An Ultrashort Source of Fusion Neutrons

Andrea Macchi

www.df.unipi.it/ \sim macchi

polyLAB, CNR-INFM, University of Pisa, Italy

ELI Workshop, MPQ Garching, 14 November 2006

ELI Workshop, MPQ Garching, 14 November 2006 - p.1/16

The "Pisa theory" group

ELI Workshop, MPQ Garching, 14 November 2006 - p.2/16

The "Pisa theory" group

Prof. Francesco Pegoraro Prof. Fulvio Cornolti Prof. Francesco Califano Dr. Andrea Macchi¹ Dr. Francesco Ceccherini Dr. Tatiana V. Liseykina²

Department of Physics, University of Pisa, Italy ¹polyLAB, CNR-INFM, Pisa, Italy ²On leave from Institute for Computational Technologies, Novosibirsk, Russia

ELI Workshop, MPQ Garching, 14 November 2006 - p.3/16

Idea: producing a laser-solid interaction *without* fast electrons

Fast electron generation at a steep laser-plasma interface requires an oscillating force across the boundary.

laser	
\rightarrow	

- Fast electron generation at a steep laser-plasma interface requires an oscillating force across the boundary.
- For normal incidence, it is the $2\omega_L$ component of the $\mathbf{v} \times \mathbf{B}$ force.

- Fast electron generation at a steep laser-plasma interface requires an oscillating force across the boundary.
- For normal incidence, it is the $2\omega_L$ component of the $\mathbf{v} \times \mathbf{B}$ force.
- For circular polarization, the component vanishes; only the secular component remains

- Fast electron generation at a steep laser-plasma interface requires an oscillating force across the boundary.
- For normal incidence, it is the $2\omega_L$ component of the $\mathbf{v} \times \mathbf{B}$ force.
- For circular polarization, the component vanishes; only the secular component remains
- \Rightarrow lon acceleration is driven directly by the " $0\omega_L$ " ponderomotive force

ELI Workshop, MPQ Garching, 14 November 2006 - p.4/16

1D PIC simulation, circular polarization $a = 2.0, n_{e0}/n_c = 5$

ultrashort ion "bunch" at high density $n_b > n_{i0}$ ion energy $\sim MeV$ electron energy $\sim keV$

ELI Workshop, MPQ Garching, 14 November 2006 - p.5/16

2D effects such as pulse focusing ($\rightarrow E$ has a longitudinal component) as well as the presence of a preplasma do not compromise ion bunch production.

Simulation parameters (a = 2, $\tau = 10T_L$) and plasma profile are similar to an experiment at JAERI [Kado et al., Las. Part. Beams **24** (2006)] giving preliminar indications of a collimated ion beam without fast electrons (H. Daido, private communication).

ELI Workshop, MPQ Garching, 14 November 2006 - p.6/16

Ion acceleration with circular polarization has considerably high efficiency: 13.7% absorption for $I = 3.5 \times 10^{20}$ W/cm², $\tau_L = 86$ fs, $n_e = 10^{22}$ cm⁻³

lon acceleration with circular polarization has considerably high efficiency: 13.7% absorption for $I = 3.5 \times 10^{20}$ W/cm², $\tau_L = 86$ fs, $n_e = 10^{22}$ cm⁻³

Ion acceleration with circular polarization has considerably high efficiency: 13.7% absorption for $I = 3.5 \times 10^{20}$ W/cm², $\tau_L = 86$ fs, $n_e = 10^{22}$ cm⁻³

The simulation for same energy, linear polarization shows comparable absorption, but reached later, dependent on target thickness, and into several ion populations (Silva et al, PRL **92**, 015002 (2004)).

Ion acceleration with circular polarization has considerably high efficiency: 13.7% absorption for $I = 3.5 \times 10^{20}$ W/cm², $\tau_L = 86$ fs, $n_e = 10^{22}$ cm⁻³

The simulation for same energy, linear polarization shows comparable absorption, but reached later, dependent on target thickness, and into several ion populations (Silva et al, PRL **92**, 015002 (2004)).

 t/T_{T}

Energy spectrum: circular vs linear

ELI Workshop, MPQ Garching, 14 November 2006 - p.7/16

Energy spectrum: circular vs linear

Linear polarization leads to higher peak energies, but a thermal-like spectrum already in 1D.

Energy spectrum: circular vs linear

Linear polarization leads to higher peak energies, but a thermal-like spectrum already in 1D.

Circular polarization leads to lower peak energies, but a peaked, highly non-thermal spectrum.

Energy spectrum: circular vs linear

Linear polarization leads to higher peak energies, but a thermal-like spectrum already in 1D.

Circular polarization leads to lower peak energies, but a peaked, highly non-thermal spectrum.

In 2D simulations the ions have a energy-dependent angular spread and show low divergence $(\sim 4 \times 10^{-2} \text{ rad})$

Energy spectrum: circular vs linear

Linear polarization leads to higher peak energies, but a thermal-like spectrum already in 1D.

Circular polarization leads to lower peak energies, but a peaked, highly non-thermal spectrum.

In 2D simulations the ions have a energy-dependent angular spread and show low divergence $(\sim 4 \times 10^{-2} \text{ rad})$

ELI Workshop, MPQ Garching, 14 November 2006 - p.8/16

Ion acceleration with by circularly polarized pulses of intensity $I_L \sim 10^{18} \div 10^{21}$ W/cm² on solid targets may have:

- "modest" peak energies ($0.1 \div 10 \text{ MeV}$)

- "modest" peak energies ($0.1 \div 10 \text{ MeV}$)
- high density ($n_b = 10^{21 \div 23} \text{ cm}^{-3}$)

- "modest" peak energies ($0.1 \div 10 \text{ MeV}$)
- high density ($n_b = 10^{21 \div 23} \text{ cm}^{-3}$)
- good efficiency ($\simeq v_m/c \sim 10^{-2} \div 10^{-1}$)

- "modest" peak energies ($0.1 \div 10 \text{ MeV}$)
- high density ($n_b = 10^{21 \div 23} \text{ cm}^{-3}$)
- good efficiency ($\simeq v_m/c \sim 10^{-2} \div 10^{-1}$)
- low divergence ($\sim 10^{-2})$

Ion acceleration with by circularly polarized pulses of intensity $I_L \sim 10^{18} \div 10^{21}$ W/cm² on solid targets may have:

- "modest" peak energies ($0.1 \div 10 \text{ MeV}$)
- high density ($n_b = 10^{21 \div 23} \text{ cm}^{-3}$)
- good efficiency ($\simeq v_m/c \sim 10^{-2} \div 10^{-1}$)
- low divergence ($\sim 10^{-2}$)

Using ultrashort pulses with $\tau_L \sim 5 \div 50$ fs may produce a single bunch with ultrashort duration $(\tau_b \ll l_s/c, \text{ can be } \tau_b < T_L = \lambda_L/c)$

Ion acceleration with by circularly polarized pulses of intensity $I_L \sim 10^{18} \div 10^{21}$ W/cm² on solid targets may have:

- "modest" peak energies ($0.1 \div 10 \text{ MeV}$)
- high density ($n_b = 10^{21 \div 23} \text{ cm}^{-3}$)
- good efficiency ($\simeq v_m/c \sim 10^{-2} \div 10^{-1}$)
- low divergence ($\sim 10^{-2})$

Using ultrashort pulses with $\tau_L \sim 5 \div 50$ fs may produce a single bunch with ultrashort duration $(\tau_b \ll l_s/c, \text{ can be } \tau_b < T_L = \lambda_L/c)$

Experimental investigation seems worth!

What about possible applications?

ELI Workshop, MPQ Garching, 14 November 2006 - p.9/16

Idea: use the ion bunches to drive beam fusion reactions to produce neutrons.

Idea: use the ion bunches to drive beam fusion reactions to produce neutrons.

• Fusion rate (two-beam scheme): $R = n_1 n_2 \langle \sigma v \rangle / (1 + \delta_{12})$

Idea: use the ion bunches to drive beam fusion reactions to produce neutrons.

- Fusion rate (two-beam scheme): $R = n_1 n_2 \langle \sigma v \rangle / (1 + \delta_{12})$
- n_1 , n_2 may have solid-density values

Idea: use the ion bunches to drive beam fusion reactions to produce neutrons.

- ▶ Fusion rate (two-beam scheme): $R = n_1 n_2 \langle \sigma v \rangle / (1 + \delta_{12})$
- n_1 , n_2 may have solid-density values
- Cross-section has a maximum around the Gamow energy

 $\mathcal{E}_G \approx 1 \text{ MeV} m_r/m_p$ well accessible for D ions (Z = 1, A = 2)

Idea: use the ion bunches to drive beam fusion reactions to produce neutrons.

- Fusion rate (two-beam scheme): $R = n_1 n_2 \langle \sigma v \rangle / (1 + \delta_{12})$
- n_1 , n_2 may have solid-density values
- Cross-section has a maximum around the Gamow energy

 $\mathcal{E}_G \approx 1 \text{ MeV} m_r/m_p$ well accessible for D ions (Z = 1, A = 2)

 $\Rightarrow\,$ One may obtain a significant neutron yield within the bunch duration $\sim 1~{\rm fs}$.

ELI Workshop, MPQ Garching, 14 November 2006 - p.10/16

 $D + T \rightarrow \alpha + n (14 \text{ MeV})$

Double layer target:

 $D + T \rightarrow \alpha + n (14 \text{ MeV})$

Double layer target:

1D PIC simulation: > 10^6 neutrons/Joule in $\tau_n \sim 2$ fs at $I = 10^{19}$ W/cm², $\tau_L = 15$ fs

 $D + T \rightarrow \alpha + n (14 \text{ MeV})$

1D PIC simulation: > 10^6 neutrons/Joule in $\tau_n \sim 2$ fs at $I = 10^{19}$ W/cm², $\tau_L = 15$ fs

Analytical scaling predicts the maximum rate for intensities in the range $10^{20} \div 10^{21}$ W cm⁻²

ELI Workshop, MPQ Garching, 14 November 2006 - p.11/16

 $D + D \rightarrow {}^{3}\text{He} + n \ (2.45 \text{ MeV})$

ELI Workshop, MPQ Garching, 14 November 2006 – p.11/16

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy

PIC simulation of pure D and CD₂ foils:

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy

PIC simulation of pure D and CD_2 foils:

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$ Two-side irradiation to minimize duration and maximize the center-of-mass energy

PIC simulation of pure D and CD_2 foils:

 $\sim 10^2 \text{ J}^{-1}$ (CD₂) in $\simeq 0.7 \text{ fs}$

Peak rate at $I \simeq 3 \times 10^{19} \text{ W cm}^{-2}$

ELI Workshop, MPQ Garching, 14 November 2006 - p.12/16

A femtosecond neutron source is a solution looking for a problem . . .

A femtosecond neutron source is a solution looking for a problem . . .

It might open a perspective for:

A femtosecond neutron source is a solution looking for a problem . . .

It might open a perspective for:

 ultrafast control and imaging of nuclear reactions by laser pulses

A femtosecond neutron source is a solution looking for a problem . . .

It might open a perspective for:

 ultrafast control and imaging of nuclear reactions by laser pulses

[N. Milosevic, P. B. Corkum, and T. Brabec, PRL **92**, 013002 (2004); S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, PRL **93**, 083602 (2004).]

A femtosecond neutron source is a solution looking for a problem . . .

It might open a perspective for:

 ultrafast control and imaging of nuclear reactions by laser pulses

[N. Milosevic, P. B. Corkum, and T. Brabec, PRL **92**, 013002 (2004); S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, PRL **93**, 083602 (2004).]

diagnostic of fast nuclear processes ?

Conclusions

ELI Workshop, MPQ Garching, 14 November 2006 - p.13/16

Conclusions

Using ultrashort, circularly polarized pulses we may generate high-density ion bunches with duration of a few femtoseconds

Conclusions

- Using ultrashort, circularly polarized pulses we may generate high-density ion bunches with duration of a few femtoseconds
- Using D or DT targets the ion bunches may provide a (sub)femtosecond source of fusion neutrons

- Using ultrashort, circularly polarized pulses we may generate high-density ion bunches with duration of a few femtoseconds
- Using D or DT targets the ion bunches may provide a (sub)femtosecond source of fusion neutrons
- Are there possible applications requiring such features?

- Using ultrashort, circularly polarized pulses we may generate high-density ion bunches with duration of a few femtoseconds
- Using D or DT targets the ion bunches may provide a (sub)femtosecond source of fusion neutrons
- Are there possible applications requiring such features?
 References:

- Using ultrashort, circularly polarized pulses we may generate high-density ion bunches with duration of a few femtoseconds
- Using D or DT targets the ion bunches may provide a (sub)femtosecond source of fusion neutrons
- Are there possible applications requiring such features?
 References:
 - ion acceleration with circular polarization:
 A. Macchi, F. Cattani, T. V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005)

- Using ultrashort, circularly polarized pulses we may generate high-density ion bunches with duration of a few femtoseconds
- Using D or DT targets the ion bunches may provide a (sub)femtosecond source of fusion neutrons
- Are there possible applications requiring such features?
 References:
 - ion acceleration with circular polarization:
 A. Macchi, F. Cattani, T. V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005)
 - fs neutron source:
 - A. Macchi, Applied Physics B 82, 337 (2006)

EXTRA SLIDES

ELI Workshop, MPQ Garching, 14 November 2006 - p.14/16

ELI Workshop, MPQ Garching, 14 November 2006 - p.15/16

$$a = 2.0, n_{e0}/n_c = 5$$

$$a = 2.0$$
, $n_{e0}/n_c = 5$

- interaction starts
- electrostatic field created
- ion profile driven to "breaking"
- ion "bunch" appears
- electron energy $\sim \text{keV}$

ELI Workshop, MPQ Garching, 14 November 2006 - p.16/16

 $D + D \rightarrow {}^{3}\text{He} + n \ (2.45 \text{ MeV})$

ELI Workshop, MPQ Garching, 14 November 2006 – p.16/16

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

D

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

D

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

D

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

D

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

D

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

D

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

D

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

D

laser

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$ Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_{s}$

PIC simulation of pure D and CD₂ foils:

S⁻¹)

 $(10^{23} \text{ cm}^{-2})$

R

1

2

3

 $D + D \rightarrow {}^{3}\text{He} + n (2.45 \text{ MeV})$

Two-side irradiation to minimize duration and maximize the center-of-mass energy Optimal thickness $\ell = 2l_s$

PIC simulation of pure D and CD₂ foils:

6

t (cycles)

1

5

4

2

3

4

5

 $D + D \rightarrow {}^{3}He + n (2.45 \text{ MeV})$ laser laser Two-side irradiation to minimize duration and maximize the center-of-mass energy D Optimal thickness $\ell = 2l_s$ t (fs) 10 14 4 8 12 6 S⁻¹) 4 D CD, $(10^{23} \text{ cm}^{-2})$ 3 **PIC** simulation of 2 pure D and CD_2 foils: 1 R $\sim 10^2 \text{ J}^{-1}$ (CD₂) in $\simeq 0.7 \text{ fs}$ 2 3 6 2 3 4 4 5 1 5 t (cycles)

Peak rate at $I \simeq 3 \times 10^{19} \text{ W cm}^{-2}$

