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Channeling in underdense plasma
The interaction of a
1 ps, 1018 ÷ 1019 W/cm2

pulse with a gas jet
has been investigated
at RAL using the proton
imaging technique
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Simulation of radial ion acceleration
1D electrostatic PIC simulation, cylindrical geometry (r, pr)
External driving force on electrons
Fp = −mec
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1 + a2(r, t) , a2(r, t) = a2
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Comparison with experimental results
The simple 1D
model is used to
simulate the proton
projection images:
very good agree-
ment is found.
2D electromagnetic
PIC simulations also
support the picture.
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Comparison with experimental results
The simple 1D
model is used to
simulate the proton
projection images:
very good agree-
ment is found.
2D electromagnetic
PIC simulations also
support the picture.
The ion spectrum was not measured in the experiment,
but in similar conditions evidence of a tail of MeV ions
was provided:
see e.g. Sarkisov et al, JETP 66, 828 (1997); Fritzler et
al, PRL 89, 165004 (2002).
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Longitudinal Ponderomotive Acceleration

Idea: producing a laser-solid
interaction without fast electrons
Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

For normal incidence, it is the 2ωL
component of the v ×B force.
For circular polarization, the 2ωL
component vanishes; only the
secular component remains

⇒ Ion acceleration is driven directly by
the steady ponderomotive force
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Simulation of longitudinal acceleration

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear
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2D simulations with circular polarization
2D effects such as pulse focusing (→ E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.
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2D simulations with circular polarization
2D effects such as pulse focusing (→ E has a longitudinal
component) as well as the presence of a preplasma do not
compromise ion bunch production.

Simulation parameters (a = 2,
τ = 10TL) and plasma profile
are similar to an experiment at
JAERI [Kado et al., Las. Part.
Beams 24 (2006), in press]
giving preliminar indications of
a collimated ion beam without
fast electrons (H. Daido, private
communication).
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Ion acceleration with by circularly polarized pulses of intensity
IL ∼ 1018 ÷ 1021 W/cm2 on solid targets may have:
- “modest” peak energies (0.1÷ 10 MeV)

- high density (nb = 1021÷23 cm−3)

- good efficiency (' vm/c ∼ 10−2 ÷ 10−1)

- low divergence (∼ 10−2)
Using ultrashort pulses with τL ∼ 5÷ 50 fs may produce
a single bunch with ultrashort duration
(τb ¿ ls/c, can be τb < TL = λL/c)
Experimental investigation seems worth!
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Absorption efficiency: circular vs linear

Ion acceleration with circular
polarization has considerably
high efficiency: 13.7% absorp-
tion for I = 3.5 × 1020 W/cm2,
τL = 86 fs, ne = 1022 cm−3
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Absorption efficiency: circular vs linear

Ion acceleration with circular
polarization has considerably
high efficiency: 13.7% absorp-
tion for I = 3.5 × 1020 W/cm2,
τL = 86 fs, ne = 1022 cm−3

The simulation for same en-
ergy, linear polarization shows
comparable absorption, but
reached later, dependent on
target thickness, and into sev-
eral ion populations
(Silva et al, PRL 92, 015002
(2004).)
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A femtosecond neutron source?

Idea: use the ion bunches to drive beam fusion
reactions to produce neutrons.
Fusion rate (two-beam scheme): R = n1n2〈σv〉/(1 + δ12)

n1, n2 may have solid-density values
Cross-section has a maximum around the Gamow
energy

EG ≈ 1 MeVmr/mp

⇒ One may obtain a significant neutron yield within the
bunch duration ∼ 1 fs .
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D + T→ α + n
Double layer
target: TD
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1D PIC
simulation
(

1019 W/cm2 ,
15 fs pulse)

> 106 neutrons/J in τn ∼ 2 fs

D + D→ 3He + n
Thin foil
target,
two-side
irradiation:

∼ 102 J−1 (CD2) in ' 0.7 fs
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Conclusions

A very similar dynamics has been observed in the radial
ion acceleration following charge-displacement
self-channeling in underdense plasmas and in
longitudinal ion acceleration by circularly polarized
pulses in overdense plasmas.
Studying ion acceleration with circular polarization

- helps the understanding of the ion acceleration
dynamics: effects due to fast electrons have been
separated from those due to radiation pressure alone

- suggests a novel regime of ion acceleration
Ultrashort ion bunches may allow to bring the duration
of fusion neutron sources down in the sub-fs regime
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