Basics of Laser-Plasma Interaction (lecture 2/3)

Andrea Macchi

National Institute of Optics, National Research Council (CNR/INO), Adriano Gozzini laboratory, Pisa, Italy

Enrico Fermi Department of Physics, University of Pisa, Italy

Advanced Summer School on "Laser-Driven Sources of High Energy Particles and Radiation" CNR Conference Centre, Anacapri, Italy, July 9-16 2017

Andrea Macchi

CNR/INO

Outline of Lecture 2

Nonlinear "relativistic" optics

- Review of linear EM waves in a plasma
- Self-induced transparency
- Self-focusing

Moving mirrors

- Basic formulas
- High harmonics
- "Flying mirrors" from plasma wakes

→ E → < E →</p>

CNR/INO

Light sails

Linear transverse (EM) waves Taking $\tilde{\mathbf{E}}(\mathbf{r}) = E_0 \boldsymbol{\epsilon} \mathbf{e}^{i\mathbf{k}\cdot\mathbf{r}}, \quad \nabla \cdot \mathbf{E} = 0, \quad \mathbf{k} \cdot \boldsymbol{\epsilon} = 0 \qquad \mathbf{B} = \mathbf{k} \times \mathbf{E}/k$

$$\left(\nabla^2 + \varepsilon(\omega)\frac{\omega^2}{c^2}\right)\tilde{\mathbf{E}} = \left(\nabla^2 + n^2(\omega)\frac{\omega^2}{c^2}\right)\tilde{\mathbf{E}} = 0$$

 $\varepsilon(\omega) = n^2(\omega) = 1 - \frac{\omega_p^2}{\omega^2}$ $\varepsilon(\omega)$ dielectric function, $n(\omega)$ refractive index

dispersion relation $k^2 c^2 = \varepsilon(\omega) \omega^2 = \omega^2 - \omega_p^2$

Propagation requires a real value of k i.e.

$$k^2 > 0 \quad \leftrightarrow \quad \varepsilon(\omega) > 0 \quad \leftrightarrow \quad \omega > \omega_p \quad \leftrightarrow \quad n_e < n_c \equiv m_e \omega^2 / 4\pi e^2$$

 $n_c = \frac{1.1 \times 10^{21} \text{ cm}^{-3}}{(\lambda/1 \ \mu\text{m})^2}$: cut-off or "critical" density

CNR/INO

Andrea Macchi

A nonlinear relativistic wave

As $a_0 \rightarrow 1$ nonlinear terms complicate the picture:

$$\partial_t \mathbf{p}_e + \mathbf{u}_e \cdot \nabla \mathbf{p}_e = -e\mathbf{E} - \frac{e}{c} \mathbf{u}_e \times \mathbf{B} \qquad \mathbf{J} = -en_e \mathbf{u}_e = -en_e \frac{\mathbf{p}_e c}{(\mathbf{p}_e^2 + m_e^2 c^2)^{1/2}}$$

In general a plane wave solution to is neither monochromatic nor transverse $(\mathbf{u}_e \times \mathbf{B} \parallel \mathbf{k})$

However for *circular* polarization there is a monochromatic solution for which $\mathbf{p}_e \cdot \mathbf{k} = 0$, $\mathbf{u}_e \cdot \nabla \mathbf{p}_e = 0$, $\mathbf{u}_e \times \mathbf{B} = 0$, and

$$\gamma = (1 + \mathbf{p}_e^2 / m_e^2 c^2)^{1/2} = \text{cost.} = (1 + a_0^2 / 2)^{1/2}$$

$$\partial_t \mathbf{p}_e = m_e \gamma \partial_t \mathbf{u}_e = -e\mathbf{E} \qquad \mathbf{J} = -en_e \mathbf{u}_e$$

The equations are *identical* to the non-relativistic case but for

$$m_e \rightarrow m_e \gamma$$

CNR/INC

Andrea Macchi

Self-induced transparency (with words of caution ...)

For the *particular* solution (CP, plane wave, monochromatic) the replacement $m_e \rightarrow m_e \gamma$ yields

$$\omega_p \longrightarrow \frac{\omega_p}{\gamma^{1/2}} \qquad k^2 c^2 = \omega^2 - \frac{\omega_p^2}{\gamma}$$

The cut-off density $n_c \rightarrow n_c \gamma = n_c (1 + a_0^2/2)^{1/2}$ the more intense the wave, the higher the cut-off density

However one cannot define $n_e = n_c \gamma$ as a transparency threshold because of nonlinear pulse dispersion and distortion, effect of boundary conditions, ... Message: distrust the "relativistically corrected critical density"

・ロ・・ (日・・ (日・・ 日・・

CNR/INO

 $n_c^{(\text{rel})} = n_c \gamma \text{ concept}$

Andrea Macchi

Transparency of semi-infinite plasma

The ponderomotive force pushes and piles up electrons \rightarrow increase of density \rightarrow change of the transparency threshold [F. Cattani et al, Phys. Rev. E **62** (2000) 1234]

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Evanescent solution (assuming steady state, circular polarization, immobile ions ...) exists up to a threshold (for $n_e \gg n_c$)

$$a_0 \simeq \frac{3^{3/2}}{2^3} \left(\frac{n_e}{n_c}\right)^2 \simeq 0.65 \left(\frac{n_e}{n_c}\right)^2$$

instead of $n_e = n_c \gamma \leftrightarrow a_0 \simeq \sqrt{2} n_e / n_c$

Andrea Macchi

The evanescent solution - I

Assumptions in the cold fluid plasma equations

- steady state
- balance between ponderomotive and electrostatic forces
- \rightarrow ODE for $\tilde{a}(x)$ (that may be put in Hamiltonian form)

$$\frac{\mathrm{d}^2\tilde{a}}{\mathrm{d}x^2} - \frac{\tilde{a}}{1+\tilde{a}} \left(\frac{\mathrm{d}\tilde{a}}{\mathrm{d}x}\right)^2 + \left(1+\tilde{a}^2 - n(1+\tilde{a}^2)^{1/2}\right) = 0$$

Evanescent solution in the plasma

$$\tilde{a}(x) = \frac{2n^{1/2}\kappa\cosh\left(\kappa(x-x_0)\right)}{n\cosh^2\left(\kappa(x-x_0)\right) - n + 1}$$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

CNR/INO

$$n = n_0/n_c, \kappa = (n-1)^{1/2}$$

Andrea Macchi

The evanescent solution - II

The parameter x_0 is determined by matching with the vacuum solution (standing wave) at the electron density boundary $x = x_b$ (to be determined selfconsistently)

Condition of "monotonic evanescence" $d\tilde{a}/dx < 0$ determine existence condition

 \rightarrow transparency threshold

[F. Cattani et al PRE 62 (2000) 1234]

< <p>O > < <p>O >

Note: for given n and a_0 both evanescent and propagating solution may exist (hysteresis) [Goloviznin & Schep, Phys. Plasmas **7** (2000) 1564]

Electromagnetic caviton

For certain values of a_0 and n we obtain at the plasma (ion) boundary x = 0

$$\frac{\mathrm{d}\tilde{a}}{\mathrm{d}x}(x=0) = 0$$

 \rightarrow one can "build" a continous, symmetrical solution between two plasma layers: resonant EM cavity sustained by the ponderomotive force (*caviton*, improperly aka soliton)

On'the time scale of ion motion the caviton expands because of the electrostatic force ("post-solitons" also observed experimentally)

Transparency of ultrathin plasma foil

 $n_e(x) \simeq n_0 \ell \delta(x)$ (ℓ : foil thickness)

 $n_e(x) \simeq n_0 e \sigma(x)$ (c. 1011 and 1012) [V.A.Vshivkov et al, Phys. Plasmas 5 (1996) 2727] \xrightarrow{I}_{RI} $TI \longrightarrow_{T=1-R}$

$$R \simeq \begin{cases} 1 & (a_0 < \zeta) \\ \frac{\zeta^2}{a_0^2} & (a_0 < \zeta) \end{cases} \qquad \zeta \equiv \pi \frac{n_0 \ell}{n_c \lambda}$$

The transparency threshold $a_0 \simeq \zeta$ depends on areal density $n_0 \ell$

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

Relativistic Self-Focusing

Nonlinear refractive index (to be used with care!)

$$n_{\rm NL} = \left(1 - \frac{\omega_p^2}{\gamma \omega^2}\right)^{1/2} = n_{\rm NL}(|\mathbf{a}|^2) \qquad \gamma = (1 + |\mathbf{a}|^2/2)^{1/2}$$

For a laser beam with ordinary intensity profile n_{NL} is higher on the axis than at the edge: $n_0 = n_{NL}(a_0) > n_{NL}(0) = n_1$ \rightarrow pulse guiding effect as in an optical fiber

Image: A matrix

< 2 → < 2 →

Self-Focusing threshold: simple model

Assumptions: $a_0 \ll 1$, $\omega_p \ll \omega$, $\lambda/D \ll 1$ Impose total reflection in Snell's law of refraction

$$\sin\theta_r = \frac{n_0}{n_1}\sin\theta_i = \frac{n_{\mathsf{NL}}(a_0)}{n_{\mathsf{NL}}(0)}\sin\theta_i \doteq 1$$

with $\theta_i \simeq \arccos(\lambda/D)$ the diffraction angle

 $\longrightarrow \pi \left(\frac{D}{2}\right)^2 a_0^2 \simeq \pi \lambda^2 \frac{\omega^2}{\omega_p^2}$ Threshold *power* for self-focusing

$$P_c \simeq \frac{\pi^2}{2} \frac{m_e c^3}{r_c} \left(\frac{\omega}{\omega_p}\right)^2 = 43 \ \mathrm{GW} \frac{n_c}{n_e}$$

CNR/INO

Andrea Macchi

Advanced modeling of self-focusing

The radial ponderomotive force creates a low-density channel

 \rightarrow further "optical fiber" effect (*self-channeling*)

イロト イヨト イヨト イヨト

CNR/INO

A non-perturbative, multiple-scale modeling for Gaussian beam characterizes the propagation modes [Sun et al Phys. Fluids **30** (1987) 526] "Minimal" threshold power $P_c = 17.5 \text{ GW} \frac{n_c}{n_e}$ Warning: it applies only to not-so-short, not-so-tightly focused pulses

Andrea Macchi

Nonlinear propagation is a complex process ...

2D simulation of the propagation of a laser pulse ($a_0 = 2.5$, $\tau_p = 1$ ps) in an inhomogeneous plasma with peak density $n_e = 0.1 n_c$ Self-focusing and channeling followed by beam breakup, caviton formation, ion acceleration, steady magnetic field generation, ...

T. V. Liseykina & A. Macchi, IEEE Trans. Plasma Science **36** (2008) 1136, special issue on Images in Plasma Science

CNR/INO

Moving mirrors

A step-boundary plasma described by $n = (1 - n_e/n_c)^{1/2}$ with $n_e \gg n_c$ is a perfect mirror (100% reflection) Linear theory assumes the interface (x = 0) to be immobile and electrons to be confined in the mirror (x > 0 region)

At very high intensities the interface is

- pushed/pulled by oscillating components of the Lorentz force
- pushed by the steady ponderomotive force
- → pulse is reflected from a "moving" mirror

CNR/INO

Reflection from a moving mirror

Reflection kinematics can be studied via Lorentz transformations (the mirror is "perfect" in its rest frame; normal incidence for simplicity)

$$\omega_r = \omega \frac{1-\beta}{1+\beta} \qquad \beta = \frac{V}{c}$$

red shift for V > 0blue shift for V < 0The number of cycles is a Lorentz invariant \rightarrow V > 0: pulse stretching V < 0: pulse shortening

CNR/INO

Andrea Macchi

Force on/by the moving mirror

The force on the mirror can be derived from Lorentz transformations of fields and forces or also by the conservation of photon number N

 I_r, ω_r $I = \frac{N\hbar\omega}{\tau} \quad \text{intensity} \ (\tau: \text{ pulse duration})$ $\Delta \mathbf{p} = N\hbar(\mathbf{k}_i - \mathbf{k}_r) = N\frac{\hbar}{c}(\omega + \omega_r)\hat{\mathbf{x}} \quad \text{exchanged momentum}$ $\omega_r = \omega \frac{1-\beta}{1+\beta} \quad \Delta t = \frac{\tau}{1-\beta} \quad \Delta t: \text{ reflection time}$ $F \equiv \frac{\Delta p}{\Delta t} = \frac{2I}{c}\frac{1-\beta}{1+\beta} = \begin{cases} >0 \quad \text{for} \quad \beta > 0 \quad (\text{work done on the mirror}) \\ <0 \quad \text{for} \quad \beta < 0 \quad (\text{work done on the pulse}) \end{cases}$

 $V = \beta c$

CNR/INO

→ a moving mirror may amplify the reflected pulse!

Andrea Macchi

Flying mirror for intensity amplification

In 3D the wake wave has concave wavefronts because of relativistic effects \rightarrow moving mirror with focusing! Decrease of ω and $\lambda = 2\pi c/\omega$ causes compression of reflected pulse in space as well as in time with intensity gain at focus

$$\mathcal{G}\simeq 64\gamma_p^6(D/\lambda)^2 \qquad \gamma_p=(1-v_p^2/c^2)^{-1/2}$$

CNR/INC

The low reflectivity of the wake keeps the amplification factor to $\mathscr{A} \simeq 32\gamma_p^3 (D/\lambda)^2$ (quite substantial anyway) S.V.Bulanov et al, Phys. Rev. Lett. **91**(2003) 085001

Andrea Macchi

Oscillating mirror and high harmonics

Oscillatory motion $X_{\rm m}(t) = X_0 \sin \Omega t$ Boundary condition in instantaneous rest frame

CNR/INO

$$E'_{\parallel}(x=X'_m)=0$$

 $\rightarrow A_{\parallel}(x = X_m(t)) = 0 \text{ in lab frame (note that } E_{\parallel}(x = X_m(t)) \neq 0 \text{)} \\ A_{\parallel}(x, t) = A_i(x - ct) + A_r(x + ct) \text{ with } A_i(t) = A_0 \cos(\omega t)$

$$\longrightarrow A_r(t) \sim \sin\left(\omega t + \frac{2\omega}{c} X_0 \sin\Omega t\right) \sim \sum_{n=0}^{\infty} J_n\left(\frac{2\omega X_0}{c}\right) \sin(\omega + n\Omega) t$$

 $(J_n:$ Bessel functions) The reflected spectrum contains sums of wave frequency and mirror harmonics

Andrea Macchi

CNR/INO

Toy model for moving mirror HH

Perfect mirror with position X_m , velocity $V_m = \beta_m c$ and recoil force at the plasma frequency

 $\frac{\mathrm{d}}{\mathrm{d}t}(\gamma_m\beta_m) = \frac{2I}{\sigma c^2} \left(1 + 2\cos(2\omega t_r)\right) \frac{1 - \beta_m}{1 + \beta_m} - \omega_p^2 X_m \qquad \frac{\mathrm{d}X_m}{\mathrm{d}t} = \beta_m c$

 $t_r = t - X_m/c$: retarded time σ : mass per unit area a) 0.50 Cut-off frequency depends on ≤ 0.25
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓< $\begin{array}{c} 10^{-2} \\ 3 \\ 10^{-4} \\ 10^{-6} \\ 3 \\ 10^{-8} \end{array}$ $\beta_{\max} = \max(\beta_m)$ $\omega_{\rm co} = \omega \frac{1 - \beta_{\rm max}}{1 - \beta_{\rm max}} \simeq 4\omega \gamma_{\rm max}^2$ 10^{-12} 0.00 0.0 0.4 0.8 1.2 100 t/T ω/ω_{0} (other scalings proposed e.g. $\omega_{co} \sim \gamma_{max}^3 \dots$) Andrea Macchi **CNR/INO**

Light Sail

EoM for a mirror of finite mass pushed by *steady* radiation pressure

$$\frac{\mathrm{d}(\gamma\beta)}{\mathrm{d}t} = \frac{2}{\rho\ell c^2} I\left(t - \frac{X}{c}\right) \frac{1 - \beta}{1 + \beta} \qquad \frac{\mathrm{d}X}{\mathrm{d}t} = \beta c$$

Analytical solution yields for final gamma-factor

$$\gamma(\infty) - 1 = \frac{\mathscr{F}^2}{(2(\mathscr{F} + 1))} \qquad \mathscr{F} = \frac{2}{(\rho\ell)} \int_0^\infty I(t') dt' \simeq \frac{2I\tau_p}{\rho\ell}$$

Mechanical efficiency η can be estimated using photon number conservation + frequency shift

0

CNR/INO

$$\eta \equiv \frac{\Delta \mathscr{E}}{I\tau_p} = \frac{N\hbar(\omega + \omega_r)}{N\hbar} = \frac{2\beta}{1+\beta} \xrightarrow{\beta \to 1} 1 \text{ a "perfect" engine!}$$

Andrea Macchi

Early vision of radiation pressure acceleration (1966)

22

NATURE

JULY 2. 1966 VOL. 213 α -Centauri

INTERSTELLAR VEHICLE PROPELLED BY TERRESTRIAL LASER BEAM

By PROF. G. MARX Institute of Theoretical Physics, Roland Eötvös University, Budapest

A solution to "Fermi's paradox": "Laser propulsion from Earth ...would solve the problem of acceleration but not of deceleration at arrival ...no planet could be invaded by unexpected visitors from outer space"

イロト イヨト イヨト イヨト

Starshot: laser-boosted light sails for space travel

(credit: Breakthrough Starshot, breakthroughinitiatives.org)

Critical analysis: H. Milchberg, "Challenges abound for propelling interstellar probes", Physics Today, 26 April 2016

Basics of Laser-Plasma Interaction 2

Andrea Macchi

Analogy with Thomson scattering acceleration

Light Sail equations of motion have the same form as those of a particle undergoing Thomson Scattering [Landau & Lifshitz, *The Classical Theory of Fields*, ch.78 p.250 (1962)]

 $\frac{dp}{dt} = \sigma_T I \propto P_{sc} \text{ in rest frame}$ $\frac{dp}{dt} = \sigma_T I \propto P_{sc} \text{ in rest frame}$ $\frac{dp}{dt} \text{ scattering by a cluster of radius } a \ll \lambda$ $\text{ with } N (\gg 1) \text{ particles}$

$$P_{\rm sc} \rightarrow N^2 P_{\rm sc} \Rightarrow \sigma_T \rightarrow N^2 \sigma_T$$

CNR/INO

 \Rightarrow *N*-fold increase in acceleration V. I. Veksler, "The principle of coherent acceleration", At. Energ. **2** (1957) 525

Andrea Macchi