Basics of Laser-Plasma Interaction (lecture 3/3)

Andrea Macchi

National Institute of Optics, National Research Council (CNR/INO), Adriano Gozzini laboratory, Pisa, Italy

Enrico Fermi Department of Physics, University of Pisa, Italy

Advanced Summer School on "Laser-Driven Sources of High Energy Particles and Radiation" CNR Conference Centre, Anacapri, Italy, July 9-16 2017

Image: A matrix

Andrea Macchi

CNR/INO

Outline of Lecture 3

Light sail acceleration

- heating vs radiation pressure
- effects of laser polarization
- 3D effects

Radiation friction

- foundations of the problem
- classical Landau-Lifshitz theory
- macroscopic effects: magnetic field generation

★ E → < E →</p>

CNR/INO

Light Sail acceleration with lasers: a "dream bunch"?

Fast scaling and high efficiency of LS acceleration

$$\frac{\mathscr{E}_{\max}}{m_p c^2} = \frac{\mathscr{F}^2}{(2(\mathscr{F}+1))} \qquad \eta = \frac{2\beta}{1+\beta} = 1 - \frac{1}{1+\mathscr{F}^2} \qquad I \qquad V = \beta c$$

$$\mathscr{F} = \frac{2I\tau_p}{\rho\ell} = \frac{Z}{A} \frac{m_e}{m_p} \frac{a_0^2}{\zeta} \omega \tau_p \qquad \left(\zeta = \pi \frac{n_e}{n_c} \frac{\ell}{\lambda}\right)$$
if $\beta \ll 1 \rightarrow \frac{\mathscr{E}_{\max}}{m_p c^2} \approx \frac{\mathscr{F}^2}{2}, \quad \eta \approx \mathscr{F}^2$

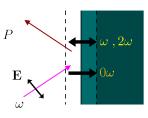
$$\ell \approx 10 \text{ nm}, \ I \approx 10^{21} \text{ W cm}^{-2}, \ \tau_p \gtrsim 10 \text{ fs} \quad \longrightarrow \mathscr{F} \sim 1$$

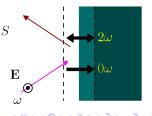
$$\mathscr{F} = 1 \quad \longrightarrow \quad \mathscr{E}_{\max} = 235 \text{ MeV}, \ \eta = 0.5$$
coherent motion of the sail \longrightarrow mononergetic ion spectrum
Optimal thickness $a_0 \approx \zeta$ at the threshold of transparency

Andrea Macchi

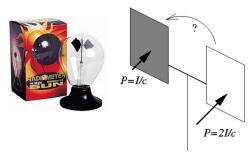
if

l


Forces on the sail


The radiation pressure on the sail arises from the steady (" 0ω ") ponderomotive force

The laser also exerts oscillating forces *P*-polarization: E-driven, $\Omega = \omega$ S-polarization: $\mathbf{v} \times \mathbf{B}$ -driven, $\Omega = 2\omega$


Nonlinear oscillations the across surface cause electron heating (the motion across a sharp gradient is Snon-adiabatic) Heating is undesired (possibly detrimen-

tal) for radiation pressure acceleration

How to make radiation pressure dominant?

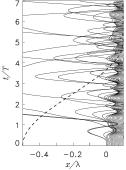
The "Optical Mill" rotates in the sense *opposite* to that suggested by the imbalance of radiation pressure: *thermal* pressure due to *heating* dominates

Enforcing radiation pressure dominance requires to suppress heating of the surface

For ultraintense lasers: radiation pressure push must overcome internal pressure due to the generation of "fast" electrons

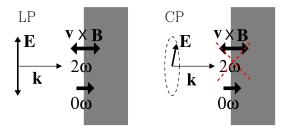
CNR/INO

"Vacuum heating" of electrons

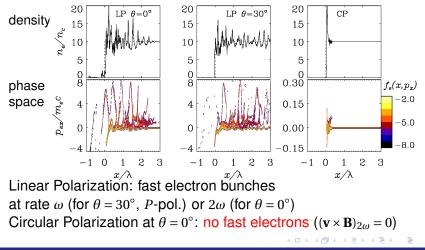

Single particle picture: oscillating forces drag electrons into the vacuum side and push them back in the plasma after an oscillation half-cycle [Brunel, Phys. Rev. Lett. **59** (1987) 52;

Phys. Fluids 31 (1988) 2714]

Collective picture: driven plasma oscillations across a sharp gradient "break" and give energy to particles


Electrostatic simulation with Dawson's sheet model: self-intersection (*wavebreaking*) of fluid elements and generation of "fast" electron bunches

Circular polarization quenches heating


For Circular Polarization (CP) at normal incidence the 2ω component of the $\mathbf{v} \times \mathbf{B}$ force vanishes \rightarrow longitudinal oscillations and heating of electrons are suppressed

Ions respond "smoothly" to steady component: radiation pressure dominates the interaction [Macchi et al, Phys. Rev. Lett. **95** (2005) 185003]

Fast electron generation: effect of polarization

1D simulations of laser interaction with solid-density plasma

Fast gain Light Sail in 3D

Transverse expansion of the target reduces on-axis surface density $\rho \ell$ \Rightarrow *light sail gets "lighter"*: boost of energy gain at the expense of the number of ions [S.V.Bulanov et al, PRL **104** (2010) 135003] LS equations accounting for self-similar transverse dilatation of target in *D*-dimensions (D = 1, 2, 3)

$$r_{\perp}(t) = \Lambda(t)r_{\perp}(0), \qquad \sigma = \sigma(t) = \frac{\sigma(0)}{\Lambda^{D-1}(t)}$$
$$\frac{\mathrm{d}}{\mathrm{d}t}(\gamma\beta_{\parallel}) = \frac{2I}{\sigma(0)c^{2}}\Lambda^{D-1}(t)\frac{1-\beta_{\parallel}}{1+\beta_{\parallel}}$$

◆□▶★@▶★≧▶★≧▶ 差 の�(

CNR/INO

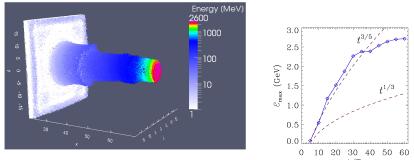
Andrea Macchi

Model for target dilatation

Model: transverse kick due to ponderomotive force

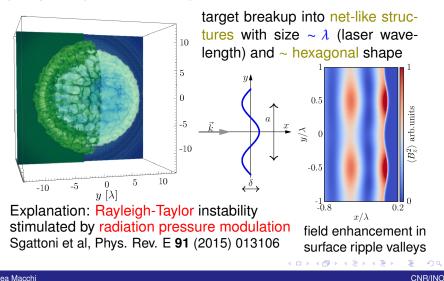
$$\frac{\mathrm{d}p_{\perp}(t)}{\mathrm{d}t} \simeq -m_e c^2 \partial_r (1 + a^2(r, t))^{1/2} \simeq 2m_e c^2 a_0 r / w \qquad (a_0 \gg 1, r \ll w)$$

→ transverse momentum scales linearly with position


$$\frac{\mathrm{d}\Lambda}{\mathrm{d}t} = \frac{\dot{r}_{\perp}(t)}{\dot{r}_{\perp}(0)} = \frac{\alpha}{\gamma(t)}\,, \qquad \gamma(t) \simeq (p_{\parallel}^2 + m_i^2 c^2)^{1/2}\,, \qquad \alpha \simeq 2 \frac{m_e a_0 c^2 \Delta t}{m_p w^2}$$

Solution in the $\gamma \gg 1$ limit $\gamma = \left(\frac{t}{\tau_k}\right)^k$, $k = \frac{D}{D+2}$ Fastest gain in 3D ~ $t^{3/5}$ with $\tau_{3/5} = (48/125\Omega\alpha)^{1/3}$ (note: mechanism is efficient in the relativistic regime).

Andrea Macchi


High energy gain in 3D LS simulations

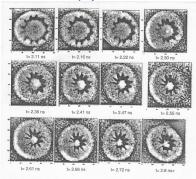
Laser: 24 fs, 4.8 μ m spot, $I = 0.85 \times 10^{23}$ W cm⁻² \implies 1.5 kJ Target: $d = 1 \ \mu$ m foil, $n_e = 10^{23}$ cm⁻³

 $\mathscr{E}_{max} \simeq 2.6 \ {\rm GeV} > 4X \ 1D \ {\rm model} \ {\rm prediction}$ Macchi et al, Plasma Phys. Contr. Fus. **55** (2013) 124020; Sgattoni et al, Appl. Phys. Lett. **105** (2014) 084105

Rayleigh-Taylor instability in LS acceleration

Light sail acceleration

Rayleigh-Taylor Instability in space and lab

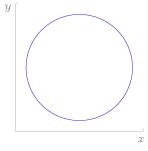


Crab Nebula, Hubble Space Telescope Heavy fluid over a light fluid is unstable († gravity ↓ acceleration)

Laser-driven implosion for Inertial Confinement Fusion studies, 1995 (Wikipedia)

Introducing radiation friction - I

Example: electron in a magnetic field \mathbf{B}_0


 $\mathbf{f}_L = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B}/c)$ Lorentz force

$$m_e \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{f}_L = -\frac{e}{c}\mathbf{v} \times \mathbf{B}_0$$

Solution: uniform circular motion

 $|\mathbf{v}| = v = \text{cost.}$

$$K = \frac{1}{2}m_ev^2 = \text{constant}$$
 $\omega_c = \frac{eB_0}{m_ec}$ $r = \frac{v}{\omega_c}$

-> -< ≣ ->

CNR/INO

Andrea Macchi

Introducing radiation friction - II

But the electron radiates:

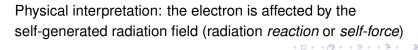
$$P_{\text{rad}} = \frac{2e^2}{3c^3} \left| \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \right|^2 = \frac{2e^2}{3c^3} \omega_c^2 v^2$$
(Larmor's formula for radiated power)

Energy loss due to radiation:

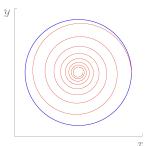
$$\frac{\mathrm{d}K}{\mathrm{d}t} = -P_{\mathrm{rad}} \longrightarrow v(t) = v(0)\mathrm{e}^{-t/t}$$
$$\tau = \frac{3m_e c^3}{2e^2\omega_c^2} = \frac{3c}{2r_c\omega_c^2} \qquad r_c = \frac{e^2}{m_e c^2}$$

If $r(t) \simeq v(t) / \omega_c$, electron "falls" along a spiral

Andrea Macchi


Introducing radiation friction - III

The Lorentz force does not describe the electron motion consistently: need to include an extra force


$$m_e \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{f}_L + \mathbf{f}_{\mathrm{rad}}$$

Work done by extra force = energy loss

$$\int_0^t \mathbf{f}_{\mathsf{rad}} \cdot \mathbf{v} \mathrm{d}t = -\int_0^t P_{\mathsf{rad}} \mathrm{d}t \longrightarrow \mathbf{f}_{\mathsf{rad}} = -\frac{2e^2}{3c^3} \frac{\mathrm{d}^2 \mathbf{v}}{\mathrm{d}t^2}$$

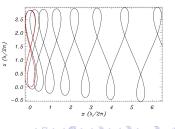
 $\left(\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right)$

Landau-Lifshitz classical approach

$$\mathbf{f}_{rad} = -\frac{2e^2}{3c^3} \frac{\mathrm{d}^2 \mathbf{v}}{\mathrm{d}t^2}$$
 is unsatisfying:

- unphysical "runaway" solutions $\mathbf{a}(t) = \mathbf{a}(0)e^{t/\tau}$
- need of "extra" initial condition $\mathbf{a}(0)$

LL iterative approach brings $\mathbf{f}_{\text{rad}} = \mathbf{f}_{\text{rad}}(\mathbf{E}, \mathbf{B})$:


$$\mathbf{f}_{rad} = -\frac{2e^2}{3c^3} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \right) \simeq -\frac{2e^2}{3c^3} \frac{\mathrm{d}}{\mathrm{d}t} \left(-\frac{e}{m_e} \mathbf{f}_L \right) = \frac{2e^3}{3m_ec^3} \left(\frac{\mathrm{d}\mathbf{E}}{\mathrm{d}t} - \frac{e}{m_ec} \mathbf{E} \times \mathbf{B} \right)$$

in the "instantaneous" frame where $\mathbf{v} = 0$ (note: $\frac{\mathrm{d}\mathbf{E}}{\mathrm{d}t} = (\partial_t + \mathbf{v} \cdot \nabla)\mathbf{E}$)
Note 2nd term $\sim \frac{2}{3} \left(\frac{e^2}{m_ec^2} \right) \mathbf{E} \times \mathbf{B} = \frac{8\pi}{3} r_c^2 \frac{\mathbf{S}}{c} \propto \sigma_T I$ "Thomson drag"

Relativistic Landau-Lifshitz RF force Necessary generalization to relativistic regime yields

$$\mathbf{f}_{\text{rad}} = -\frac{2r_c^2}{3} \left\{ \gamma^2 \left[\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)^2 - \left(\frac{\mathbf{v}}{c} \cdot \mathbf{E} \right)^2 \right] \frac{\mathbf{v}}{c} - \left[\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \times \mathbf{B} + \left(\frac{\mathbf{v}}{c} \cdot \mathbf{E} \right) \mathbf{E} \right] + \gamma \frac{m_e c}{e} \left(\frac{d}{dt} \mathbf{E} + \frac{\mathbf{v}}{c} \times \frac{d}{dt} \mathbf{B} \right) \right\}$$

Dominant term (~ $-\gamma^2 \mathbf{v}$) acts as a nonlinear friction force

Effect of including \mathbf{f}_{rad} on the motion in a plane wave: accelerating drift of the figure-of-eight (constraints of "no-acceleration" theorem are broken)

CNR/INO

Andrea Macchi

Including radiation friction in plasma modeling

- The electrodynamics of continous media (a mean field theory) considers only coherent emission $(\lambda \gg n_e^{-1/3})$ that governs the collective dynamics
- ► Electrons also emit incoherent radiation ($\lambda \ll n_e^{-1/3}$) which mostly escapes from the medium ($\omega \gg \omega_p$)
- The RF force accounts for the back-reaction of radiation emission at *all* ω's, but in practice only very high ω's are relevant (radiation power strongly scales with ω)
- Including RF in the modeling makes radiation losses consistent with plasma dynamics
- (All of this is only relevant for high fields and strongly relativistic electrons ... which is where we are going!)

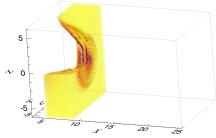
イロト イヨト イヨト イヨト

RF-induced angular momentum absorption

 A CP laser pulse carries "spin" angular momentum (AM) classical expression:

$$L_{z} = \int_{0}^{\infty} \ell_{z}(r) 2\pi r dr = -\int_{0}^{\infty} \frac{r}{2c\omega} \partial_{r} I(r) 2\pi r dr$$

- in QM, each photon has spin \hbar independently of ω
- → absorption of photons leads to AM absorption (AMA)
 - Strong radiation emission from a laser plasma
- → (many) low-frequency (laser) photons are converted into (few) high-frequency (γ-ray) photons
- \rightarrow RF inclusion should induce strong AMA in the plasma
- → mechanical torque on electrons


イロト イヨト イヨト イヨト

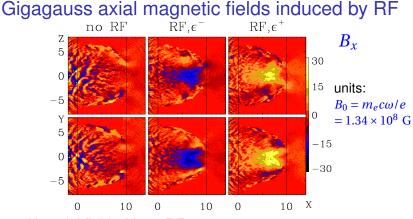
RF-induced "inverse Faraday" effect

- The AMA-induced torque on electrons drive a solenoidal current
- → generation of an axial magnetic field
 - note 1: inverse Faraday effect (IFE) is somewhat a misnomer, but used since its discovery
 - ► note 2: circular electron orbits in a CP pulse do *not* generate a steady axial field! Note also that the physics is at the edge of the beam (ℓ_z ∝ ∂_rI(r))
 - model for IFE in a plasma, with criticism of earlier theories:
 M. Haines, PRL 87 (2001) 135005
 - Idea: use IFE-generated magnetic field as a RF signature in (extremely intense) laser-plasma interactions

<ロ> (四) (四) (日) (日) (日)

Searching for IFE in 3D thick target simulations

$$\begin{split} \lambda &= 0.8 \; \mu \text{m} \\ n_e &= 90 \, n_c = 1.6 \times 10^{23} \; \text{cm}^{-3} \\ a_0 &= (200 - 600) \\ I &= (0.9 - 7.8) \times 10^{23} \; \text{W} \; \text{cm}^{-2} \\ U &= (0.4 - 4) \times 10^3 \; \text{J} \end{split}$$


イロト イヨト イヨト イヨト

Laser pulse at waist (target boundary)

 $\mathbf{a}(x=0,r,t) = a_0 \left(\hat{\mathbf{y}} \cos(\omega t) \pm \hat{\mathbf{z}} \sin(\omega t) \right) \mathbf{e}^{-(r/r_0)^n - (ct/r_l)^4}$

n = 2 (Gaussian profile) or n = 4 (super-Gaussian) $r_l = 3\lambda, r_0 = 3.8\lambda$

Andrea Macchi

No axial field without RF Sign of B_x changes with laser pulse helicity

T. V. Liseykina, S. V. Propruzhenko, A. Macchi, New J. Phys. 18 (2016) 072001

Andrea Macchi

Unexpected (and embarassing) hype physicsworld.com

Home News	Blog Multimedia In depth Events
Neves archive 2016 2016 2016 2016 2016 2016 2016 2016	Radiation friction' could make huge magnetic fields with lasers M 2010 02 comment
	Blockshills Coday's Science the New When Zeardy of Budes References and the Science of the Sc

Seneral Physics > August 10, 2016

New method for generating superstrong magnetic fields August 10, 2016

Physicists have calculated a whole new way to generate super-strong magnetic fields ・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Stronger than any magnetic field on Earth.

Andrea Macchi