⇒ |↓↑〉, (2)

come processo fisico (che avviene attorno al punto B in un determinato momento), la pre-
dizione della meccanica quantistica implicherebbe che la misura fatta al punto B induce
istantaneamente il collasso della funzione d’onda anche al punto A. Il che sarebbe una
violazione grossolana della località delle interazioni e della causalità.

Nel caso in cui i due apparecchià la Stern-Gerlach sono orientati in maniera generica, i
risultati delle misure a B non saranno più univocamente determinati da quelli delle misure
fatte a A. Per es., la successione di risultati ad A(++−+−− . . .) potrebbe essere accom-
pagnata da(+−++−+ . . .) con assenza apparente delle correlazioni tra le due. In questo
caso, dunque, non ci sono contraddizioni?

Il fatto è che la meccanica quantistica dà una precisa predizione sulla media della corre-
lazione tra le due serie di misure, per generico orientamento relativo dia eb. Se definiamo
la correlazione spin-spin,

F(a,b) = 〈(a·σA)(b ·σB)〉= R(a·σA)R(b ·σB), (3)

doveR(a ·σA) = ±1 e R(b ·σB) = ±1 rappresentano i possibili risultati delle misure, la
meccanica quantistica predice che ci sia una correlazione tra le due registrazioni,

M.Q.: F(a,b) = 〈(a·σA)(b ·σB)〉=−(a·b) =−cosθ, (4)

(dimostratelo) doveθ è l’angolo traa eb. Il problema è perciò ben definito, indipendente
da qualsiasi questione filosofica:̀e capace una teoria di tipo con le variabili nascoste,
riprodurre esattamente il risultato della meccanica quantistica, Eq.(2.157)?

0.1.2 Dimostrazione

La dimostrazione che la rispostaè negativa,̀e stata data da J.S. Bell (1960). Siano

A(a,λ) =±1, B(b,λ) =±1 (5)

la predizione perR(a ·σA) e R(b ·σB), rispettivamente, di una teoria con variabili nascoste
{λ}. Naturalmente teorie che predicono i risultati diversi da±1 possono essere esclusi,
visto che talèe un fatto empirico.

La correlazione spin-spiǹe dato, in questa teoria da

Teo. Var. Nasc: F(a,b) =
Z

dλP (λ)A(a,λ)B(b,λ), (6)

doveP (λ) è la probabilit̀a statistica per vari valori diλ, con2

P (λ)≥ 0, ∀λ,
Z

dλP (λ) = 1. (7)

1Erwin Schr̈odinger disse: “If we should go on with this dammned wave function collapse, then I’m sorry that
I ever got involved.

2Tutte le formule saranno scritte con una variabileλ, ma la generalizzazione ai casi con più variabili è
immediata.
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Inoltre, per garantire che questo modello riproduca il risultato della meccanica quantistica
per il caso particolare,a = b, possiamo porre

B(a,λ) =−A(a,λ) (8)

per cui

F(a,b) =−
Z

dλP (λ)A(a,λ)A(b,λ). (9)

Ora consideriamo

F(a,b)−F(a,c)

= −
Z

dλP (λ) [A(a,λ)A(b,λ)−A(a,λ)A(c,λ) ]

=
Z

dλP (λ)A(a,λ)A(b,λ) [A(b,λ)A(c,λ)−1], (10)

percìo

|F(a,b)−F(a,c)| ≤
Z

dλP (λ)(1−A(b,λ)A(c,λ))

= 1+F(b,c). (11)

Dunque in qualsiasi teoria con delle variabili nascoste, la correlazione spin-spin soddisfa
la disuguaglianza,

|F(a,b)−F(a,c)| ≤ 1+F(b,c). (12)

(Disuguaglianza di Bell). Si vede facilmente che la meccanica quantistica viola tale re-
lazione. Sea è in una generica direzione eb ' c, il primo membro della (2.165) sarà
dell’ordine di O(|b− c|): di conseguenza la funzioneF(b,c) non pùo essere al minimo
stazionario e uguale a−1, poich́e in questo caso il secondo membro sarebbe dell’ordine
di O((b−c)2). Visto che in meccanica quantistica, la funzione di correlazione spin-spinè
F(a,b) =−(a·b) e ha il minimo stazionario ada= b, concludiamo che nessuna teoria del
tipo (2.162) pùo riprodurre le predizioni della meccanica quantistica per tutte le scelte dia
eb.

Bell ha dimostrato chèe possibile costruire un modello di una teoria con variabili na-
scoste, se tal modello dovesse riprodurre il risultato della meccanica quantistica soltanto
per particolare configurazioni dia e b, per es.a = b, a = −b, o a⊥ b. È l’impossibilità
che tale modello “imiti perfettamente la predizioni della meccanica quantistica per tutte le
scelte dia eb, che esclude teorie di questo genere come teorie fisiche.

La correlazione tra le due particelle che non possono interagire né nel presente ńe in
futuro, ma che sono interagite nel passato, come nell’esempio di due elettroni,è caratteri-
stica tipica di tutti i sistemi quantistici. Questa correlazione, sperimentalmente osservata
e perfettamente in accordo con la predizione della meccanica quantistica, ma che non può
essere riprodotta da nessun tipo di teoria con variabili statistiche classiche addizionnali,è
nota come “Quantum Entanglement.

0.1.3 Coppie di fotoni correlati

Si pùo fare un’analisi molto analoga con una coppia di fotoni, invece di elettroni. Conside-
riamo un atomo in uno stato eccitato conJ = 0, che decade con due successive transizioni
a dipolo elettrico,

(J = 0)→ (J = 1)→ (J = 0), (13)

processo chiamato cascata atomica SPS. Se i due fotoni sono osservati in direzioni oppo-
ste, essi avranno la stessa polarizzazione. Infatti, gli stati iniziali e finali dell’atomo sono
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ambedue invarianti per rotazioni tridimensionali. Segue che anche lo stato di due fotoni
deve essere invariante. Se indichiamo con

|x〉|x〉, |x〉|y〉, |y〉|x〉, |y〉|y〉, (14)

i quattro possibili stati di polarizzazioni lineari dei due fotoni, soltanto le due combianzioni
lineari

ψ+ =
|x〉|x〉+ |y〉|y〉√

2
, ψ− =

|x〉|y〉− |y〉|x〉√
2

, (15)

sono invarianti per rotazioni attorno all’assez (la direzione dell’impulso di uno dei fotoni).
Visto che le interazioni elettromagnetiche sono invarianti per parità, si trova che la funzione
d’onda corretta dei due fotoni in questo sistemaè ψ+ = |x〉|x〉+|y〉|y〉√

2
.

La misura della polarizzazione e i possibili risultati per un fotone sono descritti dall’o-
peratore

P1 = |x〉〈x|=
(

1 0
0 0

)
; (16)

che misura la polarizzazione lineare nella direzionex, con il risultato 1 o 0. (Vedi la (??)),
o da

P2 = |y〉〈y|=
(

0 0
0 1

)
. (17)

che misura la polarizzazione lineare nella direzioney, o più in generale da

Pθ = (|x〉cosθ+ |y〉sinθ)(〈x|cosθ+ 〈y||sinθ) =
(

cos2 θ cosθsinθ
cosθsinθ sin2 θ

)
. (18)

che misura la polarizzazione lineare nella direzione(cosθ, sinθ, 0). Gli autovalori di questi
operatori sono 1 o 0. Introdurremo operatori associati

Σθ ≡ 2Pθ−1, Σ1,2 ≡ 2P1,2−1 (19)

con autovalori±1.
Se i due osservatori misurassero la stessa polarizzazione, per es.,Σ1, le due registrazio-

ni saranno perfettamente correlati, per es.,A : (++−−−+ . . .) eB : (++−−−+ . . .). Lo
stesso vale se i due polarizzatori sono messi nella stessa direzione(cosθ, sinθ, 0). Se inve-
ce i due osservatori misurano la polarizzazione in due direzioni genericheA : (cosθ, sinθ, 0)
eB : (cosθ′, sinθ′, 0), allora la predizione della meccanica quantistica per la correlazione

F(θ,θ′) = R(Σθ)R(Σθ′) (20)

è
〈ψ+|Σθ⊗Σθ′ |ψ+〉= cos2(θ−θ′). (21)

L’argomento di Bell si applica esattamente (quasi) cosı̀ com’è, alla correlazioneF(θ,θ′):

F(θ,θ′) =
Z

dλP (λ)A(θ,λ)A(θ′,λ), A(θ,λ) =±1. (22)

Percìo in una teoria qualsiasi con le variabili nascoste, si avrà la disuguaglianza,

|F(θ,θ′)−F(θ,θ′′)| ≤ 1−F(θ′′,θ′). (23)

Tale disuguagliazàe violata dalla meccanica quantistica per generica scelta diθ,θ′,θ′′.
Esercizio Dimostrare che la disuguagliaza di Bell (2.176)è violata dalla meccanica quan-
tistica (2.174), per es. perθ−θ′ = θ′−θ′′ = π

6 .
La disuguaglianza di Bell pùo essere generalizzata. Una combinazione delle funzioni

di correlazione,
F(θ1,θ2)+F(θ3,θ2)+F(θ1,θ4)−F(θ3,θ4) (24)
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è data, secondo una teoria con variabili nascoste, dall’espressioneZ
dλP (λ) [ (A(θ1,λ)+ A(θ3,λ))A(θ2,λ)+(A(θ1,λ)− A(θ3,λ))A(θ4,λ) ]. (25)

Ma l’espressione tra la parentesi quadrata di (2.178)è sempre±2, poich́e seA(θ1,λ) =
A(θ3,λ) il primo termineè±2 mentre seA(θ1,λ) = −A(θ3,λ) il secondo terminèe±2.
Segue perciò (disugualgianza di CHSH)

|F(θ1,θ2)+F(θ3,θ2)+F(θ1,θ4)−F(θ3,θ4) | ≤ 2. (26)

È facile verificare che la meccanica quantistica viola tale disuguaglianza, in generale.


