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Interaction regime

• Laser pulse: high intensity (IL ≥ 1016 W/cm2),
short duration (τL ≤ 1ps)

• Plasma: overdense (ne ≥ nc ∼ 1021 cm−3),
step boundary (L = nc/|∇ne|@nc ¿ λL)

Laser–Solid Interaction is a
route for laser energy conver-
sion into thermal or suprather-
mal electrons and ions and
into coherent and incoherent
XUV radiation.
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Interaction scenario

We may identify four stages of the interaction:

1. plasma production from fast ionization

2. collisional absorption and plasma heating

3. collisionless absorption of laser energy and electron acceleration

4. electron energy transport and conversion (radiation, ions, fields . . . )
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Stage 1: ionization and plasma production

Field ionization by the laser
pulse is “instantaneous” (faster
than an optical cycle) when the
laser field exceeds the atomic
field (“barrier suppression” ion-
ization):

EL > e/r2
B = 5.1×109 V cm−1 ⇒ IL > 3.5×1016 W cm−2

Oscillating free electrons contribute to collisional ionization (quiver
energy Eosc ' 6 keV at ILλ2

L = 3.5× 1016 W cm−2µm2).
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The fields in the plasma

Ionization of outer electrons is enough to make ωp > ω for any
solid target.The plasma dielectric function becomes negative:

ε(ω) = 1− ω2
p

ω2
= 1− ne

nc
< 0

As a first step, the fields in
the plasma can be found from
Fresnel formulas with refrac-
tive index n =

√
ε(ω).

|E|2 ne

∼ e−x/ls

ls ' c/ωp

5



Fresnel formulas for p–polarization



Fresnel formulas for p–polarization

n = 1− ω2
p/ω2 < 0 (ωp =

√
4πnie2/me)

Bz(x, t) = Bz(0+)eiky sin θ−x/lp−iωt + c. c.,

Ey(x, t) = −iωlp
c

Bz(0+)eiky sin θ−x/lp−iωt + c. c.,

Ex(x, t) =
(

ωlp
c

)2

sin θBz(0+)eiky sin θ−x/lp−iωt + c. c.,

lp =
c

ωp

(
cos θ(1− ω2 cos2 θ/ω2

p)
)−1/2

,

Bz(0+)
Bz,i

=
2n2 cos θ√

n2 − sin2 θ + n2 cos θ
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The forces on the plasma

In addition to the electric force at frequency ω, the force at the
plasma surface has a magnetic component at frequencies 0 and
2ω:

F = −e( E︸︷︷︸
ω

+v ×B︸ ︷︷ ︸
0ω+2ω

)

The 0ω term corresponds to radiation pressure
[total pressure: P = (1 + R)I/c]

ne

x
y

θ
F

k

It turns out that the dynamics at the plasma
surface is dominated by the force component
normal to the surface. The latter strongly
depends on polarization and incidence angle.
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An useful trick: the boosted frame

For planar geometry, the 2D problem of oblique incidence can be always
reduced to a 1D problem of normal incidence by a Lorentz boost along the
surface:β = βŷ, β = sin θ[Bourdier, 1980].

k′y = γ[ky − (ω/c)β] = γ(ω/c)(sin θ − sin θ) = 0,

k′x = kx = k cos θ = k/γ , ω′ = γ(ω − kyβ) = ω/γ,

E′
x = γ(Ex + βBz) = γE(sin θ − sin θ) = 0 , E′

y = Ey , B′
z = Bz/γ.

Transformation of the electric force component normal to the surface:

Fx = −eEx → F ′x = −e(v′ ×B′)x ' −ecβB′
z

This technique is very convenient for analytical and numerical modelling.
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Stage 2: collisional absorption and thermalization

As soon as electrons are created ionised the laser pulse energy is absorbed
by electron–ion (e–I) collisions (inverse bremsstrahlung) and thermalizes by
e–e collisions.

Rule of thumb to derive collision frequency νc:

σc ≈ πb2; Z1Z2e
2/b ≈ mv2; νc = nσcve ≈ 4πnZ2

1Z2
2e4

m2v3

e–e: Z1,2 = −1, n = ne, m = me/2; e–I: Z1 = Z, Z2 = −1, n = ni, m = me

Exact result: multiply by
√

6 ln(bmax/bmin).

Effective dielectric function becomes (Drude’s model)

ε(ω) = 1− ω2
p

ω(ω + iνc)
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Inverse Bremsstrahlung

The rate of IB absorption νIB is estimated by equating the absorbed laser
power density to the oscillation (“quiver”) energy density absorbed via
collisions:

νIBε(ω)
E2

L

4π

.= νeI
me

2
nev

2
osc = νeImene

(
eEL

meω

)2

νIB ≈ νeI
ne

nc

(
1− ne

nc

)−1/2

(ne/nc = ω2
p/ω2)

If the absorbed energy does not thermalizes quickly, the distribution function
is depleted of slow electrons→ kinetic saturation of IB absorption (Langdon
effect, 1980).
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Stage 3: collisionless absorption

The collision frequency and the IB rate drop with increasing Te and/or laser
intensity IL (runaway effect):

νeI ∼ v−3
e ; ve ≈ max(vth, vosc) ; vth ∼ T 1/2

e ; vosc ∼ (ILλ2
L)1/2

⇒ at high irradiances absorption is dominated by collisionless processes.

Weak absorption dependence
on target material
[Price et al, PRL 75, 252 (1995)].
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Where does absorption come from?

Poynting’s theorem ⇒ the net energy absorption per unit volume and per
cycle is given by 〈J ·E〉⇒ the phase shift between J and E must be 6= π/2.

For an ideal, “fluid” plasma J = iω2
p/ωE ⇒ 〈J ·E〉 = 0.

In the absence of collisions, absorption can be due only to:

- mode conversion (i.e. linear or nonlinear excitation of waves)

- kinetic effects (the distribution function is modified leading to a different
phase between J and E.
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Some general relations

Poynting’s theorem in 1D yields (neglecting field generation)

∂xS + JxEx + JyEy = 0

From 4πJx + ∂tEx = 0 one obtains JxEx = −∂tE
2
x/8π.

For periodic, steady–state fields 〈JxEx〉 = 0.

All steady–state absorption in 1D comes from 〈JyEy〉.
This constraint may be however violated: non–steady state effects, aperiodic
motion, 2D effects,. . .
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What is the absorption mechanism?

The solution of the Vlasov-Maxwell system should in principle
contain all effects leading to absorption.

Vlasov simulations (1D)
[Ruhl & Mulser, Phys. Lett. A 205 (1995) 388].

Absorption scaling with laser and target
parameters (e.g. IL, ne, L = ne/|∇ne|,
incidence angle θ, . . . ) is complex due
to the overlap and competition of several
processes,e.g.:

• resonance absorption
• anomalous skin effect
• vacuum heating . . . and more. . .
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the plasma boundary and
move non–adiabatically
into the evanescent field

Vacuum heating: elec-
trons cross the plasma
boundary and return with
high velocity
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Linearized 1D Poisson–Euler system with external field Ed (“capacitor”
model):

∇ ·E = −4πe(ne − n0) ≡ −4πeδne,

∂tδne = −∇ · (nev) ' −n0∇ · v − v · ∇n0,

me(∂t − v · ∇)v ' me∂tv = −e(E + Ed).

δne =
1

4πe

∇n0 · (E + Ed)
n0 − nc

(nc = ω2/4πe2).

Resonance at ne = nc (requires: ∇n0 ·Ed 6= 0).
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Schematic of resonance absorption

Oblique incidence, p–polarization, and “gentle” gradients,
i.e. L À (λ , vosc), are required.
The laser field is evanescent at x = xc⇒ optimal absorption angle
depends on density gradient L: sin θo ' 0.8(c/ωL)1/3.
In a warm plasma, the plasma oscillation propagates in the ne < nc

region and can accelerate electrons.
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Vlasov simulation of resonance absorption

Numerical solution of the Vlasov-Poisson system within the ca-
pacitor approximation (uniform Ed)

ne, Ex fe(x, px)

ωt = 28π “Linear” stage: a resonantly excited

plasma wave propagates towards the low

density or “underdense” region (ωp <

ω) region. Electrons are accelerated by

the wave field.

ωt = 40π “Nonlinear” stage: the plasma density

profile is strongly modified. Additional

fast electrons bunches are generated at

resonance and propagate into the over-

dense plasma (ωp > ω).

A. Macchi and H. Ruhl, GSI Report, Darmstadt, 2000
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“2ω” resonance absorption

At normal incidence (θ = 0), a longitudinal, electrostatic oscilla-
tion can be driven by v×B force at 2ω along x̂ even for step–like
density gradients (L = 0).

(v ×B)(2ω)
x =

e2EL(0)2

2mec2ls
e−2x/ls−2iωt

For ne < 4nc, the oscilla-
tion propagates as a plasma
wave with maximum ampli-
tude when
2ω =

√
ω2

p + 4v2
th/l2s ' ωp.

|E|2
ne-

-� 2ω
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The anomalous skin effect

In a plasma in thermal equilibrium when vth/ω > c/ωp,

(being vth =
√

Te/me)
the conductivity becomes non–local.

In such conditions the local phase between J and E may be different from
π/2 → 〈J ·E〉 6= 0.

The above condition also states that electrons cross the skin layer in a time
shorter than the field period T = 2π/ω: their motion is thus non–adiabatic.

[E. S. Weibel, Phys. Fluids 10, 741 (1967)].
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Theory of the anomalous skin effect

Boltzmann–Vlasov and Maxwell’s equations are solved in 1D
(normal incidence assumed for simplicity):

∂tf + vx∂xf − e

me

(
E +

v
c
×B

)
· ∂vf = −ν(f − FM),

∂xEy = i
ω

c
Bz , ∂xBz = −4π

c
jy .

(FM : Maxwell distribution)

Specular reflection at x = 0 is assumed:
f(x = 0, vx, vy) = f(x = 0,−vx, vy)
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Anomalous skin effect absorption

Absorption degree Aabs and extinction length ls in the limit ls ¿ vth/ω:

Pabs =
∫ +∞

−∞
dx〈JyEy〉 ≡ Aabs(c|EL|2/4π)

Aabs =
8

3
√

3

(
vth

c

ω2
L

ω2
p

)1/3

, ls =
(

c2vth

ω2
pωL

)1/3

.

ASE + simple diffusion model for heat losses [i.e. Te = Te(t)] explains well
absorption data by Price et al. in solid target at I ≤ 1018 W cm−2.
[Rozmus et al, Phys. Plasmas 3, 360 (1996)]
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On the boundary conditions

When is it correct to assume electron reflection at the plasma
surface?

For a step–density, warm plasma in
equilibrium, the Debye sheath field Es

confines electrons:

{ −eneEs −∇neTe = 0
∂xEs = 4πe(ni − ne)

→ Es ≈ Te

eλD

In an external field Ed, electrons are reflected from the sheath if
vosc = eEd/meω < vth.
Since the sheath is very thin (≈ λD) , Es ∼ δ(x) may be assumed
(reflecting boundary).
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From skin effect to “vacuum heating” absorption

The regime vosc < vth corresponds to skin absorption.

When vosc > vth, electrons are dragged into vacuum
→ vacuum heating absorption [Brunel 1987].

For a p–polarized laser pulse at oblique incidence

Ed ∼ (ω/ωp)EL → I/c > neTe

for VH absorption. (Radiation pressure exceeds plasma pressure).

At normal incidence, the v ×B force may drive VH.
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Simple electrostatic model of “Vacuum heating”

When vosc = eEd/meω > vth, cold fluid equations may be used for
modelling of the plasma in a strong external field Ed = Ed0 cos ωt.

Euler–Poisson 1D system (“capacitor” model):



4πjx = ∂tEe ,
∂xEx = 4πe(n0 − ne) ,

dvx
dt = − e

me
(Ee + Ed).

+ Lagrangian coordinates:
x = x0 + ξ(x0, t) , ∂tξ = vx

⇒ d2ξ

dt2
=

{ −ω2
pξ − eEd/me (x0 + ξ > 0)

+ω2
px0 − eEd/me (x0 + ξ < 0)

Electrons crossing the surface towards vacuum (x0 + ξ < 0) feel a
discontinous force with an effective secular acceleration ω2

px0.
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“Vacuum heating” or interface phase mixing

Numerical solution of the equation of
motion in Lagrangian coordinates:

d2ξ

dt2
=

{ −ω2
pξ − eEd/me (x0 + ξ > 0)

ω2
px0 − eEd/me (x0 + ξ < 0)

An irregular aperiodic motion is observed with electrons re–entering
the plasma with energy ≈ the oscillation energy in vacuum.
Electron pulses (“jets”) are produced with the frequency of Ed:
– ω = ωL for oblique incidence, p–polarization (Ed ∼ EL sin θ),
– ω = 2ωL otherwise (Ed ∼ (v ×B)x).
Similar behavior is observed in fully self–consistent PIC simulations.
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The “moving mirror”

In the regime I/c > neTe, the whole density
profile is modified by the laser force:the critical
surface oscillates at ω or 2ω (depending on angle
and polarization)

ne

x
y

θ
F

k

→ “moving mirror” effect: generation
of high harmonics 3ω, 4ω, . . . , nω . . .

nω
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Beyond 1D effects

What happens in 2D (or 3D)?

• 2D mode conversion: surface waves

• Profile modification by ponderomotive hole boring

• Surface instabilities and corrugations

• Magnetic collimation of “fast” electrons

• . . .
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A step–boundary, overdense plasma supports
surface waves: ε1 < |ε2| ε2 < 0

ε2 = 1− ω2
p

ω2 = 1− ne
nc

< −1 if n0 > 2nc

Ey = E0
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e
iky−iωt

Bz =
iω
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e−q+x

q+

#
e

iky−iωt

δne = ηeδ(x)eiky−iωt
1/
√

2

k2 =
ω2

c2

ε1|ε2|
|ε2| − ε1

=
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Surface wave absorption II

Linear mode conversion of the laser pulse into a SW at a plane vacuum–
plasma interface requires ωL = ωs, kL sin θ = ks where kL = ωL/c
(L →laser, s →SW).

For SWs ωs < ksc−→ phase matching is not possible!

Structured targets are required, e.g. grating targets:

kL sin θ = ks + kg (kg: grating wavevector)

Peak absorption occurs at optimal incidence angle sin θ = ks(ωL)+kg

ωL/c
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Two–surface wave decay

In nonlinear mode conversion, e.g. a
three-wave process, phase matching at
a planar surface is possible

k+

k−
ω0 = ω+ + ω−
k0 = k+ + k−
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One expects ω0 = ωL,
k0 = kL sin θ → ω± = ωL/2±δω

However, also the v×B force at
2ωL may drive TSWD at normal
incidence: k+ = −k−, ω± = ωL.
[Macchi et al, PRL 87, 205004 (2001);

Phys. Plasmas 9, 1704 (2002).]
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2D Simulations for s-polarization and normal laser incidence show the
generation of a standing surface wave:evidence of a “2ω → ω + ω” TSWD
pumped by the v ×B force at 2ω.
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“Funneling” and focusing of fast electrons

2D Vlasov simulations [Ruhl, Macchi et al, PRL 82, 2095 (1999)]

The radiation pressure
modifies the plasma pro-
file (hole boring).

A time–dependent, in-
creasing absorption is
found.

The fast electrons are fo-
cused by the deformed
surface (“funnel effect”)
and collimated by self–
generated magnetic fields.

Pioneering numerical work: Wilks et al, PRL 1992.
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Filaments and corrugations

ni

Bz

PIC simulations by H. Ruhl,

in Mulser et al., Las. Phys (1999).

- breakup of electron current into
many filaments

- filament size scales with laser
wavelength

- spatial correlation with surface
corrugations
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“Moving mirror” disruptions: electron surface
instabilities?

ω, 2ω

ω

ω, 2ω, 3ω,
. . . , nω,. . .Experiments at high intensity show

the onset of surface corrugations in
a very short time (≤ 30 fs).
This is too fast for Rayleigh–Taylor–
like instabilities with
ΓRT '

√
kRTg ' (400 fs)−1

for 2π/kRT ' λL = 1 µm
(even if g ' 1020 cm/s2 !)
⇒ the mechanism must be of elec-
tronic nature.
The effect is detrimental to high har-
monic generation from “moving mir-
rors”.
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Fast electron transport

The current jf of “fast” electrons entering the target is huge:

Laser irradiance Iλ2 = 1018 − 1020 W cm−2µm2 i.e. a0 = 0.85− 8.5

Energy per electron Ef ≈ (
√

1 + a2
0 − 1)mec

2 ' 150 keV− 3.8 MeV

Flux energy balance: AfIL = nfEfvfwith absorption Af ≈ 10% yields

nf ≈ 1.8× 1020 − 5× 1020 cm−3 , jf ≈ 3.7× 1011 − 2.4× 1012 A cm−2

Over a focal spot with radius rs ' 5µm, If ≈ 2.9× 105 − 1.8× 106 A

⇒ current neutralization by “background” electrons is needed to avoid
“self-stopping” by associated electric and magnetic fields.
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Current neutralization

Neutralization of the “fast” electron current jf by a current js of “slow”
background electrons within a time:

τc ≈
{

νeI/ω2
p (collisional plasma),

1/ωp (collisionless plasma)

Typically τc < 1 fs when ns ≥ 1022 cm−3 À nf .

The equilibrium condition of opposite, neutralizing currents jf = −js is
however affected by instabilities and additional effects.
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Resistivity effects

“Fast” electrons (energy > 100 keV) penetrating into a solid material
(n ≈ 1023cm−3) are not significantly stopped by collisions (τs > 1 ps,
ls > 100 µm).

The “return” current of slow, collisional electrons depends on the material
via Ohm’s law: js = σsE = E/ηs.

The field E has a slowing effect for fast electrons⇒ collisions affect fast
electron transport.
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A model for electrostatic inhibition

[Bell et al.,Plasma Phys. Contr. Fusion 39, 653 (1997)]

Boltzmann electrostatic equilibrium
nf = n0 exp(eΦ/Tf)
+ jf = −js = −σE
+ Poisson & continuity eqs.
yield diffusion equation :

∂tnf = ∂x

[(
σsTf

nf

)
∂xnf

]

Solutions before and
after the laser pulse
(duration τL):

nf(x, t) =





n0

(
t

τL

)(
x0

x+x0

)2

(t < τL),
2n0x0

π
L(t)

x2+L2(t)
(t > τL).

n0 = (2I2
absτL)/(9eT 3

f σs) ,

x0 = 3T 3
0 σs/Iabs ,

L(t) = x0

�
(t− τL)(5πσsT0)/(3en0x

2
0) + 1

�3/5
.
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Models for field generation

To study fast electron transport, once assigned models for jf (e.g. kinetic,
Fokker–Planck eqs. or Monte Carlo)and js (e.g. Ohm’s law),a model for
quasi–steady fields generation must be taken.

Many transport codes assume ∇ · E = 0, ∂tE ' 0 (i.e. no space–charge
effects), js = E/η and compute fields by

∂tB = ∇× (ηjf) , E = −η[jf − (c/4π)∇×B].

[Sometimes: jf = −js, E = −ηjf .]

Much additional physics is (or should be) inserted: target heating, slow
electron diffusion, ionization, . . .
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Electrothermal instability

[Haines, PRL 47, 917 (1981).]

If the background electrons have a Spitzer–Harm conductivity σ ∼ T
3/2
s , a

transverse modulation of Ts leads to a modulation of σ and thus of js.

Joule heating by js ·E = σE2 increases/decreases where Ts is high/low ⇒
modulation of Ts is increased.

Resulting modulation of j leads to filamentation and generation of B
that enforces instability;magnetic induction generates E that stabilizes long
wavelength modes.

Growth rate γ ≈ (2me/MI)νeI,wavelength λ ≈ (MI/me)1/2`mfp.

(Ion mass appears because Ohmic dissipation is balanced by equipartition to ions.)
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The “Weibel” counterstreaming instability

The fast electron current may penetrate into the target only if almost
exactly balanced by a “slow” return current: nfvf = −nsvs, vf À vs,
nf ¿ vs.

An equilibrium configuration with two electron populations carrying opposite
and neutralizing currents (n1v1 = −n2v2) is unstable due to the magnetic
repulsion of currents; this is a particular case of the Weibel transverse
instability.

The “Weibel” instability has been invoked to explain filamentation of cur-
rents observed in PIC simulations (moderate densities, relativistic electrons,
collisions not important).
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Simple model of transverse “Weibel” instability – I

Equilibrium f0 =
e−v2

y/v2
te

π(v1 + v2)vte
[v2δ(vx − v1) + v1δ(vx + v2)] (1)

Perturbation f(y, vx, vy, t) = f0(vx, v2
y) + f1(vx, vy)e(iky−iωt)

Linearized Vlasov+Maxwell equations

(−iω + ikvy)f1 = e
m

[(
Ex + vy

c Bz

)
∂vx − vx

c Bz∂vy

]
f0,

ikBz = 4π
c Jx − iω

c Ex , −ikEx = iω
c Bz .

Dispersion relation ω = ω(k) (v2
0 = v1v2)

ω2 − k2c2 = ω2
p

(
1 +

v2
0

v2
te

∫
dvy

1√
πvte

e−v2
y/v2

te
kvy

ω − kvy

)
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Long– and short–wavelength limits of ω = ω(k):

ω2 − k2c2 =





ω2
p

(
1 + k2v2

0
ω2

)
(kvy ¿ ω),

ω2
p

(
1− v2

0

v2
te

)
(kvy À ω).

Imaginary root ω = iγ, γ > 0→ unstable branch γ = γ(k)
Range of the unstable wavevectors k2c2 < ω2

p

(
v2
0/v2

te − 1
)

Similar to the Bennett condition for pinch stability (thermal and magnetic

pressures balance each other).

Saturation when B2/8π ≈ nemv2
0/2 (≈ energy equipartition)

[Califano et al. PRE 1998]
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The distribution function (1) is also unstable with respect to
electrostatic, longitudinal perturbations (two–stream instability).
In the relativistic regime (v1 → c) the longitudinal modes are
coupled to the transverse “Weibel” modes for asymmetrical initial
equilibria (v1 6= v2) [Califano et al. PRE 1998].

f(x, y, vx,v⊥, t) = f0(vx, v2
⊥)+f1(vx,v⊥)ei(k‖x+ik⊥r⊥−ωt)

The most unstable wavevector
k = (k‖,k⊥) has k⊥ 6= 0
→ fields structures have finite
length along the beams direction.
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3D fluid simulation of the CF instability

Simulation example:
n1/n2 = 9, v1 = 0.95c, v2 = −0.10556c.
Figure shows isosurfaces of Az (vector potential com-

ponent along beam direction), which is representative of

the magnetic field structure because Bz ¿ (Bx, By)

is found.

3D “bubble–like” magnetic structures are
formed with typical length scales ∼ de = c/ωp.
No extended filaments in beam direction are
observed.
[Simulations by F. Califano;

Macchi et al, Nucl. Fus. 43, 362 (2003)]
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TSWD and fast electron generation

• We have seen that electron heating at a step laser–plasma interface is
dominated by the force component normal to the surface.

• Surface waves excited in “grating” targets have strong normal compo-
nents and affect electron heating
[C. Riconda et al, to appear in PoP]

• The standing SW produced by the TSWD parametric instability may
lead to localized, spatially periodic heating of electrons.

→ We performed test particle simulations of electron motion in the
pump+SW fields involved in TSWD.

48



Set–up of test particle simulations



Set–up of test particle simulations

• Force: superposition of 1D “pump” field ∼ cos 2ωt



Set–up of test particle simulations

• Force: superposition of 1D “pump” field ∼ cos 2ωt
plus 2D standing SW field ∼ sin ωt sin(2πy/λs)



Set–up of test particle simulations

• Force: superposition of 1D “pump” field ∼ cos 2ωt
plus 2D standing SW field ∼ sin ωt sin(2πy/λs)

• Amplitudes: a
(ω)
0 = 0.2, a

(2ω)
0 = 0.019



Set–up of test particle simulations

• Force: superposition of 1D “pump” field ∼ cos 2ωt
plus 2D standing SW field ∼ sin ωt sin(2πy/λs)

• Amplitudes: a
(ω)
0 = 0.2, a

(2ω)
0 = 0.019

• Plasma density: ne/nc = ω2
p/ω2 = 5

• Initial spatial distribution: uniform in y along one λs length



Set–up of test particle simulations

• Force: superposition of 1D “pump” field ∼ cos 2ωt
plus 2D standing SW field ∼ sin ωt sin(2πy/λs)

• Amplitudes: a
(ω)
0 = 0.2, a

(2ω)
0 = 0.019

• Plasma density: ne/nc = ω2
p/ω2 = 5

• Initial spatial distribution: uniform in y along one λs length

• Initial velocity distribution: drifting in x with average vx = −0.1
(particles move from the plasma towards the surface)
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Enhanced acceleration near SW maxima

Top: (y, px) phase space projections
from PIC simulations at two subsequent
times

Bottom: same phase space projection
from test particle simulations
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PIC and test-particle simulations both
show enhanced electron heating near
SW maxima

A. Macchi et al, Appl. Phys. B, in press.
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Enhanced acceleration in time domain

(x, px) phase space
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Black: all electrons in simulation
Blue: electrons starting around
y = λs/4
Red: electrons starting around
y = 3λs/4

– “Jets” are produced at 2ω rate (by v ×B force).

– Enhanced acceleration by SW occurs at ω rate.

– Near SW maxima some electrons are emitted into vacuum (x < 0)
(px modulated by v × B ∼ cos 2kLx in vacuum) 51
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Induced modulation of electron current

The electron current density Je,x is reconstructed from test particle phase
space.
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Je,x is spatially modulated in y with the SW periodicity.

Spatial imprint for current filamentation?
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