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L ® What is the role of in FSA?
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1D PIC simulation, “long” pulse, laser
normal incidence, linear polarization, .
a = 2.0, ney/ne = 5.
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Switch fast electrons off

Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

For normal incidence, it is the 2wy,
component of the v x B force.

For circular polarization, the 2wy,
component vanishes; only the
secular component remains
(radiation pressure).

Does ion acceleration occur for circu-
ar polarization, and how does it look
ike?
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1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, neg/n. = 5.
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1D PIC simulation, “long” pulse, normal incidence,
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1D PIC simulation, “long” pulse, normal incidence,
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Ion bunches

1D PIC simulation, “long” pulse, normal incidence,

circular polarization, a = 2.0, neg/n. = 5.
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1D PIC simulation, “long” pulse, normal incidence,
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1D PIC simulation, “long” pulse, normal incidence,
circular polarization, a = 2.0, neg/n. = 5.
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lons are accelerated by the electrostatic field until breaking.
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Simple model - I

f . electrons pile up leading to a quasi-equilibrium T
between the electrostatic field and the ponderomotive force.
lons are accelerated by the electrostatic field until breaking.

# Assume simple profiles ...

# ...which crudely approximate

E “real” ones
| # ion profile is compressed
A _® “breaking” at the time when
’ e all ions reach the
0 d+l, evanescence point

ppppppp
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® Input parameters d, /., ny are related by the Poisson
equation and the constraints of charge conservation
and total radiation pressure P,,; = 21} /c:
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equation and the constraints of charge conservation
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# The average ion front velocity v; = v,,/2 is the “hole
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® Input parameters d, /., ny are related by the Poisson
equation and the constraints of charge conservation
and total radiation pressure P,,; = 21} /c:

= 4mengd , no(d+1s) = npols %e Npols = %]L

# Equations of motion are easily solved to yield maximum
lon velocity and breaking time, assuming /5 ~ c¢/wy:

UTH:QC\/%%_;Z_;CLL TZQTLﬁ\/éT?ZZ
# The average ion front velocity v; = v,,/2 is the “hole

boring” speed.
| To be NOT confused with shock acceleration!
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The model is very simple , however, when compared
to simulations, it gives:
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to simulations, it gives:
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- a correct scenario of the dynamics 506! 20,
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- a good scaling for the maximum ion \E 0.04 +
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Model evaluation

The model is very simple , however, when compared

to simulations, it gives:

0.08|
- a correct scenario of the dynamics o or
ion bunch formation o
- a good scaling for the maximum ion \g 0.04

velocity v, vs. intensity and density =
- fair estimates for the acceleration

time (r;), the number of accelerated 0.00

lons (n;ols), and the
~ U, /C.

0.02

Other simulation features (e.g. non-white spectrum)

are understood on a qualitative basis.
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Two-dimensional simulations
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In 2D simulations, the laser pulse profile imposes a
smooth transverse modulation

i

laser pulse

%ﬁﬁ ICFA workshop, Taipei, December 2005 — p.11/28



Two-dimensional simulations

-

In 2D simulations, the laser pulse profile imposes a
smooth transverse modulation

t=16T, ny/m,

t = 16: surface compression

5
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Two-dimensional simulations

fIn 2D simulations, the laser pulse profile imposes a T
smooth transverse modulation

t=16T, t=25T, t=34T,

t = 16: surface compression

t = 25: 1on bunch formed

t = 34: ion bunch Ieavesg
target

0 0.2 0.2 0.4 0.2 0.4 0.6 0.8

1D scenario & modeling are reliable

LRippIing of the laser-plasma interface is weak or absent J
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Ion ““beam’’ characteristics

fIon bunches produced by circularly polarized pulses T
(1, ~ 5+ 50fs, I ~ 10'8 = 1020 W/cm®) may have:
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Ion ““beam’’ characteristics

fIon bunches produced by circularly polarized pulses T
(1, ~ 5+ 50fs, I ~ 10'8 = 1020 W/cm®) may have:

- modest energies (0.1 ~ 1 MeV)

- high density (n, = 1021+23 cm—3)

- ultrashort duration
(1p, < ls/c,canbe m, < T, = A /c)

- low divergence (~ 4 x 1072)
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Ion ““beam’’ characteristics

fIon bunches produced by circularly polarized pulses T
(1, ~ 5+ 50fs, I ~ 10'8 = 1020 W/cm®) may have:

. 10g 1oL f (P2 ) ] b loo TF
- modest energies (0.1 + 1 MeV) s o B) etioa

0

70‘3py/m

—1.0

0.8 7.3 2.8 3.3
107%p,/m.c

- high density (n, = 1021+23 cm—3)

- ultrashort duration
(1p, < ls/c,canbe m, < T, = A /c)

- low divergence (~ 4 x 1072)
- good efficiency (~ (2/3)v,,/c ~ 1072)

LAre these features useful for some application? J
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: use the ion bunches to drive beam fusion
reactions to produce neutrons.



Application: neutron burst production

o N

. use the ion bunches to drive beam fusion
reactions to produce neutrons.

» Fusion rate (two-beam scheme): R = nina(ov)/(1 + §12)
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» Fusion rate (two-beam scheme): R = nina(ov)/(1 + §12)
#® 11, no may have solid-density values
® Approximated cross-section formula (£: c.m.f. energy)

o @6_\’&;/5

E
Maximum around the Gamow energy
Eq ~ 1 MeVm,/m,), my = mimsa/(myi + ma).
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o N

. use the ion bunches to drive beam fusion
reactions to produce neutrons.

» Fusion rate (two-beam scheme): R = nina(ov)/(1 + §12)
#® 11, no may have solid-density values
® Approximated cross-section formula (£: c.m.f. energy)

o~ @6_\’&;/8

E
Maximum around the Gamow energy
Eq ~ 1 MeVm,/m,), my = mimsa/(myi + ma).

= One may obtain a significant neutron yield within the

bunch duration.
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D-T, single bunch scheme

fD + T — a+n (14 MeV) Double layer targeﬁ:

Assume [p ~ I, for optimal “projectile”

Shortest attainable duration
Tn =2 lb/vm If Il < [

Neutron yield estimated analytically .
N ~ 1.3 x 10" em=2x71CA(¢) U momoenerget

C=VE/E \ o

(monoenergetic or flat-top spectra) S oz

0.1 ; flat—top

~ 108 neutrons in 7,, ~ 1.2 fs ;
at 1)* > 10" W/em’ T e e

N2 (1078w /cm?)
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fD + D — 3He + n (2.45 MeV)

Two-side irradiation
to minimize duration and

maximize the center-of-mass energy

Optimal thickness ¢ = 2/,

Dynamics of colliding bunches
from PIC simulation:

Thin foil of pure frozen D would
be optimal (low n./n. ~ 40)

laser

S | | 110.014
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fD + D — °He + n (2.45 MeV)

Two-side irradiation e
to minimize duration and

maximize the center-of-mass energy

Optimal thickness ¢ = 2I;

laser

Dynamics of colliding bunches 1=4. 967,
from PIC simulation: f=au

£ 960

> 640]
Thin foil of pure frozen D would Y J—
be optimal (low n./n. ~ 40) N AP B [
but Cx Dy foil (ne/n. ~ 250) is - 0 %0007
more realistic S 1.0 S 000
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Neutron rate estimated from the simulation data.

Pulse duration: 15 fs t (fs)
6 70 14
D: n; =, ne/n. = 40, A
I} =13x10Wem™2 7
:
QS
e
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Neutron rate estimated from the simulation data.

Pulse duration: 15 fs t (fs)

14 4 8 12
D:ni :,ne/nczllO,

I; = 1.3 x 1019 W cm™2

D,

CDs: n; =, ne/n. = 250,
I; =1.3x 102 Wem™?
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Ultrashort neutron burst
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Neutron rate estimated from the simulation data.

Pulse duration: 15 fs t (fs)
6 710 14 4 o) 12

D:ni:,ne/nc:40, e o
I} =13x10Wem™—2 " | )

3
CDs: n; =, ne/n. = 250, ;
I; =13x1009Wem™2 =

e

Neutron burst duration:
~ (.7 fs (FWHM)
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Neutron rate estimated from the simulation data.

Pulse duration: 15 fs t (fs)

D: s — 10 L
T ne/nfg_ L gy | co,

Ir, =1.3x10" Wcm N 6

I = 1.3 x 1029 W cm ™2

RS
Neutron yield (10° cm™)

g :
CDs: n; =, ne/n. = 250, ; 24

)

S

0

Neutron burst duration: LT
~ (.7 fs (FWHM) t (cycles)

LNeutron yield: ~ 103 J7' (D), ~ 102 J~' (CD») B
é§?m ICFA workshop, Taipei, December 2005 — p.16/28
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Neutron rate estimated from the simulation data.

Pulse duration: 15 fs t (fs)

D: s — 10 L
T ne/nfg_ L gy | co,

Ir, =1.3x10" Wcm N 6

I = 1.3 x 1029 W cm ™2

RS
Neutron yield (10° cm™)

g :
CDs: n; =, ne/n. = 250, ; 2

)

S

Neutron burst duration: [ S

~ (.7 fs (FWHM) t (cycles)

LNeutron yield: ~ 103 J7" (D);~ 102 J~' (CD») B
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Neutron yield vs. intensity

fAnaly’[ic:al estimate of the neutrons produced

within the ultrashort (7 ~ [, /2v,,,) burst:

N >~ No¢M(C)

(=+/&/E

D: Ny ~ 2 x 108
CDsy: Ny ~ 3 x 107
(neutrons/cm?)

Neutron yield\(10° ¢ %)
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—~\
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A dy
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Neutron yield vs. intensity

fAnaly’[ic:al estimate of the neutrons produced T
within the ultrashort (7 ~ [, /2v,,,) burst:
13 o 14 F 10 13
v T T ] 0.40 T
N =~ No¢M(() : 20l D D,
CE v gg/g S ‘V‘f‘:\monoene?”gezfic 0’28 
s 150 :’
D: Ny ~ 2 x 10° S | e ||
CDa: Ng~3x 107 £ 70 / Ny
(neutrons/cm?) R 1
= 050 004
5 10 15 10 20 30
I (10"°W/cm?) [ (10"°W/cm?)

Maximum rate reached in the range I; = 109 + 1029 W/cm?
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o N

# Fusion neutrons have been observed in experiments
with “T3”, fs laser systems using solid targets, gas jets,
clusters and microdroplets

# (see e.g. Madison et al. [PRA 70, 053201 (2004)] for
partial summary and references)

Typical efficiency 10% = 10° neutrons/Joule

Duration of neutron emission not measured, but likely to
be of the order of pulse duration

o Shen et al. [PRE 71, 015401(R) (2005)] proposed a
double-sided irradiation of a DT foil

concept based on foil confinement and thermonuclear
L fusion; requires “long” pulses J
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Experimental challenges

o N

Apart form the usual “requirements” of high(er)
intensity, short(er) duration, no prepulse ...

very thin foil target required (~ 0.02 um for “D-D”)

# Synchronization of the two pulses is critical to achieve a
sub-fs neutron burst (but the burst duration remains in
the few fs range anyway).

°

# Energy spectrum has to be quasi-monochromatic to
preserve ultrashort duration

# Angular spread may lead to low brilliance

# Measurement of neutron burst duration is challenging
(indirect measurement via “attosecond spectroscopy”

L techniques?) J
%ﬁ ICFA workshop, Taipei, December 2005 — p.19/28



Who needs a fs neutron source?

o N



Who needs a fs neutron source?

o N

A IS a solution looking for
a problem . ..

§m ICFA workshop, Taipei, December 2005 — p.20/28



Who needs a fs neutron source?

B -
A
a problem . ..

It might open a perspective for:

IS a solution looking for

- .

ICFA workshop, Taipei, December 2005 — p.20/28



Who needs a fs neutron source?

o N

A IS a solution looking for
a problem . ..

It might open a perspective for:

# Uultrafast control and imaging of nuclear reactions by
laser pulses

- |

ICFA workshop, Taipei, December 2005 — p.20/28



Who needs a fs neutron source?
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A IS a solution looking for
a problem . ..

It might open a perspective for:

ultrafast control and imaging of nuclear reactions by
laser pulses

[N. Milosevic, P. B. Corkum, and T. Brabec, PRL 92,
013002 (2004); S. Chelkowski, A. D. Bandrauk, and
P. B. Corkum, PRL 93, 083602 (2004).]
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It might open a perspective for:

ultrafast control and imaging of nuclear reactions by
laser pulses

[N. Milosevic, P. B. Corkum, and T. Brabec, PRL 92,
013002 (2004); S. Chelkowski, A. D. Bandrauk, and
P. B. Corkum, PRL 93, 083602 (2004).]

diagnostic of fast nuclear processes, e.g. nuclear
spin-mixing oscillations with period ~ 1 fs

[K. Pachucki, S. Wycech, J. Zylicz, and M. Pfiitzner,
Phys. Rev. C 64, 064301 (2001).] N
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Conclusions

o N

# Studying ion acceleration by circularly polarized pulses

of the ion acceleration
dynamics

- suggests a of ion acceleration

# The ion bunches produced in this regime may open a
perspective to bring the duration of
down in the
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Rear sheath acceleration (RSA)

fAcceIeration of ions (protons) at the rear side is now well T
understood on the basis of the sheath acceleration model:
expanding in vacuum drive ion acceleration.
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Rear sheath acceleration (RSA)

fAcceIeration of ions (protons) at the rear side is now well T
understood on the basis of the sheath acceleration model:
expanding in vacuum drive ion acceleration.

150 pm

Experiment:
L. Romagnani et al.,
PRL 95, 195001 (2005)

Modeling: .
Fluid:

Mora, PRL 90, 185002 (2003)

PIC: !

Betti’ CeCCherini! CornO“:i, PegorarO, N o”
PPCF 47, 521 (2005) o

0 _ - ]
0 100 200 300 400 500
x (microns )
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Front shock acceleration (FSA)

fRecent experiments and related modeling indicate that T
acceleration of ions at the front side is due to (collision-
less) shock fronts:
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Front shock acceleration (FSA)

fRecent experiments and related modeling indicate that T
acceleration of ions at the front side is due to (collision-
less) shock fronts:

[Habara et al, PRE 70, 046414 (2004);
Wei et al, PRL 93, 155003 (2004)]
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Front shock acceleration (FSA)

fRecent experiments and related modeling indicate that T
acceleration of ions at the front side is due to (collision-

less) shock fronts:

[Habara et al, PRE 70, 046414 (2004); E _

Wei et al, PRL 93, 155003 (2004)]
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Front shock acceleration (FSA)

fRecent experiments and related modeling indicate that T
acceleration of ions at the front side is due to (collision-

less) shock fronts:

[Habara et al, PRE 70, 046414 (2004); E _

Wei et al, PRL 93, 155003 (2004)]
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Front shock acceleration (FSA)

fRecent experiments and related modeling indicate that T
acceleration of ions at the front side is due to (collision-

less) shock fronts:

[Habara et al, PRE 70, 046414 (2004); :
Wei et al, PRL 93, 155003 (2004)]

“Reflection” law v; ~ 2uv,

from momentum balance
Vg R Upp \/2[/mmic

[Silva et al, PRL 92, 015002 (2004).]
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Front shock acceleration (FSA)

fRecent experiments and related modeling indicate that T
acceleration of ions at the front side is due to (collision-

less) shock fronts:

[Habara et al, PRE 70, 046414 (2004); :
Wei et al, PRL 93, 155003 (2004)]

“Reflection” law v; ~ 2uv,

from momentum balance
Vg R Upp \/2[/mmic

s FSA also related to fast electrons?

Silva et al, PRL 92, 015002 (2004).]
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S-LPA: another acceleration mechanism?

fSkin-Layer Ponderomotive Acceleration (S-LPA) T

Theory: Hora, Czech. J. Phys. 53, 199 (2003)
Experiment: Badziak et al, PPCF 46, B541 (2004)

(1 ps, <2 x 1017 W/ecm? pulses)
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S-LPA: another acceleration mechanism?

fSkin-Layer Ponderomotive Acceleration (S-LPA) T

Theory: Hora, Czech. J. Phys. 53, 199 (2003)
Experiment: Badziak et al, PPCF 46, B541 (2004)

(1 ps, <2 x 1017 W/ecm? pulses)

Concept: the steady
ponderomotive  force
accelerates  “plasma
blocks” of high density
and moderate energy
(~ 0.01 MeV/nucleon)
at the critical surface.

preglasma

lemar d |
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S-LPA: another acceleration mechanism?

fSkin-Layer Ponderomotive Acceleration (S-LPA) T

Theory: Hora, Czech. J. Phys. 53, 199 (2003)
Experiment: Badziak et al, PPCF 46, B541 (2004)

(1 ps, <2 x 1017 W/ecm? pulses)
Concept: the steady P - (0OHER HE B torge

ponderomotive  force "I SO ¥ EA\S /_
accelerates  “plasma .. — o

blocks” of high density ™" | o
and moderate energy i
(~ 0.01 MeV/nucleon) I

at the critical surface.

Role of prepulse and fast electrons, scaling to higher intensity,
competition/overlap with FSA are yet to be understood.

g&m ICFA workshop, Taipei, December 2005 — p.27/28



Diagnostics of ion bunch acceleration

o N



Diagnostics of ion bunch acceleration

o N

lon acceleration using circular polarization at normal
incidence should be characterised by:
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Diagnostics of ion bunch acceleration

o N

lon acceleration using circular polarization at normal
incidence should be characterised by:

- lon cut-off energy:
Em = 0.5 MeVZ (n./ne) a3 ~ 0.4 MeV(ZI1g/n¢21)
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Neo1 = ne/10°tem™3;  I1g = 1/10'* Wem™~,
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Diagnostics of ion bunch acceleration

o N

lon acceleration using circular polarization at normal
incidence should be characterised by:

- lon cut-off energy:
Em = 0.5 MeVZ (n./ne) a3 ~ 0.4 MeV(ZI1g/n¢21)

- Number of ions (per unit surface):
~ nols ~ 1.7 x 10716 cm—2, /Me21/2
(does not depend on intensity)
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Diagnostics of ion bunch acceleration

fIon acceleration using circular polarization at normal T
incidence should be characterised by:

- lon cut-off energy:
Em = 0.5 MeVZ (n./ne) a3 ~ 0.4 MeV(ZI1g/n¢21)

- Number of ions (per unit surface):
~ nols ~ 1.7 x 10719 ecm™2 /mc21/Z
(does not depend on intensity)

- low (~ 1072) and energy-dependent angular spread
(similar to RSA)

_ —2
Neo1 = ne/10°tem™3;  I1g = 1/10'* Wem™~,
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Diagnostics of ion bunch acceleration

o N

lon acceleration using circular polarization at normal
incidence should be characterised by:

- lon cut-off energy:
Em = 0.5 MeVZ (n./ne) a3 ~ 0.4 MeV(ZI1g/n¢21)

- Number of ions (per unit surface):
~ nols ~ 1.7 x 10719 ecm™2 /mc21/Z
(does not depend on intensity)

- low (~ 1072) and energy-dependent angular spread
(similar to RSA)

- almost no fast electrons (£, < m.c?ag)

_ —2
Neo1 = ne/10°tem™3;  I1g = 1/10'* Wem™~,
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