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Outline of Lecture 3

Light sail acceleration

» heating vs radiation pressure
» effects of laser polarization
» 3D effects

Radiation friction

» foundations of the problem
» classical Landau-Lifshitz theory
» macroscopic effects: magnetic field generation
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Light sail acceleration

Light Sail acceleration with lasers: a “dream bunch”?

Fast scaling and high efficiency of LS acceleration
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coherent motion of the sail — mononergetic ion spectrum
Optimal thickness a, = { at the threshold of transparency
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Light sail acceleration

Forces on the sail

The radiation pressure on the sail arises
from the steady (“0w”) ponderomotive
force

The laser also exerts oscillating forces
P-polarization: E-driven, Q = w
S-polarization: v x B-driven, Q = 2w

Nonlinear oscillations across the
surface cause electron heating

(the motion across a sharp gradient is
non-adiabatic)

Heating is undesired (possibly detrimen-
tal) for radiation pressure acceleration
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Light sail acceleration

How to make radiation pressure dominant?

The “Optical Mill” rotates

in the sense opposite to

that suggested by the

imbalance of radiation

pressure: thermal pres-
p=21. SUre due to heating

dominates

Enforcing radiation pressure dominance requires to suppress

heating of the surface

For ultraintense lasers: radiation pressure push must overcome

internal pressure due to the generation of “fast” electrons
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Light sail acceleration

“VYacuum heating” of electrons

Single particle picture: oscillating forces drag
electrons into the vacuum side and push them
back in the plasma after an oscillation half-cycle
[Brunel, Phys. Rev. Lett. 59 (1987) 52;
Phys. Fluids 31 (1988) 2714]

Collective picture: driven plasma oscil-
lations across a sharp gradient “break”
and give energy to particles

LT

Electrostatic simulation with Daw-
son’s sheet model: self-intersection
(wavebreaking) of fluid elements and
generation of “fast” electron bunches
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Light sail acceleration

Circular polarization quenches heating

For Circular Polarization (CP) at normal incidence the 2w com-
ponent of the vx B force vanishes — longitudinal oscillations and
heating of electrons are suppressed

LP
E V
I

0

lons respond “smoothly” to steady component:
radiation pressure dominates the interaction
[Macchi et al, Phys. Rev. Lett. 95 (2005) 185003]
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Light sail acceleration

Fast electron generation: effect of polarization
1D simulations of laser interaction with solid-density plasma
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Linear Polarization: fast electron bunches
at rate w (for 6 =30°, P-pol.) or 2w (for 6 = 0°)
Circular Polarization at 8 = 0°: no fast electrons ((v x B),, = 0)
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Light sail acceleration

Fast gain Light Sail in 3D

Transverse expansion of the target

reduces on-axis surface density p¢

= light sail gets “lighter” > >
boost of energy gain

at the expense of the number of ions

[S.V.Bulanov et al, PRL 104 (2010) 135003]

LS equations accounting for self-similar transverse dilatation of
target in D-dimensions (D =1,2,3)

o(0)
ri()=A@0ryL0), UZUU):ATl(t)
d _ p-1,, 1 =PI
a P =gt 1+
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Light sail acceleration

Model for target dilatation
Model: transverse kick due to ponderomotive force

dp, (t
det( ) = —meczar(1+a2(r, 2~ Zmeczaor/w

(ag>1, r<w)

— transverse momentum scales linearly with position

dA o a
dt ~ 7.00) y(@)’

2

Mmeagc- At

y(t) = (pﬁ+m?cz)”2, a=2——— 5
myw

o . t\k D
Solution inthe y > 1 limit  y= (—) , k=

Tk D+2
Fastest gain in 3D ~ 35 with 73,5 = (48/125Qa)"/3

(note: mechanism is efficient in the relativistic regime).
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High energy gain in 3D LS simulations

Laser: 24 fs, 4.8 um spot, I=0.85x 102 Wem™2 = 1.5kJ
Target: d =1 pm foil, n, =102 cm™3

Energy (MeV)
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Emax = 2.6 GeV > 4X 1D model prediction YT

Macchi et al, Plasma Phys. Contr. Fus. 55 (2013) 124020;
Sgattoni et al, Appl. Phys. Lett. 105 (2014) 084105
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Light sail acceleration

Rayleigh-Taylor instability in LS acceleration
target breakup into net-like struc-
tures with size ~ A (laser wave-

length) and ~ hexagonal shape
1 1

110

(B2) arb.units

-1 0
Explanation: Rayleigh-Taylor instability P
stimulated by radiation pressure modulation  fijg|q enhancement in
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Light sail acceleration

Rayleigh-Taylor Instability in space and lab *!M

Heavy fluid over a light fluid i ’
is unstable \M,‘/

(1 gravity | acceleration) -

physicscentral.com

Laser-driven
implosion for
Inertial
Confinement
Fusion studies,
1995
(Wikipedia)

Crab Nebula,
Hubble Space
Telescope

t=261ns t=2.66 ns =272ns t=28ns+
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Introducing radiation friction - |

Example:
electron in a magnetic field By

f; = —e(E+vxB/c) Lorentz force

d
me—V =f; = —fvx By
dr c

Solution: uniform circular motion

lv| = v = cost.
eB
K=1mg?=constant  w.= 0
MmeC
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Radiation friction

Introducing radiation friction - I
But the electron radiates:

262

2 2
B dv|® 2e* , ,
= —=
ra 303

—| =W
dr 3¢3°°¢
(Larmor’s formula for radiated power)

Energy loss due to radiation:

dK

E =—Pg — v()= U(O)e_t/‘[ x
3mec? 3c e’

IT=—=— r-=
2e2w%  2r.w? 7 Mmec?

If () =v(t)/w,, electron “falls” along a spiral
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Radiation friction

Introducing radiation friction - IlI

The Lorentz force does not describe
the electron motion consistently:
need to include an extra force

\"4
mea = fL + frad

Work done by extra force = energy loss

t t 22 d?v
L frad -vdt = _‘/(; Praddt—’ frad = _@W

Physical interpretation: the electron is affected by the
self-generated radiation field (radiation reaction or self-force)
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Radiation friction

Landau-Lifshitz classical approach
2% d°v
rad — 3 3 d 2
“ » . tlt dV
- unphysical “runaway” solutions a(t) = a(0)e a=—
- need of “extra” initial condition a(0)

is unsatisfying:

LL iterative approach brings f.4 = f.4(E, B):

rad = —

2e¢% d (dv) 2¢% d ( e ) 263 (dE e
- L

el ) POk i ExB
3c3dr\dr 3c3dr\ m, 3mecd \dt  mec )

: ” dE
in the “instantaneous” frame where v =0 (note: P (0, +v-V)E)

2( & 87 ,S
Note 2" term ~ = ( )E xB=—ri=ocorl  “Thomson drag”
3 \ mec? 3 ‘¢

Landau & Lifshitz, The Classical Theory of Fields, 2nd Ed., par.76
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Radiation friction

Relativistic Landau-Lifshitz RF force
Necessary generalization to relativistic regime yields

foa = —ZISLE{YZ (E+‘—C’><B)2—(‘_C’.E)2 ‘EI
_[(E+‘—CIXB)><B+(‘_£.E)E]+Ymeec(%E+‘_£x%B)}

Dominant term (~ —y?v) acts as
a nonlinear friction force

Effect of including f.q, on the motion _
in a plane wave: accelerating drift of & ’
the figure-of-eight )
(constraints of “no-acceleration” theorem
are broken)

s 4 s s
z (A/2m)
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Including radiation friction in plasma modeling

Radiation friction

» The electrodynamics of continous media (a mean field
theory) considers only coherent emission (A > n,1/3) that

governs the collective dynamics

» Electrons also emit incoherent radiation (A < n;'/3) which

mostly escapes from the medium (v > w),)

» The RF force accounts for the back-reaction of radiation
emission at all w’s, but in practice only very high w’s are

relevant (radiation power strongly scales with w)

» Including RF in the modeling makes radiation losses
consistent with plasma dynamics

» (All of this is only relevant for high fields and strongly
relativistic electrons . .. which is where we are going!)
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Radiation friction

RF-induced angular momentum absorption

» A CP laser pulse carries “spin” angular momentum (AM)
classical expression:

Lz=f l,(r)2nrdr = —f LarI(r)andr
0 0 2cw

» in QM, each photon has spin 7 independently of w
— absorption of photons leads to AM absorption (AMA)
» Strong radiation emission from a laser plasma

— (many) low-frequency (laser) photons are converted into
(few) high-frequency (y-ray) photons

— RF inclusion should induce strong AMA in the plasma
— mechanical torque on electrons
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Radiation friction

RF-induced “inverse Faraday” effect

» The AMA-induced torque on electrons drive a solenoidal
current
— generation of an axial magnetic field
» note 1: inverse Faraday effect (IFE) is somewhat a misnomer,
but used since its discovery

» note 2: circular electron orbits in a CP pulse do not generate a
steady axial field! Note also that the physics is at the edge of the
beam (¢, o 6,1(r))

» model for IFE in a plasma, with criticism of earlier theories:

M. Haines, PRL 87 (2001) 135005

» Idea: use IFE-generated magnetic field as a RF signature

in (extremely intense) laser-plasma interactions
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Radiation friction

Searching for IFE in 3D thick target simulations

A=0.8 um
of } ne=90n, =1.6x102 cm=3
[ \ ay = (200 — 600)
ol /i [=(0.9-7.8)x 1023 W cm™2
;‘L U=(0.4-4)x10%J
i-,jé

o Tt

=5

Laser pulse at waist (target boundary)

n 4
a(x=0,7,1) = ag (ycos(w?) + zsin(wt)) g~ (r/r)"=(etlr)

n =2 (Gaussian profile) or n =4 (super-Gaussian)
rp=3A, ro=3.81
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Radiation friction

Gigagauss axial magnetic fields induced by RF
no RF RF,e” , RF,e"

By

units:
By =mecwle
=1.34x10% G

0 10 0 10 0 10 X

No axial field without RF
Sign of By changes with laser pulse helicity

T. V. Liseykina, S. V. Propruzhenko, A. Macchi, New J. Phys. 18 (2016) 072001
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Radiation friction

Unexpected (and embarassing) hype ...
phys|csw0r|dcom PHYS ($-ORG arctecinology + Py ~ Astonomy & Space + Techmology v Chemisty v Boogy v

F
fyaN=[Q search
Home Blog | Multimedia Indepth Events Home » Prysks » Geneal Prysks » Augist 10,2015

New method for generating superstrong magnetic fields

August 10,2016

News archive ‘Radiation friction' could make huge
2016 magnetic fields with lasers
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Physicists have calculated a whole new way to
generate super-strong magnetic fields
StrongeSt M ag net Stronger than any magnetic field on Earth.
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