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Ion acceleration for circular polarization

Idea: producing a laser-solid
interaction without fast electrons
Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

For normal incidence, it is the 2ωL

component of the v ×B force.
For circular polarization, the
component vanishes; only the
secular component remains

⇒ Ion acceleration is driven directly by
the “0ωL” ponderomotive force
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2D simulations with circular polarization
2D effects such as pulse focusing (→ E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

laser pulse target
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2D simulations with circular polarization
2D effects such as pulse focusing (→ E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

Simulation parameters (a = 2,
τ = 10TL) and plasma pro-
file are similar to an experi-
ment at JAERI [Kado et al.,
Las. Part. Beams 24 (2006)]
giving preliminar indications of
a collimated ion beam without
fast electrons (H. Daido, private
communication).
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The simulation for same en-
ergy, linear polarization shows
comparable absorption, but
reached later, dependent on
target thickness, and into sev-
eral ion populations
(Silva et al, PRL 92, 015002
(2004)).
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IL ∼ 1018 ÷ 1021 W/cm2 on solid targets may have:
- “modest” peak energies (0.1÷ 10 MeV)
- high density (nb = 1021÷23 cm−3)
- good efficiency (' vm/c ∼ 10−2 ÷ 10−1)
- low divergence (∼ 10−2)
Using ultrashort pulses with τL ∼ 5÷ 50 fs may produce
a single bunch with ultrashort duration
(τb ¿ ls/c, can be τb < TL = λL/c)
Experimental investigation seems worth!
What about possible applications?
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A femtosecond neutron source?

Idea: use the ion bunches to drive beam fusion
reactions to produce neutrons.
Fusion rate (two-beam scheme): R = n1n2〈σv〉/(1 + δ12)

n1, n2 may have solid-density values
Cross-section has a maximum around the Gamow
energy

EG ≈ 1 MeVmr/mp

well accessible for D ions (Z = 1, A = 2)
⇒ One may obtain a significant neutron yield within the

bunch duration ∼ 1 fs .
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D-T, single bunch scheme
D + T→ α + n (14 MeV)

Double layer
target:

TD

laser

1D PIC simulation:
> 106 neutrons/Joule in τn ∼ 2 fs
at I = 1019 W/cm2, τL = 15 fs

Analytical scaling predicts the
maximum rate for intensities in
the range 1020 ÷ 1021 W cm−2
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D-D, colliding bunches scheme
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D-D, colliding bunches scheme
D + D→ 3He + n (2.45 MeV)

Two-side irradiation
to minimize duration and
maximize the center-of-mass energy

PIC simulation of
pure D and CD2 foils:

∼ 102 J−1 (CD2) in ' 0.7 fs

Peak rate at I ' 3× 1019 W cm−2
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Who needs a fs neutron source?

A femtosecond neutron source is a solution looking for
a problem . . .
It might open a perspective for:
ultrafast control and imaging of nuclear reactions by
laser pulses
[N. Milosevic, P. B. Corkum, and T. Brabec, PRL 92,
013002 (2004); S. Chelkowski, A. D. Bandrauk, and
P. B. Corkum, PRL 93, 083602 (2004).]
diagnostic of fast nuclear processes ?
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Conclusions

Using ultrashort, circularly polarized pulses we may
generate high-density ion bunches with duration of a
few femtoseconds
Using D or DT targets the ion bunches may provide a
(sub)femtosecond source of fusion neutrons
Are there possible applications requiring such features?
References:

- ion acceleration with circular polarization:
A. Macchi, F. Cattani, T. V. Liseykina, F. Cornolti,
Phys. Rev. Lett. 94, 165003 (2005)

- fs neutron source:
A. Macchi, Applied Physics B 82, 337 (2006)
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Simulation of ion acceleration

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV
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D-D, colliding bunches scheme
D + D→ 3He + n (2.45 MeV)

Two-side irradiation
to minimize duration and
maximize the center-of-mass energy
Optimal thickness ` = 2ls

PIC simulation of
pure D and CD2 foils:

∼ 102 J−1 (CD2) in ' 0.7 fs

Peak rate at I ' 3× 1019 W cm−2
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