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Outline

Ï Radiation friction (RF) in laser-plasma interaction
simulations: the Landau-Lifshitz (LL) “reduced” model

Ï RF effects in radiation pressure acceleration (RPA)
regimes:

- thin target (Light Sail): polarization dependence
- thick target (Hole Boring): model for high losses
Ï Inverse Faraday effect (IFE) and multi-Gigagauss magnetic

fields induced by RF
- observation in 3D simulations
- analytical model
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Unexpected (and embarassing) hype . . .
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Relativistic Landau-Lifshitz RF force
Aim: making electron dynamics consistent with radiation
emission (i.e. self-generated fields)
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“Reduced” LL model
[M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, A. Macchi,
New J. Phys. 10, 123005 (2010)]
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Ï Spin force and smaller term containing ∂t E, ∂t B are
neglected in frad

Ï Chosen by other groups, e.g. OSIRIS team after extensive
comparison [Vranic et al, Comp. Phys. 204 (2016) 141]
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Kinetic equation with RF included
Equation for distribution function fe = fe (r,p, t )

∂t fe +∇r · (v fe )+∇p · (f fe ) = 0 (1)
f =−e(E+v×B/c)+ frad, ∇p · (frad fe ) = 0 6= frad ·∇p fe

←− the PIC approach provides a solution of (1)
Entropy decrease and phase space contraction because of
RF cooling effect

d
dt

∫
fe ln fed3pd3q =

∫
fe∇p · (frad)d3pd3q < 0

[M. Tamburini et al, NIMA 653 (2011) 181]
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RF effects on Radiation Pressure Acceleration

Ï Motivations: RPA of thin solid foils
in the ultra-relativistic regime
(Iλ2 > 1023 W cm−2µm2 ) may allow
“unlimited” acceleration
towards the GeV/nucleon limit
[T. Esirkepov et al, PRL 92 (2004) 175003
S. V. Bulanov et al, PRL 104 (2010) 135003]

→ at such extreme intensities
RF effects should be considered
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Space-energy distribution: CP, no RF

Symmetric, collimated distribution of ions
Cut-off energy of ∼ 1.6 GeV at t = 20T

Ions Electrons

[Tamburini et al, PRE 85 (2012) 016407]
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Space-energy distribution: CP, with RF

Ion distribution unchanged by RF
Cooling of electrons in pulse tail due to radiative losses

Ions Electrons

[Tamburini et al, PRE 85 (2012) 016407]
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Space-energy distribution: LP, no RF

Asymmetric distribution with highest energy ions off-axis
Cut-off energy of ∼ 0.9 GeV much lower than for CP

Ions Electrons

[Tamburini et al, PRE 85 (2012) 016407]

Andrea Macchi CNR/INO

Radiative losses and inverse Faraday effect



Space-energy distribution: LP, with RF

Strong cooling of electrons by radiative losses
Cut-off energy is increased up to ∼ 1.1 GeV by RF

Ions Electrons

[Tamburini et al, PRE 85 (2012) 016407]
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Polarization effect on RF losses

For CP, electrons move coherently with the foil at υx ∼ c and
reflection is small

R ∼ 1−υx /c

1+υx /c
' 0

−→ almost copropagation with the laser pulse ⇒frad = 0

For LP, the oscillating term in
the v×B force causes υx ∼ −c
periodically ⇒ “colliding”
geometry maximizes frad
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RF losses in thick targets
Ï RF losses are small for thin targets pushed by CP pulses
Ï But thick targets show major RF losses also for CP!

[Naumova et al, PRL 102 (2009) 25002; Schlegel et al, PoP 16
(2009) 83103; Nerush & Kostyukov, PPCF 57 (2015) 35007]

Ï “piston oscillations” produce bunches of returning electrons
→ collective “collisions” with the
laser pulse → high RF losses

Figures from Schlegel et al.
I = 4×1022 W cm−2

a0 = 100
ne = (10−20)nc

up to ∼ 40% energy
dissipated by RF
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Model for returning electrons in thick targets

Ï Light pressure generates an excess of electrons in the skin
layer (d < x < d +`s) and of ions in the depletion layer
(0 < x < d)

Ï At the end of the acceleration stage (t = τi ), equilibrium
between electrostatic tension and ponderomotive force (i.e.
local light pressure) is lost

→ the excess electrons return towards the laser in a time τe
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Estimating the number of returning electrons

Ï eE0np0`s/2 ' 2I /c (pressure balance)
Ï E0 = 4πen0d (Poisson-Gauss equation)
Ï np0`s = n0(d +`s) (charge conservation)
→ Nx = (np0 −n0)`s ' np0`s ' a0/rcλ

returning electrons per unit surface (rc = e2/me c2)
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Estimating radiation from returning electrons
Ï Radiation power for an electron in the laser field

(=work done per unit time by frad)

Prad =
2e2ω2γ2a2

0

3c

(
1− υx

c

)2

Ï Fraction of laser energy re-emitted as radiation from Nx

electrons with (1−υx /c)& 1

ηrad ≡ PradNx

IL

τe

τe +τi
≈ 4π

3

rc

λ
γ2a0 (if τe ≈ τi )

Ï If γ= (1+a2
0)1/2 ' a0 (a0 À 1, |px |¿ |p⊥|)

ηrad ' 4π

3

rc

λ
a3

0 ∼ 1 for a0 = 400 (λ= 0.8µm)
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Angular momentum absorption
Ï A CP laser pulse carries “spin” angular momentum (AM)

that may be absorbed by the target

Lz =
∫ ∞

0
`z (r )2πr dr =−

∫ ∞

0

r

2cω
∂r I (r )2πr dr

Ï Reflection from a perfect mirror conserves number of
photons and does not change sign of “spin”

→ No AM absorption if “dissipation” is absent
Ï First 3D simulations of RPA showed very small AM

absorption (AMA)
[T. V. Liseykina et al, PPCF 50 (2008) 124033]

• Can RF provide efficient dissipation for AMA?
• Does RF-induced AMA leads to generation of an axial

magnetic field (“Inverse Faraday Effect”)?
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3D thick target simulations

λ= 0.8 µm
ne = 90nc = 1.6×1023 cm−3

a0 = (200−600)
I = (0.9−7.8)×1023 W cm−2

Laser pulse at waist (target boundary)

a(x = 0,r, t ) = a0
(
ŷcos(ωt )± ẑsin(ωt )

)
e−(r /r0)n−(ct/rl )4

n = 2 (Gaussian profile) or n = 4 (super-Gaussian)
rl = 3λ, r0 = 3.8λ
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Gigagauss axial magnetic fields induced by RF -I

Bx

No axial field without RF
Sign of Bx changes with laser pulse helicity
(units: B0 = me cω/e = 1.34×108 G)
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Gigagauss axial magnetic fields induced by RF -II

Similar results for Gaussian and Super-Gaussian profiles
The axial B-field is quasi-steady after the laser pulse
Peak amplitude Bmax ' 28B0 ' 5×109 G for a0 = 500
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Scaling with a0 and AM absorption

Scaling with a0:
Radiative loss ηmax ∼ a3

0 •
(max value ∼ 25%)
Peak field Bmax ∼ a4

0

Mechanical AM
Le/i(x) = ∫

ne/i (r×p)dydz

Li À Le : most of AM eventually
goes to ions
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Analytical theory of IFE - 1
Angular momentum density peaks at the beam edge (r = R ' r0)

L x = (r× (E×B))x /4πc =−r∂r IL(r )/(2cω)

−→ ion and electron fluids modeled as thin rigid cylinders with
momenta of inertia Ie = 2πR3δhme ne , Ii = (Amp /Z me )Ie

Torque by AMA on electrons Mabs ' Pabs/ω' Prad/ω
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Analytical theory of IFE - 2
Induced E-field exerts opposite torques on ions and electrons

dLe

d t
=Ie

dΩe

d t
= Mabs −ME

dLi

d t
=Ii

dΩi

d t
= ME

Eφ =−(r /2c)∂t Bx ME =
∫

ne eEφr d3r ' eEφ(R)

me R
Ie

Electron current density jeφ '−eneΩe R
“Solenoid” approximation Bx ' 4π jeφδ/c

−→ ME '
ω2

p Rδ

2c2 Ie
dΩe

d t
≡I ′

e
dΩe

d t

−→ Induction effects are equivalent to additional inertia
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Analytical theory of IFE - 3

Ωe (t ) = 1

Ie +I ′
e

∫ t

0
Mabs(t ′)d t ′

“Induction inertia” dominates for electrons

I ′
e ∼ (ω2

p /ω2)Ie = (ne /nc )Ie ÀIe

−→ Mabs −ME =Ie
dΩe

d t
' 0

−→ Li '
∫ t

0
Mabs(t ′)d t ′ ' I ′

e

Ie
Le À Le

in agreement with simulations •
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Analytical theory of IFE - 4

Posing Mabs ' ME allows to obtain Eφ and ∂t Bx from Mabs

Peak magnetic field Bxm = Bx (r = 0, t =∞)

πe

c
ne hR3δBxm '

∫ ∞

0
Mabs(t )d t ' Uabs

ω
= ηrad

UL

ω

ne h ' 2nc a0c/ω from HB model

Bxm

B0
' 0.2

π
ηrad

rlλ

Rδ
a0 ∝ a4

0

scaling in agreement with simulations •
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Analytical theory of IFE - 5

Estimate of Bxm from empirical value ηrad ' 0.24 and using
“vacuum” laser parameters R ' r0 = 3.8λ and δ'λ

Bxm ' 4.8B0

Considering dynamical evolution of the pulse (self-channeling
and focusing, radial profile steepening) yielding R ' 2λ, δ' 0.5λ
and a(r = 0) ' 1.2a0

Bxm ' 23B0

fair agreement with numerical observation •
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Conclusions

• A simple model accounts for high radiation friction (RF)
losses in thick targets and provides ∼ a3

0 scaling
• 3D simulations give evidence of multi-Gigagauss axial

magnetic field generation by the “inverse Faraday” effect
(IFE)

• Another simple model for IFE fairly agrees with simulation
results
Possible developments:

Ï improved modeling
Ï effect of the B-field on the dynamics
Ï observable to test RF models?
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