A Relativistic Microscopic Laboratory: Superintense Laser-Plasma Interactions

Andrea Macchi

CNR/INO, Adriano Gozzini laboratory, Pisa, Italy

Enrico Fermi Department of Physics, University of Pisa, Italy

SPIE Student Chapter webinar series Manipal Academy of Higher Education August 11, 2022

Image: A matrix

CNR/INO

Andrea Macchi

Focused Light-Matter Interaction: an Old Story ...

Archimedes' use of "Burning Mirrors" in the Siege of Syracuse; Giulio Parigi (~ 1600) Uffizi Museum, Florence, Italy Sunlight intensity: $I \simeq 10^{-1} \text{ W cm}^{-2}$ tight focusing $\rightarrow \simeq 10^3 \text{ W cm}^{-2}$

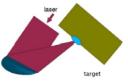
Leonardo da Vinci, Codex Arundel (1480-1518), British Library, London

イロン イヨン イヨン イヨン

CNR/INO

Andrea Macchi

The Dawn of Laser-Plasma Physics

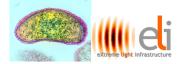

"The laser is a solution looking for a problem"

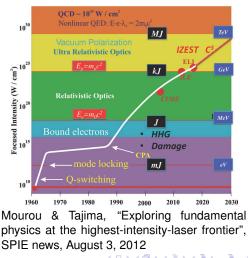
(I. D'Haenens to T. Maiman, 1960) Q-switched lasers (1962):

 $I = 10^{13} \, \mathrm{W cm}^{-2}$

 \rightarrow matter is ionized and heated up to $\sim 10^9$ K: hot, dense plasma state "It should be possible to do many interesting experiments on such plasmas"

J.Dawson, "On the Production of Plasma by Giant Pulse Lasers" *Phys. Fluids* **7** (1964) 981


Plasma generated by blasting droplets with a laser (ETH-Zurich/B.Newton)


・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Present Day: Extreme Intensities

Chirped Pulse Amplification D.Strickland & G.Mourou (Nobel Prize 2018) Focusing laser energy in space and time (few femtoseconds = 10^{-15} s): " λ -cube" pulses $I = 10^{22}$ W cm⁻² (\nearrow)

Note: every target is a plasma (instantaneous ionization)

Andrea Macchi

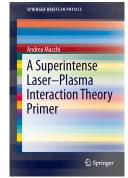
Table-Top A Relativistic Microscopic Laboratory: Superintense Laser-Plasma Interactions

The 200 Terawatt laser system at Intense Laser Irradiation Laboratory, CNR/INO, Pisa

- * ロ > * @ > * 注 > * 注 > … 注 … のへで

CNR/INO

Andrea Macchi


Some Compact References for Basics

(a selfish selection)

A. Macchi,

- A Superintense Laser-Plasma Interaction Theory Primer (Springer, 2013)

- Basics of Laser-Plasma Interaction: a Selection of Topics, in: Laser-Driven Sources of High Energy Particles and Radiation, Springer Proc. Physics **231** (2019) 25-49 arXiv:1806.06014

イロト イヨト イヨト イヨト

Andrea Macchi

Basics of Linear Plasma Optics

Wave equation for transverse waves $(\nabla \cdot \mathbf{E} = 0)$

$$\left(\nabla^2 - \frac{1}{c^2}\partial_t^2\right)\mathbf{E} = \frac{4\pi}{c^2}\partial_t\mathbf{J}_{\perp}$$

Linearized non-relativistic equations ($|\mathbf{u}_e| \ll c$)

$$\partial_t \mathbf{u}_e = -\frac{e}{m_e} \mathbf{E} \qquad \mathbf{J} = -en_e \mathbf{u}_e \quad \text{(ions taken at rest)}$$

Plane monochromatic waves $\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 \mathbf{e}^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}$

 \longrightarrow linear refractive index $\mathbf{n}(\omega) = \left(1 - \frac{\omega_p^2}{\omega^2}\right)^{1/2}$

$$k^2 = \mathbf{n}^2(\omega)\frac{\omega^2}{c^2} = \frac{\omega^2 - \omega_p^2}{c^2} \qquad \omega_p \equiv \left(\frac{4\pi e^2 n_e}{m_e}\right)^{1/2}$$

Andrea Macchi

CNR/INO

Basics of Nonlinear Relativistic Plasma Optics
Electron dynamics becomes
relativistic when $|\mathbf{p}_e|$
 m_ec $e|\mathbf{E}_0|$
 $m_e\omega c$ $= a_0 \gtrsim 1$ Nonlinear terms
are important
for $a_0 \gtrsim 1$: $\partial_t \mathbf{p}_e + \mathbf{u}_e \cdot \nabla \mathbf{p}_e = -e\mathbf{E} - \frac{e}{c}\mathbf{u}_e \times \mathbf{B}$
 $\mathbf{J} = -en_e\mathbf{u}_e = -en_e \frac{\mathbf{p}_e/m_ec}{(1 + \mathbf{p}_e^2/m_e^2c^2)^{1/2}}$

 $a_0 = 0.85 (I\lambda^2/10^{18} \,\,{
m Wcm^{-2} \mu m^2})^{1/2} \quad
ightarrow \simeq 10^2$ present-day

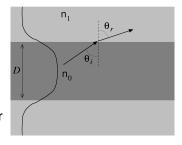
Nonlinear refractive index¹ $n_{\rm NL}$ (as if $m_e \longrightarrow m_e \gamma \dots$)

$$\mathbf{n}_{\mathrm{NL}} = \left(1 - \frac{\omega_p^2}{\gamma \omega^2}\right)^{1/2} \qquad \gamma = \left(1 + \left\langle \left(\frac{e\mathbf{E}}{m_e \omega c}\right)^2 \right\rangle \right)^{1/2} \\ \equiv (1 + a^2/2)^{1/2}$$

¹to be used with caution ...

<ロ> < (回) < (回) < (回) < (回) < (回) < (回) < (0) < (0) </p>

CNR/INO


Andrea Macchi

Relativistic Self-Focusing and Transparency

- For a laser beam $\mathsf{n}_{\rm NL}$ is higher on the axis than at the edge:

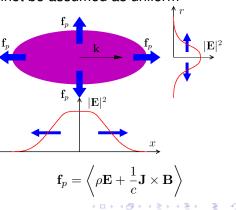
$$\mathsf{n}_0 = \mathsf{n}_{\rm NL}(a_0) > \mathsf{n}_{\rm NL}(0) = \mathsf{n}_1$$

 \longrightarrow "optical fiber" guiding effect (Focusing overcomes diffraction for pulse power above a threshold value)

- Shift of the cut-off frequency for propagation:

$$k^2 c^2 = \omega^2 - \frac{\omega_p^2}{\gamma} > 0 \quad \longleftrightarrow \quad \omega > \frac{\omega_p}{\gamma^{1/2}}$$

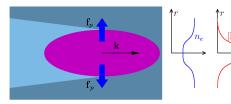
 \longrightarrow new "transparency" window $\omega_p > \omega > \omega_p / \gamma^{1/2}$

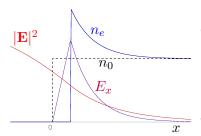

Andrea Macchi

"Sweeping" the Plasma Density

The Lorentz force is intense enough to modify self-consistently the plasma density which cannot be assumed as uniform

On the average electrons are pushed out of higher f_p field regions (effects of EM pressure)


Example: a laser pulse of finite length and width pushes electrons in both longitudinal (x)and radial (r) directions



CNR/INO

Self-focusing and Transparency Reexamined

SF: EM pressure in radial direction drills a low-density channel \rightarrow additional "optical fiber" effect (*self-channeling*)

ST: EM pressure in longitudinal direction creates a pile-up of electrons

 \rightarrow increase of density and local plasma frequency $\omega_p \propto n_e^{1/2},$ higher threshold for induced transparency

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

Dynamic Reflection: Oscillating Mirrors

In the interaction with a high-density plasma $\omega, 2\omega, 3\omega, \dots, \underline{(n+1)\omega}$ the Lorentz force drives surface oscillations at either ω (*P*-pol.) or 2ω (*S*-pol.) \rightarrow reflection from an oscillating mirror Mixing of incident frequency ω with multiples of mirror frequency Ω

 \rightarrow high harmonic generation

 ω_{n}

$$n = \omega + n\Omega$$

$$= \begin{cases}
 (n+1)\omega \\
 (2n+1)\omega
\end{cases}$$

 \mathbf{E}

 $(2n+1)\omega$

be

CNR/INO

E

S

(S)

E

 ω . 3ω . 5ω .

 $\mathbf{v} \times \mathbf{B}$

Andrea Macchi

 $(\alpha)/I(\alpha_0)$ 10^{-4}

Superintense Laser-Plasma Interactions

10

 ω/ω_{o}

100

 10^{0}

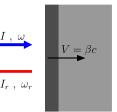
 10^{-2}

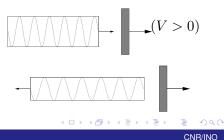
 10^{-6} 10^{-8} 10^{-10}

 10^{-12}

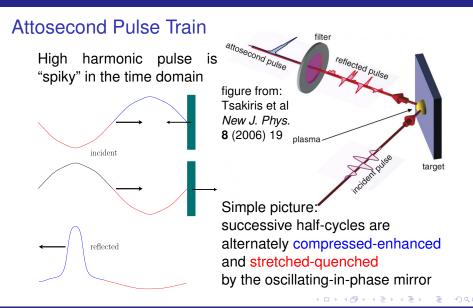
EM Pulse Modification by a Moving Mirror

Reflection can be studied via Lorentz transformations (constant V & normal incidence for simplicity)


$$\omega_r = \frac{1-\beta}{1+\beta}\omega \qquad I_r = \frac{1-\beta}{1+\beta}I$$

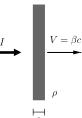

Co-propagation (V > 0):

red-shift and temporal stretching of EM pulse, work done on the mirror (case shown)


Counter-propagation (V < 0): blue-shift, temporal compression and amplification of EM pulse

(apply time reversal to case shown ...)

Andrea Macchi


CNR/INO

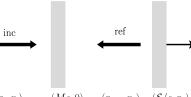
Andrea Macchi

Laser-boosted Light Sail

At normal incidence the cycle-averaged force per unit surface on a perfect mirror is $P = 2\frac{I}{c}$ ("radiation pressure", Maxwell, 1874; Bartoli, 1876)

A thin mirror of finite mass is accelerated

Breakthrough Starshot proposal (2016): laser propulsion of sail probes to reach Alpha Centauri in 20 years


breakthroughinitiatives.org A critical analysis: H. Milchberg, *Physics Today*, 26 April 2016

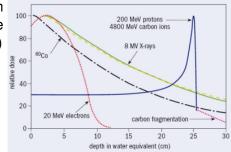
< ロ > < 同 > < 回 > < 回 >

Andrea Macchi

Light Sail as Ion Accelerator

Conservation of 4-momenta in "collision" between laser pulse (intensity profile I(t)) and moving mirror (mass $M = \rho \ell$)

CNR/INO


$$\begin{array}{rcl} p_i + Mc &=& p_r + \mathcal{E}/c & (p_i, p_i) & (Mc, 0) & (p_r, -p_r) & (\mathcal{E}/c, p_s) \\ p_i &=& -p_r + p_s \\ \\ \text{Using } \mathcal{E}^2 = M^2 c^2 + p_s^2 & \text{and} & p_i c = \int_0^\infty I(t') \mathrm{d}t' \equiv M c^2 \mathcal{F}/2 \\ \\ \text{energy } \frac{\mathcal{E}}{Mc^2} = \frac{\mathcal{F}^2}{2(\mathcal{F} + 1)} & \text{efficiency } \eta \equiv \frac{\mathcal{E}}{p_i c} = \frac{2\beta}{1 + \beta} \end{array}$$

For
$$\ell \simeq 10$$
 nm and a 10 fs, 10^{21} W cm⁻² pulse $\mathcal{E}_{max} \simeq 200$ MeV/nucleon , $\eta \simeq 0.5$

Andrea Macchi

What Is a Laser Ion Accelerator Good For?

Ion energy deposition in matter is localized at the stopping point (Bragg peak) because of Coulomb scattering $d\mathcal{E}/dx \propto \mathcal{E}^{-2}$ figure: U. Amaldi & G. Kraft, *Rep. Prog. Phys.* **68** (2005) 1861

CNR/INO

Application in oncology (ion beam therapy):

deeply seated tumor can be destroyed while reducing damage in surrounding tissue) energy window: 65–250 MeV/nucleon Suitable alternative to conventional ion accelerators?

Andrea Macchi

Is Ultra-High and -Fast Dose Delivery Beneficial?

REVIEW published: 17 January 2020 doi: 10.3389/fonc.2019.01563

イロト イヨト イヨト イヨト

CNR/INO

Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?

Joseph D. Wilson^{1†}, Ester M. Hammond^{1†}, Geoff S. Higgins^{1†} and Kristoffer Petersson^{1,2*†}

¹ Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom, ² Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden

For light ions only laser-plasma accelerators may deliver the necessary flux

Andrea Macchi

Recent Results: Carbon Ion Acceleration

PHYSICAL REVIEW LETTERS 127, 194801 (2021)

Featured in Physics

Selective Ion Acceleration by Intense Radiation Pressure

A. McIlvenny⁶, ^{1,†} D. Doria⁶, ^{1,2} L. Romagnani⁶, ^{1,3} H. Ahmed⁶, ^{1,4} N. Booth, ⁴ E. J. Ditter⁶, ⁵ O. C. Ettlinger, ⁵
 G. S. Hicks⁶, ⁵ P. Martin⁶, ¹ G. G. Scott, ⁴ S. D. R. Williamson, ⁶ A. Macchie^{7,8} P. McKenna⁶, ⁶ Z. Najmudin⁶, ⁵ D. Neely,^{4,*}
 S. Kar⁶, ¹ and M. Borghesi^{61,‡}
 ¹Centre for Plasma Physics, Queens University Belfast, Belfast BT7 INN, United Kingdom
 ²Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HI), 30 Reactorului Street, 077125 Magurele, Romania
 ³LULI-CNRS, Ecole Polytechnique, CEA, Universit Paris-Saclay, F-91128 Palaiseau cedex, France
 ⁴Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OXI 10QX, United Kingdom
 ⁵The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
 ⁶SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
 ⁷Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR/INO), research unit Adriano Gozzini, Pisa 56124, Italy

A. McIlvenny et al, *Phys. Rev. Lett.* **127** (2021) 194801 Experiment with GEMINI laser (RAL/CLF, UK)

 $\tau_p = 45 \text{ fs}, I = 4.5 \times 10^{20} \text{ W cm}^{-2},$

2-100 nm thick C foils with H impurities

Public Coverage

physicsworld a particle therapy

PARTICLE THERAPY | RESEARCH UPDATE

Intense radiation pressure enables selective acceleration of carbon ion beams

Physics Today 75, 1, 19 (2022); https://doi.org/10.1063/PT.3.4916

Irish boffins' laser to help beat cancer

Physics

A laser selectively kicks carbon out of a foil

Experiments and simulations show how the shape of a laser's profile determines which target atoms make up the resulting ion beam.

A New Trick to Make Short-Pulse Ion Beams

A new laser technique could lead to ultrashort-pulse, high-energy ion beams for medical use.

CNR/INO

Andrea Macchi

Introduction to Electron Acceleration by Plasma Waves

Plasma waves in a different frame

A. Macchi^{a)}

National Institute of Optics, National Research Council (CNR/INO), Adriano Gozzini laboratory, 56124 Pisa, Italy and Enrico Fermi Department of Physics, University of Pisa, 56127 Pisa, Italy

(Received 18 June 2019; accepted 15 May 2020)

A tutorial description of plasma waves in a cold plasma, with emphasis on their application in plasma-based electron accelerators, is presented. The basic physics of linear plasma oscillations and waves and the principle of electron acceleration in a plasma wave are discussed without assuming any previous knowledge of plasma physics. It is shown that estimating key parameters for plasma acceleration such as the maximum or "wave breaking" amplitude and the corresponding energy gained by electrons "surfing" the wave requires a relativistic and nonlinear analysis. This can be done with little mathematical complexity by using a Lorentz transformation to a frame co-moving at the phase velocity of the wave. The transformation reduces the problem to a second-order ordinary differential equation as originally found by Chian [Plasma Phys. 21, 509 (1979)] so that the analysis can exploit the analogy with the mechanical motion of a particle in a potential well. © 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0001431

American Journal of Physics 88, 723 (2020)

Andrea Macchi

CNR/INO

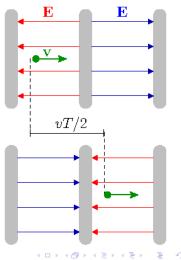
イロン イヨン イヨン イヨン

Nice Example of Acceleration by a Strong Wave

From: T.Katsouleas, Nature 444 (2006) 688

- ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > 2 〇

CNR/INO

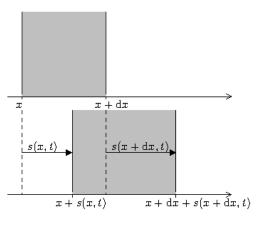

Andrea Macchi

Looking for the Perfect Wave for Electrons

LINAC principle: a "fake" (nonpropagating) wave created by localized oscillations in appropriate phase

An electron of velocity v crosses a cavity of length L within half the period T of E-field so to "see" E as always accelerating

Idea: create a similar structure in a plasma where the maximum E-field is not limited by electrical breakdown



Starting Point: Cold Plasma Oscillations

1D displacement of electrons s(x,t) $v(x,t) = \partial_t s(x,t)$ Assumptions:

- $v(x,t) \gg$ thermal velocity
- immobile ions

- electrons do not overtake General solution: localized oscillation at plasma frequency ω_p witi arbitrary profile $\tilde{s}(x)$

$$s(x,t) = \operatorname{Re}[\tilde{s}(x)\mathrm{e}^{-\imath\omega_p t}]$$

CNR/INO

From Fake Wave to Wake Wave

How to give a phase velocity to localized non-propagating oscillations?

Idea: let oscillations be excited by a moving perturbation (wake)

Bodensee at Bad Schachen, Lindau, Germany. Photo by Daderot, Wikipedia, public domain.

Plasma Wake Waves

A traveling delta-kick force $f(x,t) = m_e u_0 \delta(t - x/V)$ displaces electrons by $s_0 = u_0/\omega_p$ at the overtaking time t = x/V \longrightarrow wake of plasma oscillations with phase velocity $v_p = V$

$$s(x,t) = \begin{cases} 0 & (t < x/V) ,\\ s_0 \cos(\omega_p(t - x/V)) & (t > x/V) . \end{cases}$$

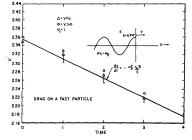
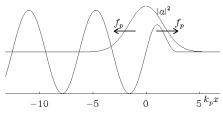
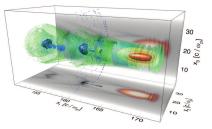


FIG. 6. The drag on a fast sheet.

Example: a charge bunch penetrating a plasma loses its energy to the wake (collective stopping)

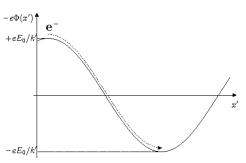

J. Dawson, Phys. Fluids 5 (1962) 445


CNR/INO

Andrea Macchi

Laser Wakefield

A short laser pulse of duration $\simeq \pi/\omega_p$ excites a wake with phase velocity $v_p = v_{gEM} = c(1 - \omega_p^2/\omega^2)^{1/2}$ T.Tajima & J.Dawson, *Phys. Rev. Lett.* **43**, 267 (1979)


EM pressure force pushes electrons at the front and back slopes of the laser pulse 3D simulation of a laser wakefield Fonseca et al, *Plasma Phys. Control. Fusion* **50**, 124034 (2008)

イロン イヨン イヨン イヨン

Andrea Macchi

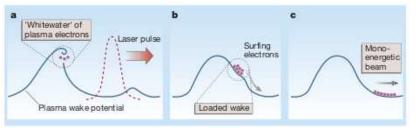
Energy Gain Estimate in the Wave Frame

In a reference frame S'moving with the phase velocity v_p with respect to the laboratory S the wave field is time-independent and can be derived by an electrostatic potential $\Phi(x')$

(< ≥) < ≥)</p>

CNR/INO

A "lucky" test electron moving from the top to the bottom of the potential hill with initial velocity $v'_{x0} = 0$ (hence $v_{x0} = v_p$ in the lab frame) will get the maximum energy gain possible \mathcal{E}_{max}


Andrea Macchi

Wave Amplitude Limit: Wavebreaking

The electron density must remain positive:

$$n_e = n_0 + \delta n_e > 0 \quad \Leftrightarrow \quad |\delta n_e| < n_0$$

 $\delta n_e \longrightarrow n_0$ as $u_0 \longrightarrow v_p$: "self-acceleration" of wave electrons \longrightarrow singularity in density profile, "breaking" of the wave Onset of wavebreaking leads to self-injection of electrons

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

[T. Katsouleas, Nature 431 (2004) 515]

Andrea Macchi

Maximum Energy Estimate

Assuming $v \simeq c$ and combining optimal injection ($v_{x0} = v_p$) with wavebreaking amplitude, Tajima & Dawson obtained

$$\mathcal{E}_{\rm max} = 4m_e c^2 \gamma_p^2$$

 $\gamma_p = (1 - v_p^2/c^2)^{-1/2} \gg 1$

• Objection! An incorrect wavebreaking threshold was used

Using improved estimate from a fully nonlinear (but anlytically accessible ...) model:

$$\mathcal{E}_{\rm max} = 4m_e c^2 \gamma_p^3$$

[Esarey & Pilloff, Phys. Plasmas 2, 1432 (1995); Macchi AJP (2020)]

Note the substantial increase by a factor γ_p

Andrea Macchi

Issues: Acceleration Length, Injection, ...

 $L_{\rm acc}$ = how long must my plasma wave be to allow the maximum energy gain = (max energy)/(max force)

$$L_{\rm acc} = \frac{W_{\rm max}}{eE_{\rm WB}} \simeq 2\sqrt{2} \frac{c}{\omega_p} \gamma_p^{5/2} \quad \left(= \gamma_p L_{\rm acc}' = \frac{1}{2} \lambda_p' \right) \; .$$

- Plasma wave length $\simeq L_{\rm acc} \gg$ laser diffraction length: optical guiding needed (preformed channel, capillary tube, relativistic effect ...)
- Self-injection and nonlinear regime not optimal for beam quality and mono-energetic spectrum: "external" injection needed

• ...

Andrea Macchi

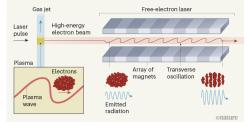
ヘロト ヘ団ト ヘヨト ヘヨト

The Dream Goes On ...

Nature **431**, issue 7008, 30 September 2004

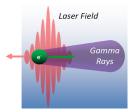
Current energy record: 8 GeV [BELLA group at Berkeley: Gonsalves et al, *Phys. Rev. Lett.* **122**, 084801 (2019)]

Progress achieved by several groups in beam quality, stability and reproducibility, ...



・ロト ・回ト ・ヨト ・ヨト

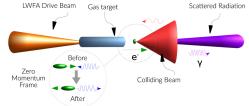
Application: Generation of Secondary Radiation


LWFA electrons used as a compact driver in a Free Electron Laser

Wang et al, Nature 595 (2021) 516

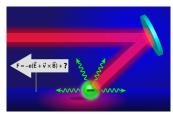
イロト イヨト イヨト イヨト

CNR/INO



Replacing the undulator with a a counterpropagating laser pulse: "all-optical" FEL by Thomson Scattering Nonlinear TS with high intensity laser and strongly relativistic electrons generate Gamma-rays with $\omega_{\gamma} \simeq a_0^3 \omega$

Andrea Macchi


Strong Field Photon-Electron Collider

Laser field amplified by $(1 + \beta_e)/(1 - \beta_e) \simeq 2\gamma_e^2$ in electron rest frame \longrightarrow Route to approach "strong field" QED regime

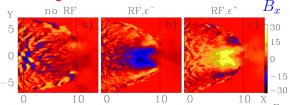
Arran et al, Plasma Phys. Control. Fusion 61 (2019) 074009

First results on testing radiation reaction models

Cole et al, *Phys. Rev. X* 8 (2018) 011020 Poder et al. ibid. 031004

Viewpoint: Macchi, Physics 11 (2018) 13

Ultimate goal: reach Schwinger field $E_s = m_e c^3/e\hbar = 1.3 \times 10^{16} \text{ V/cm}$ \rightarrow breakdown of "quantum vacuum"


イロト イヨト イヨト イヨト

Andrea Macchi

CNR/INO

Radiative Generation of Gigagauss Magnetic Fields Many optical photons destroyed to generate a Gamma-photon \rightarrow for circular polarization many angular momentum quanta \hbar "disappear" into the plasma

 \longrightarrow induced rotation of electron population with generation of axial magnetic field

3D simulation units: $B_0 = m_e c\omega/e$

CNR/INO

 $= 1.34 \times 10^8 \text{ G}$

ヘロット (雪) (目) (

No axial field without radiative losses included Sign of B_x changes with laser pulse helicity

T. V. Liseykina, S. V. Propruzhenko, A. Macchi, New J. Phys. 18 (2016) 072001

Unexpected Hype physicsworld.com

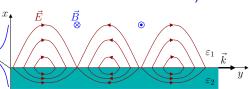
News archive	'Radiation friction' could make huge				
-2016	magnetic fields with lasers				
October 2016	Jul 19, 2016 @2 comments				
 September 2016 August 2016 					
 July 2016 	Sector Management				
June 2016					
May 2016	and the second				
April 2016					
March 2016	 A set of the set of				
February 2016	and the second				
January 2016					
2015					
2014					
2013					
2011					
2010	A REAL PROPERTY OF A REAL PROPER				
2009					
2008	Stores States and States				
2007 2006	A CONTRACT OF				
2005					
2004					
	El Facts On File				
	🔌 Today's Science				
	Science News Written Especially for Students				

How to Create the World's Strongest Magnet

PHYS 💽 ORG	Nanotechnology \vee	Physics ~	Earth ~	Astronomy & Space v	Technology ~	Chemistry v	Biology ~
f ¥ ≫ ≅ 0							search

New method for generating superstrong magnetic fields August 10, 2016

Physicists have calculated a whole new way to generate super-strong magnetic fields ・ロト ・回ト ・ヨト ・ヨト


CNR/INO

Stronger than any magnetic field on Earth.

Andrea Macchi

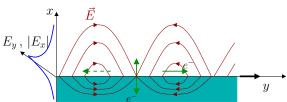
Surface Plasmon (aka Surface Plasma Wave)

SP: a building block of plasmonics E_y, B_z (mostly studied in the *linear* regime)

CNR/INO

SP excitation \longrightarrow EM field confinement and enhancement

Interface between vacuum and "simple metal" (cold plasma):

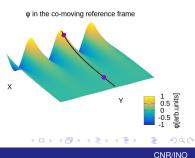

$$\varepsilon_{1} = 1 \qquad \varepsilon_{2} = 1 - \frac{\omega_{p}^{2}}{\omega^{2}} = 1 - \frac{n_{e}}{n_{c}(\omega)} < -1$$

$$k = \frac{\omega}{c} \left(\frac{\omega_{p}^{2} - \omega^{2}}{\omega_{p}^{2} - 2\omega^{2}}\right)^{1/2} \qquad \omega < \frac{\omega_{p}}{\sqrt{2}} \qquad v_{p} = \frac{\omega}{k} < c$$

Andrea Macchi

Surfin' the Surface Wave?

Can a SP accelerate electrons like a "bulk" plasma wave?



- longitudinal E-component (E_y)
- ▶ sub-luminal phase velocity $v_{\rm p} < c$

(with $v_{\rm p} \rightarrow c$ when $\omega_p \gg \omega$)

 $\rightarrow\,$ electrons may "surf" the SP

The energy can be estimated in the wave frame as for a "bulk" plasma wave but accounting for 2D motion

Andrea Macchi

Observation of Surface Plasmon Acceleration

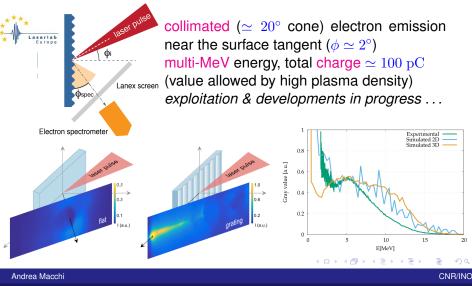
PRL 116, 015001 (2016) PHY

PHYSICAL REVIEW LETTERS

week ending 8 JANUARY 2016

Electron Acceleration by Relativistic Surface Plasmons in Laser-Grating Interaction

L. Fedeli, ^{1,2,*} A. Sgattoni,² G. Cantono, ^{3,4,1,2} D. Garzella,³ F. Réau,³ I. Prencipe,^{5,1} M. Passoni,⁵ M. Raynaud,⁶ M. Květoň,⁷ J. Proska,⁷ A. Macchi,^{2,1} and T. Ceccotti³ ¹Enrico Fermi Department of Physics, University of Pisa, 50127 Pisa, Italy ²National Institute of Optics, National Research Council (CNR/INO), u.o.s Adriano Gozzini, 56124 Pisa, Italy ³LIDYL, CEA, CNRS, University of Paris Sald, Orsay 914005, France ⁴University of Paris Sald, Orsay 91405, France ⁵Department of Energy, Politecnico di Milano, Milan 20156, Italy ⁶Laboratoire des Solides irradiés, Ecole Polytechnique, CNRS, CEA/DSM/IRAMIS, Université Paris-Saclay, CEA ⁷FNSPE, Czech Technical University, Prague 11519, Czech Republic (Received 30 June 2015; published 7 January 2016)


L. Fedeli et al, *Phys. Rev. Lett.* **116** (2016) 015001 LaserLAB experiment at SLIC facility, CEA Saclay, France UHI laser: **25** fs pulse, 5×10^{19} Wcm⁻², $a_0 = 4.8$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Andrea Macchi

CNR/INO

Observation of Surface Plasmon Acceleration

Observation of SP-enhanced High Harmonics

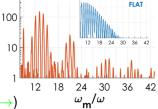
PHYSICAL REVIEW LETTERS 120, 264803 (2018)

Extreme Ultraviolet Beam Enhancement by Relativistic Surface Plasmons

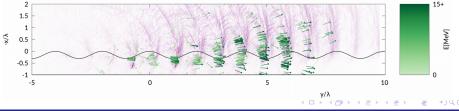
G. Cantono,^{1,2,3,4,*} L. Fedeli,⁵ A. Sgattoni,^{6,7} A. Denoeud,¹ L. Chopineau,¹ F. Réau,¹ T. Ceccotti,¹ and A. Macchi^{3,4}
 ¹LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gifsur-Yvette, France
 ²Université Paris Sud, Paris, 91400 Orsay, France
 ³National Institute of Optics, National Research Council (CNRINO) A. Gozzini unit, 56124 Pisa, Italy
 ⁴Enrico Fermi Department of Physics, University of Pisa, 56127 Pisa, Italy
 ⁵Department of Energy, Politecnico di Milano, 20133 Milano, Italy
 ⁶LULI-UPMC: Sorbonne Universités, CNRS, École Polytechnique, CEA, 75005 Paris, France
 ⁷LESIA, Observatoire de Paris, CNRS, UPMC: Sorbonne Universites, 92195 Meudon, France

G. Cantono et al, Phys. Rev. Lett. 120 (2018) 264803

< ロ > < 同 > < 回 > < 回 >


CNR/INO

Andrea Macchi


Observation of SP-enhanced High Harmonics

Enhanced High Harmonic emission observed when Surface Plasmons are excited

Simulations show coherent scattering from self-organized electron bunches (\rightarrow) to produce quasi-collinear HH

(similar mechanism to collective instability in a FEL)

Andrea Macchi

CNR/INO

Conclusions: Laser-Plasma Interactions Offer New

- framework of nonlinear "relativistic" optics
- ion and electron accelerators with unique qualities (high flux, short duration, optical control, ...) for specific applications
- class of experiments in unexplored QED regime
- concepts inspired by other areas of photonics (e.g. surface plasmons)

Laser wakefield acceleration is more technologically "mature" with respect to applications than other concepts but further developments are in progress

イロト イヨト イヨト イヨト

CNR/INO