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Ion acceleration: rear vs. front side

There is now direct evidence of rear side acceleration
(RSA) by sheath electric fields generated by fast
electrons expanding in vacuum:
L. Romagnani et al., PRL 95, 195001 (2005)
There are also experimental indications of front side
acceleration (FSA) by possibly more than one
mechanism:

- acceleration by (collisionless) shock fronts:
Habara et al, PRE 70, 046414 (2004);
Wei et al, PRL 93, 155003 (2004)

- “skin-layer ponderomotive acceleration”:
Badziak et al, PPCF 46, B541 (2004)
What is the role of fast electrons in FSA?
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A simulation example

Interaction starts
generation of ion spikes

+ fast electrons
target heating to ∼MeV
RSA starts
multiple ion spikes, FSA

RSA & FSA coexist
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Switch fast electrons off

Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

For normal incidence, it is the 2ωL
component of the v ×B force.
For circular polarization, the 2ωL
component vanishes; only the
secular component remains
(radiation pressure).
Does ion acceleration occur for circu-
lar polarization, and how does it look
like?
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Switch fast electrons off

Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.
For normal incidence, it is the 2ωL
component of the v ×B force.
For circular polarization, the 2ωL
component vanishes; only the
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Ion bunches

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear

ICFA workshop, Taipei, December 2005 – p.7/28



Ion bunches
1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, ne0/nc = 5.

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear

ICFA workshop, Taipei, December 2005 – p.7/28



Ion bunches
1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, ne0/nc = 5.

interaction starts

electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear

ICFA workshop, Taipei, December 2005 – p.7/28



Ion bunches
1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, ne0/nc = 5.

interaction starts
electrostatic field created

ion profile driven to
“breaking”
ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear

ICFA workshop, Taipei, December 2005 – p.7/28



Ion bunches
1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, ne0/nc = 5.

interaction starts
electrostatic field created
ion profile driven to

“breaking”

ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear

ICFA workshop, Taipei, December 2005 – p.7/28



Ion bunches
1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, ne0/nc = 5.

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears

electron energy ∼ keV
secondary bunches may

appear

ICFA workshop, Taipei, December 2005 – p.7/28



Ion bunches
1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, ne0/nc = 5.

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV

secondary bunches may
appear

ICFA workshop, Taipei, December 2005 – p.7/28



Ion bunches
1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, ne0/nc = 5.

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear

ICFA workshop, Taipei, December 2005 – p.7/28



Ion bunches
1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, ne0/nc = 5.

interaction starts
electrostatic field created
ion profile driven to

“breaking”
ion “bunch” appears
electron energy ∼ keV
secondary bunches may

appear

ICFA workshop, Taipei, December 2005 – p.7/28



Simple model - I

Assume simple profiles . . .
. . . which crudely approximate
“real” ones
ion profile is compressed
“breaking” at the time when
all ions reach the
evanescence point
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Simple model - II

Input parameters d, E0, np0 are related by the Poisson
equation and the constraints of charge conservation
and total radiation pressure Prad = 2IL/c:
E0 = 4πen0d , n0(d+ ls) = np0ls ,

1

2
eE0np0ls ' 2

cIL

Equations of motion are easily solved to yield maximum
ion velocity and breaking time, assuming ls ' c/ωp:

vm = 2c
√

Z
A
me

mp

nc

ne
aL τi ' TL

1

2πaL

√

A
Z
mp

me
.

The average ion front velocity vf = vm/2 is the “hole
boring” speed.

! To be NOT confused with shock acceleration!
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Model evaluation
The model is very simple , however, when compared
to simulations, it gives:
- a correct scenario of the dynamics
ion bunch formation
- a good scaling for the maximum ion
velocity vm vs. intensity and density
- fair estimates for the acceleration
time (τi), the number of accelerated
ions (ni0ls), and the conversion effi-
ciency ∼ vm/c.
Other simulation features (e.g. non-white spectrum)
are understood on a qualitative basis.
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Two-dimensional simulations
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Two-dimensional simulations
In 2D simulations, the laser pulse profile imposes a
smooth transverse modulation

laser pulse target
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Two-dimensional simulations
In 2D simulations, the laser pulse profile imposes a
smooth transverse modulation

t = 16: surface compression

t = 25: ion bunch formed
t = 34: ion bunch leaves
target

1D scenario & modeling are reliable

Rippling of the laser-plasma interface is weak or absent

ICFA workshop, Taipei, December 2005 – p.11/28



Ion “beam” characteristics

ICFA workshop, Taipei, December 2005 – p.12/28



Ion “beam” characteristics
Ion bunches produced by circularly polarized pulses
(τL ∼ 5÷ 50 fs, IL ∼ 1018 ÷ 1020 W/cm2) may have:

ICFA workshop, Taipei, December 2005 – p.12/28



Ion “beam” characteristics
Ion bunches produced by circularly polarized pulses
(τL ∼ 5÷ 50 fs, IL ∼ 1018 ÷ 1020 W/cm2) may have:

- modest energies (0.1÷ 1 MeV)

ICFA workshop, Taipei, December 2005 – p.12/28



Ion “beam” characteristics
Ion bunches produced by circularly polarized pulses
(τL ∼ 5÷ 50 fs, IL ∼ 1018 ÷ 1020 W/cm2) may have:

- modest energies (0.1÷ 1 MeV)

- high density (nb = 1021÷23 cm−3)

ICFA workshop, Taipei, December 2005 – p.12/28
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Ion bunches produced by circularly polarized pulses
(τL ∼ 5÷ 50 fs, IL ∼ 1018 ÷ 1020 W/cm2) may have:
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Ion “beam” characteristics
Ion bunches produced by circularly polarized pulses
(τL ∼ 5÷ 50 fs, IL ∼ 1018 ÷ 1020 W/cm2) may have:

- modest energies (0.1÷ 1 MeV)

- high density (nb = 1021÷23 cm−3)
- ultrashort duration
(τb ¿ ls/c, can be τb < TL = λL/c)
- low divergence (∼ 4× 10−2)

- good efficiency (' (2/3)vm/c ∼ 10−2)

Are these features useful for some application?

ICFA workshop, Taipei, December 2005 – p.12/28



Application: neutron burst production

Idea: use the ion bunches to drive beam fusion
reactions to produce neutrons.
Fusion rate (two-beam scheme): R = n1n2〈σv〉/(1 + δ12)

n1, n2 may have solid-density values
Approximated cross-section formula (E : c.m.f. energy)

σ ' S0

E e−
√
EG/E

Maximum around the Gamow energy
EG ≈ 1 MeVmr/mp mr = m1m2/(m1 + m2).

⇒ One may obtain a significant neutron yield within the
bunch duration.
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D-T, single bunch scheme
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D-T, single bunch scheme
D + T→ α + n (14 MeV) Double layer target:

TD

laser
Assume lD ' ls for optimal “projectile”
Shortest attainable duration
τn ' lb/vm if lT < lb

Neutron yield estimated analytically
N ' 1.3× 1011 cm−2κ−1ζA(ζ)

ζ ≡
√

Eg/E
(monoenergetic or flat-top spectra)

∼ 108 neutrons in τn ∼ 1.2 fs
at Iλ2 ≥ 1019 W/cm2
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to minimize duration and
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Optimal thickness ` = 2ls

Dynamics of colliding bunches
from PIC simulation:
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D-D, colliding bunches scheme
D + D→ 3He + n (2.45 MeV)

Two-side irradiation
to minimize duration and
maximize the center-of-mass energy
Optimal thickness ` = 2ls

Dynamics of colliding bunches
from PIC simulation:

Thin foil of pure frozen D would
be optimal (low ne/nc ' 40)
but CxDy foil (ne/nc ' 250) is
more realistic
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Ultrashort neutron burst
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Neutron yield vs. intensity
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Neutron yield vs. intensity
Analytical estimate of the neutrons produced
within the ultrashort (τ ' lb/2vm) burst :
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Neutron yield vs. intensity
Analytical estimate of the neutrons produced
within the ultrashort (τ ' lb/2vm) burst :

N ' N0ζM(ζ)

ζ ≡
√

Eg/E

D: N0 ' 2× 108

CD2: N0 ' 3× 107

(neutrons/cm2)

Maximum rate reached in the range IL = 1019 ÷ 1020 W/cm2
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Comparison with other work

Fusion neutrons have been observed in experiments
with “T3”, fs laser systems using solid targets, gas jets,
clusters and microdroplets
(see e.g. Madison et al. [PRA 70, 053201 (2004)] for
partial summary and references)

→ Typical efficiency 103 ÷ 105 neutrons/Joule
→ Duration of neutron emission not measured, but likely to

be of the order of pulse duration
Shen et al. [PRE 71, 015401(R) (2005)] proposed a
double-sided irradiation of a DT foil

→ concept based on foil confinement and thermonuclear
fusion; requires “long” pulses
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Experimental challenges

Apart form the usual “requirements” of high(er)
intensity, short(er) duration, no prepulse . . .
very thin foil target required (' 0.02 µm for “D-D”)
Synchronization of the two pulses is critical to achieve a
sub-fs neutron burst (but the burst duration remains in
the few fs range anyway).
Energy spectrum has to be quasi-monochromatic to
preserve ultrashort duration
Angular spread may lead to low brilliance
Measurement of neutron burst duration is challenging
(indirect measurement via “attosecond spectroscopy”
techniques?)
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Who needs a fs neutron source?

A femtosecond neutron source is a solution looking for
a problem . . .
It might open a perspective for:
ultrafast control and imaging of nuclear reactions by
laser pulses
[N. Milosevic, P. B. Corkum, and T. Brabec, PRL 92,
013002 (2004); S. Chelkowski, A. D. Bandrauk, and
P. B. Corkum, PRL 93, 083602 (2004).]
diagnostic of fast nuclear processes, e.g. nuclear
spin-mixing oscillations with period ∼ 1 fs
[K. Pachucki, S. Wycech, J. Żylicz, and M. Pfützner,
Phys. Rev. C 64, 064301 (2001).]
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Experiment:
L. Romagnani et al.,
PRL 95, 195001 (2005)

Modeling:
Fluid:
Mora, PRL 90, 185002 (2003)
PIC:
Betti, Ceccherini, Cornolti, Pegoraro,
PPCF 47, 521 (2005)
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2D simulation by
Habara et al.

“Reflection” law vi ' 2vs

from momentum balance
vs ≈ vhb '

√

2I/minic

[Silva et al, PRL 92, 015002 (2004).]

ICFA workshop, Taipei, December 2005 – p.26/28



Front shock acceleration (FSA)
Recent experiments and related modeling indicate that
acceleration of ions at the front side is due to (collision-
less) shock fronts:

[Habara et al, PRE 70, 046414 (2004);
Wei et al, PRL 93, 155003 (2004)]

2D simulation by
Habara et al.

“Reflection” law vi ' 2vs

from momentum balance
vs ≈ vhb '

√

2I/minic

[Silva et al, PRL 92, 015002 (2004).]

Is FSA also related to fast electrons?
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Skin-Layer Ponderomotive Acceleration (S-LPA)
Theory: Hora, Czech. J. Phys. 53, 199 (2003)
Experiment: Badziak et al, PPCF 46, B541 (2004)
(1 ps, ≤ 2× 1017 W/cm2 pulses)
Concept: the steady
ponderomotive force
accelerates “plasma
blocks” of high density
and moderate energy
(∼ 0.01 MeV/nucleon)
at the critical surface.
Role of prepulse and fast electrons, scaling to higher intensity,
competition/overlap with FSA are yet to be understood.
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- Ion cut-off energy:
Em ' 0.5 MeVZ (nc/ne) a

2
0
' 0.4 MeV(ZI18/ne,21)

- Number of ions (per unit surface):
' n0ls ' 1.7× 10−16 cm−2√ne,21/Z

(does not depend on intensity)
- low (∼ 10−2) and energy-dependent angular spread
(similar to RSA)
- almost no fast electrons (Ee ¿ mec

2a0)

ne,21 = ne/1021 cm−3 ; I18 = I/1018 W cm−2.
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