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Abstract. The crystalline state of a single polyethylene chain with N = 500

monomers is investigated by extensive MD simulations. The polymer is folded in

a well-defined lamella with ten stems of approximately equal lenght, arranged into a

regular, hexagonal pattern. The study of the microscopic organization of the lamella,

which is in equilibrium condition, evidenced that the two caps are rather flat, i.e.

the loops connecting the stems are short. An analytic model of the global minimum

of the free-energy, based on the assumption that the entropic contribution is mainly

due to the combinatorics of the stems and loops and neglecting any conformational

contribution, is presented. It provides for the first time a quantitative explanation of

the MD results on the equilibrium geometry of the single-chain crystals.
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1. Introduction

The crystalline state of polymers is very different from that of other materials because of

the need to arrange in an ordered way a large number of monomers linked to each other

sequentially. This results in a wide range of possible hierarchical morphologies where

the basic unit is the lamella, which is a few hundred Ångstrom thick [1, 2, 3, 4, 5, 6, 7, 8].

The backbone of a single polymer chain, which is several thousand Ångstrom long, is

folded inside the lamella to form the socalled stems; these are perpendicular to the basal

surfaces of the lamella where the foldings are localized [4, 5, 6].

Different processes in polymer crystallization are known [1, 2, 4]. Here, we are

interested in the primary homogeneous nucleation of single-molecule crystals in dilute

solutions. The primary nucleation of polymers and oligomers has been investigated

in the melt both by experiments [9, 10] and simulations [11]. Nonetheless, very few

groups have challenged the rather problematic and related issue of the preparation

of single-molecule single crystals [12, 13]. Understanding if the primary nucleation is

kinetically or thermodinamically controlled is nontrivial. The difficult characterization

of the primary nucleation regime in dilute solutions motivated several simulations

[14, 15, 16, 17, 18, 19, 20, 21, 22]. For relatively short chains, the primary nucleation of

single-molecule n-alkanes with a number of monomers N = n ≤ 300 were found to end

up in the global minimum of the free-energy landscape (FEL), i.e. in thermodynamic

equilibrium, at a quench depth ∆T ≡ Tm − T ∼ 0.2 Tm, where Tm is the melting

temperature [14, 15]. However, the eventual kinetic arrest of the nucleation in one state

during the primary nucleation of longer single-molecules cannot be excluded due to the

increasing number of entanglements and, consequently, larger energy barriers.

The present paper reports on a simulation, carried out by Molecular-Dynamics

(MD) algorithms, of the primary nucleation of single-molecule n-alkanes with N = 500.

Similar lengths are characteristic of polyethylene (N & 200) more than paraffine waxes

(17 . N . 40) [23]. The goal is to characterize the final crystalline state, which was

found to correspond to the global minimum of the FEL [24]. The sharpness of the loops

connecting different stems, a feature which is long known [3], is evidenced. Motivated

by this finding, a simple analytic model of the FEL global minimum is presented.

2. Numerical methods

The behaviour of a single polyethylene (PE) chain with N = 500 monomers in solution

has been studied by means of a united-atom model. The chain is described as a sequence

of beads, where each bead represents a single methylene CH2 group. No distinction is

made between internal methylene CH2 groups and terminal methyl CH3 groups in order

to obtain a slight improvement in efficiency [16]. For long chains this approximation is

fair. The local interactions shaping the chain are defined by the potentials

Ubond(r) = kr(r − r0)
2 (1)
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Uangle(θ) = kθ(cos θ − cos θ0)
2 (2)

Utorsion(φ) = k1(1 − cos φ) + k2(1 − cos 2φ) + k3(1 − cos 3φ) (3)

Ubond(r) is a harmonic spring potential defined for every couple of adjacent beads, r

being their distance and r0 the equilibrium bond lenght. Uangle(θ) is defined for every

triplet of adjacent beads, θ being the angle between the corresponding bonds and θ0

its equilibrium value. Finally, Utorsion(φ) is defined for every quadruplet of adjacent

beads and φ is the dihedral angle beween the planes defined by the corresponding three

adjacent bonds. Pairs of beads not interacting by any of the preceding potentials interact

by means of a Lennard-Jones potential

ULJ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(4)

with a cutoff radius rcut = 2.5σ. The set of parameters of the above force fields are

taken from [25] (see table 1). The corresponding time and temperature units are given

by t∗ = 2.21 ps and T ∗ = 56.3 K. All the results will be presented in terms of reduced

units. The solvent is mimicked by suitable Langevin dynamics:

r̈i = −∇i U − Γṙi − Wi (5)

where ri denotes the position vector of the i-th bead, ∇i U is the sum of the internal

forces acting on it, Γṙi is the frictional force and Wi is a gaussian noise which sets the

temperature via the proper fluctuation-dissipation theorem:

〈Wi(t) ·Wj(t
′)〉 = 6ΓkbTδijδ(t − t′) (6)

Equation (5) is integrated by means of the velocity Verlet algorithm with time

step ∆t = 0.001 [26]. The runs are performed according to the following protocol:

seventeen random chain conformations are initially equilibrated at Teq = 15 for at least

ten times the time needed for the self correlation function of the end-to-end vector to

vanish. The equilibrated chain does not exhibit any local orientational order. The

final temperature Tf = 9 is reached via different thermal histories: i) istantaneous

direct quenches Teq → Tf , ii) istantaneous quenches with intermediate annealing at

Tann, Teq → Tann → Tf . Annealing times were 3 × 104 at Tann = 9, 10 and 6 × 104 at

Tann = 11. The total number of direct quenches (17) and quenches with intermediate

annealing was 28. Having reached Tf , data were collected during evolution times of

3× 104. Memory effects were also investigated by preparing a sample in the “all-trans”

fully-extended conformation and isothermally annealing it at Tf = 9. The all-trans

conformation was monitored after the initial preparation for 3 × 104 time units. For

all the thermal histories the final crystalline state was found to be independent of the

thermal history and, more specifically, to correspond to the global minimum of the FEL

[24] in agreement with previous results on shorter chains at the same Tf = 9. [14, 15].
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3. Results and discussion

Figure 1 shows one conformation of the crystalline state. It is a well-defined lamella with

two small-sized caps where the loops connecting the stems are localized. The stems have

approximately equal length. Below, it will be seen that they are arranged into a regular,

hexagonal pattern and their number µ is well defined (µ = 10). The inertia tensor of the

configurations in the final state at T = 9 was analyzed. Having ordered the principal

axes {1, 2, 3} according to the magnitude of the corresponding eigenvalue, the average

values of the three eigenvalues I1, I2 and I3 are 〈I1〉 = 10097 ± 58, 〈I2〉 = 9885 ± 51,

〈I3〉 = 1148±11. Since 〈I1〉 & 〈I2〉 ≫ 〈I3〉, the ellipsoid of inertia of the crystal exhibits

approximate cylindrical symmetry around the 3 axis, as it may be also qualitatively

seen by visual inspection (see figure 1).

The present model of PE exhibits a local stiffness of the chain over a length scale

which is expressed by the Kuhn segment length ℓk [1, 2]. The stiffness is apparent in the

caps of the crystal where bendings are not smooth but, rather, series of straight sections,

see figure 1. One estimates ℓk = R2
ee/L

∼= 1.2, corresponding to segments with about

four beads, where R2
ee and L are respectively the mean squared end-to-end distance in

the disordered state and the contour length of the polymer. Therefore, the polymer is

sketched as a succession of about Nk = 125 rigid segments.

3.1. Longitudinal monomer distribution: small caps

In order to analyze the crystal structure one defines the monomer distribution function

ρ(r) as

ρ(r) =
1

N

N
∑

i=1

〈

δ(r − r
(cm)
i )

〉

(7)

where r
(cm)
i is the position of the i-th bead with respect to the center of mass of the

chain and the brackets denote a suitable average. In particular, one defines the quantity

N||(x
3) = N d ×

∫

ρ(x1, x2, x3) dx1dx2 (8)

where d ≡ r0 sin(θ0/2) = 0.31 is the distance along the chain backbone between two

adjacent beads of the fully-extended chain and xk is the projection of r along the k−th

principal axis. The quantity N||(z) denotes the average number of intersections of the

chain with the plane at x3 = z, namely a plane perpendicular to the approximate

cylindrical symmetry 3 axis. Figure 2 plots the quantity N||(z) for all the thermal

histories. It is apparent that the dependence of N||(z) on the thermal history is

negligible. In particular, this holds true for the number of stems µ = N||(0) = 10.

Three different regions are seen in figure 2:

• the central region, |z| . Lc/2 with Lc = 8, where N|| ≃ 10;

• the transition region, Lc/2 . |z| . Lc/2 + 2 where the average orientation of the

stems departs from the 3 axis;
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• the end region, |z| & Lc/2 + 2, where the stems join each other by forming loops.

Figure 2 shows that the shape of N||(z) is very close to the ideal one corresponding

to ten parallel, all-trans stems of fifty monomers each. The comparison makes it more

apparent both the order in the final state and the small size of the two crystal caps. In

fact, the longitudinal size of the loops, ∆z ∼ 3, is fairly smaller than the crystal length

2Lc = 16. Notice that, since I3 ≪ I⊥ with I⊥ = (I1 + I2)/2 ≃ 9990, the folded chain

may be sketched as a rigid rod with lenght 2L, mass N and negligible thickness. The

approximation yields L =
√

3I⊥/N ≃ 7.74, to be compared with Lc ∼ 8, as drawn from

figure 2.

3.2. Transverse monomer distribution: surface mobility

In order to study the monomer distribution in planes perpendicular to the 3 axis one

defines

ρ⊥,centr(x⊥)=

∫ Lc/2

−Lc/2

ρ(x⊥, z) dz (9)

ρ⊥,trans(x⊥)=

∫ Lc/2+2

Lc/2

[ρ(x⊥, z) + ρ(x⊥,−z)] dz (10)

ρ⊥,term(x⊥) =

∫ ∞

Lc/2+2

[ρ(x⊥, z) + ρ(x⊥,−z)] dz (11)

where x⊥ = x11 + x22 denotes the position vector in the transverse plane. ρ⊥,centr(x⊥),

ρ⊥,trans(x⊥) and ρ⊥,term(x⊥) are the transverse monomer distributions in the central,

transition and end regions, respectively. Figure 3 shows the topography of the crystal

structure. The ten stems of the crystalline nucleus arrange themselves into an hexagonal

structure (top plot). Noticeably, there is virtually no order on the crystal surface.

Moving to the caps of the crystal structure the amount of order decreases. The transition

region (center plot) still retains a partially ordered structure, visible in the two central

stems, whereas the remaining eight external stems become more mobile. In the end

regions (bottom plot), where the loops connecting the stems are located, any ordered

structure is lost. The presence of a disordered “corona” surrounding the ordered fraction

of the nucleus has been noted by MonteCarlo simulations [17]. In the present case the

direct inspection of several snapshots shows that the crystal surface is highly mobile and

includes the chain ends, the so called cilia, which are excluded from the crystal interior.

The confinement of the cilia on the surface avoids the impairment of lattice perfection

and agrees with previous experimental findings [3].

4. Analytic model of the FEL global minimum

The experimental evidence suggests that long alkanes fold in integral reciprocals of the

extended chain length. In particular, this implies that large portions of the chain are

mostly contributing to the straight stems, i.e. the size of the loops connecting different
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stems is short [3]. In our simulations, this is apparent from selected configurations,

(figure 1) as well as from the analysis of the longitudinal monomer distribution (figure

2). The average length of the loops ℓloop is relatively small and involves a short sequence

of Kuhn segments, ℓloop/ℓk ∼ 4 [24]. Based on these remarks, a very simple model

which incorporates the above feature and accounts for the existence of equilibrium folded

structures has been developed.

A crystallized chain of Nk Kuhn segments is pictured as formed by a nucleus with

µ stems, µ − 1 loops and the two cilia. When a segment is included in one stem of

the nucleus the energy gain is ε > 0 in units of kT . The lateral surface free-energy

contribution per unit area is σ′ in units of kT . If m denotes the average number of

segments per stem, the overall free-energy Fm,µ of the nucleus is written as:

Fm,µ

kT
= −µmε + σ

√
µm − ln Wm,µ (12)

with σ = ασ′r2
0, α being a numerical factor. Wm,µ denotes the number of distinct ways

to arrange the Nk segments in µ stems, each of m segments, µ − 1 loops and two tails.

To evaluate Wm,µ one assumes that each loop has only one conformation. This roughly

accounts for the both the expected stiffness of the short loops and their mutual steric

constraints. We factorize Wm,µ as

Wm,µ =

(

Nk − µm + µ

µ

)

× pµ−1 (13)

The binomial coefficient enumerates the distinct ways to get a one-dimensional

arrangement of (Nk−µm) segments separated by µ walls. The second term is a weighting

factor accounting for the entropic limitations to bend the linear arrangement and form

a crystalline nucleus with µ − 1 loops. One expects that conformations with a large

number of loops are inhibited by jams occurring in the compact caps of the nucleus

(see figure 1). Owing to the roughness of the present model p is left as an adjustable

parameter.

Equation (13) sets the entropic contribution lnWm,µ to the free energy. Small

variants, e.g. by neglecting the two cilia, do not improve the model appreciably.

Muthukumar proved that the entropy role is crucial to enforce the minimum of Fm,µ and

estimated Wm,µ by resorting to a gaussian model of the loops and to a field-theoretic

approach [15]. Although the gaussian model is expected to work nicely for long loops, it

may overestimate Wm,µ in the case of short loops. The present model cuts the entropy

due to the loop conformations, i.e. the so called entropy of disorientation, and limits the

entropy to the mixing of the µ stems of the crystalline nucleus (with m segments each)

along the polymer chain. The resulting free-energy has one adjustable parameter less

than the one of reference [15].

Representative plots of the free-energy-landscape (FEL) and the contour plot of

the minimum are shown in figures 4 and 5, respectively. Qualitatively similar plots were

also presented in [15]. The FEL is limited to the region µm < Nk where segments are
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available to form both the loops and the two cilia. At µm . Nk a steep ridge is found,

due to the small entropy of conformations with very short loops/cilia. Figure 5 shows the

contour plots of the FEL of figure 4. The minimum is located at m∗ = 9.68, µ∗ = 9.94.

This must be compared with µ = 10 from the MD results. If Lstem is the stem length, the

average number of Kuhn segments per stem is m = Lstem/ℓk. From figure 2 one estimates

Lstem = 2z∗, where z∗ is the positive non trivial solution of the equation N||(z) = 10, i.e.

the intercept with z 6= 0 between the distributions N||(z) from the simulation and the

one from the ideal case of ten fully stretched stems. One finds m = 10 with Lstem = 12,

to be compared with m∗ = 9.68 of the model. Finally, one notes that the coordinates of

the FEL minimum correspond to an average number of segments located in each loop

equal to (Nk−µ∗m∗)/(µ∗−1) = 3.22. The value is consistent with the basic assumption

of the model, i.e short loops, and compares well with the value from the MD simulations,

about 3 − 4 [24].

Figure 6 is a parametric plot of the number of stems µ∗(ε, σ) and the segments per

stem, m∗(ε, σ) of the FEL minimum with p = 0.06 for different ε and σ values. On

increasing the surface tension σ, the minimum moves from very prolate crystals (few

and very long stems) to more spherical crystals (more and shorter stems) to minimize

the exposed surface by keeping the total volume constant (Nk constant). The presence

of a maximum number of stems for a given ε must be considered with caution, in that

it corresponds to a very small number of segments per stem and a to very large number

of segments located in the loops, therefore pushing the model to its limits.

The existence of a minimum of Fm,µ relies on the limitations to have conformations

with large number of loops. This is understood by noting the relation Fm,µ =

F m,µ ( p = 0 ) − (µ − 1) ln p (p < 1) which makes explicit the entropic penalty for

conformations with large number of stems µ. In fact, if the entropy penalty is removed

by setting p = 1, Fm,µ with the same parameters of figure 4 has no minimum (data not

shown). At constant p, the minimum disappears at high temperatures (small ε and σ).

As an example, for Nk = 125, p = 0.06 and σ/ε = 0.22, 2.2, 3 the minimum disappears

for ε < 0.062, 0.2953, 0.8275, respectively. This shows that increasing σ enforces higher

energy gain ε to make the crystal nucleus stable. Note the approximate scaling σ/ε2.

5. Conclusion

The paper has presented numerical results from extensive MD simulations of the

crystallization process of a single PE chain with N = 500 monomers. The chain, after

suitable equilibration at high temperature is cooled at the final temperature Tf = 9 by

quenches involving or not intermediate annealing steps. The chain is also isothermally

annealed at Tf after initial preparation in the fully-stretched “all-trans” configuration.

No dependence on the thermal history was observed at late stages of the crystallization

process which eventually yields a well-defined equilibrated lamella with ten stems of

approximately equal lenght, arranged into a regular, hexagonal pattern. The study

of the microscopic organization of the lamella evidenced that the two caps are rather
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flat, i.e. the loops connecting the stems are short. It is also seen that the chain ends,

the socalled cilia, are localized on the surface of the lamella, in agreement with the

experiments [3], and that structural fluctuations take place on the lamella surface, as

noted by recent MonteCarlo simulations [17]. Motivated by the MD finding that the

lamella is in the equilibrium state and that the caps of the lamella are rather small, an

analytic model of the global minimum of the FEL, based on the assumption that the

entropic contribution is mainly due to the combinatorics of the stems and of the loops,

i.e. neglecting any conformational contribution, is developed. It provides for the first

time a quantitative explanation of the MD results on the equilibrium geometry of the

single-chain crystals.
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Tables

Parameter
Value

reduced units SI units

ǫ 1 0.112 kcal/mol

σ 1 4.04 Å

m 1 14.03 g/mol

Γ 1 0.455 s−1/mol

kr 51005 350 kcal/mol Å2

r0 0.38 1.53 Å

kθ 535.71 60 kcal/mol

θ0 109◦ 109◦

k1 26.96 3.02 kcal/mol

k2 -5 -0.56 kcal/mol

k3 23.04 2.58 kcal/mol

Table 1. Parameters of the force field.



Figure captions

Figure 1. Wire-frame view of one conformation of the single-molecule crystal. Note

the short loops connecting the stems.

Figure 2. The number of intersections of the chain in the crystalline state with the

plane at 3 = z, N||(z). The plane is perpendicular to the approximate cylindrical

symmetry axis x3. The curves refer to the different thermal histories. The dashed line

is the distribution corresponding to the ideal case of ten parallel and fully extended

stems with fifty monomers each. The number of stems µ is equal to N||(0) = 10. Note

the steep decrease at the end regions evidencing the small size of the loops connecting

the stems.

Figure 3. Topographic view of the crystal state via the transverse distributions

ρ⊥,centr (top), ρ⊥,trans (center) and ρ⊥,term (bottom) (equations (9-11)). Note the

absence of ordered structures on the crystal surface and the two caps.

Figure 4. The free-energy landscape (FEL) of the model. m is the number of Kuhn

segments belonging to one of the µ stems. Nk = 125, ε = 0.6, σ = 0.97, p = 0.06.

Figure 5. Contour plot of the FEL of figure 4. The minimum is located at

m∗ = 9.68, µ∗ = 9.94.

Figure 6. Plot of the coordinates µ∗, m∗ of the FEL minimum with Nk = 125, p = 0.06

for different ε and σ values. For ε = 0.4, 0.6, 0.8, σ is in the intervals 0.5 ≤ σ ≤ 0.95,

0.6 ≤ σ ≤ 1.655, 0.8 ≤ σ ≤ 2.4, respectively. m∗ always decreases by increasing σ.



FIGURE 1



FIGURE 2



-3

-2

-1

0

1

2

3 -3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3 -3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3 -3
-2

-1
0

1
2

3

FIGURE 3



0

5

10

15

20

m

0
10

20
30

40

Μ

-20

0

20

40

F

-20

0

20

FIGURE 4



0 5 10 15 20
m

5

7.5

10

12.5

15

17.5

20

Μ

FIGURE 5



16

14

12

10

8

6

µ∗

161412108642
m*

          ε
     0.4
     0.6
     0.8

FIGURE 6


