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Outlook
A quick look at the state-of-the-art of laser ion
acceleration

Ion acceleration in solid targets: circular vs linear
polarization, i.e. “radiation pressure vs fast electrons”
Modeling of “circularly polarized acceleration”: ion
bunches
Ion acceleration in gas targets: similarities
A proposed application: ultrashort neutron sources
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Ion acceleration: the TNSA mechanism

TNSA = Target Normal Sheath Acceleration
- Metal target with
hydrogenated
layer on the back
surface

- High-energy
“fast” electrons
are produced

- Ions (protons)
are accelerated in
the sheath field
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as a charged probe for the TNSA fields:
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Mora, PRL 90, 185002 (2003)
PIC:
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Recent results based on TNSA

Proton and carbon ion beams with narrow energy
spectrum obtained via target engineering:
Hegelich et al, Nature 439, 441 (2006); Schwoerer et al,
ibid., 445 (2006)
Temporal control of proton focusing and energy
selection:
Toncian et al, Science 312, 410 (2006)
(QUB-Dusseldorf University collaboration)
Proposed scaling laws suggest that ion energy will keep
to increase with growing laser intensity
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Open issues in Laser Ion Acceleration

- Higher peak energy, good efficiency and
monoenergetic spectrum are desirable for foreseen
applications (e.g. medicine, nuclear physics, ICF, . . . )

- High ion density (bulk acceleration?) and (ultra-)short
duration may be important for specific applications
Is TNSA always the best route to ion acceleration?
Are there other acceleration mechanisms, and do we
understand them?
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Front shock acceleration (FSA)
Recent experiments and related modeling suggest effi-
cient, high-energy acceleration of ions at the front side
by (collisionless) shock fronts:
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“Reflection” law vi ' 2vs

from momentum balance
vs ≈ vhb '

√

2I/minic

[Silva et al, PRL 92, 015002 (2004).]

High-speed shocks→ high-energy ions
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A simulation example
1D PIC simulation, 26 cycles pulse, normal incidence,
linear polarization, a = 16.0, ne0/nc = 10.
(λ = 1µm→ I = 3.5× 1020 W/cm2, τL = 86 fs,
ne = 1022 cm−3.)

laser
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A simulation example
1D PIC simulation, 26 cycles pulse, normal incidence,
linear polarization, a = 16.0, ne0/nc = 10.
(λ = 1µm→ I = 3.5× 1020 W/cm2, τL = 86 fs,
ne = 1022 cm−3.)

laser

At least three sources of
MeV ions: FSA, TNSA
(back), TNSA (front)

Electrons are heated up to
several tens of MeV
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Switch fast electrons off

Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

For normal incidence, it is the 2ωL
component of the v ×B force.
For circular polarization, the 2ωL
component vanishes; only the
secular component remains

⇒ Ion acceleration is driven directly by
radiation pressure
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Circular polarization

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.12/31



Circular polarization
1D PIC simulation, circular polarization
a = 11.3 → same energy of the linear polarization case;
other parameters are the same
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Circular polarization
1D PIC simulation, circular polarization
a = 11.3 → same energy of the linear polarization case;
other parameters are the same

Only one group of MeV
ions, accelerated at the
front side
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Circular polarization
1D PIC simulation, circular polarization
a = 11.3 → same energy of the linear polarization case;
other parameters are the same

Only one group of MeV
ions, accelerated at the
front side

Electron energy is
below 1 MeV;
no fast electrons
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Absorption efficiency: circular vs linear

Ion acceleration with circular
polarization has considerably
high efficiency: 13.7% absorp-
tion for the simulation shown.
Absorption into electrons is
negligible
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The simulation for same en-
ergy, linear polarization shows
comparable absorption, but
reached later, dependent on
target thickness, and into
several ion populations
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Energy spectrum: circular vs linear
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Energy spectrum: circular vs linear
Linear polarization leads to
higher peak energies, but a
thermal-like spectrum already
in 1D.
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Ion bunch acceleration

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.15/31



Ion bunch acceleration
Take a closer look at ion acceleration with circular
polarization:
1D PIC simulation, a = 2.0, ne0/nc = 5.
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Model predictions

Input parameters d, E0, np0 are related by the Poisson
equation and the constraints of charge conservation
and total radiation pressure Prad = 2IL/c:
E0 = 4πen0d , n0(d+ ls) = np0ls ,

1

2
eE0np0ls ' 2

cIL

Equations of motion are easily solved to yield maximum
ion velocity and breaking time, assuming ls ' c/ωp:

vm = 2c
√

Z
A
me

mp
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ne
aL τi ' TL
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2πaL

√

A
Z
mp

me
.

The average ion front velocity vf = vm/2 is the “hole
boring” speed.
Similar predictions, but different physics with respect to
the “shock” acceleration picture
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Model evaluation
The model is very simple , however, when compared
to simulations, it gives:
- a correct scenario of the dynamics
ion bunch formation
- a good scaling for the maximum ion
velocity vm vs. intensity and density

- reasonable estimates for the accel-
eration time (τi) and the number of
ions in the bunch (ni0ls).

-from these quantities we can also estimate the
absorption degree ' vm/c
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2D simulations with circular polarization
2D effects such as pulse focusing (→ E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

Simulation parameters (a = 2,
τ = 10TL and plasma profile
are similar to an experiment at
JAERI [Kado et al., Las. Part.
Beams 24 (2006), in press]
giving preliminar indications of
a collimated ion beam without
fast electrons (H. Daido, private
communication).
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Channeling simulations
2D electromag-
netic PIC simu-
lations in planar
geometry qualita-
tively reproduce
the experimental
results.

In the channel trail-
ing edge, field inver-
sion along radius is ob-
served as suggested
by proton images

Can we describe this dynamics by a simpler numerical model?
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1D Simulation of radial dynamics
1D electrostatic PIC simulation, cylindrical geometry (r, pr)
External driving force on electrons
Fp = −mec

2∇
√

1 + a2(r, t) , a2(r, t) = a2
0e
−r2/r20
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1D Simulation of radial dynamics
1D electrostatic PIC simulation, cylindrical geometry (r, pr)
External driving force on electrons
Fp = −mec

2∇
√

1 + a2(r, t) , a2(r, t) = a2
0e
−r2/r20

Ion dynamics is
very similar to the
case of planar
acceleration by the
circularly polarized
pulse: ions pile up,
density “breaks”,
and a “fast” bunch
is produced.
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Comparison with experimental results
The simple 1D
model is used to
simulate the proton
projection images:
very good agree-
ment is found

The ion spectrum was not measured in the experiment,
but in similar conditions evidence of a tail of MeV ions
was provided:
see e.g. Sarkisov et al, JETP 66, 828 (1997); Fritzler et
al, PRL 89, 165004 (2002).
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Summary of ion “bunch” characteristics
Ion bunches produced by circularly polarized, ultrashort pulses
(τL ∼ 5÷ 50 fs, IL ∼ 1018 ÷ 1020 W/cm2) may have:

- “modest” peak energies (0.1÷ 1 MeV)

- high density (nb = 1021÷23 cm−3)
- ultrashort duration
(τb ¿ ls/c, can be τb < TL = λL/c)
- low divergence (∼ 10−2)

- good efficiency (' (2/3)vm/c ∼ 10−2 ÷ 10−1)

Are these features useful for some application?
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Application: neutron burst production

Idea: use the ion bunches to drive beam fusion
reactions to produce neutrons.
Fusion rate (two-beam scheme): R = n1n2〈σv〉/(1 + δ12)

n1, n2 may have solid-density values
Approximated cross-section formula (E : c.m.f. energy)

σ ' S0

E e−
√
EG/E

Maximum around the Gamow energy
EG ≈ 1 MeVmr/mp mr = m1m2/(m1 + m2).

⇒ One may obtain a significant neutron yield within the
bunch duration.
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D-D, colliding bunches scheme
D + D→ 3He + n (2.45 MeV)

Two-side irradiation
to minimize duration and
maximize the center-of-mass energy
Optimal thickness ` = 2ls

Dynamics of colliding bunches
from PIC simulation:

Thin foil of pure frozen D would
be optimal (low ne/nc ' 40)
but CxDy foil (ne/nc ' 250) is
more realistic

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.27/31



Ultrashort neutron burst

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.28/31



Ultrashort neutron burst

Neutron rate estimated from the simulation data.

Pulse duration: 15 fs

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.28/31



Ultrashort neutron burst

Neutron rate estimated from the simulation data.

Pulse duration: 15 fs
D: ni =, ne/nc = 40,
IL = 1.3× 1019 W cm−2

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.28/31



Ultrashort neutron burst

Neutron rate estimated from the simulation data.

Pulse duration: 15 fs
D: ni =, ne/nc = 40,
IL = 1.3× 1019 W cm−2

CD2: ni =, ne/nc = 250,
IL = 1.3× 1020 W cm−2

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.28/31



Ultrashort neutron burst

Neutron rate estimated from the simulation data.

Pulse duration: 15 fs
D: ni =, ne/nc = 40,
IL = 1.3× 1019 W cm−2

CD2: ni =, ne/nc = 250,
IL = 1.3× 1020 W cm−2

Neutron burst duration:
' 0.7 fs (FWHM)

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.28/31



Ultrashort neutron burst

Neutron rate estimated from the simulation data.

Pulse duration: 15 fs
D: ni =, ne/nc = 40,
IL = 1.3× 1019 W cm−2

CD2: ni =, ne/nc = 250,
IL = 1.3× 1020 W cm−2

Neutron burst duration:
' 0.7 fs (FWHM)

Neutron yield: ∼ 103 J−1 (D), ∼ 102 J−1 (CD2)

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.28/31



Ultrashort neutron burst

Neutron rate estimated from the simulation data.

Pulse duration: 15 fs
D: ni =, ne/nc = 40,
IL = 1.3× 1019 W cm−2

CD2: ni =, ne/nc = 250,
IL = 1.3× 1020 W cm−2

Neutron burst duration:
' 0.7 fs (FWHM)

Neutron yield: ∼ 103 J−1 (D), ∼ 102 J−1 (CD2)

IRCEP, Queen’s University of Belfast, May 26th, 2006 – p.28/31



Conclusions

Studying ion acceleration by circularly polarized pulses
- helps the understanding of the ion acceleration

dynamics: effects due to fast electrons have been
separated from those due to radiation pressure alone

- suggests a novel regime of ion acceleration (we wait for
experimental data!)
A very similar dynamics has been observed in the radial
ion acceleration following charge-displacement
self-channeling in underdense plasmas.
The ion bunches produced in this regime may open a
perspective to bring the duration of fusion neutron
sources down in the sub-femtosecond regime
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