Basic Phenomena of Superintense Laser-Plasma Optics

Andrea Macchi

CNR/INO, Adriano Gozzini laboratory, Pisa, Italy

Enrico Fermi Department of Physics, University of Pisa, Italy

47th International Nathiagali Summer College "High Power Laser Systems & Applications" Islamabad, Pakistan, June 20, 2017

Andrea Macchi

CNR/INO

CNR/INO

Compact References

- A. Macchi,
- A Superintense Laser-Plasma Interaction Theory Primer (Springer, 2013)
- Basics of Laser-Plasma Interaction: a Selection of Topics, in: Laser-Driven Sources of High Energy Particles and Radiation, Springer Proceedings in Physics **231**, 25-49 (2019) arXiv:1806.06014

・ロト ・回ト ・ヨト ・ヨト

Andrea Macchi

★ E → < E →</p>

CNR/INO

Image: A matrix

Outline

Single electron dynamics

- Relativistic motion in a plane wave
- Ponderomotive force
- Radiation friction

Nonlinear "relativistic" propagation

- Review of linear EM waves in a plasma
- Self-induced transparency
- EM cavitons
- Self-focusing

Moving mirrors

- Basic formulas
- High harmonics
- Light sails

Andrea Macchi

CNR/INO

Single electron in a plane wave

An EM plane wave can be described by the vector potential:

$$\mathbf{A}(x,t) = \mathbf{A}(x-ct) \longrightarrow \mathbf{E} = -\frac{1}{c}\partial_t \mathbf{A} , \quad \mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$$

Equations of Motion (EoM):

$$\begin{aligned} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} &= \mathbf{v} = \frac{\mathbf{p}}{m_e \gamma} , \qquad \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -e\left[\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right] \\ \mathbf{r} &= \mathbf{r}(t) \qquad \mathbf{p} = \mathbf{p}(t) \qquad \gamma = (\mathbf{p}^2 + m_e^2 c^2)^{1/2} = (1 - \mathbf{v}^2/c^2)^{-1/2} \end{aligned}$$

The EoM are nonlinear because of the $\mathbf{v} \times \mathbf{B}$ term and the dependence of the fields on the instantaneous position:

$$\mathbf{E} = \mathbf{E}(\mathbf{r}(t), t) \qquad \mathbf{B} = \mathbf{B}(\mathbf{r}(t), t)$$

・ロト ・回ト ・ヨト ・ヨト

Andrea Macchi

Moving mirrors

CNR/INO

When is the motion relativistic? (Quasi-)Monochromatic wave $\mathbf{A}(x,t) = \operatorname{Re} \left[\hat{\mathbf{A}}(x,t) e^{ikx-i\omega t} \right]$

(with $\hat{A}(x,t)$ a slowly varying envelope, i.e. the wavepacket profile)

Assume
$$|\mathbf{v}| \ll c \Rightarrow |\mathbf{r}| \ll \lambda = \frac{2\pi c}{\omega} \Rightarrow k|\mathbf{r}| = 2\pi \frac{|\mathbf{r}|}{\lambda} \simeq 0$$

 $\Rightarrow \mathbf{E}(\mathbf{r}(t), t) = \mathbf{E}(kx(t), t) \simeq \mathbf{E}(x = 0, t) \text{ and } \frac{\mathbf{v}}{c} \times \mathbf{B} \simeq 0$
Solution $\mathbf{p}(t) \simeq \frac{e}{c} \mathbf{A}(0, t) \propto e^{-i\omega t} \frac{|\mathbf{v}|}{c} = \frac{p}{m_e c} = \frac{eA_0}{m_e c^2} \equiv a_0$

The motion becomes relativistic and nonlinear when $a_0 \gtrsim 1$

$$a_0 = 0.85 \left(\frac{I\lambda^2}{10^{18} \text{ W cm}^{-2}}\right)^{1/2} \quad \text{where} \quad I \equiv \langle |\mathbf{S}| \rangle = \left\langle \frac{c}{4\pi} |\mathbf{E} \times \mathbf{B}| \right\rangle$$

Andrea Macchi

CNR/INO

ヘロト ヘ団ト ヘヨト ヘヨト

Constants of motion in a plane wave

Symmetry properties of the EoM \rightarrow conserved quantities:

$$\mathbf{p}_{\perp} - \frac{e}{c}\mathbf{A} = \mathbf{C}_1 \qquad p_x - m_e\gamma c = C_2$$

(" \perp " denotes the transverse direction, i.e. yz plane) Initial conditions $\mathbf{p} = 0$, $\mathbf{A} = 0 \longrightarrow \mathbf{C}_1 = 0$, $C_2 = -m_ec$

$$p_x = \frac{\mathbf{p}_{\perp}^2}{2m_e c} = \frac{1}{2m_e c} \left(\frac{e}{c}\mathbf{A}\right)^2$$

After the EM pulse is gone A = 0 again $\Rightarrow p_x = 0$ \Rightarrow no net acceleration by EM plane wave in vacuum

Andrea Macchi

Moving mirrors

CNR/INO

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Solutions for a plane monochromatic wave

$$\mathbf{A}(x,t) = A_0 \left[\hat{\mathbf{y}} \cos \theta \cos(kx - \omega t) - \hat{\mathbf{z}} \sin \theta \sin(kx - \omega t) \right]$$

with $C_1 = 0$, $C_2 = -m_e c$ (*adiabatic* field rising in an infinite time)

Constant longitudinal drift: $\langle p_x \rangle = m_e c a_0^2/4$, $\langle v_x \rangle = c a_0^2/(a_0^2 + 4)$ (origin: absorption of EM energy \propto absorption of EM momentum)

Andrea Macchi

Moving mirrors

Figure of Eight

LP in the frame where $\langle \upsilon_x \rangle = 0$ i.e. $\mathbf{C}_1 = \mathbf{0}, C_2 = m_e \gamma_0 c$

Closed self-similar trajectory

$$16X^2 = Y^2(1 - Y^2)$$
$$X \equiv \frac{\gamma_0}{a_0^2} kx \qquad Y \equiv \frac{\gamma_0}{a_0} ky$$

(문) (문)

CNR/INO

Messages learnt:

- initial conditions are crucial
- polarization matters
- EM field properties constrain the dynamics

Andrea Macchi

CNR/INO

・ロ・・ (日・・ (日・・ (日・)

Ponderomotive approximation

Aim: describe the motion in a *quasi-periodic* field ($T = 2\pi/\omega$)

$$\mathbf{A}(\mathbf{r},t) = \operatorname{Re}\left[\tilde{\mathbf{A}}(\mathbf{r},t)\mathrm{e}^{-i\omega t}\right]$$

for which the average over a period $\left(\langle f \rangle \equiv T^{-1} \int_0^T f(t') \mathrm{d}t'\right)$

$$\langle \mathbf{A}(\mathbf{r},t) \rangle \simeq 0 \qquad \left\langle \tilde{\mathbf{A}}(\mathbf{r},t) \right\rangle \simeq \tilde{\mathbf{A}}(\mathbf{r},t)$$

Idea: find an EoM for the "slow" (period-averaged) motion

 $\mathbf{r}(t) \equiv \mathbf{r}_s(t) + \mathbf{r}_o(t) \qquad \langle \mathbf{r}_o(t) \rangle \simeq 0 \qquad \langle \mathbf{r}_s(t) \rangle \simeq \mathbf{r}_s(t)$

(analogy: guiding center in a non-uniform magnetic field)

Andrea Macchi

Moving mirrors

CNR/INO

Ponderomotive force

A *perturbative*, *non-relativistic* approach including lowest order contributions from the $\mathbf{v} \times \mathbf{B}$ term and the spatial variation of $\mathbf{E} = \mathbf{E}(\mathbf{r}, t)$ yields the EoM for $\mathbf{v}_s(t) = \langle \mathbf{v}(t) \rangle$ and $\mathbf{r}_s(t) = \langle \mathbf{r}(t) \rangle$

$$m_e \frac{\mathrm{d}\mathbf{v}_s}{\mathrm{d}t} = -\frac{e^2}{2m_e\omega^2} \boldsymbol{\nabla} \left\langle \mathbf{E}^2(\mathbf{r}_s(t), t) \right\rangle \equiv \mathbf{f}_p \qquad \frac{\mathrm{d}\mathbf{r}_s}{\mathrm{d}t} = \mathbf{v}_s$$

Relativistic extension (slightly controversial):

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(m_{\mathrm{eff}}\mathbf{v}_{s}\right) = -\boldsymbol{\nabla}(m_{\mathrm{eff}}c^{2}) \equiv \mathbf{f}_{p}$$

$$m_{\text{eff}} \equiv m_e (1 + \langle \mathbf{a}^2 \rangle)^{1/2} \qquad \left(\mathbf{a} \equiv e\mathbf{A}/m_e c^2\right)$$

The (time- and space-dependent) effective mass $m_{\rm eff}$ accounts for relativistic inertia due to the oscillatory motion

Andrea Macchi

Moving mirrors

CNR/INO

Ponderomotive effects

 $\mathbf{f}_p \propto - oldsymbol{
abla} |\mathbf{E}|^2$

 \Rightarrow electrons are pushed out of higher field regions A laser pulse (of finite length and width) pushes electrons in both longitudinal (x) and radial (r) directions

< ロ > < 同 > < 回 > < 回 >

Notice: we define f_p as a secular, "slow" force (it does not include oscillating nonlinear terms) The ponderomotive force concept is tightly related to that of radiation pressure

Moving mirrors

Introducing radiation friction - I

Example: electron in a magnetic field \mathbf{B}_0

 $\mathbf{f}_L = -e(\mathbf{E} + \mathbf{v} imes \mathbf{B}/c)$ Lorentz force

$$m_e \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{f}_L = -\frac{e}{c}\mathbf{v} \times \mathbf{B}_0$$

Solution: uniform circular motion

$$|\mathbf{v}| = v = \text{cost.}$$

 $K = \frac{1}{2}m_ev^2 = \text{constant}$ $\omega_c = \frac{eB_0}{m_ec}$ $r = \frac{v}{\omega_c}$

★ 문 → < 문 →</p>

CNR/INO

Andrea Macchi

Moving mirrors

CNR/INO

Introducing radiation friction - II

But the electron radiates:

$$P_{\rm rad} = \frac{2e^2}{3c^3} \left| \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \right|^2 = \frac{2e^2}{3c^3} \omega_c^2 v^2$$
(Larmor's formula for radiated power

Energy loss due to radiation:

$$\begin{aligned} \frac{\mathrm{d}K}{\mathrm{d}t} &= -P_{\mathrm{rad}} &\longrightarrow \quad \upsilon(t) = \upsilon(0)\mathrm{e}^{-t/\tau} \\ \tau &= \frac{3m_ec^3}{2e^2\omega_c^2} = \frac{3c}{2r_c\omega_c^2} \qquad r_c = \frac{e^2}{m_ec^2} \end{aligned}$$

If $r(t) \simeq v(t)/\omega_c$, electron "falls" along a spiral

Y

Moving mirrors

x

CNR/INO

Introducing radiation friction - III

The Lorentz force does not describe the electron motion consistently: need to include an extra force

$$m_e \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{f}_L + \mathbf{f}_{\mathsf{rad}}$$

Work done by extra force = energy loss

$$\int_0^t \mathbf{f}_{\mathsf{rad}} \cdot \mathbf{v} \mathrm{d}t = -\int_0^t P_{\mathsf{rad}} \mathrm{d}t \longrightarrow \mathbf{f}_{\mathsf{rad}} = -\frac{2e^2}{3c^3} \frac{\mathrm{d}^2 \mathbf{v}}{\mathrm{d}t^2}$$

Physical interpretation: the electron is affected by the self-generated radiation field (radiation *reaction* or *self-force*)

Andrea Macchi

CNR/INO

Landau-Lifshitz force (non-relativistic)

 $\mathbf{f}_{rad} = -\frac{2e^2}{3c^3} \frac{\mathrm{d}^2 \mathbf{v}}{\mathrm{d}t^2}$ introduces unphysical ("runaway") solutions $(\dot{\mathbf{v}}(t) = \dot{\mathbf{v}}(0)e^{t/\tau})$ and "extra" initial conditions

 LL^1 iterative approach yields $\mathbf{f}_{\mbox{\tiny rad}} = \mathbf{f}_{\mbox{\tiny rad}}(\mathbf{E},\mathbf{B})$:

$$\begin{split} \mathbf{f}_{\mathsf{rad}} &= -\frac{2e^2}{3c^3} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \right) \simeq -\frac{2e^2}{3c^3} \frac{\mathrm{d}}{\mathrm{d}t} \left(-\frac{e}{m_e} \mathbf{f}_L \right) \\ &= \frac{2e^3}{3m_ec^3} \left(\frac{\mathrm{d}\mathbf{E}}{\mathrm{d}t} - \frac{e}{m_ec} \mathbf{E} \times \mathbf{B} \right) \end{split}$$

in the "instantaneous" $\mathbf{v}=\mathbf{0}$ frame

1Landau & Lifshitz, The Classical Theory of Fields, 2nd Ed., par.76 and the second

Andrea Macchi

Moving mirrors

Landau-Lifshitz force (relativistic)

$$\begin{split} \mathbf{f}_{\mathsf{rad}} &= -\frac{2r_c^2}{3} \left\{ \gamma^2 \left[\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)^2 - \left(\frac{\mathbf{v}}{c} \cdot \mathbf{E} \right)^2 \right] \frac{\mathbf{v}}{c} + \right. \\ &\left. - \left[\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \times \mathbf{B} + \left(\frac{\mathbf{v}}{c} \cdot \mathbf{E} \right) \mathbf{E} \right] + \gamma \frac{m_e c}{e} \left(\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{E} + \frac{\mathbf{v}}{c} \times \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{B} \right) \right\} \end{split}$$

Dominant term $(\sim -\gamma^2 \mathbf{v})$ acts as a nonlinear friction force

Effect of including f_{rad} on the motion in a plane wave: accelerating drift of the figure-of-eight (constraints of "no-acceleration" are broken)

Andrea Macchi

CNR/INO

Linear waves in a plasma

General wave equation for E from Maxwell's equations:

$$\left(\nabla^2 - \frac{1}{c^2}\partial_t^2\right)\mathbf{E} - \boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\mathbf{E}) = \frac{4\pi}{c^2}\partial_t\mathbf{J}$$

Assume monochromatic fields i.e. $\mathbf{E}(\mathbf{r}, t) = \tilde{\mathbf{E}}(\mathbf{r})e^{-i\omega t}$ Using linearized, non-relativistic equations ($|\mathbf{u}_e| \ll c$)

$$\partial_t \mathbf{u}_e = -\frac{e}{m_e} \mathbf{E} \qquad \mathbf{J} = -en_e \mathbf{u}_e \quad \text{(ions taken at rest)}$$

$$\tilde{\mathbf{J}} = -i\frac{n_e e^2}{m_e \omega}\tilde{\mathbf{E}} = -\frac{i}{4\pi}\frac{\omega_p^2}{\omega}\tilde{\mathbf{E}}, \qquad \omega_p \equiv \left(\frac{4\pi e^2 n_e}{m_e}\right)^{1/2}$$

$$\left(\nabla^2 + \frac{\omega^2}{c^2}\right)\tilde{\mathbf{E}} - \boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\tilde{\mathbf{E}}) = \frac{\omega_p^2}{c^2}\tilde{\mathbf{E}} \qquad \text{Helmoltz equation}$$

Andrea Macchi

Moving mirrors

CNR/INO

Linear transverse (EM) waves

Taking $\nabla \cdot \mathbf{E} = 0$ and introducing $\varepsilon(\omega) = n^2(\omega) = 1 - \frac{\omega_p^2}{\omega^2}$

$$\left(\nabla^2 + \varepsilon(\omega)\frac{\omega^2}{c^2}\right)\tilde{\mathbf{E}} = \left(\nabla^2 + \mathbf{n}^2(\omega)\frac{\omega^2}{c^2}\right)\tilde{\mathbf{E}} = 0$$

 $\varepsilon(\omega)$ dielectric function, n(ω) refractive index Plane waves $\tilde{\mathbf{E}}(\mathbf{r}) = E_0 \epsilon \mathbf{e}^{i\mathbf{k}\cdot\mathbf{r}}$, $\mathbf{k}\cdot \boldsymbol{\epsilon} = 0$, $\mathbf{B} = \mathbf{k} \times \mathbf{E}/k$

dispersion relation $k^2c^2 = \varepsilon(\omega)\omega^2 = \omega^2 - \omega_p^2$

Propagation requires a real value of k i.e.

$$k^2 > 0 \quad \leftrightarrow \quad \varepsilon(\omega) > 0 \quad \leftrightarrow \quad \omega > \omega_p \quad \leftrightarrow \quad n_e < n_c \equiv m_e \omega^2 / 4\pi e^2$$

 $n_c = 1.1 \times 10^{21} \text{ cm}^{-3} (\lambda/1 \ \mu \text{m})^{-2}$: cut-off or "critical" density

Andrea Macchi

Moving mirrors

CNR/INO

・ロン ・回 と ・ ヨン・

A nonlinear relativistic wave

Nonlinear terms
$$\partial_t \mathbf{p}_e + \mathbf{u}_e \cdot \nabla \mathbf{p}_e = -e\mathbf{E} - \frac{e}{c} \mathbf{u}_e \times \mathbf{B}$$
for $a_0 \gtrsim 1$: $\mathbf{J} = -en_e \mathbf{u}_e = -en_e \frac{\mathbf{p}_e/m_e c}{(1 + \mathbf{p}_e^2/m_e^2 c^2)^{1/2}}$

In general plane wave solutions are neither monochromatic nor transverse ($\mathbf{u}_e \times \mathbf{B} \parallel \mathbf{k}$) Particular monochromatic solution for *circular* polarization: $\mathbf{p}_e \cdot \mathbf{k} = 0$, $\mathbf{u}_e \cdot \nabla \mathbf{p}_e = 0$, $\mathbf{u}_e \times \mathbf{B} = 0$, and

$$\gamma = (1 + \mathbf{p}_e^2 / m_e^2 c^2)^{1/2} = \text{const.} = \left(1 + a_0^2 / 2\right)^{1/2}$$
$$\partial_t \mathbf{p}_e = m_e \gamma \partial_t \mathbf{u}_e = -e\mathbf{E} \qquad \mathbf{J} = -en_e \mathbf{u}_e$$

Identical to the non-relativistic equations but for $m_e \rightarrow m_e \gamma$

Andrea Macchi

Self-induced transparency (with words of caution ...)

For the *particular* solution (CP, plane wave, monochromatic) the replacement $m_e \rightarrow m_e \gamma$ yields

$$\omega_p \longrightarrow \frac{\omega_p}{\gamma^{1/2}} \qquad k^2 c^2 = \omega^2 - \frac{\omega_p^2}{\gamma}$$

The cut-off density $n_c \rightarrow n_c \gamma = n_c (1 + a_0^2/2)^{1/2}$ the more intense the wave, the higher the cut-off density

However one cannot define $n_e = n_c \gamma$ as a transparency threshold because of nonlinear pulse dispersion and distortion, effect of boundary conditions, ... Message: distrust (or at least use with care) the "relativistically corrected critical density" $n_c^{(rel)} = n_c \gamma$ concept

Moving mirrors

CNR/INO

Transparency of semi-infinite plasma

The ponderomotive force pushes and piles up electrons \rightarrow increase of density & change of the transparency threshold [F. Cattani et al, Phys. Rev. E **62** (2000) 12341 *n*=2

Evanescent solution (assuming steady state, circular polarization, immobile ions ...) exists up to a threshold (for $n_e \gg n_c$)

$$a_0 \simeq \frac{3^{3/2}}{2^3} \left(\frac{n_e}{n_c}\right)^2 \simeq 0.65 \left(\frac{n_e}{n_c}\right)^2$$

イロン イヨン イヨン イヨン

instead of

$$n_e = n_c \gamma \leftrightarrow a_0 \simeq \sqrt{2} n_e/n_c$$

CNR/INO

The evanescent solution - I

Assumptions in the cold fluid plasma equations

steady state

balance between ponderomotive and electrostatic forces

 \rightarrow ODE for $\tilde{a}(x)$ (that may be put in Hamiltonian form)

$$\frac{\mathrm{d}^2\tilde{a}}{\mathrm{d}x^2} - \frac{\tilde{a}}{1+\tilde{a}}\left(\frac{\mathrm{d}\tilde{a}}{\mathrm{d}x}\right)^2 + \left(1+\tilde{a}^2 - n(1+\tilde{a}^2)^{1/2}\right) = 0$$

Evanescent solution in the plasma

$$\tilde{a}(x) = \frac{2n^{1/2}\kappa\cosh\left(\kappa(x-x_0)\right)}{n\cosh^2\left(\kappa(x-x_0)\right) - n + 1}$$

イロト イヨト イヨト イヨト

$$n = n_0/n_c, \, \kappa = (n-1)^{1/2}$$

Andrea Macchi

The evanescent solution - II

The parameter x_0 is determined by matching with the vacuum solution (standing wave) at the electron density boundary $x = x_b$ (to be determined selfconsistently)

 \rightarrow transparency threshold

[F. Cattani et al PRE 62 (2000) 1234]

< ロ > < 同 > < 回 > < 回 >

Note: for given n and a_0 both evanescent and propagating solution may exist (hysteresis) [Goloviznin & Schep, Phys. Plasmas **7** (2000) 1564]

Moving mirrors

Electromagnetic caviton

For certain values of a_0 and n, at the plasma (ion) boundary x = 0

$$\frac{\mathrm{d}\tilde{a}}{\mathrm{d}x}(x=0) = 0$$

 \rightarrow we can build a continuous symmetrical solution between two plasma layers: resonant "optomechanical" EM cavity sustained by the ponderomotive force (*caviton*, improperly aka soliton)

On the time scale of ion motion the caviton expands because of the electrostatic force (model for "post-solitons" which have been observed in experiments)

CNR/INO

Transparency of ultrathin plasma foil

 $n_e(x) \simeq n_0 \ell \delta(x)$ (ℓ : foil thickness)

[V.A.Vshivkov et al, Phys. Plasmas 5 (1996) 2727]

Nonlinear reflectivity:

$$R \simeq \begin{cases} 1 & (a_0 < \zeta) \\ \frac{\zeta^2}{a_0^2} & (a_0 < \zeta) \end{cases} \qquad \zeta \equiv \pi \frac{n_0 \ell}{n_c \lambda}$$

The transparency threshold $a_0 \simeq \zeta$ depends on areal density $n_0\ell$

RI

TI

Self-induced transparency is a complex process ...

Several effects contribute to SIT: target heating & expansion, 3D bending & rarefaction, instabilities ...

Only kinetic simulations can take most effects simultaneously into account

3D PIC simulation of laser interaction with a thin target showing breakup to transparency [A. Sgattoni, AlaDyn code]

CNR/INO

Relativistic Self-Focusing

Nonlinear refractive index (to be used with care!)

$$n_{\rm NL} = \left(1 - \frac{\omega_p^2}{\gamma \omega^2}\right)^{1/2} = n_{\rm NL}(|\mathbf{a}|^2) \qquad \gamma = (1 + |\mathbf{a}|^2/2)^{1/2}$$

For a laser beam with ordinary intensity profile n_{NL} is higher on the axis than at the edge: $n_0 = D$ $n_{NL}(a_0) > n_{NL}(0) = n_1$ \rightarrow pulse guiding effect as in an optical fiber

Andrea Macchi

Moving mirrors

Self-Focusing threshold: simple model

Assumptions: $a_0 \ll 1$, $\omega_p \ll \omega$, $\lambda/D \ll 1$ Impose total reflection in Snell's law of refraction

$$\sin \theta_r = \frac{\mathsf{n}_0}{\mathsf{n}_1} \sin \theta_i = \frac{\mathsf{n}_{\mathsf{NL}}(a_0)}{\mathsf{n}_{\mathsf{NL}}(0)} \sin \theta_i \doteq 1$$

 $\cos \theta_i \simeq \lambda/D$ diffraction angle

$$\longrightarrow \quad \pi \left(\frac{D}{2}\right)^2 a_0^2 \simeq \pi \lambda^2 \frac{\omega^2}{\omega_p^2}$$

Threshold *power* for self-focusing

$$P_c \simeq \frac{\pi^2}{2} \frac{m_e c^3}{r_c} \left(\frac{\omega}{\omega_p}\right)^2 = 43 \; \mathrm{GW} \frac{n_c}{n_e}$$

Andrea Macchi

Superintense Laser-Plasma Optics

CNR/INO

イロト イヨト イヨト イヨト

Advanced modeling of self-focusing

The radial ponderomotive force creates a low-density channel

 \rightarrow further "optical fiber" effect (*self-channeling*)

・ロト ・回ト ・ヨト ・ヨト

A non-perturbative, multiple-scale modeling for Gaussian beam characterizes the propagation modes [Sun et al Phys. Fluids **30** (1987) 526] "Minimal" threshold power $P_c = 17.5 \text{ GW} \frac{n_c}{n_e}$ Warning: it applies only to not-so-short, not-so-tightly focused pulses

CNR/INO

イロン イヨン イヨン イヨン

Nonlinear propagation is a complex process ...

2D simulation of the propagation of a laser pulse ($a_0 = 2.5$, $\tau_p = 1$ ps) in an inhomogeneous plasma with peak density $n_e = 0.1n_c$ Self-focusing and channeling followed by beam breakup, caviton formation, ion acceleration, steady magnetic field generation, ...

special issue on Images in Plasma Science

Moving mirrors

CNR/INO

Moving mirrors

A step-boundary plasma described by $n = (1 - n_e/n_c)^{1/2}$ with $n_e \gg n_c$ is a perfect mirror (100% reflection) Linear theory assumptions: the interface (x = 0) is immobile electrons are confined in the x > 0 region)

At high intensities the surface is:

- pushed/pulled by oscillating components of the Lorentz force
- pushed by the steady ponderomotive force
- \rightarrow pulse is reflected from a "moving" mirror

Moving mirrors

CNR/INO

Reflection from a moving mirror

Reflection kinematics can be studied via Lorentz transformations (the mirror is "perfect" in its rest frame; normal incidence for simplicity)

$$\omega_r = \omega \frac{1-\beta}{1+\beta} \qquad \beta = -$$

red shift for V > 0blue shift for V < 0The number of cycles is a Lorentz invariant \rightarrow V > 0: pulse stretching V < 0: pulse shortening

Moving mirrors 00000000

Force on/by the moving mirror

The force on the mirror can be derived from Lorentz transformations of fields and forces or also by the conservation of photon number N

$$I, \omega$$

$$V = \beta c$$

$$I_r, \omega_r$$

 I, ω

 $I = \frac{N\hbar\omega}{\tau}$ intensity (τ : pulse duration) $\Delta \mathbf{p} = N \hbar (\mathbf{k}_i - \mathbf{k}_r) = N \frac{\hbar}{c} (\omega + \omega_r) \hat{\mathbf{x}}$ exchanged momentum $\omega_r = \omega \frac{1-\beta}{1+\beta}$ $\Delta t = \frac{\tau}{1-\beta}$ Δt : reflection time $F \equiv \frac{\Delta p}{\Delta t} = \frac{2I}{c} \frac{1-\beta}{1+\beta} = \begin{cases} >0 & \text{for } \beta > 0 & (\text{work done on the mirror}) \\ <0 & \text{for } \beta < 0 & (\text{work done on the pulse}) \end{cases}$

 \rightarrow a moving mirror may amplify the reflected pulse!

Andrea Macchi

Moving mirrors

CNR/INO

・ロ・・ (日・・ (日・・ (日・)

Oscillating mirror and high harmonics

 $\omega + n\Omega$ $X_{\rm m}(t) = X_0 \sin \Omega t$ Boundary condition in instantaneous rest frame $\overrightarrow{X}(t) = X_0 \sin \Omega t$ $E'_{\parallel}(x = X'_m) = 0$ $\rightarrow A_{\parallel}(x = X_m(t)) = 0$ in lab frame $A_{\parallel}(x,t) = A_i(x-ct) + A_r(x+ct)$ with $A_i(t) = A_0 \cos(\omega t)$ $\longrightarrow A_r(t) \sim \sin\left(\omega t + \frac{2\omega X_0}{c}\sin\Omega t\right) \sim \sum_{t=1}^{\infty} J_n\left(\frac{2\omega X_0}{c}\right)\sin(\omega + n\Omega)t$

The reflected spectrum contains sums of wave frequency and mirror harmonics $\omega_r, n=\omega+n\Omega$

Andrea Macchi

Moving mirrors

Self-generated high harmonics

The laser pulse drives surface oscillations with either ω or 2ω frequency depending on the polarization

 $\begin{array}{l} P\text{-polarization: } \mathbf{E}\text{-driven, } \Omega = \omega \\ \longrightarrow \text{ even \& odd HH, } P\text{-polarized} \end{array}$

S-polarization: $\mathbf{v} \times \mathbf{B}$ -driven, $\Omega = 2\omega$ \longrightarrow odd HH only, S-polarized

Superintense Laser-Plasma Optics

Andrea Macchi

Attosecond pulse train

HH are phase-locked Reflected light is an attosecond pulse train

alternately compressed-enhanced and stretched-quenched

イロン イヨン イヨン イヨン

CNR/INO

Andrea Macchi

Moving mirrors

CNR/INO

Achieving extreme intensities via harmonic focusing

Intensity enhancement of attosecond pulses plus focusing by the self-consistently curved target surface may yield $I \simeq 6 \times 10^{27} \text{ W cm}^{-2}$

sufficient to investigate strong field QED effects

figure: L. Fedeli et al, Phys. Rev. Lett. **127** (2021) 114801

イロン イヨン イヨン イヨン

Earlier similar studies: V. A. Vshivkov et al, Phys. Plasmas **5** (1998) 2727 S. Gordienko et al, PRL **94** (2005) 103903 Alternate approach based on reflection from plasma wake waves: S. V. Bulanov et al, PRL **91 2003** 085001

Andrea Macchi

Moving mirrors

CNR/INO

イロト イヨト イヨト イヨト

Light Sail boosted by radiation pressure

Full analytical solution exists for constant IFinal velocity can be calculated for arbitrary pulse I(t)Note the dependence on "retarded" time t - X(t)/c in the EoM

CNR/INO

<ロ> <同> <同> < 同> < 同>

Light Sail energy from conservation laws

Conservation of 4-momenta in "collision" between laser pulse and moving mirror ref inc (mass $M = \rho \ell$) $p_i + mc = p_r + \mathcal{E}/c$ (p_i, p_i) (Mc,0) $(p_r,-p_r)$ $(\mathcal{E}/c,p_s)$ $p_i = -p_r + p_s$ Using $\mathcal{E}^2 = M^2 c^2 + p_s^2$ and $p_i = \int_0^\infty \frac{I(t')}{c} dt' \equiv \frac{Mc}{2} \mathcal{F}$ $\frac{\mathcal{E}}{Mc^2} = \frac{\mathcal{F}^2}{2(\mathcal{F}+1)} \quad \left(\simeq \frac{\mathcal{F}^2}{2} \text{ for } \beta = \frac{p_s c}{\mathcal{E}} \ll 1\right)$

efficiency
$$\eta = \mathcal{E}/p_i c = 2\beta/(1+\beta)$$

Andrea Macchi