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Laser—Solid Interaction is a
route for laser energy conver-
sion into thermal or suprather-
mal electrons and ions and
Into coherent and incoherent
XUV radiation.
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Interaction scenario

We may identify four stages of the interaction:

. plasma production from fast ionization
. collisional absorption and plasma heating
. collisionless absorption of laser energy and electron acceleration

. electron energy transport and conversion (radiation, ions, fields . . .)
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Oscillating free electrons contribute to collisional ionization (quiver
energy Eyse ~ 6 keV at Ip A2 = 3.5 x 106 W cm™*um?).
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The forces on the plasma

In addition to the electric force at frequency w, the force at the
plasma surface has a magnetic component at frequencies 0 and
2w:

F=—-¢_E +vxB)
w Ow—H2w

The Ow term corresponds to radiation pressure
[total pressure: P = (14 R)I/c]

It turns out that the dynamics at the plasma
surface is dominated by the force component
normal to the surface. The latter strongly
depends on polarization and incidence angle.
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An useful trick: the boosted frame

For planar geometry, the 2D problem of oblique incidence can be always
reduced to a 1D problem of normal incidence by a Lorentz boost along the
surface:3 = [y, [ = sin 6[Bourdier, 1980].
k) = ylky — (w/c)) = A(w/c)(sinf — sinf) = 0,
ki, = ks =kcosO=k/v, w=~w-k,p0)=w/,
E, =v(E,+ B.) =vyE(sin —sinf) =0, E, = E,, B, = B. /7.

x

Transformation of the electric force component normal to the surface:
F,=—eE, - F, =—¢e(v' xB'), ~ —ec4B,

This technique is very convenient for analytical and numerical modelling.
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As soon as electrons are created ionised the laser pulse energy is absorbed

by electron—ion (e-l) collisions (inverse bremsstrahlung) and thermalizes by
e—e collisions.

Rule of thumb to derive collision frequency v..:

272 4
o. = b7 Z1Z2e° /b= mu V.= noue &
27,3
m=v
ee Zio=—-1,n=n,m=m./2, el Zy =2, Zy,= -1, n=mn;, m=me

Exact result: multiply by \/gln(bmm/bmm).
Effective dielectric function becomes (Drude’s model)

w2

fw)=1- w(w —fiyc)
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Inverse Bremsstrahlung

The rate of IB absorption v;p is estimated by equating the absorbed laser
power density to the oscillation (“quiver’) energy density absorbed via
collisions:

2
% e(w)—E% Vel 02 Ve MeN ebr
1B = Vel = Vel
47_‘_ € 2 eYosc e e’ve mew
n ne\ H? 5, o
(&2 €
VIB R Ve— (1——) (Ne/Ne = w, /W)
Ne Ne

If the absorbed energy does not thermalizes quickly, the distribution function

is depleted of slow electrons— kinetic saturation of IB absorption (Langdon
effect, 1980).
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Where does absorption come from?

Poynting's theorem =- the net energy absorption per unit volume and per
cycle is given by (J - E)=> the phase shift between J and E must be # 7/2.

For an ideal, “fluid” plasma J = iw’/wE = (J - E) = 0.

In the absence of collisions, absorption can be due only to:

- mode conversion (i.e. linear or nonlinear excitation of waves)

- kinetic effects (the distribution function is modified leading to a different
phase between J and E.
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Some general relations

Poynting’s theorem in 1D yields (neglecting field generation)

0,8 + JyEy + JyE, =0

From 4n.J, + 0,E, = 0 one obtains J,E, = —0;E2 /8.
For periodic, steady—state fields (J,FE,) = 0.

All steady—state absorption in 1D comes from (J,E,)).

This constraint may be however violated: non—steady state effects, aperiodic

motion, 2D effects,. . .
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What is the absorption mechanism?

The solution of the Vlasov-Maxwell system should in principle

contain all effects leading to absorption.

Vlasov simulations (1D)

[Ruhl & Mulser, Phys. Lett. A 205 (1995) 388].
Absorption scaling with laser and target
parameters (e.g. I, ne, L = n./|Vne|,
incidence angle 6, ... ) is complex due
to the overlap and competition of several
processes,e.g.:

e resonance absorption
e anomalous skin effect
e vacuum heating ... and more. . .

big. f Absorpoon wersas angle of oncidence. The pammerers
cimman o the hold corees are 7. o= 1 ke, vin, = 25; the
ather puraroeters T0r theses comaes are TAS = 1% W ems? g’
LS 0 fealidy; P o= 100 Woem P oamd, L5 = 00M6
Cohied dashedt: $4% - 10" W oow & o’ LAA - 0023
Ddushed b The pacaueters comenon o e meal of e lines
are o= I ke¥, o afme = A0 the emaining  parame-
wrs are FA7 = 10 Woem—fum?, LA = W15 fsalidi:
oo oW emTd am?, LA4 = 15 {chained-tiashed );
Faf = 10" W oom 2 am®, L1 =125 (dashed).
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Resonance absorption

It is the mode conversion of the incident EM wave (the laser pulse) into a

plasma wave of the same frequency (w, = wr).

Linearized 1D Poisson—Euler system with external field E; (“capacitor”

model):

V-E = —4re(n, — ng) = —4medn,,
Oone = =V - (nev) ~ —ngV - v — v - Vny,

Me(0y — v - V)vmov =—e(E+ Ey).

4re ng — Ne

OMne =

Resonance at n. = n. (requires: Vng - Eg # 0).

(ne = w?/4me?).
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Schematic of resonance absorption

Oblique incidence, p—polarization, and “gentle” gradients,

i.e. L > (), vosc), are required.

The laser field is evanescent at x = z.= optimal absorption angle
depends on density gradient L:  sin6, ~ 0.8(c/wL)"/3.

In a warm plasma, the plasma oscillation propagates in the n, < n.
region and can accelerate electrons.
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“Linear” stage: a resonantly excited
plasma wave propagates towards the low
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the wave field.
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“2w” resonance absorption

At normal incidence (@ = 0), a longitudinal, electrostatic oscilla-
tion can be driven by v X B force at 2w along x even for step—like

density gradients (L = 0). "
“ 2240k ' /W
(2w) _ € L( ) 6—2x/l5—2zwt |E’2

B
(v xB); 2m.c?l

For n. < 4n., the oscilla-
tion propagates as a plasma
wave with maximum ampli-

tude when
2w = \/wg + 4v?, /12 ~ w,,.
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The anomalous skin effect

In a plasma in thermal equilibrium when vy, /w > ¢/w),

(being Uth = / Te/me)

the conductivity becomes non—local.

In such conditions the local phase between J and E may be different from
/2 = (J-E) # 0.

The above condition also states that electrons cross the skin layer in a time
shorter than the field period T' = 27 /w: their motion is thus non—adiabatic.

[E. S. Weibel, Phys. Fluids 10, 741 (1967)].
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Theory of the anomalous skin effect

Boltzmann—Vlasov and Maxwell's equations are solved in 1D
(normal incidence assumed for simplicity):

8tf+vx0xf—mi(E+%><B) Of = —v(f — Fup),

W 41

(Fy: Maxwell distribution)

Specular reflection at z = 0 is assumed:
flx = O,vx,vy) = f(x =0, vy, Uy)
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Anomalous skin effect absorption

Absorption degree A,;s and extinction length [, in the limit I, < vy, /w:

+00
Pa,bs = / d£13<JyEy> = AabS(C’EL|2/47T)

— 00

o 8 vthw% 1/3 | oy, 1/3
abs 3\/§ c wg ’ s wng .

ASE + simple diffusion model for heat losses [i.e. T, = T¢(t)] explains well
absorption data by Price et al. in solid target at I < 10'® W cm™~.
[Rozmus et al, Phys. Plasmas 3, 360 (1996)]
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On the boundary conditions

When is it correct to assume electron reflection at the plasma
surface?

For a step—density, warm plasma in

equilibrium, the Debye sheath field F
confines electrons:

—en By — Vn 1. =0 N T
0. Fs = 4me(n; — ne) eApD

In an external field E;, electrons are reflected from the sheath if
Vose = eFg/Mmew < Uy,

Since the sheath is very thin (= Ap) , Es ~ §(x) may be assumed
(reflecting boundary).
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From skin effect to “vacuum heating” absorption

The regime v,5. < V45, corresponds to skin absorption.

When v,s. > v4p, electrons are dragged into vacuum
— vacuum heating absorption [Brunel 1987].

For a p—polarized laser pulse at oblique incidence
Eq~ (w/wp)Er, — I/c>nT,

for VH absorption. (Radiation pressure exceeds plasma pressure).

At normal incidence, the v X B force may drive VH.
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Simple electrostatic model of “Vacuum heating”

When v,5. = eEg/mew > vy, cold fluid equations may be used for
modelling of the plasma in a strong external field E; = E 9 cos wt.

Euler—Poisson 1D system ( “capacitor” model):

;WEJ‘T i i;e((i,,; 1) + Lagrangian coordinates:
xr T - 0o — e s
Vg € E E,/’ -CU:.CU—F x,t,a = Vg

PE [ w2~ cEyfm.  (z0+€>0)
= dt2 —I-Cdgﬂﬁo — BEd/me (CEO + &< O)

Electrons crossing the surface towards vacuum (zg + £ < 0) feel a
discontinous force with an effective secular acceleration wgiﬁo.
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“Vacuum heating” or interface phase mixing

Numerical solution of the equation of
motion in Lagrangian coordinates: 3.5

d?

T N

N\

X
<

d?¢ —wt —eEg/me  (x0+ &> 0) 25]
| wpzo —eEq/me  (x0+ £ <0) 20!

-0.8 -0.6 -0.4 0.2 0.0 02 04

x/ycq

An irregular aperiodic motion is observed with electrons re—entering

the plasma with energy =~ the oscillation energy in vacuum.

Electron pulses (“jets”) are produced with the frequency of Fy:
— w = wy, for oblique incidence, p—polarization (E4 ~ Ep sin ),

— w = 2wy, otherwise (F4 ~ (v x B),).

Similar behavior is observed in fully self-consistent PIC simulations.
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The “moving mirror”

In the regime I/c > n.I., the whole density
profile is modified by the laser force:the critical
surface oscillates at w or 2w (depending on angle
and polarization)

— “moving mirror’ effect: generation
of high harmonics 3w, 4w, ..., nw . ..
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Beyond 1D effects

What happens in 2D (or 3D)?

2D mode conversion: surface waves
Profile modification by ponderomotive hole boring
Surface instabilities and corrugations

Magnetic collimation of “fast” electrons
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Surface waves

A step—boundary, overdense plasma supports

surface waves:
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Surface wave absorption ||

Linear mode conversion of the laser pulse into a SW at a plane vacuum-
plasma interface requires wy = ws, kr sinf = ks where kp = wp/c
(L —laser, s —SW).

For SWs w, < ksc—— phase matching is not possible!
Structured targets are required, e.g. grating targets:

krsin = ks + ki (k4o grating wavevector)

ks(wr)+kg
wL/c

Peak absorption occurs at optimal incidence angle sinf =
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Two—surface wave decay

In nonlinear mode conversion, e.g. a
three-wave process, phase matching at
a planar surface is possible

Wy = W4 + w—

ko =ky +k_

One expects wg = wy,,
ko =krsin — wi = wp /240w

However, also the v x B force at
2wy, may drive TSWD at normal
incidence: kL = —k_, wy = wr.
[Macchi et al, PRL 87, 205004 (2001);
Phys. Plasmas 9, 1704 (2002).]
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Numerical observations: “v x B”—-driven TSWD

2D Simulations for s-polarization and normal laser incidence show the
generation of a standing surface wave:evidence of a 2w — w + w" TSWD
pumped by the v x B force at 2w.
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Filaments and corrugations

8 T - breakup of electron current into
ez many filaments
M, _ filament  size scales with laser
T/ um

wavelength

y/um

- spatial correlation with surface
corrugations

PIC simulations by H. Ruhl,
in Mulser et al., Las. Phys (1999).
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“Moving mirror”’ disruptions: electron surface

instabilities?

Experiments at high intensity show
the onset of surface corrugations in
a very short time (< 30 fs).

This is too fast for Rayleigh—Taylor—
like instabilities with

I'er ~ VkrpTg ~ (400 {:S)_1

for 2w /krr ~ A, = 1 pum

(even if g ~ 1020 cm/s” 1)

= the mechanism must be of elec-
tronic nature.

The effect is detrimental to high har-
monic generation from “moving mir-
rors .

w, 2w, 3w,
L, !
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Fast electron transport

The current j of “fast” electrons entering the target is huge:
Laser irradiance IA% = 108 — 102 W cm™ “um? i.e. ag = 0.85 — 8.5
Energy per electron £ ~ (1/1 + a2 — 1)m.c? ~ 150 keV — 3.8 MeV

Flux energy balance: A¢I;, = nEsvswith absorption Ay ~ 10% yields

ng 1.8 x 102 —5x 102 em™3, j; ~ 3.7 x 10" —2.4 x 10" A cm™?

Over a focal spot with radius 75 ~ 5um, Iy &~ 2.9 x 10° — 1.8 x 10° A

= current neutralization by “background” electrons is needed to avoid
“self-stopping” by associated electric and magnetic fields.
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Current neutralization

Neutralization of the “fast” electron current j; by a current js; of “slow”
background electrons within a time:

| ver/w?  (collisional plasma),
e~ 1/w, (collisionless plasma)

Typically 7. < 1 fs when ng > 10*2 cm™3 > ny .

The equilibrium condition of opposite, neutralizing currents j; = —js is
however affected by instabilities and additional effects.
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Resistivity effects

“Fast” electrons (energy > 100 keV) penetrating into a solid material
(n &~ 10*3cm™—3) are not significantly stopped by collisions (7, > 1 ps,
ls > 100 pum).

The “return” current of slow, collisional electrons depends on the material
via Ohm's law: js = o, E = E/n;.

The field E has a slowing effect for fast electrons=- collisions affect fast
electron transport.
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A model for electrostatic inhibition

[Bell et al.,Plasma Phys. Contr. Fusion 39, 653 (1997)]

Boltzmann electrostatic equilibrium
ns = ngexp(e®/Ty)

+jf:_js:_0E o O'STf
+ Poisson & continuity egs. Oing = Oy [( Oy

nyg
yield diffusion equation :
Solutions before and . %0 )2
— t
after the laser pulse ns(z,t) = 7;0 (TL L(ta):+xo (t <711),
(duration 77,): s 10 (t > 1L).

no = (QIsbSTL)/(QeT]‘?JS) ,
rog — 3T(§))O-S/Iabs )

L(t) = zo [(t — 71)(5rosTy) /(3enoxy) + 1]3/5.
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Models for field generation

To study fast electron transport, once assigned models for j¢ (e.g. kinetic,
Fokker—Planck egs. or Monte Carlo)and js (e.g. Ohm's law),a model for
quasi—steady fields generation must be taken.

Many transport codes assume V - E = 0, 9,E ~ 0 (i.e. no space—charge
effects), js = E/n and compute fields by

OB =V x (nj;) . B=—nli;—(c/4m)V x BI.

[Sometimes: j; = —js, E = —nj;.]

Much additional physics is (or should be) inserted: target heating, slow
electron diffusion, ionization, . . .
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Electrothermal instability

[Haines, PRL 47, 917 (1981).]

If the background electrons have a Spitzer—Harm conductivity o ~ TSB/Q, a

transverse modulation of T leads to a modulation of o and thus of j,.

Joule heating by j, - E = 0 E? increases/decreases where T, is high/low =
modulation of 7 is increased.

Resulting modulation of j leads to filamentation and generation of B
that enforces instability;magnetic induction generates E that stabilizes long
wavelength modes.

Growth rate v ~ (2m./Mj)v.;,wavelength A\ ~ (M7/m.)/ %4, ¢,

(lon mass appears because Ohmic dissipation is balanced by equipartition to ions.)
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The “Weibel” counterstreaming instability

The fast electron current may penetrate into the target only if almost
exactly balanced by a “slow” return current: nfvy = —ngvs, vy > v,
ny < Vs.

An equilibrium configuration with two electron populations carrying opposite
and neutralizing currents (n1v; = —novs) is unstable due to the magnetic
repulsion of currents; this is a particular case of the Weibel transverse
instability.

The “Weibel” instability has been invoked to explain filamentation of cur-
rents observed in PIC simulations (moderate densities, relativistic electrons,
collisions not important).
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Equilibrium =
q Jo (V1 4 Vo) Uge
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Simple model of transverse “Weibel” instability — |

2,2
e—'Uy/’Ute

Equilibrium fy = (020 (v, — v1) + V10 (v + v2)] (1)

(V1 4 Vo) Uge

Perturbation  f(y, Vs, vy, t) = fo(vx,vi) 4+ fl(vx,vy>6(iky—iwt)

Linearized Vlasov+Maxwell equations

(—Zu) -+ ’I,]f’Uy)fl = % [(E;c -+ U_Csz) afux - %Bzavy} f07
ikB, = **J, —i%E,, —ikE, =1“B,.

Dispersion relation w = w(k) (v5 = v1v2)

2
2 2 2 2 Yo L 22 kvy
— k = 1+ —=- [ dv e Tyl Vte
“ © =% ( * vfe/ Y VTV W — kvy>
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2 k2’U8 k'
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Long— and short-wavelength limits of w = w(k): o025

0.20;

9 k2o? S o5

S s ws (1—|— — ) (kvy < w), = ol

w* — ke = 2 U(% 0055—
0 1 2 3 4

ke/w,

Imaginary root w = iy, > 0— unstable branch v = (k)

Range of the unstable wavevectors k*c? < w2 (vg/vE, — 1)

Similar to the Bennett condition for pinch stability (thermal and magnetic
pressures balance each other).

Saturation when B?/8m ~ n.muvé/2 (~ energy equipartition)
[Califano et al. PRE 1998]
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Generalized 3D current filamentation instability

The distribution function (1) is also unstable with respect to
electrostatic, longitudinal perturbations (two—stream instability).
In the relativistic regime (v; — c¢) the longitudinal modes are
coupled to the transverse “Weibel” modes for asymmetrical initial
equilibria (v # wv9) [Califano et al. PRE 1998].

f(aj’y’UCE’VJ-’t) — fO(UxaUi)—'_fl(vxaVJ_)Gi(k”x—'_ikJ-rJ-_wt)

0.20 0.25

The most unstable wavevector
k = (/CH,kJ_) has £k, #0 "l
— fields structures have finite
length along the beams direction.
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3D fluid simulation of the CF instability

Simulation example:

ni/ne =9, v1 = 0.95¢, vo = —0.10556¢.
Figure shows isosurfaces of A, (vector potential com-
ponent along beam direction), which is representative of
the magnetic field structure because B, < (Bg, By)
is found.

3D “bubble-like” magnetic structures are
formed with typical length scales ~ d. = c/w,,.
No extended filaments in beam direction are
observed.

[Simulations by F. Califano;

Macchi et al, Nucl. Fus. 43, 362 (2003)]

47



TSWD and fast electron generation



TSWD and fast electron generation

e We have seen that electron heating at a step laser—plasma interface is
dominated by the force component normal to the surface.



TSWD and fast electron generation

e We have seen that electron heating at a step laser—plasma interface is
dominated by the force component normal to the surface.

e Surface waves excited in “grating” targets have strong normal compo-
nents and affect electron heating



TSWD and fast electron generation

e We have seen that electron heating at a step laser—plasma interface is
dominated by the force component normal to the surface.

e Surface waves excited in “grating” targets have strong normal compo-
nents and affect electron heating

[C. Riconda et al, to appear in PoP]



TSWD and fast electron generation

e We have seen that electron heating at a step laser—plasma interface is
dominated by the force component normal to the surface.

e Surface waves excited in “grating” targets have strong normal compo-
nents and affect electron heating
[C. Riconda et al, to appear in PoP]

e The standing SW produced by the TSWD parametric instability may
lead to localized, spatially periodic heating of electrons.



TSWD and fast electron generation

We have seen that electron heating at a step laser—plasma interface is
dominated by the force component normal to the surface.

Surface waves excited in “grating” targets have strong normal compo-
nents and affect electron heating
[C. Riconda et al, to appear in PoP]

The standing SW produced by the TSWD parametric instability may
lead to localized, spatially periodic heating of electrons.

We performed test particle simulations of electron motion in the
pump—+SW fields involved in TSWD.
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Set—up of test particle simulations

Force: superposition of 1D “pump” field ~ cos 2wt
plus 2D standing SW field ~ sinwt sin(2wy/\s)

Amplitudes: agw) = 0.2, a(()zw) = 0.019
Plasma density: n./n. = w./w?* =5

Initial spatial distribution: uniform in y along one A length

Initial velocity distribution: drifting in & with average v, = —0.1
(particles move from the plasma towards the surface)
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Top: (y,p:) phase space projections
from PIC simulations at two subsequent
times

Bottom: same phase space projection
from test particle simulations

PIC and test-particle simulations both
show enhanced electron heating near
SW maxima

A. Macchi et al, Appl. Phys. B, in press.
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Enhanced acceleration near SW maxima

Top: (y,p:) phase space projections
from PIC simulations at two subsequent
times

Bottom: same phase space projection
from test particle simulations

PIC and test-particle simulations both
show enhanced electron heating near
SW maxima

A. Macchi et al, Appl. Phys. B, in press.
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Enhanced acceleration in time domain

t=6 E0 =0.019 a,= 0.2

- all
. Y, O34

0.3
A D)\S/4

(z,p:) phase space

0.2

Black: all electrons in simulation

Blue: electrons starting around - |

y = As/4 Nl A
Red: electrons starting around /m
y — 3A8/4 _0.2?.:' :'; ,\:‘

— “Jets” are produced at 2w rate (by v x B force).
— Enhanced acceleration by SW occurs at w rate.

— Near SW maxima some electrons are emitted into vacuum (x < 0)

(p, modulated by v X B ~ cos 2kpx in vacuum) 51
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Induced modulation of electron current

The electron current density J. , is reconstructed from test particle phase
space.
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Je o 15 spatially modulated in y with the SW periodicity.

Spatial imprint for current filamentation?
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