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A Compact Reference

A. Macchi,
A Superintense Laser-Plasma
Interaction Theory Primer
(Springer, 2013)
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Outline of Lecture 1

Warm-up: single electron dynamics
Ï Relativistic motion in a plane wave
Ï Ponderomotive force

From one to many electrons: basic equations
Ï the Vlasov-Maxwell system
Ï the “cold” fluid equations

Wake waves
Ï electrostatic waves
Ï laser wakefield
Ï wavebreaking
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Outline of Lecture 2

Nonlinear “relativistic” optics
Ï Review of linear EM waves in a plasma
Ï Self-induced transparency
Ï Self-focusing

Moving mirrors
Ï Basic formulas
Ï High harmonics
Ï “Flying mirrors” from plasma wakes
Ï Light sails
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Outline of Lecture 3

Light sail acceleration
Ï heating vs radiation pressure
Ï effects of laser polarization
Ï 3D effects

Radiation friction
Ï foundations of the problem
Ï classical Landau-Lifshitz theory
Ï macroscopic effects: magnetic field generation
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Single electron in a plane wave
An EM plane wave can be described by the vector potential:

A(x, t ) = A(x − ct ) −→ E =−1

c
∂t A , B =∇×A

(we assume propagation along the x-axis)
Equations of Motion (EoM):

dr

dt
= v = p

meγ
,

dp

dt
=−e

[
E+ v

c
×B

]
r = r(t ) p = p(t ) γ= (p2 +m2

e c2)1/2 = (1−v2/c2)−1/2

The EoM are nonlinear because of the v×B term and the
dependence of the fields on the instantaneous position:

E = E(r(t ), t ) B = B(r(t ), t )
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When is the motion relativistic?
(Quasi-)Monochromatic wave A(x, t ) = Re

[
Â(x, t )ei kx−iωt

]
(with Â(x, t ) a slowly varying envelope, i.e. the wavepacket profile)

Assume |v|¿ c ⇒ |r|¿λ= 2πc

ω
⇒ k|r| = 2π

|r|
λ

' 0

⇒ E(r(t ), t ) = E(kx(t ), t ) ' E(x = 0, t ) and
v

c
×B ' 0

Solution p(t ) ' e

c
A(0, t ) ∝ e−iωt |v|

c
= p

me c
= e A0

me c2 ≡ a0

The motion becomes relativistic and nonlinear when a0 & 1

a0 = 0.85

(
Iλ2

1018 W cm−2

)1/2

where I ≡ 〈|S|〉 =
〈 c

4π
|E×B|

〉
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Constants of motion in a plane wave

Symmetry properties of the EoM −→ conserved quantities:

p⊥− e

c
A = C1 px −meγc =C2

(“⊥” denotes the transverse direction, i.e. y z plane)
Assuming as initial conditions p = 0, A = 0 i.e. C1 = 0, C2 =−me c

px = p2
⊥

2me c
= 1

2me c

(e

c
A
)2

After the EM pulse is gone A = 0 again ⇒ px = 0
⇒ no acceleration by EM plane wave in vacuum
(“Lawson-Woodward” theorem)
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Solutions for a plane monochromatic wave

A(x, t ) = A0
[
ŷcosθcos(kx −ωt )− ẑsinθ sin(kx −ωt )

]
with C1 = 0, C2 =−me c (adiabatic field rising in an infinite time)

θ = 0, ±π
2

linear
polarization
(LP)

θ =±π
4

circular
polarization
(CP)

LP CP

Constant longitudinal drift:
〈

px
〉= me ca2

0/4, 〈υx〉 = ca2
0/(a2

0 +4)
(origin: absorption of EM energy ∝ absorption of EM momentum)
Notice: γ= γ(t ) for LP, γ= (1+a2

0/2)1/2 = const. for CP
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Figure of Eight
For LP, switch to the frame where 〈υx〉 = 0
i.e. take C1 = 0, C2 = meγ0c

Closed trajectory 16X 2 = Y 2(1−Y 2)

X ≡ γ0

a2
0

kx Y ≡ γ0

a0
k y

The trajectories are self-similar

Messages for the study of electrons in superintense fields:

Ï initial conditions are crucial

Ï polarization matters

Ï EM field properties constrain the dynamics
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Ponderomotive approximation
Aim: describe the motion in a quasi-periodic field (T = 2π/ω)

A(r, t ) = Re
[

Ã(r, t )e−iωt
]

for which the average over a period yields
(〈

f
〉≡ T −1

∫ T
0 f (t ′)dt ′

)
〈A(r, t )〉 ' 0

〈
Ã(r, t )

〉' Ã(r, t )

Idea: find an EoM for the “slow” (period-averaged) motion

r(t ) ≡ rs(t )+ ro(t ) 〈ro(t )〉 ' 0 〈rs(t )〉 ' rs(t )

analogous to the guiding center approximation in a non-uniform
magnetic field
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Ponderomotive force
A perturbative, non-relativistic approach including lowest order
contributions from the v×B term and the spatial variation of
E = E(r, t ) yields the EoM for vs(t ) = 〈v(t )〉 and rs(t ) = 〈r(t )〉

me
dvs

dt
=− e2

2meω2 ∇
〈

E2(rs(t ), t
〉≡ fp

drs

dt
= vs

Relativistic extension (slightly controversial):

d

dt
(meffvs) =−∇(meffc

2) ≡ fp

meff ≡ me (1+〈
a2〉)1/2 (

a ≡ eA/me c2)
The (time- and space-dependent) effective mass meff accounts
for relativistic inertia due to the oscillatory motion
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Ponderomotive effects

fp ∝−∇|E|2

⇒ electrons are scattered
off higher field regions
A laser pulse (of finite length
and width) accelerates elec-
trons both longitudinally and
radially

Notice: we define fp as a secular, “slow” force (it does not in-
clude oscillating nonlinear terms)
The ponderomotive force concept is tightly related to that of
radiation pressure
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Many particles: kinetic equation
Distribution function fa = fa(r,p, t ) (species index a = e, i , . . .):
probability density in phase space cell d3rd3p

d fa

dt
= ∂ fa

∂t
+ ∂

∂r
(ṙa fa)+ ∂

∂p
(ṗa fa) = 0 (1)

ṙa = v = pc

(p2 +m2
ac2)1/2

ṗa = qa

(
E+ v

c
×B

) E = E(r, t )
B = B(r, t )

Eq.(1) is a continuity equation in phase space, valid when
Ï particle number is conserved (no ionization, no particle

production, . . . )
Ï collisions are negligible (if E and B are mean fields)
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Maxwell-Vlasov system
Coupling of Eq.(1) to Maxwell’s equations:

ρ(r, t ) =∑
a

qa

∫
fad3p J(r, t ) =∑

a
qa

∫
v fad3p

∇·E = 4πρ ∇·B = 0 ∇×E =−1

c
∂t B ∇×B = 4π

c
J+ 1

c
∂t E (2)

The system of Eqs.(1)+(2) is not the most fundamental but the
“best” suitable approach to a classical laser-plasma
environment (with possible extensions to include ionization,
radiation friction, particle production, . . . )
Most of the times Eqs.(1)+(2) are tackled numerically, typically
with Particle-In-Cell (PIC) codes
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Cold fluid equations

Phylosophy of fluid approach: describing the plasma in terms of
quantities averaged over the momentum distribution

na = na(r, t ) ≡
∫

fa(r,p, t )d3p pa = pa(r, t ) ≡ n−1
a

∫
p fa(r,p, t )d3p

A finite set of equations can be only obtained by “truncation”,
i.e. an assumption of fa(r,p, t ). If the coherently driven motion
is more important than the random thermal motion then

∂t na +∇· (naua) = 0 (∂t +ua ·∇)pa = qa(E+ua ×B)(
ua = pac

(p2
a +m2

ac2)1/2

)
. Pressure is neglected (“cold” plasma)
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Linear waves in a plasma
General wave equation for E from Maxwell’s equations:(

∇2 − 1

c2 ∂
2
t

)
E−∇(∇·E) = 4π

c2 ∂t J

Assume monochromatic fields E(r, t ) = Ẽ(r)e−iωt et cetera
Using linearized, non-relativistic equations (|ue |¿ c)

∂t ue =− e

me
E J =−ene ue (ions taken at rest)

J̃ =−i
ne e2

meω
Ẽ =− i

4π

ω2
p

ω
Ẽ, ωp ≡

(
4πe2ne

me

)1/2

(
∇2 + ω2

c2

)
Ẽ−∇(∇· Ẽ) =

ω2
p

c2 Ẽ Helmoltz equation
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Linear transverse (EM) waves
Taking Ẽ(r) = E0εei k·r, ∇·E = 0, k ·ε= 0 B = k×E/k(

∇2 +ε(ω)
ω2

c2

)
Ẽ =

(
∇2 +n2(ω)

ω2

c2

)
Ẽ = 0

ε(ω) = n2(ω) = 1−
ω2

p

ω2 ε(ω) dielectric function, n(ω) refractive index

dispersion relation k2c2 = ε(ω)ω2 =ω2 −ω2
p

Phase and group velocities (assuming ω>ωp i.e. k real)

υp = ω

k
= c

(
1−

ω2
p

ω2

)−1/2

> c υg = ∂ω

∂k
= c

(
1−

ω2
p

ω2

)1/2

< c
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Linear longitudinal electrostatic (ES) waves

Taking Ẽ(r) = E0εei k·r , k ∥ ε= 0 , ∇·E = k ·E , B = 0

∇(∇· Ẽ) =∇2Ẽ ⇒ (ω2 −ω2
p )Ẽ = 0 ⇒ ω=ωp

Wavevector k and phase velocity υp =ωp /k are not constrained
by dispersion relation

Note: we still assume the thermal velocity to be negligible i.e.

υosc = qE0

meωp
À υth =

(
Te

me

)1/2

in the opposite regime (υth À υosc) ω2 =ω2
p +3k2υ2

th
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Example of acceleration by a wave

From: T.Katsouleas, Nature 444 (2006) 688
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Looking for the perfect wave for electrons

Ï A longitudinal wave is needed
Ï Phase velocity should be tuned to match those of particles

(so υp . c for relativistic acceleration)
Ï Highest amplitude is desirable

Electrostatic plasma waves are good candidates:
Ï Wave is longitudinal (E ∥ k)
Ï No “breakdown” limit as in conventional accelerators
Ï Phase velocity υp =ω/k =ωp /k may be tuned “by

construction”
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Wake waves
A force pulse
traveling in a plasma
with velocity υ f

excites a wake of
plasma oscillations
with phase velocity
υp = υ f

Example: a charge
bunch penetrating a
plasma loses its
energy to the wake
(collective stopping)

J. Dawson, Phys. Fluids 5 (1962) 445
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Simulating wakes with “Dawson’s sheet” model - I

1D ES model with “macro-
electrons” as charge sheets
over a neutralizing back-
ground
EoM for i -th sheet position
Xi = Xi (t ) (if the ordering
Xi < Xi+1 is preserved!)

d2Xi

dt 2 =− e

me
Ex (Xi )+ fext

me
=−ω2

p (Xi −Xi (0))+ fext

me
(3)

Sheet crossing is equivalent to a “reindexing” of sheets
−→ Eq.(3) holds with the swap of indices playing the nonlinear
interaction!
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Simulating wakes with “Dawson’s sheet” model - II

The forcing is strong for
u0 → υ f

i.e. δne → n0

ne becomes spiky and
Ex sawtooth

Linear solution for weak, impulsive force fext = me u0δ(t −x/υ f )

ux ' u0Θ(τ)cosωpτ Ex ' meωp u0

e
Θ(τ)sinωpτ

δne ' n0
u0

υ f
Θ(τ)cosωpτ τ= t − x

υ f
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Laser wakefield
Ponderomotive force of short laser pulse
−→ travelling force at the group velocity of an EM wave:

fp (x, t ) = fp (x −υg t ) =−me c2∇(1+〈
a2(x −υg t )

〉
)1/2

υg = c

(
1−

ω2
p

ω2

)1/2

. c (ωp ¿ω)

Tajima & Dawson, Phys. Rev. Lett 43 (1979) 267

Optimal pulse duration

τp 'π/ωp

Ew ' (me ca0/eτp ) (a0 À 1)
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Wavebreaking
The electron density must remain positive:

ne = n0 +δne > 0 ⇔ |δne | < n0

δne −→ n0 as u0 −→ υp : “self-acceleration” of the wave electrons
⇒ singularity in density profile, “breaking” of the wave
Electric field threshold from nonlinear relativistic theory
[Akhiezer & Polovin, Sov. Phys. JETP 3 (1956) 696]

Emax =
me cωp

e

(
2(γp −1)

)1/2
γp =

(
1−

υ2
p

c2

)−1/2

limiting factor in Tajima & Dawson’s original proposal
(non-relativistic: Emax ' meυpωp /e)
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Electron acceleration near wavebreaking threshold

[T. Katsouleas, Nature 431 (2004) 515]
Onset of wavebreaking leads to self-injection of electrons
Wakefield is driven to maximum amplitude: creation of a cavity
or “bubble” behind the laser pulse
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