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Abstract. – Analytical models describing a colloidal particle confined in a harmonic well,
e.g. provided by an optical trap, and driven by shear flows are presented. Violation of
both static and dynamic fluctuation-dissipation theorem (FDT ) is clearly seen, thus clarify-
ing the connection between such FDT violation and the breakdown of the detailed balance.
The simple shear and Taylor-Couette velocity fields are studied in detail, showing that loos-
ening confinement enhances FDT violations. In addition, cases violating FDT but not energy
equipartition are presented. For the cases under study, an effective temperature is defined via
the static FDT, which appears to be more physically sound than the one defined via the
time-dependent FDT. Confining sheared colloidal particles by optical tweezers yields
considerable FDT violation .

The violation of the fluctuation-dissipation theorem ( FDT ) and the possible extension
of thermodynamics when the system is out-of equilibrium, specifically the existence of a non-
equilibrium temperature [1, 2], has attracted recent theoretical [3–8], numerical [9, 10] and
experimental [11,12] interest. In particular, sheared systems [3,9,10,13] and stationary flows
[4] have been studied intensively with particular reference to the non-equilibrium properties of
colloidal suspensions [11,12,14]. In the present paper, the role played by confinement in FDT
violation and its relationship with the breakdown of the detailed balance [6, 7] is
discussed, by studying in detail some simple models describing one colloidal particle confined
in a harmonic well and under antagonistic driving by two different velocity profiles: pure shear
and Taylor-Couette flows.

First, the necessary background on FDT is summarized [8]. Let us consider a system of
interest and denote with 〈A〉0 the canonical average of the observable A over the configurations
C of the unperturbed system in equilibrium at temperature T . At time t = 0, a constant small
perturbation coupled to the observable B (C) is applied to the system, shifting its energy by an
amount −εB (C). This perturbation is used to investigate the linear response property of the
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system and drives the expectation value 〈A (t)〉ε of the observable A (C), not necessarily equal
to B (C), from its equilibrium value, 〈A (t = 0)〉ε = 〈A〉0, towards a new equilibrium value,
〈A〉ε. Here 〈A (t)〉ε denotes the expectation value of the observable A (t) over all the possible
dynamical paths originating from the initial equilibrium configurations, weighted with the
canonical probability distribution. If we define the correlation function and time-dependent
susceptibility as

CA,B (t, s) = 〈A (t)B (s)〉0, (1)

χA,B (t) = lim
ε→0

〈A (t)〉ε − 〈A (t)〉0
ε

, (2)

the integrated form of the FDT theorem states that

χA,B(t) =
1

kBT
[CA,B (t, t) − CA,B (t, 0)] , (3)

kB being the Boltzmann constant. The static form of the FDT is obtained from Eq. (3) in
the limit t → ∞. In this case, χAB = [∂〈A〉ε/∂ε]ε=0, CA,B (t, t) → 〈AB〉0 while CA,B (t, 0) →
〈A〉0〈B〉0, so that Eq. (3) reduces to

χAB =
1

kBT
[〈AB〉0 − 〈A〉0〈B〉0] (4)

Henceforth, for clarity sake the subscript ”0” in the ensemble average will be understood.

Model. – Consider a very dilute suspension of spherical particles with radius a, im-
mersed in an incompressible fluid having temperature T , density ρ and viscosity η. Assume
that hydrodynamic particle-particle and particle-wall interactions can be neglected, with the
suspended particles moving with low velocities V, so that the Reynolds number NRe = ρV a/η
is low and inertia may be neglected. Accordingly, in the absence of any external force, the
velocity of the particle at any position x = (x, y, z) = (x1, x2, x3) equals that of the fluid, v,
which, here, is assumed to be a shear flow, v = κ ·x, where κ is the velocity gradient tensor.
In addition, let us assume that the suspended particle is subjected to a harmonic force field,
φ (x) = Kijxixj , where the K matrix is symmetric and positive definite. Therefore, the force
F exerted upon the suspended particle depends on the particle location x only and is the sum
of the drag force, ζv, with ζ = 6πηa denoting the drag coefficient, and the harmonic force,
−∇φ, i.e.,

F (x) = −Γ · x, (5)

where
Γ = K − ζκ. (6)

The Γ matrix is sometimes referred to as the damping matrix and, together with Eq. (7)
defines an Ornstein-Uhlenbeck process ( OU ) [17].

The probability P (x, t) to find the particle at location x at time t satisfies the Smolu-
chowski equation, [16]

∂P

∂t
+

1
ζ
∇ · [F (x)P − kBT∇P ] = δ (x − x0) δ (t) , (7)

which can be easily derived from the Fokker-Planck equation, considering the expression
D = kBT/ζ for the molecular diffusivity. The general solution of Eq. (7) is given by the
conditional probability:

P (x, t|x0, 0) = N exp

[
−1

2
(x − 〈x (t)〉)T · σ (t)−1 · (x − 〈x (t)〉)

]
, (8)
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where 〈x (t = 0)〉 = x0, N is a normalization factor and 〈x (t)〉 = G (t) · x0, where G (t) =
exp (−Γt/ζ) defines a proper Green function. The correlation matrix σ (t) with elements
σij(t) = 〈[xi (t) − 〈xi (t)〉] [xj (t) − 〈xj (t)〉]〉 follows from [17]

σ (t) =
2kBT

ζ

∫ t

0

G (t′) · tG (t′) dt′, (9)

where tX denotes the transpose of X. If all real parts of the eigenvalues of the damping
matrix Γ are larger than zero, a stationary solution of Eq. (8) exists, with 〈x(∞)〉 = 0 and
σ = σ(∞). In that case, one finds [17]:

(Γ · σ)sym = kBTI, (10)

where Xsym = (X + tX)/2 denotes the symmetric part of the matrix X and I is the identity
matrix. The particular case of a symmetric Γ matrix is of special interest. It ensures detailed
balance and the conservative character of the force F OU (x) [17]. In this case, Eq. (10) yields
σ = kBTΓ−1.

The correlation function (1) for τ ≥ 0 and A = xi, B = xj is evaluated in terms of a
regression theorem as [17]:

Ci,j(t + τ, t) =
∑

k

Gik(τ)σkj(t), (11)

where Ci,j = Cxi,xj . Let us define the susceptibility χij (t) = χxi,xj (t) for t > 0 via the
relation 〈x (t)〉ε = χ (t) · ε, where 〈x (t)〉ε is the displacement due the applied (small) step
force ε (t) = ε for t > 0 and zero otherwise. In addition, 〈x (t)〉ε is derived v ia the following
equation:

ζ
∂〈x(t)〉ε

∂t
+ Γ · 〈x(t)〉ε = ε, (12)

which, for 〈x (0)〉ε = 0 yields:

χ(t) = Γ−1 ·
[
I − exp

(
−1

ζ
Γt

)]
. (13)

The long-time limit of the susceptibility is χ = χ(∞) = Γ−1, so that Eq. (10) yields:
(
χ−1 · σ)sym

= kBTI. (14)

In the case of an OU process, Eq. (14) represents a generalization of the static version of
the FDT, i.e. Eq. (4). The latter is recovered if Γ (and therefore χ as well) is a symmetric
matrix, so that we obtain:

χ =
1

kBT
σ, (15)

or χ−1 · σ/kB = TI. This result is expected, as in this case detailed balance holds [6, 7]. In
the general case, though, Eq. (14) yields,

χ−1 · σ/kB = T (I + A) , (16)

where A is a non-dimensional, antisymmetric matrix.
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Fig. 1 – The colloidal particle attached to the spring and driven by the drag forces exerted by the
velocity fields of the S (left) and TC (right) models.

Results and discussion. – The following explicit form of the damping matrix is considered:

Γ =


 k1 −w2 0

w1 k2 0
0 0 k3


 (17)

where all the coefficients are real and ki > 0 for all i, i.e., the colloidal particle is confined
by a harmonic potential and driven by the drag force due to suitable velocity fields. In this
case, the only non-zero terms of the A matrix are A21 = −A12 = (w1 + w2) / (k1 + k2). If
w1 = −w2 the Γ matrix is symmetric, A = 0 and, as expected, FDT is ensured.

Two velocity fields are discussed in greater detail (see Fig. 1): a) simple shear flow with
shear rate γ̇, which we denote as S model, with w1 = 0 and w2 = wS = ζγ̇; b) Taylor-Couette
flow inside a rotating cylinder (i.e. a rigid body rotation) with angular velocity ω, which we
denote as TC model, with w1 = w2 = wTC = ζω ).

First, consider the static susceptibility χ = Γ−1, obtaining:

χxx =
k2

k1k2 + w1w2
; χyy =

k1

k1k2 + w1w2
; χzz =

1
k3

(18)

On the other hand, the diagonal elements of the stationary correlation matrix σ are:

〈x2〉
kBT

=
k2 (k1 + k2) + w2 (w1 + w2)

(k1 + k2) (k1k2 + w1w2)
;

〈y2〉
kBT

=
k1 (k1 + k2) + w1 (w1 + w2)

(k1 + k2) (k1k2 + w1w2)
;

〈z2〉
kBT

=
1
k3

.

(19)
The above equations show that, in general, driving leads to the breakdown of the energy
equipartition (with a notable exception to be discussed later).

By defining the effective static temperature T ∗
st (xi) = σii/kBχxi = 〈x2

i 〉/kBχxi one ob-
tains:

T ∗
st(x) = T

(
1 +

w2 (w1 + w2)
k2 (k1 + k2)

)
T ∗

st(y) = T

(
1 +

w1(w1 + w2)
k1(k1 + k2)

)
T ∗

st(z) = T. (20)

It may be proven that, if the symmetric part of Γ has positive eigenvalues, then T ∗
st > T/2.

Eqs. (20) prove the anisotropic violation of the static version of the FDT, i.e. Eq. (4). In
fact, FDT still holds along the z axis, whereas it breaks down along the other two axis if a
non-conservative driving force is present, i.e. T ∗

st (x) , T ∗
st (y) �= T if w1 �= w2. In particular,

in the S model, T ∗
st (y) = T ∗

st (z) = T and T ∗
st (x) �= T , while, in the TC model, with k1 = k2,

one finds T ∗
st (x) = T ∗

st (y) �= T .
Note that loosening the confinement, by making the constants ki, i = 1, 2 vanishingly

small, enhances the FDT breakdown. It must be also noted that the TC model with k1 = k2
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Fig. 2 – The breakdown of the FDT theorem according to the S model with k1/k̃ = 1.2, k2/k̃ =
2, k3/k̃ = 3, T = 1 (in units of k̃a2/kB) and different wS values (in units of k̃). Time in units
of ζ/k̃. Left: FDT plot between the normalized correlation function C̃x,x(t, 0) and susceptibility
χ̃x,x(t). The FDT theorem (bold line) holds at short times whereas it fails at long times. The
slopes of the straight lines, labeled by ’*’ and ’**’, are equal to the effective temperatures of the
point P = {C̃x,x(t′, 0), χ̃x,x(t′)}, −1/kBT ∗(x, t′) and −1/kBT ∗∗(x, t′), respectively. Note that the
intercept of the straight line (∗) on the χ̃x,x axis yields 1/kBT ∗(x, t′) and, therefore, the intercept
of the curve χ̃x,x(t) vs C̃x,x(t, 0) on the χ̃x,x axis yields 1/kBT ∗

st(x). Right: Time evolution of the
effective temperatures T ∗(x, t) and T ∗∗(x, t) from the bath temperature T = 1. At long times,
T ∗(x, t) tends to the effective static temperatures T ∗

st(x) = 1.63, 16.6 for ws = 2, 10, respectively. An
annealing period of four time units was allowed for the initial equilibration before to switch on the
non-conservative driving force.

violates the static FDT, Eqs. (20) but, according to Eqs. (19), it does not violate the
equipartition of energy. In fact, since in this case the conservative elastic force,
Fc = −K ·x = −∇φ, with φ = 1/2 x ·K ·x, is perpendicular to the non-conservative
drag force, Fnc = ζκ · x, with ∇ · Fnc = 0, we find that the Boltzmann distribution
P = Cexp(−φ/kBT ) is a stationary solution of Eq. (7).

The dynamic version of the FDT , cfr. Eq. (3), is now considered. The correlation func-
tions and the susceptibilities of interest are derived via Eq. (11) and Eq. (13), respectively
by using standard procedures to derive both the Green function Gij(t) and the correlation
matrix σij(t) [17]. The analytical expressions are rather involved and will be not reproduced
here. The non-conservative driving force is applied when the system is in thermal equi-
librium, i.e. the correlation matrix σij (t) assumes the time-independent equilibrium form
and consequently, according to Eq. (11), CA,A (t, t) = CA,A (∞,∞). Let us define the nor-
malized correlation function and susceptibility as C̃A,A (t, s) = CA,A (t, s) /CA,A(∞,∞) and
χ̃A,A (t) = χA,A (t) /CA,A (∞,∞), respectively. One may define two effective temperatures
T ∗ (A, t) and T ∗∗ (A, t) as [3, 8],

T ∗(A, t) =
1 − C̃A,A (t, 0)

kBχ̃A,A (t)
; T ∗∗ (A, t) = − 1

kB

∂C̃A,A (t, 0)
∂χ̃A,A (t)

. (21)

For t → 0, T ∗(A, t), T ∗∗(A, t) → T , whereas for t → ∞, T ∗(A, t) → T ∗
st(A). In general, the

two effective temperatures are related to each other by the following relation:

T ∗∗ (A, t) =
χ̃A,A (t)
˙̃χA,A (t)

Ṫ ∗ (A, t) + T ∗ (A, t) , (22)
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Fig. 3 – The breakdown of the FDT theorem according to the TC model. All parameters and annealing
are as in Fig. 2. wTC is plotted in units of k̃. Left: FDT plot. The FDT theorem (bold line) holds at
short times, whereas it fails at long times. Right: time evolution of the effective temperature T ∗(x, t)
from the bath temperature T = 1 to the effective static temperatures T ∗

st(x) = 1.31, 2.95, 12.25 for
wTC = 1, 2.5, 6, respectively.

where the dot denotes time derivative.
First, the S model is discussed. Fig. 2 (left) presents the FDT breakdown on increasing

the shear rate via the usual χ̃ vs. C̃ plot. Similar plots are well known from numerical
simulations on sheared systems [3, 8–10]. The plot also shows the geometrical interpretations
of the two effective temperatures, T ∗(x, t) and T ∗∗(x, t), and the limit value T ∗

st(x) of the
former. Fig. 2 (right) plots the time dependence of the two effective temperatures. At
short times, as expected, they coincide with the bath temperature, whereas at long times
T ∗∗(x, t) > T ∗(x, t) > T . As we have already seen, for long times, T ∗(x, t) tends to T ∗

st(x).
The TC model is now discussed. Fig. 3 (left) presents the FDT breakdown on increasing

wTC = ζω, showing that, unlike the previous case, plots here are characterized by spiralling
patterns. Fig. 3 (right) shows the time dependence of the effective temperature T ∗(x, t). It
starts from the bath temperature and approaches the limit value T ∗

st(x) at long times. It must
be noted that for large wTC values, i.e. large angular frequencies, T ∗(x, t) becomes negative
in some time region. However, a time τ always exists such as T ∗(x, t) > 0 for t > τ . This
is also signaled by the fact that, according to Eq. (20), T ∗

st(x) > 0 . The FDT plot suggests
that T ∗∗(A, t) is not a convenient choice for the TC model. Indeed, Fig. 4 shows that this is
the case. It compares T ∗(x, t) and T ∗∗(x, t). For 4w2

TC > (k1 − k2)2 the latter has a strong
oscillatory character with divergencies occurring with period 2π[4w2

TC − (k1 − k2)2]−1/2.
How large is the FDT breakdown by trapping a driven colloidal particle ? Let

us consider the case of optical tweezers [18]. The stiffness k of the trap depends on
its design and the size of the particle, but a value of k � 50 pN/µm is reasonable.
From Eqs. 20 with a = 300 µm, η = 76 mPa · s, γ̇ = 0.2 s−1 [19] the S model yields
T ∗

st(x) ∼= 2.48T . For the TC model with ω = 0.2 rad/s one gets T ∗
st(x) ∼= 3.96T .

In conclusion, we presented a class of models describing the motion of colloidal particles
being confined in a harmonic well and dragged by a shear flow. Our results expose the role
of the detailed balance to ensure the validity of FDT [6, 7] and shows that the violation of
FDT is manifested through the appearance of an antisymmetric temperature operator. It
is found that the effective temperature defined by the static FDT is always well
defined, whereas for Taylor-Couette flow the one drawn by the time-dependent
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Fig. 4 – Comparison of the time evolution of the effective temperatures T ∗(x, t) ( dashed line ) and
T ∗∗(x, t) ( thick line ) for the TC model . All parameters and annealing as in Fig.2. wTC/k̃ = 2.5.
Both the effective temperatures start from the bath temperature. T ∗(x, t) tends to T ∗

st(x) = 2.95.
T ∗∗(x, t) oscillates between positive and negative values.

FDT is meaningless, thus suggesting that the former is more physically sound. In
addition, it is shown that energy equipartition is not sufficient to ensure the validity of FDT,
while, as expected, loosening confinement enhances FDT violations. Optical traps are a
convenient tool to test the above models.
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