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Focused Light-Matter Interaction: an Old Story . . .

Archimedes’ use of “Burning Mirrors” in the
Siege of Syracuse; Giulio Parigi (∼ 1600)
Uffizi Museum, Florence, Italy
Sunlight intensity: I ' 10−1 Wcm−2

tight focusing −→ ' 103 Wcm−2
Leonardo da Vinci,
Codex Arundel (1480-1518),
British Library, London
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The Dawn of Laser-Plasma Physics
“The laser is a solution looking for a
problem”
(I. D’Haenens to T. Maiman, 1960)
Q-switched lasers (1962):
I = 1013 Wcm−2

−→ matter is ionized and heated up
to ∼ 109 K: hot, dense plasma state
“It should be possible to do many
interesting experiments on such
plasmas”
J.Dawson, “On the Production of
Plasma by Giant Pulse Lasers” Phys.
Fluids 7 (1964) 981

Plasma generated by blasting
droplets with a laser
(ETH-Zurich/B.Newton)
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Present Day: Extreme Intensities
Chirped Pulse Amplification
D.Strickland & G.Mourou
(Nobel Prize 2018)
Focusing laser energy in
space and time (few
femtoseconds = 10−15 s):
“λ-cube” pulses
I = 1022 W cm−2 (↗)
Note: every target is a plasma
(instantaneous ionization)

Mourou & Tajima, “Exploring fundamental
physics at the highest-intensity-laser frontier”,
SPIE news, August 3, 2012
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The 200 Terawatt laser system at Intense
Laser Irradiation Laboratory, CNR/INO, Pisa
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Some Compact References for Basics

(a selfish selection)

A. Macchi,
- A Superintense Laser-Plasma Interaction
Theory Primer (Springer, 2013)

- Basics of Laser-Plasma Interaction:
a Selection of Topics,
in: Laser-Driven Sources of High Energy
Particles and Radiation,
Springer Proc. Physics 231 (2019) 25-49
arXiv:1806.06014
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Basics of Linear Plasma Optics
Wave equation for transverse waves (∇ ·E = 0)(

∇2 − 1

c2
∂2t

)
E =

4π

c2
∂tJ⊥

Linearized non-relativistic equations (|ue| � c)

∂tue = − e

me
E J = −eneue (ions taken at rest)

Plane monochromatic waves E(r, t) = E0eik·r−iωt

−→ linear refractive index n(ω) =

(
1−

ω2
p

ω2

)1/2

k2 = n2(ω)
ω2

c2
=
ω2 − ω2

p

c2
ωp ≡

(
4πe2ne
me

)1/2
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Basics of Nonlinear Relativistic Plasma Optics
Electron dynamics becomes
relativistic when

|pe|
mec

∼ e|E0|
meωc

≡ a0 & 1

Nonlinear terms
are important
for a0 & 1:

∂tpe + ue ·∇pe = −eE− e

c
ue ×B

J = −eneue = −ene
pe/mec

(1 + p2
e/m

2
ec

2)1/2

a0 = 0.85(Iλ2/1018 Wcm−2µm2)1/2 → ' 102 present-day

Nonlinear refractive index1 nNL (as if me −→ meγ . . . )

nNL =

(
1−

ω2
p

γω2

)1/2

γ =

(
1 +

〈(
eE

meωc

)2
〉)1/2

≡ (1 + a2/2)1/2

1to be used with caution . . .
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Relativistic Self-Focusing and Transparency
- For a laser beam nNL is
higher on the axis than at the edge:

n0 = nNL(a0) > nNL(0) = n1

−→ “optical fiber” guiding effect
(Focusing overcomes diffraction for
pulse power above a threshold value)

- Shift of the cut-off frequency for propagation:

k2c2 = ω2 −
ω2
p

γ
> 0 ←→ ω >

ωp

γ1/2

−→ new “transparency” window ωp > ω > ωp/γ
1/2
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“Sweeping” the Plasma Density

The Lorentz force is intense enough to modify self-consistently
the plasma density which cannot be assumed as uniform

On the average electrons
are pushed out of higher
field regions
(effects of EM pressure)

Example: a laser pulse
of finite length and width
pushes electrons in both
longitudinal (x)
and radial (r) directions

fp =

〈
ρE +

1

c
J×B

〉
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Self-focusing and Transparency Reexamined
SF: EM pressure in
radial direction drills a
low-density channel
→ additional “optical
fiber” effect
(self-channeling)

ST: EM pressure in longitudinal
direction creates a pile-up of
electrons
→ increase of density and
local plasma frequency ωp ∝ n1/2e ,
higher threshold for induced
transparency

|E|2 ne

n0

Ex

x
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Dynamic Reflection: Oscillating Mirrors
In the interaction with a high-density plasma
the Lorentz force drives surface oscillations
at either ω (P -pol.) or 2ω (S-pol.)
−→ reflection from an oscillating mirror
Mixing of incident frequency ω with
multiples of mirror frequency Ω
−→ high harmonic generation

ωn = ω + nΩ

=

{
(n+ 1)ω (P )
(2n+ 1)ω (S)

Harmonics are phase-locked −→ can be
used to “build” a shorter pulse
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EM Pulse Modification by a Moving Mirror
Reflection can be studied
via Lorentz transformations
(constant V & normal incidence for simplicity)

ωr =
1− β
1 + β

ω Ir =
1− β
1 + β

I

Co-propagation (V > 0):
red-shift and temporal stretching
of EM pulse, work done on the
mirror (case shown)
Counter-propagation (V < 0):
blue-shift, temporal compression
and amplification of EM pulse
(apply time reversal to case shown . . . )

(V > 0)

Andrea Macchi CNR/INO

Superintense Laser-Plasma Interactions



./LOGOS/LogoINO

Attosecond Pulse Train

High harmonic pulse is
“spiky” in the time domain

figure from:
Tsakiris et al
New J. Phys.
8 (2006) 19

Simple picture:
successive half-cycles are
alternately compressed-enhanced
and stretched-quenched
by the oscillating-in-phase mirror
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Laser-boosted Light Sail
At normal incidence the cycle-averaged force

per unit surface on a perfect mirror is P = 2
I

c
(“radiation pressure”, Maxwell, 1874; Bartoli, 1876)
A thin mirror of finite mass is accelerated

Breakthrough Starshot proposal (2016):
laser propulsion of sail probes to reach
Alpha Centauri in 20 years

breakthroughinitiatives.org
A critical analysis:
H. Milchberg, Physics Today,
26 April 2016
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Light Sail as Ion Accelerator
Conservation of 4-momenta in
“collision” between laser pulse
(intensity profile I(t)) and
moving mirror (mass M = ρ`)

pi +Mc = pr + E/c
pi = −pr + ps

Using E2 = M2c2 + p2s and pic =

∫ ∞
0

I(t′)dt′ ≡Mc2F/2

energy
E

Mc2
=

F2

2(F + 1)
efficiency η ≡ E

pic
=

2β

1 + β

For ` ' 10 nm and a 10 fs, 1021 W cm−2 pulse
Emax ' 200 MeV/nucleon , η ' 0.5
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What Is a Laser Ion Accelerator Good For?
Ion energy deposition in
matter is localized at the
stopping point (Bragg peak)
because of Coulomb
scattering dE/dx ∝ E−2
figure: U. Amaldi & G. Kraft,
Rep. Prog. Phys. 68 (2005) 1861

Application in oncology (ion beam therapy):
deeply seated tumor can be destroyed while reducing damage
in surrounding tissue)
energy window: 65–250 MeV/nucleon
Suitable alternative to conventional ion accelerators?
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Is Ultra-High and -Fast Dose Delivery Beneficial?

For light ions only laser-plasma accelerators may deliver the
necessary flux
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Recent Results: Carbon Ion Acceleration

A. McIlvenny et al, Phys. Rev. Lett. 127 (2021) 194801
Experiment with GEMINI laser (RAL/CLF, UK)

τp = 45 fs, I = 4.5× 1020 W cm−2,
2− 100 nm thick C foils with H impurities
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Public Coverage
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Introduction to Electron Acceleration by Plasma Waves

American Journal of Physics 88, 723 (2020)
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Nice Example of Acceleration by a Strong Wave

From: T.Katsouleas, Nature 444 (2006) 688
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Looking for the Perfect Wave for Electrons
LINAC principle: a “fake” (non-
propagating) wave created by
localized oscillations in appropriate
phase
An electron of velocity v crosses
a cavity of length L within half the
period T of E-field so to “see” E as
always accelerating

Idea: create a similar structure
in a plasma where the maximum
E-field is not limited by electrical
breakdown
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Starting Point: Cold Plasma Oscillations

1D displacement of
electrons s(x, t)
v(x, t) = ∂ts(x, t)
Assumptions:
- v(x, t) � thermal velocity
- immobile ions
- electrons do not overtake
General solution:
localized oscillation at
plasma frequency ωp
witi arbitrary profile s̃(x)

s(x, t) = Re[s̃(x)e−iωpt]
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From Fake Wave to Wake Wave

How to give a phase velocity to localized non-propagating
oscillations?

Idea: let oscillations be
excited by a moving
perturbation (wake)

Bodensee at Bad Schachen,
Lindau, Germany.
Photo by Daderot, Wikipedia,
public domain.
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Plasma Wake Waves
A traveling delta-kick force f(x, t) = meu0δ(t − x/V ) displaces
electrons by s0 = u0/ωp at the overtaking time t = x/V
−→ wake of plasma oscillations with phase velocity υp = V

s(x, t) =

{
0 (t < x/V ) ,
s0 cos (ωp(t− x/V )) (t > x/V ) .

Example: a charge bunch
penetrating a plasma loses its
energy to the wake
(collective stopping)
J. Dawson, Phys. Fluids 5 (1962) 445
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Laser Wakefield
A short laser pulse
of duration ' π/ωp
excites a wake
with phase velocity
vp = vgEM = c(1− ω2

p/ω
2)1/2

T.Tajima & J.Dawson,
Phys. Rev. Lett. 43, 267 (1979)

EM pressure force pushes
electrons at the front and back
slopes of the laser pulse
3D simulation of a laser wakefield
Fonseca et al, Plasma Phys. Control.
Fusion 50, 124034 (2008)
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Energy Gain Estimate in the Wave Frame
In a reference frame S′

moving with the phase
velocity υp with respect to
the laboratory S the wave
field is time-independent
and can be derived by
an electrostatic potential
Φ(x′)

A “lucky” test electron moving from the top to the bottom of the
potential hill with initial velocity υ′x0 = 0 (hence υx0 = υp in the
lab frame) will get the maximum energy gain possible Emax
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Wave Amplitude Limit: Wavebreaking
The electron density must remain positive:

ne = n0 + δne > 0 ⇔ |δne| < n0

δne −→ n0 as u0 −→ υp: “self-acceleration” of wave electrons
−→ singularity in density profile, “breaking” of the wave
Onset of wavebreaking leads to self-injection of electrons

[T. Katsouleas, Nature 431 (2004) 515]
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Maximum Energy Estimate
I Assuming υ ' c and combining optimal injection (vx0 = vp)

with wavebreaking amplitude, Tajima & Dawson obtained

Emax = 4mec
2γ2p

γp = (1− v2p/c2)−1/2 � 1

• Objection! An incorrect wavebreaking threshold was used
I Using improved estimate from a fully nonlinear (but

anlytically accessible . . . ) model:

Emax = 4mec
2γ3p

[Esarey & Pilloff, Phys. Plasmas 2, 1432 (1995); Macchi AJP (2020)]

• Note the substantial increase by a factor γp
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Issues: Acceleration Length, Injection, . . .

Lacc = how long must my plasma wave be to allow the
maximum energy gain = (max energy)/(max force)

Lacc =
Wmax

eEWB
' 2
√

2
c

ωp
γ5/2p

(
= γpL

′
acc =

1

2
λ′p

)
.

• Plasma wave length ' Lacc � laser diffraction length:
optical guiding needed (preformed channel, capillary tube,
relativistic effect . . . )
• Self-injection and nonlinear regime not optimal for beam

quality and mono-energetic spectrum: “external” injection
needed
• . . .
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The Dream Goes On . . .

Nature 431, issue 7008, 30
September 2004

Current energy record: 8 GeV
[BELLA group at Berkeley:
Gonsalves et al, Phys. Rev.
Lett. 122, 084801 (2019)]

Progress achieved by sev-
eral groups in beam quality,
stability and reproducibility, . . .
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Application: Generation of Secondary Radiation
LWFA electrons used as a
compact driver in a
Free Electron Laser
Wang et al, Nature 595 (2021) 516

Replacing the undulator with a a counter-
propagating laser pulse: “all-optical” FEL
by Thomson Scattering
Nonlinear TS with high intensity laser and
strongly relativistic electrons generate
Gamma-rays with ωγ ' a30ω
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Strong Field Photon-Electron Collider

Laser field amplified by
(1 + βe)/(1− βe) ' 2γ2e
in electron rest frame
−→ Route to approach
“strong field” QED regime

Arran et al, Plasma Phys. Control. Fusion 61 (2019) 074009

First results on testing radiation reaction models
Cole et al, Phys. Rev. X 8 (2018) 011020
Poder et al, ibid. 031004
Viewpoint: Macchi, Physics 11 (2018) 13

Ultimate goal: reach Schwinger field
Es = mec

3/e~ = 1.3× 1016 V/cm
−→ breakdown of “quantum vacuum”
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Radiative Generation of Gigagauss Magnetic Fields
Many optical photons destroyed to generate a Gamma-photon
−→ for circular polarization many angular momentum quanta ~
“disappear” into the plasma
−→ induced rotation of electron population with generation of
axial magnetic field

Bx

3D simulation
units:
B0 = mecω/e

= 1.34× 108 G

No axial field without radiative losses included
Sign of Bx changes with laser pulse helicity

T. V. Liseykina, S. V. Propruzhenko, A. Macchi, New J. Phys. 18 (2016) 072001
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Unexpected Hype . . .
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Surface Plasmon (aka Surface Plasma Wave)

Ey , Bz

x ~E ~B

ε1 ~k

ε2
y

SP: a building block
of plasmonics
(mostly studied in
the linear regime)

SP excitation −→ EM field confinement and enhancement

Interface between vacuum and “simple metal” (cold plasma):

ε1 = 1 ε2 = 1−
ω2
p

ω2
= 1− ne

nc(ω)
< − 1

k =
ω

c

(
ω2
p − ω2

ω2
p − 2ω2

)1/2

ω <
ωp√

2
υp =

ω

k
< c
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Surfin’ the Surface Wave?
x ~E

y

Ey , |Ex|

e−

e−

Can a SP accelerate
electrons like a “bulk”
plasma wave?

I longitudinal E-component (Ey)
I sub-luminal phase velocity υp < c

(with υp → c when ωp � ω)

→ electrons may “surf” the SP
The energy can be estimated in the wave
frame as for a “bulk” plasma wave
but accounting for 2D motion
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Observation of Surface Plasmon Acceleration

L. Fedeli et al, Phys. Rev. Lett. 116 (2016) 015001
LaserLAB experiment at SLIC facility, CEA Saclay, France

UHI laser: 25 fs pulse, 5× 1019 Wcm−2, a0 = 4.8
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Observation of Surface Plasmon Acceleration

collimated (' 20◦ cone) electron emission
near the surface tangent (φ ' 2◦)
multi-MeV energy, total charge ' 100 pC
(value allowed by high plasma density)
exploitation & developments in progress . . .
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Observation of SP-enhanced High Harmonics

G. Cantono et al, Phys. Rev. Lett. 120 (2018) 264803
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Observation of SP-enhanced High Harmonics

Enhanced High Harmonic emission
observed when Surface Plasmons
are excited

Simulations show coherent scattering
from self-organized electron bunches (→)
to produce quasi-collinear HH
(similar mechanism to collective instability in a FEL)
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Conclusions: Laser-Plasma Interactions Offer New . . .

- framework of nonlinear “relativistic” optics
- ion and electron accelerators with unique qualities (high

flux, short duration, optical control, . . . ) for specific
applications

- class of experiments in unexplored QED regime
- concepts inspired by other areas of photonics (e.g. surface

plasmons)
Laser wakefield acceleration is more technologically
“mature” with respect to applications than other concepts
but further developments are in progress
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