Basics of Laser-Plasma Interaction
(lecture 2/3)

Andrea Macchi

National Institute of Optics, National Research Council (CNR/INO),
Adriano Gozzini laboratory, Pisa, Italy

Enrico Fermi Department of Physics, University of Pisa, Italy

@&

Advanced Su\fﬁfﬁer School on
“Laser-Driven Sources of High Energy Particles and Radiation”
CNR Conference Centre, Anacapri, ltaly, July 9-16 2017

Andrea Macchi CNR/INO

Basics of Laser-Plasma Interaction 2



Outline of Lecture 2

Nonlinear “relativistic’ optics

» Review of linear EM waves in a plasma
» Self-induced transparency
» Self-focusing

Moving mirrors

» Basic formulas

» High harmonics

» “Flying mirrors” from plasma wakes
» Light sails
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Linear transverse (EM) waves
Taking E(r) = Epee’*T, V-E=0, k-e=0 B=kxE/k
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(V2+£(w)—) (V2+n(w) )E:o
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e =n*(w)=1- —Z £(w) dielectric function, n(w) refractive index
w

2

dispersion relation  k*c® =)o’ = 0’ - w},

Propagation requires a real value of ki.e.
>0 « gw>0 < w>w, < Ne < Ne = Mew? [4T€?

1.1x10%1 cm™3
(A/1 pm)?
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A nonlinear relativistic wave

As ay — 1 nonlinear terms complicate the picture:
_ e _ _ PeC

atpe+ue-Vpe——eE—EuexB ]——eneue——enem
In general a plane wave solution to is neither monochromatic
nor transverse (u, x B | k)
However for circular polarization there is a monochromatic
solution for which p,-k=0 , u.-Vp.,=0 , u.,xB=0 , and

1/2

1/2
y =1 +p2/mic?) )

=cost. = (1+a3/2

0tPe = mey0ru, ==—eE  J=-encu,
The equations are identical to the non-relativistic case but for
me i meY
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Self-induced transparency (with words of caution ...)

For the particular solution (CP, plane wave, monochromatic) the
replacement m, — m,y yields

The cut-off density n. — ncy = ne(1+a2/2)""”

the more intense the wave, the higher the cut-off density

However one cannot define n, = n.y as a transparency
threshold because of nonlinear pulse dispersion and distortion,
effect of boundary conditions, ...

Message: distrust the “relativistically corrected critical density”

n = n.y concept
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Transparency of semi-infinite plasma

The ponderomotive force ny=2
pushes and piles up electrons 4
— increase of density 3
— change of the 2
transparency threshold
[F. Cattani et al,

Phys. Rev. E 62 (2000) 1234] 0

Mg

1l
" n(x)/m,

1

Evanescent solution (assuming steady state, circular polariza-
tion, immobile ions . ..) exists up to a threshold (for n, > n;)

33/2 n 2 n 2
a():—(—e) =0.65(—e)
23 \n, ne

instead of n, = ncy < ap = v2n./n;
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The evanescent solution - |

Assumptions in the cold fluid plasma equations
» steady state
» balance between ponderomotive and electrostatic forces
— ODE for a(x) (that may be put in Hamiltonian form)
d’a a (da)? ) 91/
— - 1+a —n(l+a =0
dx? 1+d(dx) t(i+a-nd+ay™)

Evanescent solution in the plasma

2n1"2x cosh (k (x — xp))

ax) = ncosh? (k(x - xp)) —n+1

n=nglng x =(n—1)42
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The evanescent solution - Il

The parameter x, is determined
by matching with the vacuum
solution (standing wave) at
the electron density boundary
x = x; (to be determined self-
consistently)

Condition of “monotonic
evanescence” da/dx < 0 deter-
mine existence condition

— transparency threshold

[F. Cattani et al PRE 62 (2000) 1234]

Note: for given n and ay both evanescent and propagating solution
may exist (hysteresis) [Goloviznin & Schep, Phys. Plasmas 7 (2000) 1564]
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Electromagnetic caviton

For certain values of ay and n we obtain at
the plasma (ion) boundary x=0

dd(x—O)—O
dx =

— one can “build” a continous, symmetrical
solution between two plasma layers: reso-
nant EM cavity sustained by the pondero-
motive force (caviton, improperly aka soli-

ton

On)the time scale of ion motion the caviton
expands because of the electrostatic force
(“post-solitons” also observed experimen-
tally)
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Transparency of ultrathin plasma foil

Ne(x) = ngl6(x) (¢: foil thickness)

1 Ti
[V.A.Vshivkov et al, Phys. Plasmas 5 (1996) 2727] —* _—
RI
T=1-R
Nonlinear reflectivity can be calculated
1 ap <
. v (ap <) . ny
~ =g——
— (ap<{) neA
a4y

The transparency threshold ay = { depends on areal density n¢
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Relativistic Self-Focusing

Nonlinear refractive index (to be used with care!)
(1)2 1/2
NNt = (1 - —”2) =ni(la®)  y=0+la/2)!?
Yw

For a laser beam with ordinary
intensity profile nny is higher
on the axis than at the edge:
no = nnr(dg) > nNL(0) = ny

— pulse guiding effect as in an
optical fiber
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Self-Focusing threshold: simple model

Assumptions: ap < 1, w, < w, A/D < 1
Impose total reflection in Snell’s law
of refraction

with 8; = arccos(A/ D) the diffraction angle

D\ , , 0
—>n(5) ay =nA"—

Threshold power for self—focus’iyng

72 mec® [
PC:_

2 1,
— | =43 GW—
2 r1e \wp
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Advanced modeling of self-focusing

The radial
ponderomotive force
creates a low-density
channel

— further “optical fiber”
effect (self-channeling)

A non-perturbative, multiple-scale modeling for Gaussian beam
characterizes the propagation modes
[Sun et al Phys. Fluids 30 (1987) 526]

“Minimal” threshold power P, =17.5 cw’e

Ne
Warning: it applies only to not-so-short, not-so-tightly focused pulses
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Nonlinear propagation is a complex process ...

2D simulation of the propagation of a laser pulse (ay = 2.5, 7, =1 ps)
in an inhomogeneous plasma with peak density n, =0.1n,
Self-focusing and channeling followed by beam breakup, caviton for-
mation, ion acceleration, steady magnetic field generation, ...

100 200 300 400 500 600 X/A

T. V. Liseykina & A. Macchi, IEEE Trans. Plasma Science 36 (2008) 1136,
special issue on Images in Plasma Science
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Moving mirrors

A step-boundary plasma described by
n=(1-ne/n.)" % with n, > n, is a k,,w, I
perfect mirror (100% reflection)

Linear theory assumes the interface (x=0) ¢ /
to be immobile and electrons to be confined ¢

in the mirror (x > 0 region) /

At very high intensities the interface is ki, w, I

» pushed/pulled by oscillating
components of the Lorentz force

» pushed by the steady ponderomotive -~ i
force 6\ i

— pulse is reflected from a “moving” mirror /
ki , W, I
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Reflection from a moving mirror
Reflection kinematics can be studied via
Lorentz transformations I
(the mirror is “perfect” in its rest frame; =" V = Be
normal incidence for simplicity)

1-8 74 I, w,

Wr=0w——:
’ 1+p6 c

red shift for V>0

blue shift for V<0

The number of cycles is
a Lorentz invariant —
V >0 : pulse stretching
V <0: pulse shortening

-
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Force on/by the moving mirror

The force on the mirror can be derived y

from Lorentz transformations of fields m——p V = Be
and forces or also by the conservation

of photon number N -

I, w,

Nh . . .
=2 intensity (7: pulse duration)
T

n
Ap = Nii(k; - k;) = N;(w +w;)X exchanged momentum

1-6 T
wrzwm At=m
Ap 2I1-8 >0 for >0 (work done on the mirror)
Egz?mz{ <0 for B<0 (workdone on the pulse)

At: reflection time

— a moving mirror may amplify the reflected pulse!
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Flying mirror for intensity amplification

In 3D the wake wave has concave wave- V‘“
fronts because of relativistic effects

— moving mirror with focusing!

Decrease of w and A = 27nc/w causes

compression of reflected pulse in space
as well as in time with intensity gain at

focus n

G =64y5(DIN?  yp=0-0v5/cA)?

The low reflectivity of the wake keeps the amplification factor to
o =32y5(D/A)* (quite substantial anyway)
S.V.Bulanov et al, Phys. Rev. Lett. 91(2003) 085001
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Oscillating mirror and high harmonics

Andrea Macchi

Oscillatory motion w4 nQ
Xm (1) = XosinQt <
Boundary condition w

>
>

in instantaneous rest frame

Elx=X.)=0 Xm(t) = Xosin Qt
[~ Fml

—  Aj(x=X,,()) =0in lab frame (note that Ej (x = X, (1)) # 0)
Aj(x, 1) = Aj(x—ct) + Ay (x + ct) with A;(8) = Agcos(w?)

2(1)X0
Cc

. 20 . = .
— Ay (f) ~sin|wt+ —XpsinQt| ~ Z In sin(w + nQ)t
¢ n=0
(/.- Bessel functions)
The reflected spectrum contains sums of wave frequency and
mirror harmonics
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Self-generated high harmonics

The laser pulse drives surface oscillations .
depending on the polarization
P-polarization: E-driven, Q =w
S-polarization: v x B-driven, Q = 2w

— selection rules for high harmonics (HH)
filter w, 3w, 5w, ..., (2n+ 1w

Tsakiris et al,
New J. Phys. 8
(2006) 19

et REflected light is an
. attosecond pulse train
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Toy model for moving mirror HH

Perfect mirror with position X,,,, w, I =1I(x—ct) ,Ufoi’%\_
velocity V,,, = B,,¢ and recoil force at
the plasma frequenc
P aHeney ()
21 dX
(ymﬁm) (1 +2cos(2wtr)) —Pm w%Xm — = B,.c
+Pm
t, =t—Xp/c: retarded time 0. mass per unit area
a) 0-50 N b) 10°
Cut-off frequency depends on [ / ~ 107
Bmax = Max(Bm) i 0.25 J “‘ ‘f‘ % 1872
5 ) 3/ ||
Weo = ﬂ =~ 4a)y12nax 0.00 ! 1012
1 Brmax 0.00.408 1.2 1 10 100

LT w/wq
(other scalings proposed e.g. weo ~ ¥3hax - - -)
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Light Sail

EoM for a mirror of finite mass pushed by

steady radiation pressure
I V = e

M_L(_i)ﬂ ax _ >
de _pﬁczlt c)]1+p dt_ﬂc

Analytical solution yields for final gamma-factor

~I

2

y(oo)—lzL gzifool(t’)dt’zﬂ
Q(ZF +1) (00 Jo ol

Mechanical efficiency n can be estimated using photon number

conservation + frequency shift
A& Nhlw+ow;) 2f B—1

T, " Nn 1+p

1 a“perfect” engine!

Andrea Macchi CNR/INO

Basics of Laser-Plasma Interaction 2



Early vision of radiation pressure acceleration (1966)

22 NATURE s zoses e -Centauri
INTERSTELLAR VEHICLE PROPELLED BY TERRESTRIAL LASER BEAM I
By Pror. G. MARX A
Institute of Theoretical Physics, Roland Estvés University, Budapest \
\w J)
A solution to “Fermi’s paradox”: !/7!
“Laser propulsion from  Earth MIFTOr em—

...would solve the problem of
acceleration but not of deceleration

at arrival ...no planet could be
invaded by unexpected visitors from

outer space”
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Starshot: laser-boosted light sails for space travel

(credit: Breakthrough Starshot,
breakthroughinitiatives.org)

PEOPLE FIRST Ty

P

Critical analysis: H. Milchberg,
“Challenges abound for propelling
interstellar probes”,

Physics Today, 26 April 2016
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Analogy with Thomson scattering acceleration

Light Sail equations of motion have the same form as those of a
particle undergoing Thomson Scattering
[Landau & Lifshitz, The Classical Theory of Fields, ch.78 p.250 (1962)]

A P d
p =orlx P inrest frame

J Vekslers 1957 proposal: coherent
@ cp
dt scattering by a cluster of radius a < A
with N (> 1) particles

P.—N?’P, = or—N%or

. W,
& z% = N-fold increase in acceleration
v§ V. I. Veksler, “The principle of coherent
PoCcKs o0 2.08 9 Ly
aal acceleration”, At. Energ. 2 (1957) 525
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