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0.1 Disuguaglianze di Bell, Disuguaglianza di CHSH e Quan-
tum Entanglement

0.1.1 Problema

L'aspetto probabilistico della meccanica quantistica, nonstante innumereboli verifiche spe-
rimentali, ci produce tuttora un certo senso di inquietudine. Il paradosso di Einstein-
Podolsky-Rose® stato infatti proposto per “dimostrare che la meccanica quantistica non
poteva essere una teoria completa, ma che essa doveva essere completata da variabili addi-
zionali, di modo che la natura probabilistica della predizione della Meccanica Quantistica
fosse dovuta alla media statistica su queste variabili (detti@bili nascostg Le ipotesi
fondamentali del loro argomento sono la locGaktla causalit.

J.S. Bell ha formulato 'idea delle variabili nascoste matematicamente, ed ha dimostrato
che, indipendentemente dalla natura delle variabili nascoste, tale teoria moipqaurre
completamente le predizioni della meccanica quantistica.

Le verifiche sperimentali successivamente escogitate hanno confermato I'esattezza del-
le predizioni della meccanica quantistica, escludendo qualsiasi tipo di teorie con va-
riabili nascoste.

L'esempio considerato da BelPhysics1 (1964) p.195 quello di un sistema di due
spin 3, in uno stato di singolett&ot = 0,
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doves,| 1) = %| 1), etc. Supponiamo che le due particeeB siano i prodotti di decadi-
mento di una particella parente cdn- 0 e che le particellé, B viaggino in due direzioni
opposte, di modo tale che la misura eseguita sulla partideitan pw influenzare il risulta-
to della misura fatta sulla particelBa(o vice versa). Supponiamo inoltre che gli osservatori
A e B misurino la componente di spho B, i.e., (a-0a), (b-0og), dovea, b sono due
versori arbitrari.

Prima consideriamo il caso particolage=b. La misura di(a-oa), da 0+1 0 -1
come risultato. Supponiamo che la misura della quatgitog), sia fatta immediatamen-
te dopo quella dA. Nel caso(a-ca) =1 il risultato di(a-og), € predetto con certezza
ad essere-1, e vice versa. Visto che la misurafanon pw influenzare dinamicamente
guella diB per ipotesi (la localé e la causalit), sembrerebbe che tale predit@vitel risul-
tato di singole misure contradisca con il principio della meccanica quantistica, secondo il
guale il risultato dovrebbe essetd, conprobabilita % per ciascuno. L'unica via di usci-
ta sembrerebbe che in reale cose siano “predeterminate: I'aspetto probabilistico della
predizione della meccanica quantistica sarebbe dovuto alla mancanza della conoscenza -
nel senso classico - del processo microscopico. &daneccanica quantistica dovrebbe
essere sostituito da una teorial gwiompleta, con delle variabili addizionali, di modo che
le predizioni probablistiche della meccanica quantistica seguono come legge statistica su
guese ultime.

Questa argomentazione in reaitone corretta. Infatti, visto che i due eventi (le misure
di A e di B) non possono essere collegati causalmente, anche I'informazione che riguar-
da i risultati della misura dA risulta inutile (o meglio, inutilizzabile) per 'osservatore B.
Infatti, non avendo accesso ai risultati di A (almeno non immediatamente prima della mi-
sura), 'osservatore B troverebbe semplicemente per la dedle volte il risultatot+1 e per
I'altra meta delle volte—1, in accordo con la predizione standard della meccanica quan-
tistica. Inoltre, il concetto della successione cronologica dei due event monconcetto
relativisticamente invariante. Secondo la teoria della relatisfteciale, si purealizzare
una situazione di modo che sia A che B vede, nel loro rispettivo sitema di riferimento, la
propia misura anticedente alla misura dell’altro osservatore. In questo caso l'impostazione
del “paradosso stesso non avrebbe senso.



Resta tuttavia il fatto che, paragonando le registrazioni delle successive misure fatte a
A con quelle fatte a B, si pua posterioriverificare lacorrelazionetra i risultati dei due
esperimenti. Secondo la meccanica quantistica una successione di risultatHag A,+
— —...), dovrebbe essere accompagnato dalla successione+ — ++...), trovata a B:
le due serie di risultati sono perfettamente correlate. Naturalmente questa predizione della
meccanica quantisticaverificata sperimentalmente.

Dal punto di vista filosofico la situazione appare infatti un po’ paradossale. Per I'osser-
vatore B, la successiorle- — + — + +...), appare completamente casuale. Ogni misura
da il risultato 0 1 01, con probabilia% ciascuno, la funzione d’onda essendo la (2.154)
prima della misura. Se si dovesse considerare il collasso della funzione d'dosgiata ad
ogni misura a B, per es. L

ﬁum [T = [11), &)
come processo fisico (che avviene attorno al punto B in un determinato momento), la pre-
dizione della meccanica quantistica implicherebbe che la misura fatta al punto B induce
istantaneamente il collasso della funzione d’onda anche al punto A. Il che sarebbe una
violazione grossolana della localitielle interazioni e della causalit

Nel caso in cui i due apparecchia Stern-Gerlach sono orientati in maniera generica, i
risultati delle misure a B non sarannaipinivocamente determinati da quelli delle misure
fatte a A. Per es., la successione di risultati agtA+ — + — —...) potrebbe essere accom-
pagnata dé&+ —++ —+...) con assenza apparente delle correlazioni tra le due. In questo
caso, dunque, non ci sono contraddizioni?

Il fatto & che la meccanica quantisticadna precisa predizione sulla media della corre-
lazione tra le due serie di misure, per generico orientamento relative i Se definiamo
la correlazione spin-spin,

F(a,b) ={((a-0a)(b-0og)) =R(a-0a)R(b-0g), (©)]

doveR(a-oa) = £1 eR(b- 0g) = £1 rappresentano i possibili risultati delle misure, la
meccanica quantistica predice che ci sia una correlazione tra le due registrazioni,

M.Q.: F(a,b) ={((a-oa)(b-0oB)) = —(a-b) = — cosh, 4

(dimostrateld dove® € I'angolo traa eb. |l problema €& percio ben definito, indipendente
da qualsiasi questione filosoficag capace una teoria di tipo con le variabili nascoste,
riprodurre esattamente il risultato della meccanica quantistica, Eq.(2.157)?

0.1.2 Dimostrazione

La dimostrazione che la rispostanegativag¢ stata data da J.S. Bell (1960). Siano
Ala,\) = +1, B(b,A\) =+1 (5)

la predizione peR(a-oa) e R(b- o), rispettivamente, di una teoria con variabili nascoste
{A}. Naturalmente teorie che predicono i risultati diversiddh possono essere esclusi,
visto che tales un fatto empirico.

La correlazione spin-spi@ dato, in questa teoria da

Teo. Var. Nasc: F(a,b) = /d)\ P(A)A(a,\)B(b,A), (6)
dove®P(\) & la probabilia statistica per vari valori i, con?

P(\) >0, VA, / dAP(\) = 1. )

1Erwin Schidinger disse: “If we should go on with this dammned wave function collapse, then I'm sorry that
| ever got involved.

2Tutte le formule saranno scritte con una variabilema la generalizzazione ai casi coni piariabili &
immediata.
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Inoltre, per garantire che questo modello riproduca il risultato della meccanica quantistica
per il caso particolareg = b, possiamo porre

B(a,A) = —A(a,A) ®)

per cui
F(a,b) = —/d)\ P(N)A(a,A)A(b,A). 9

Ora consideriamo

F(a,b) —F(a,c)
f/d)\fP(A)[A(a,)\)A(b,)\)fA(a,)\)A(c,)\)]

(M) A(a,A) A(b,A) [A(b,A)A(c,A) — 1], (10)

|
—
o
>
)

perco

IF(a,b) —F(a,c)| < /d}\fP()\)(l—A(b,)\)A(cJ\))
= 1+F(b,c). (11)

Dunque in qualsiasi teoria con delle variabili nascoste, la correlazione spin-spin soddisfa
la disuguaglianza,
|F(a,b) —F(a,c)| <1+F(b,c). (12)

(Disuguaglianza di Be)l Si vede facilmente che la meccanica quantistica viola tale re-
lazione. Sea € in una generica direzionele~ c, il primo membro della (2.165) sar
dell'ordine diO(|b —c|): di conseguenza la funziorfe(b,c) non pw essere al minimo
stazionario e uguale a1, poicte in questo caso il secondo membro sarebbe dell’'ordine
di O((b — ¢)?). Visto che in meccanica quantistica, la funzione di correlazione spinéspin
F(a,b) = —(a-b) e ha il minimo stazionario aa= b, concludiamo che nessuna teoria del
tipo (2.162) pw riprodurre le predizioni della meccanica quantistica per tutte le scedte di
eb.

Bell ha dimostrato cheé possibile costruire un modello di una teoria con variabili na-
scoste, se tal modello dovesse riprodurre il risultato della meccanica quantistica soltanto
per particolare configurazioni die b, per es.a=b, a= —b, oa L b. E I'impossibilita
che tale modello “imiti perfettamente la predizioni della meccanica quantistica per tutte le
scelte dia e b, che esclude teorie di questo genere come teorie fisiche.

La correlazione tra le due particelle che non possono interagirehpresenteéin
futuro, ma che sono interagite nel passato, come nell’esempio di due elettoamatteri-
stica tipica di tutti i sistemi quantistici. Questa correlazione, sperimentalmente osservata
e perfettamente in accordo con la predizione della meccanica quantistica, ma chénon pu
essere riprodotta da nessun tipo di teoria con variabili statistiche classiche addiziennali,
nota come “Quantum Entanglement.

0.1.3 Coppie di fotoni correlati

Si pw fare un’analisi molto analoga con una coppia di fotoni, invece di elettroni. Conside-
riamo un atomo in uno stato eccitato cda- 0, che decade con due successive transizioni
a dipolo elettrico,

J=0—-J=1)—-J=0), (13)

processo chiamato cascata atomica SPS. Se i due fotoni sono osservati in direzioni oppo-
ste, essi avranno la stessa polarizzazione. Infatti, gli stati iniziali e finali dell’'atomo sono



ambedue invarianti per rotazioni tridimensionali. Segue che anche lo stato di due fotoni
deve essere invariante. Se indichiamo con

PO, ), D, ), (14)

i quattro possibili stati di polarizzazioni lineari dei due fotoni, soltanto le due combianzioni

lineari
A1 1 B 1/ e V5 1)
v2 o vz o
sono invarianti per rotazioni attorno all'ass@a direzione dell'impulso di uno dei fotoni).
Visto che le interazioni elettromagnetiche sono invarianti perg@asitrova che la funzione
d’onda corretta dei due fotoni in questo sistetnp, = M
La misura della polarizzazione e i possibili risultati per un fotone sono descritti dall’'o-
peratore

P=h= (5 o) (16)

che misura la polarizzazione lineare nella direzigneon il risultato 1 o 0. (Vedi [a%?)),
oda

P2 =)yl = (8 (1)) : (7)

che misura la polarizzazione lineare nella direzigne pit in generale da

(18)

Pe(|x>cose+y)sinS)((xcose+<y|sine)( cos'6 cosesine)

cosBsin®  sinfd

che misura la polarizzazione lineare nella direziteesd, sin®, 0). Gli autovalori di questi
operatori sono 1 o 0. Introdurremo operatori associati

2g=2P—1, 212=2P>—-1 (29)

con autovalorit1.
Se i due osservatori misurassero la stessa polarizzazione, per, ésgue registrazio-
ni saranno perfettamente correlati, per 8s.(++—-—-—+...)eB: (++———+...). Lo
stesso vale se i due polarizzatori sono messi nella stessa dir¢zasesin®, 0). Se inve-
ce i due osservatori misurano la polarizzazione in due direzioni genekiglo®sb, sin6, 0)
eB: (cosd, sin®’, 0), allora la predizione della meccanica quantistica per la correlazione

F(6,6)) = R(Zg)R(Zy) (20)

(U4 [Zo® Zg [P ) = cosZ6 - ). (21)
L'argomento di Bell si applica esattamente (quasi) con’e, alla correlazion& (6,8):

F(6,0") = /d)\ P(N)A(B,N) A0, )N), A(B,A) = +1. (22)
Percd in una teoria qualsiasi con le variabili nascoste, shda&disuguaglianza,
|F(8,0') —F(0,8")| <1-F(0",0). (23)

Tale disuguagliaza violata dalla meccanica quantistica per generica sce@z64i9” .
Esercizio Dimostrare che la disuguagliaza di Bell (2.1#6Yiolata dalla meccanica quan-
tistica (2.174), peres. p&r—6' =6 — 0" = §.
La disuguaglianza di Bell guessere generalizzata. Una combinazione delle funzioni
di correlazione,
F(01,62) +F(83,62) + F(81,64) — F(83,64) (24)
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e data, secondo una teoria con variabili nascoste, dall'espressione
/d>\ P(A) [(A(B1,A) + A(B3,1)) A(B2,A) + (A(B1,A) — A(B3,A)) A(B4,A) . (25)
Ma I'espressione tra la parentesi quadrata di (2.E/8gmpret2, poicte seA(B1,A) =
A(B3,A) il primo terminee £2 mentre seA\(01,A) = —A(B3,A) il secondo termineé +2.
Segue perdi (disugualgianza di CHSH)
| F(81,82) + F (83,82) +F (81,64) —F(63,64) | < 2. (26)

E facile verificare che la meccanica quantistica viola tale disuguaglianza, in generale.



