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Channeling in underdense plasma

fThe Interaction of a T

1 ps, 1018 = 1019 W/cm?
pulse with a gas |et
has been investigated
at RAL using the proton
iImaging technique
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Simulation of radial ion acceleration
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electrostatic PIC simulation, cylindrical geometry (r, p,)
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = a(z)e_r2/7“3f(t)
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Simulation of radial ion acceleration

o N

electrostatic PIC simulation, cylindrical geometry (r, p,)
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = a(z)e_r2/rgf(t)
{=1.00058
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Simulation of radial ion acceleration

o N

electrostatic PIC simulation, cylindrical geometry (r, p,)
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = a(z)e_r2/rgf(t)
1=271.71386L
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Simulation of radial ion acceleration

f electrostatic PIC simulation, cylindrical geometry (r, p,) T
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = a(z)e_r2/rgf(t)
1=471. 2698
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Simulation of radial ion acceleration

f electrostatic PIC simulation, cylindrical geometry (r, p,) T
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), aQ(T,t):::age_”j/rgj(t)

1=671.4074
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Simulation of radial ion acceleration

f electrostatic PIC simulation, cylindrical geometry (r, p,) T
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = age_r2/rgf(t)
1=857.5330
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Simulation of radial ion acceleration

f electrostatic PIC simulation, cylindrical geometry (r, p,)

External driving force on electrons

Fy = ~mec®V/T+ a2(r, 1),
t=707.665

a?(r,t) =

-

age_r2/rgf(t)

-I,. ~ I}, /e acceler-
ates ions
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Simulation of radial ion acceleration

o N

electrostatic PIC simulation, cylindrical geometry (r, p,)
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = age_r2/rgf(t)
1=7127.796

ey -I, ~ F), /e acceler-
0.8F U9 o ates ions

048 . - lons pile up, ion

G5k \ 0. density  “breaks”;

: | | | an ambipolar field

front appears at the
breaking point
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Simulation of radial ion acceleration

-

electrostatic PIC simulation, cylindrical geometry (r, p,)
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = a(z)e_r2/7“3f(t)
1=7147.928

-I,. ~ I}, /e acceler-
ates ions

- ions pile up, ion
density  “breaks’;
an ambipolar field
front appears at the
breaking point
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Simulation of radial ion acceleration

-

electrostatic PIC simulation, cylindrical geometry (r, p,)
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = a(z)e_r2/7“3f(t)
1=762.059

-I,. ~ I}, /e acceler-
ates ions

- ions pile up, ion
density  “breaks’;
an ambipolar field
front appears at the
breaking point
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Simulation of radial ion acceleration

-

electrostatic PIC simulation, cylindrical geometry (r, p,)
External driving force on electrons

Fy = —mec®Vy/1 +a2(r,t), a?(r,t) = a(z)e_r2/rgf(t)
1=7182.7197

-I,. ~ I}, /e acceler-
ates ions

- ions pile up, ion
density  “breaks’;
an ambipolar field
front appears at the
breaking point
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Simulation of radial ion acceleration

-

electrostatic PIC simulation, cylindrical geometry (r, p,)

External driving force on electrons

Fy = ~mec®V/T+ a2(r, 1),

1=202.5323

a?(r,t) =

-

a(z)e_r2/7“3f(t)

-I,. ~ I}, /e acceler-
ates ions

- ions pile up, ion
density  “breaks’;
an ambipolar field

front appears at the
breaking point

-_a fast ion “bunch”
IS produced J
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Simulation of radial ion acceleration

-

electrostatic PIC simulation, cylindrical geometry (r, p,)

External driving force on electrons

Fy = ~mec®V/T+ a2(r, 1),

=22 . 454

a?(r,t) =

-

a(z)e_r2/7“3f(t)

-I,. ~ I}, /e acceler-
ates ions

- ions pile up, ion
density  “breaks’;
an ambipolar field

front appears at the
breaking point

- a fast ion “bunch”
IS produced J
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Comparison with experimental results

fThe simple 1D T

model is used to
simulate the proton
projection images:
very good agree-
ment is found.

2D electromagnetic
PIC simulations also
support the picture.
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Comparison with experimental results

fThe simple 1D
model is used to
simulate the proton
projection images:
very good agree-
ment is found.
2D electromagnetic
PIC simulations also
support the picture.

ro{pm}

Yi{pm}
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Comparison with experimental results

fThe simple 1D
model is used to
simulate the proton
projection images:
very good agree-
ment is found.
2D electromagnetic
PIC simulations also
support the picture.

ro{pm}

Yi{pm}

The ion spectrum was not measured in the experiment,

but in similar conditions evidence of a tail of MeV ions

was provided:

see e.g. Sarkisov et al, JETP 66, 828 (1997); Fritzler et
Lal, PRL 89, 165004 (2002). J
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[Longitudinal Ponderomotive Acceleration
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/dea: producing a laser-solid
Interaction without fast electrons laser
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[Longitudinal Ponderomotive Acceleration
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/dea: producing a laser-solid

Interaction without fast electrons laser

# Fast electron generation at a steep |

laser-plasma interface requires an
oscillating force across the boundary.
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[Longitudinal Ponderomotive Acceleration

o N

/dea: producing a laser-solid
Interaction without fast electrons

# Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

laser
—

® For normal incidence, it is the 2wy
component of the v x B force. 2

0
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[Longitudinal Ponderomotive Acceleration

o N

/dea: producing a laser-solid

interaction without fast electrons laser

# Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

® For normal incidence, it is the 2wy
component of the v x B force.

# For circular polarization, the 2wy,
component vanishes; only the
secular component remains
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[Longitudinal Ponderomotive Acceleration

o N

/dea: producing a laser-solid

interaction without fast electrons laser

# Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

® For normal incidence, it is the 2wy
component of the v x B force.

# For circular polarization, the 2wy,
component vanishes; only the
secular component remains

— lon acceleration is driven directly by
the steady ponderomotive force J
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Simulation of longitudinal acceleration
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1D electromagnetic PIC simulation, circular polarization

a = 2.0, neg/ne =5

gﬁ% ICOPS 2006 conference, Traverse City, MI, USA — p.7/16



Simulation of longitudinal acceleration
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1D electromagnetic PIC simulation, circular polarization

t=0.T
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Simulation of longitudinal acceleration

o N

1D electromagnetic PIC simulation, circular polarization

0 =41 : a = 2.0, neg/ne =5
24%77%/ 7E9§ ?20 . .
£ 18] //\/\7:& # Interaction starts
S 12t \ 9 D e
Lo ;5\-\ electrostatic field created
ol 0.0
+0.041 f, 11999
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—0.04r1 | | | | 0.000
+O.4*f | | | 0.002
3 0,0: S 0.001
>
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Simulation of longitudinal acceleration

f1 D electromagnetic PIC simulation, circular polarization
t=8.T,

120
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. ® Interaction starts

® celectrostatic field created

lon profile driven to
“breaking”
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Simulation of longitudinal acceleration
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1D electromagnetic PIC simulation, circular polarization

a = 2.0, neg/ne =5

Interaction starts

electrostatic field created

lon profile driven to
“breaking”

lon “bunch” appears
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Simulation of longitudinal acceleration
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1D electromagnetic PIC simulation, circular polarization
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Interaction starts
electrostatic field created

lon profile driven to
“breaking”

lon “bunch” appears
electron energy ~ keV
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Simulation of longitudinal acceleration

-

Do/ M0
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24+
< 18+
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c 127
67%
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1D electromagnetic PIC simulation, circular polarization

B

a = 2.0, neg/ne =5

“breaking”

appear

Interaction starts
electrostatic field created
lon profile driven to

lon “bunch” appears
electron energy ~ keV
secondary bunches may
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Simulation of longitudinal acceleration

-
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1D electromagnetic PIC simulation, circular polarization
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Interaction starts

electrostatic field created

lon profile driven to

“breaking”

lon “bunch” appears

electron energy ~ keV

secondary bunches may
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Simple model predictions
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A simple analytical model gives:
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Simple model predictions

o N

A simple analytical model gives:

- max. ion velocity
and breaking time:

Z Me Ne
Um — 26\/Zm—pn—e&
~ 1 A mp
Tq _TL27TCLL Z Me
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Simple model predictions

A simple analytical model gives:

- max. ion velocity
and breaking time:

Z Me Ne
A myp ne

1 A myp
2mar, Z me *

Vm = 2C ar

TiETL

good agreement with simulations:

ppppp
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Simple model predictions

A simple analytical model gives:

- max. ion velocity 0.08
and breaking time: o o
Z Me N O ,
Um = 2¢4/ G -5-2ay, |
A e \E 0.04|
.Y 1 Amp
Ti = TL 2mar, Z Me * - 0 02
0.00

good agreement with simulations:

- number of ions in the bunch/cm? ~ n;gls , Is ~ c¢/w,
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Simple model predictions

o N

A simple analytical model gives:

- max. ion velocity 0.08 AR
and breaking time: 5 o6 oo
Z Me N . | |

Um = 2C4 /S22 car 7 -
g \E 0.04 ] |

o~ 1 [ A mp | |
1 ma g " .02 100
000 L—_ . |

good agreement with simulations:

- number of ions in the bunch/cm? ~ n;gls , Is ~ c¢/w,

L_ absorption degree in ions ~ v, /c J
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

i

laser pulse
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=4.07,

.

2.0

7.0

0.0
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=712.1,

.

2.0

7.0

0.0

|
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=16.17,

.

2.0

7.0

0.0
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=24.7,

.

2.0

7.0

0.0
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=52.1,

.

2.0

7.0

0.0
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=40.7,

.

2.0

7.0

0.0
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=48.7,

.

2.0

7.0

0.0
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) {=56.1,

.

2.0

7.0

0.0
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=64.1,

.
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) (=721,

.

|
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

) t=8650.1,

.

|
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2D simulations with circular polarization

o N

2D effects such as pulse focusing (— E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

t=8650.1,

.

Simulation parameters (a = 2,
T = 1077) and plasma profile
are similar to an experiment at
JAERI [Kado et al., Las. Part.
Beams 24 (2006), in press]
giving preliminar indications of
a collimated ion beam

(H. Daido, private
communication).

|
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Features of ‘“circular” ion acceleration

ﬁon acceleration with by pulses of intensityT
I ~ 10 = 102! W/cm? on solid targets may have:
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Features of ‘“circular” ion acceleration

ﬁon acceleration with by pulses of intensityT
I ~ 10 = 102! W/cm? on solid targets may have:

- “modest” peak energies (0.1 + 10 MeV)
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Features of ‘“circular” ion acceleration

ﬁon acceleration with by pulses of intensityT
I ~ 10 = 102! W/cm? on solid targets may have:

- “modest” peak energies (0.1 + 10 MeV)

- high density (n, = 1021+23 cm—3)
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Features of ‘“circular” ion acceleration

ﬁon acceleration with by pulses of intensityT
I ~ 10 = 102! W/cm? on solid targets may have:

- “modest” peak energies (0.1 - 10 MeV)
- high density (n, = 102123 cm~3)

- good efficiency (~ vy, /c ~ 1072 +1071)
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Features of ‘“circular” ion acceleration

ﬁon acceleration with by pulses of intensityT
I ~ 10 = 102! W/cm? on solid targets may have:

- “modest” peak energies (0.1 - 10 MeV)
- high density (n, = 102123 cm~3)
- good efficiency (~ v,,/c ~ 1072 + 1071)

- low divergence (~ 1072)
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Features of ‘“circular” ion acceleration

ﬁon acceleration with by pulses of intensityT
I ~ 10 = 102! W/cm? on solid targets may have:

- “modest” peak energies (0.1 - 10 MeV)
- high density (n, = 102123 cm~3)
- good efficiency (~ v,,/c ~ 1072 + 1071)

- low divergence (~ 1072)

Using pulses with 77, ~ 5+ 50 fs may produce
a single bunch with ultrashort duration
(1, < ls/c,canbe m, < T = A /c)
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Features of ‘“circular” ion acceleration

ﬁon acceleration with by pulses of intensityT
I ~ 10 = 102! W/cm? on solid targets may have:

- “modest” peak energies (0.1 - 10 MeV)
- high density (n, = 1021+23 cm—3)
- good efficiency (~ v, /c ~ 1072 = 1071)

- low divergence (~ 107?)

Using pulses with 77, ~ 5+ 50 fs may produce
a single bunch with ultrashort duration
(1, < ls/c,canbe m, < T = A /c)

LExperimentaI iInvestigation seems worth! J
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Absorption efficiency: circular vs linear

B -
lon acceleration with circular
polarization has considerably
high efficiency:
for I = 3.5 x 1020 W/cm?,
1, = 86 fs, n, = 10%? cm~3
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Absorption efficiency: circular vs linear

circular polarization

lon acceleration with circular |
polarization has considerably &
high efficiency: S
for I = 3.5 x 10 W/Cm2, S0 clectrons :
7L, = 86 s, n. = 104 cm ™3 ol L |
0 50 700 150 200
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Absorption efficiency: circular vs linear

-

lon acceleration with circular
polarization has considerably
high efficiency:

for I = 3.5 x 1020 W/cm?,
1, = 86 fs, n, = 10%? cm~3

The simulation for same en-
ergy, linear polarization shows
comparable absorption, but
reached later, dependent on
target thickness, and into sev-
eral ion populations

(Silva et al, PRL 92, 015002

 (2004).)
5.,

@ aaaaaaa

circular polarization

1077

Absorption

7073;, electrons

7074’ ““““““““““““ 1
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Absorption efficiency: circular vs linear

circular polarization

lon acceleration with circular 7
polarization has considerably - "
high efficiency: 5o
for I = 3.5 x 10% W/Cm2, T o107 clectrons :
7, = 86 fs, n, = 10** cm™3 ol L |
0 50 700 750 200

The simulation for same en-
ergy, linear polarization shows e

[tnear polarization

comparable absorption, but _ clectrons
reached later, dependent on -
target thickness, and into sev- : '’

107

eral ion populations :
(Silva et al, PRL 92, 015002 Tl D

(2 O O 4) ) 0 50 100 150
) t/T,
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fLinear polarization l|leads to T
. but a 0.020} 7
thermal-like spectrum already 0.015}

In 1D §0.070

ltnear pol., a=161
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Energy spectrum: circular vs linear

fLinear polarization leads to

, but a
thermal-like spectrum already
in 1D.

Circular polarization leads to
lower peak energies, but a

spectrum.
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Energy spectrum: circular vs linear

fLinear polarization l|leads to T
higher peak energies, but a 0.020 | |
thermal-like spectrum already 0,015

In 1D §0.070

Circular polarization leads to 0.005 | f
lower peak energies, but a 0.0000 N rear por, 0= TY
peaked, highly non-thermal £ (Mev)
spectrum.

crrcular pol.,
a=11.3

In 2D simulations the ions
have a energy-dependent an-
gular spread and show low di-
vergence

(~ 4 x 1072 rad)
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Energy spectrum: circular vs linear

fLinear polarization leads to e T
. but a 0.020 | .

thermal-like spectrum already 0.015

in 1D. E o010l
Circular polarization leads to
lower peak energies, but a

crrcular pol.,

a=71171.3

ltnear pol., a=161

spectrum.

In 2D simulations the ions
have a energy-dependent an-
gular spread and show

(~ 4 x 1072 rad)

0.7 2.5 | 10t
102p,/m.c 0 7 2 3 4 5 6

107*E /mc®
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A femtosecond neutron source?

o N

: use the ion bunches to drive beam fusion
reactions to produce neutrons.
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A femtosecond neutron source?

o N

. use the ion bunches to drive beam fusion
reactions to produce neutrons.

» Fusion rate (two-beam scheme): R = nina(ov)/(1 + §12)
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A femtosecond neutron source?
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. use the ion bunches to drive beam fusion
reactions to produce neutrons.

# Fusion rate (two-beam scheme): R = nino{ov) /(1 + d12)
#® 11, no may have solid-density values
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A femtosecond neutron source?

o N

. use the ion bunches to drive beam fusion
reactions to produce neutrons.

# Fusion rate (two-beam scheme): R = nino{ov) /(1 + d12)
#® 11, no may have solid-density values

® Cross-section has a maximum around the Gamow
energy
Eq ~ 1 MeVm, /m,,
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A femtosecond neutron source?

o N

. use the ion bunches to drive beam fusion
reactions to produce neutrons.

# Fusion rate (two-beam scheme): R = nino{ov) /(1 + d12)
#® 11, no may have solid-density values

® Cross-section has a maximum around the Gamow
energy
Eq ~ 1 MeVm, /m,,

= One may obtain a significant neutron yield within the
bunch duration ~ 1 fs.
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Proposed Schemes: DT, DD
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fD+T—>Oz—|—n

Double layer
target:
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Proposed Schemes: DT, DD
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fD+T—>Oz—|—l’1

Double layer
target:

1D PIC
simulation

(1019 W/cm?,
15 fs pulse)
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Proposed Schemes: DT, DD

D+D —3He+n T
Thin foil -
target, —
two-side
irradiation:

fD—I—T—>Oz—|—n

Double layer
target:

laser

1D PIC
simulation

(1019 W/cm?,
15 fs pulse)

> 10% neutrons/J in 7, ~ 2 fs



Proposed Schemes: DT, DD

fD—I—T—>Oz—|—n

Double layer
target:

1D PIC
simulation

(1019 W/cm?,
15 fs pulse)

D+D —3He+n

Thin foil - -
target, —
two-side
iIrradiation:

t (fs)

6

D

10 14

|
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Proposed Schemes: DT, DD

fD—I—T—>Oz—|—n

Double layer
target:

1D PIC
simulation

(1019 W/cm?,
15 fs pulse)

Neutron yield (107° em™)

D+D —3He+n T
Thin fOiI laser laser
target, — —
two-side
iIrradiation:

t (fs)
A S S N
) D,
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Proposed Schemes: DT, DD

fD—I—T—>Oz—|—n

Double layer
target:

1D PIC
simulation

(1019 W/cm?,
15 fs pulse)

D+D —3He+n T
Thin fOiI laser laser
target, — —
two-side
iIrradiation:

t (fs)
A S S N
:; T D,
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o N

s A has been observed in the radial
lon acceleration following charge-displacement
self-channeling in underdense plasmas and in
longitudinal ion acceleration by circularly polarized
pulses in overdense plasmas.
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Conclusions
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s A has been observed in the radial
lon acceleration following charge-displacement
self-channeling in underdense plasmas and in
longitudinal ion acceleration by circularly polarized
pulses in overdense plasmas.

# Studying ion acceleration with circular polarization

of the ion acceleration
dynamics: effects due to fast electrons have been
separated from those due to radiation pressure alone

- suggests a of ion acceleration
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Conclusions

-

o A has been observed in the radial

lon acceleration following charge-displacement
self-channeling in underdense plasmas and in
longitudinal ion acceleration by circularly polarized
pulses in overdense plasmas.

Studying ion acceleration with circular polarization

of the ion acceleration
dynamics: effects due to fast electrons have been
separated from those due to radiation pressure alone

suggests a of ion acceleration
Ultrashort ion bunches may allow to bring the duration
of down in the J
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