High Field Plasmonics and Laser-Plasma Acceleration

Andrea Macchi

¹National Institute of Optics, National Research Council (CNR/INO), Adriano Gozzini research unit, Pisa, Italy

²Enrico Fermi Department of Physics, University of Pisa, Italy

Photonics Ireland 2015, Cork, 1 September 2015

Image: A matrix

ㅋㅋ イヨト

CNR/INO

Andrea Macchi

Outline

- Why laser-plasma accelerators?
- High-field femtosecond "relativistic" plasmonics
- laser-plasmon coupling in grating targets
- electron acceleration by surface plasmons
- enhancement of proton acceleration
- Unipolar picosecond surface waves
- generation and observation
- application to proton post-acceleration
- "Light sail" acceleration (with plasmonic effects)
 Many collaborators will be introduced later ...

イロト イヨト イヨト イヨト

CNR/INO

Lasers for particle acceleration?

Current intensity record: $I \simeq 10^{25}$ W m⁻² with $\lambda \simeq 0.8 \ \mu$ m

 $\rightarrow eE \simeq 0.85 \text{ PeV m}^{-1} \sim 10^6$ times the value in a particle accelerator!

Electron dynamics is strongly relativistic

$$(a_0 = \frac{p_{\rm osc}}{m_e c} = \frac{eE}{m_e \omega c} \simeq 22)$$

BUT: direct laser acceleration is not easy, because

- laser field is (mainly) transverse
- laser pulse travels at c: dephasing with massive particles moving at $\lesssim c$
- $\rightarrow\,$ use <code>plasma</code> as a transformer into accelerating electrostatic fields

Andrea Macchi

・ロト ・回ト ・ヨト ・ヨト

The principle of collective acceleration

Early vision and definition: "coherent" acceleration V. I. Veksler, At. Energ. **2** (1957) 525

< ロ > < 同 > < 回 > < 回 >

CNR/INO

- accelerating field on each particle proportional to the number of accelerated particles
- automatic synchrony between the particles and the accelerating field
- field localization in the region where the particles are Realization in a plasma: accelerating field created by collective charge displacement

Example: electron acceleration in laser wakefields

An intense laser pulse traveling at $v_g = c(1 - \omega_p^2/\omega^2)^{1/2}$ creates a wake of longitudinal plasma oscillations with phase velocity $v_f = v_g \leq c$ \rightarrow relativistic electrons may "surf" the wake wave with little dephasing

イロン イヨン イヨン イヨン

Figures from: T.Katsouleas, Nature **431** (2004) 515; **444** (2006) 688

Andrea Macchi

CNR/INO

Surface plasmons for electron acceleration?

Surface plasmons (aka surface waves) propagate along the E_y , B_z interface between vacuum and simple metal or plasma

イロト イヨト イヨト イヨト

CNR/INO

$$\varepsilon_{1} = 1 \quad \varepsilon_{2} = 1 - \frac{\omega_{p}^{2}}{\omega^{2}} = 1 - \frac{n_{e}}{n_{c}(\omega)} \qquad \left(n_{c} = \frac{m_{e}\omega^{2}}{4\pi e^{2}}\right)$$
$$k = \frac{\omega}{c} \left(\frac{\omega_{p}^{2} - \omega^{2}}{\omega_{p}^{2} - 2\omega^{2}}\right)^{1/2} \qquad \omega < \frac{\omega_{p}}{\sqrt{2}} \qquad \upsilon_{ph} = \frac{\omega}{k} < c$$

The longitudinal field component (E_y) can accelerate electrons!

Andrea Macchi

How to excite intense SP with laser pulses?

Issue 1: coupling with EM wave requires phase matching: $\varphi_{\text{EM}} = \varphi_{\text{SP}}$ where $\varphi = \mathbf{k}_{\parallel} \cdot \mathbf{r} - \omega t$

Issue 2: a theory of relativistic SP is not known - and longitudinal waves may "break" at high amplitudes! Some evidence for relativistic SP from simulations [Macchi et al, Phys. Rev. Lett. **87** (2001) 205004; Raynaud et al, Phys. Plasmas **14** (2007) 092702]

イロン イヨン イヨン イヨン

CNR/INO

Andrea Macchi

Phase matching in periodic structures

In a spatially periodic medium (period *d*) the "replica"¹ of $\omega_{SP}(k_{\parallel})$ allows phase matching Resonant coupling with EM wave is possible in a grating at an angle of incidence

CNR/INO

$$\frac{\omega}{c}\sin\theta_{\rm res} \pm nq = k_{\parallel SP}(\omega) \qquad q = \frac{\pi}{d} \quad n = 1, 2, \dots$$
$$\omega_{\rm SP}(k_{\parallel}) \text{ weakly changes for shallow gratings)}$$

1equivalent to folding in the Brillouin zone (Floquet-Bloch theorem) and the second

Andrea Macchi

Need for ultrashort and "ultraclean" pulses

Ultrashort pulse duration (< 100 fs) and prepulse suppression by the use of ionization-based plasma mirrors are necessary to preserve grating surface until the short pulse interaction

а b Main pulse Main pulse Prepulse ntensity ntensity Pedestal Pedestal Prepulse Plasma mirror 1 To sample Time Time tarnet C Main pulse From laser ntensity Plasma mirror 2 Pedestal

Time

CNR/INO

→ E → < E →</p>

Plasma mirrors:

B. Dromey et al, Rev. Sci. Instrum. **75** (2004) 645 C. Thaury et al, Nature Physics **3** (2007) 424 figure from P. Gibbon, *ibid.* 369

Andrea Macchi

Experimental set-up for electrons

LaserLAB experiment at SLIC, CEA Saclay

Laser UHI, 28 fs, 5×10^{19} W cm⁻² contrast $\sim 10^{12}$ Grating:

- $\theta_{\rm res} = 15^{\circ} 30^{\circ} 45^{\circ}$
- depth $\delta = 0.3 \ \mu m$

Diagnostics:

- CMOS-based electron spectrometer
- LANEX screen for electron imaging

イロト イヨト イヨト イヨト

L. Fedeli, A. Sgattoni, G. Cantono, D. Garzella, F. Réau, I. Prencipe, M. Passoni, M. Raynaud, M. Květon, J. Proska, A. Macchi, T. Ceccotti, "Electron acceleration by relativistic surface plasmons in laser-grating interaction", arXiv:1508.02328

Electron angular distribution

CNR/INO

With gratings: collimated electron beam near the surface Shot-to-shot fluctuations $\delta \phi \sim \delta \theta \simeq 5^{\circ}$ due to non-perfect planarity of foil target

Andrea Macchi

Electron energy spectra

Spectrum variability (gray lines) related to beam direction fluctuations due to the small acceptance angle of the spectrometer

CNR/INO

3D simulations of the experiment

Fully kinetic, EM Particle-In-Cell simulations with PICcante open source code² on 16384 cores of BlueGene/Q FERMI at CINECA, Italy

CNR/INO

Simulations confirm excitation of relativistic SP and reproduce measurements quantitatively and in detail!

²available at http://aladyn.github.io/piccante

Andrea Macchi

Perspectives for high field plasmonics

The experimental evidence for relativistic SP suggests applications also taking inspiration from "ordinary" (low field) plasmonics: tapered waveguide for light nano-focusing and amplification (Original plasmonic concept: M.Stockman, PRL **93** (2004) 137404)

Plasmonic enhancement and angular selection of high harmonics from gratings

CNR/INO

Andrea Macchi

Proton acceleration from solid targets

A. Macchi, M. Borghesi, M. Passoni, "Ion acceleration by superintense laser-plasma interaction", Rev. Mod. Phys. **85** (2013) 751-793

Andrea Macchi

CNR/INO

イロト イヨト イヨト イヨト

Sheath acceleration of protons

Target Normal Sheath Acceleration (TNSA) mechanism: "fast" ($\mathcal{E}_e \sim MeV$) electrons crossing the target generate Laser a sheath where the charge-separation field **E** accelerates protons in a surface layer

- Potential drop is proportional to electron energy $e\Delta\Phi = \mathscr{E}_e^{(\max)}$

(sheath potential must confine electrons)

- Number of protons equals that of fast electrons (to restore charge neutrality)

 \rightarrow increase electrons energy and number to enhance TNSA

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Andrea Macchi

Experiment: TNSA enhancement in grating targets

PRL 111, 185001 (2013)

PHYSICAL REVIEW LETTERS

week ending 1 NOVEMBER 2013

Evidence of Resonant Surface-Wave Excitation in the Relativistic Regime through Measurements of Proton Acceleration from Grating Targets

T. Ceccotti,^{1,*} V. Floquet,¹ A. Sgattoni,^{2,3} A. Bigongiari,⁴ O. Klimo,^{5,6} M. Raynaud,⁷ C. Riconda,⁴ A. Heron,⁸ F. Baffigi,² L. Labate,² L. A. Gizzi,² L. Vassura,^{9,10} J. Fuchs,⁹ M. Passoni,³ M. Květon,⁵ F. Novotny,⁵ M. Possolt,⁵ J. Prokůpek,^{5,6} J. Proška,⁵ J. Přiškal,^{5,6} L. Štolcová,^{5,6} A. Velyhan,⁶ M. Bougeard,¹ P. D'Oliveira,¹ O. Tcherbakoff,¹ F. Réau,¹ P. Martin,¹ and A. Macchi^{2,11,7} ¹*CEA/IRAMISSPAM*, *F-91191 Gif-sur-Yvette*, France
 ²Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit "Adriano Gozzini," 56124 Pisa, Italy ³Dipartimento di Energia, Politecnico di Milano, 20133 Milano, Italy ³UDI furtimento di Energia, Politecnico di Milano, 20133 Milano, Italy ⁴UULI, Université Pierre et Marie Curie, Ecole Polytechnique, CRS, CEA, 75252 Paris, France ⁵FNSPE, Czech Technical University in Prague, CR-11519 Prague, Czech Republic ⁷CEA/DSM/LSJ, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France ⁸CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France ⁸ULUI, UMR7605, CNRS-CEA-Ecole Polytechnique-Paris 6, 91128 Palaiseau, France ⁹LULI, UMR7605, CNRS-CEA-Ecole Polytechnique Paris 6, 91128 Palaiseau, France ¹⁰Dipartimento SBAI, Università di Roma ¹²La Sago Bruno Pomtecorvo 3, I-56127 Pisa, Italy ¹¹Dipartimento di Fisca "Enrico Fermi," Università di Pisa, Largo Bruno Pomtecorvo 3, I-56127 Pisa, Italy

T. Ceccotti et al, Phys. Rev. Lett. 111 (2013) 185001

Andrea Macchi

CNR/INO

・ロト ・回ト ・ヨト ・ヨト

Experimental set-up for protons

LaserLAB experiment at SLIC, CEA Saclay laser UHI, 28 fs, 5×10^{19} W cm⁻², contrast $\sim 10^{12}$

Grating:

- $d = 2\lambda
 ightarrow heta_{res} = 30^{\circ}$
- depth $\delta = 0.3 0.5 \mu m$ Diagnostics:
- Thomson Parabola for proton detection
- Radio-Chromic Film (RCF) "ring" for radiation emission at any angle

・ロン ・回 と ・ ヨ と ・ ヨ と

- Reflected light

Plane target vs grating: resonant enhancement

Proton energy cut-off \mathscr{E}_{max} and reflected light vs incidence angle:

- broad maximum (minimum) around SP resonance ($\theta_{res} = 30^{\circ}$)
- \sim 2.5X enhancement in \mathscr{E}_{max} at θ_{res} , \sim 2 at small angles

CNR/INO

Andrea Macchi

Generation of unipolar surface waves by fast electrons

TNSA scenario: fast-electron transient charge separation generates an electric dipole $\mathbf{p}(t)$

→ generation of EM waves by the transient sheath as an antenna Surface waves should drive return current J_f for neutralizing negative charge loss (some ~ $10^{10} - 10^{12}$ electrons escape in vacuum)

 \rightarrow "unipolar" current pulses propagate on the surface

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

First observation of unipolar pulse

PRL 102, 194801 (2009)

PHYSICAL REVIEW LETTERS

week ending 15 MAY 2009

Ś

Laser-Driven Ultrafast Field Propagation on Solid Surfaces

K. Quinn,^{1,*} P. A. Wilson,¹ C. A. Cecchetti,^{1,*} B. Ramakrishna,¹ L. Romagnani,¹ G. Sarri,¹ L. Lancia,² J. Fuchs,²
 A. Pipahl,³ T. Toncian,³ O. Willi,³ R. J. Clarke,⁴ D. Neely,⁴ M. Notley,⁴ P. Gallegos,⁴ 5 D. C. Carroll,⁵ M. N. Quinn,⁵ X. H. Yuan,⁵ P. McKenna,⁵ T. V. Liseykina,^{6,4} A. Macchi,⁷ and M. Borghesi¹
 ¹Department of Physics and Astronomy, Queen's University Belfast, Belfast B77 INN, United Kingdom

⁷Laboratiore pour l'Utilisation des Lavers Intenses, École Polytechnique, 91/28 Palaiseau, France ³Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany ⁴Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxfonkhire OX11 0QX, United Kingdom ⁵SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom ⁶Max Planck Institute for Nuclear Physics, Heidelberg, Germany ⁷CNR/INFM/polyLAB, Dipartimento di Fisica "E. Fermi," Pisa, Italy (Received 28 January 2009; published 14 May 2009)

Andrea Macchi

CNR/INO

Imaging of field propagation along a wire target

Time-resolved imaging of the electric field via the proton probing technique M. Borghesi et al, PoP 9 (2002) 2214 K. Quinn et al, RSI 80 (2009) 113506

Experimental proton images

Proton tracing simulations

Andrea Macchi

Electric pulse characterization

Measurement of radial field $E_s(t)$ and propagation velocity brings total current in the pulse

 $I(t) = \frac{\pi r_w^2}{2} v_f E_s(t)$

 $I_{
m peak}\simeq 8\;k\!A\;,\quad au_I\simeq 10\;{
m ps}$

2D simulations of a model problem show that the pulse propagates as an unipolar surface wave spreading at $v \simeq c$ from sheath region

CNR/INO

Andrea Macchi

Possible applications of unipolar surface waves

 Picosecond duration of transient antenna fields \rightarrow intense THz pulse generation

A. Gopal et al, Phys. Rev. Lett. **111** (2013) 074802 S. Tokita et al, Sci. Reports **5** (2015) 8268

A. Poye et al, Phys. Rev. E 91 (2015) 043106

 Active, dynamic control of ion acceleration by engineering transient fields in shaped targets

S. Kar et al, Phys. Rev. Lett. 100 (2008) 105004

ightarrow Further developments of this approach in the following . . .

< ロ > < 同 > < 回 > < 回 >

CNR/INO

Propagation along a folded wire

"Self-probing" target: current pulse and probe protons generated from the same sheath field

Efficient propagation on long distances along a bent structure

Idea: use current pulse as synchronized wave for proton focusing and (post-)acceleration

S.Kar, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann, B. Aurand, G. Cantono, P. Hadjisolomou, C. L. S. Lewis, A. Macchi, G. Nersisyan, A. P. L. Robinson, A. M. Schroer, M. Swantusch, M. Zepf, O. Willi, M. Borghesi, "A laser-driven travelling-wave ion accelerator" (2015), submitted for publication

Andrea Macchi

Application to post-acceleration of protons: design

Sending the pulse along a coaxial coil generates an electric field both re-accelerating and focusing a part of the protons Coil can be designed to achieve phase matching

See poster A30 by S. Kar et al (presented by M. Borghesi)

Andrea Macchi

<ロト < 部 < 主 > < 主 > 主 のの() CNB/NO

Light Sail acceleration

Concept: direct boost of an ultrathin target by light pressure ("accelerating mirror" model) Very promising scaling and efficiency in the relativistic ion regime (GeV/amu) accessible with next generation lasers at $I > 10^{27}$ W m⁻² (e.g. EU's Extreme Light Infrastructure)

Theory and simulations:

T. Esirkepov et al, PRL **92** (2004) 175003

S. V. Bulanov et al, PRL **104** (2010) 135003

A. Sgattoni, S. Sinigardi, A. Macchi, Appl. Phys. Lett. **105** (2014) 084105

・ロト ・回ト ・ヨト ・ヨト

 $V = \beta c$

Light sail instability (3D simulations)

10

5

-5

-10

Formation of net-like structures in the ion density with size $\sim \lambda$ (laser wavelength) and \sim hexagonal shape

\geq_0 Interpretation: Rayleigh-Taylor instability

(light fluid accelerates heavy plasma fluid)

Crab Nebula image, Hubble telescope

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

A.Sgattoni, S.Sinigardi, L.Fedeli, F.Pegoraro, A.Macchi, Phys. Rev. E 91 (2015) 013106

Andrea Macchi

Plasmonic seed of Rayleigh-Taylor instability

The EM field at a rippled surface (e.g. 2D reflecting, sinusoidal grating of period *d*) is modulated with plasmonic enhancement of the *P*-polarization component when $d \sim \lambda$

Andrea Macchi

Conclusions

- Intense laser pulses can excite high field, relativistic Surface Plasmons
- using grating targets (femtosecond SP)
- by transient charge separation (picosecond unipolar SP)
- Applications for development of laser-driven electron and ion accelerators

(possible detrimental role in Light Sail acceleration!)

Other high field plasmonics applications under study

イロト イヨト イヨト イヨト

CNR/INO

EXTRA SLIDES

Andrea Macchi

CNR/INO

æ

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶

Simple model of electron acceleration in SP

- 2D extension of classic wakefield acceleration model [Tajima & Dawson, "Laser Electron Accelerator", PRL 43 (1979) 267]
- ► Plasmon field on the vacuum side is purely electrostatic in frame *L'* moving with phase velocity $\beta_f = v_f/c \leq 1$:

 $\Phi' = -(\gamma_f E_{\text{SP}}/k) e^{k'x} \sin k'y'$ $k' = k/\gamma_f$ $\gamma_f = (1-\beta_f^2)^{-1/2}$

- "Lucky" electron injected with velocity v_f goes downhill the potential Φ' acquiring an energy $W' = eE_{\rm SP}\gamma_f/k$
- \rightarrow Energy ($\gg m_e c^2$) and emission angle in the lab (*L*) frame

 $\mathscr{E}_{f} \simeq e E_{\rm SP} \gamma_{f}^{2} / k \simeq m_{e} c^{2} a_{\rm SP} \left(n_{e} / n_{c} \right) \,, \quad \tan \phi_{e} = p_{x} / p_{y} \simeq \gamma_{f}^{-1}$

Highest energy electrons are closest to target tangent

Andrea Macchi

Features of protons from solid targets

- in metal targets proton originate from H impurities
- cut-off energy record: 67.5 MeV (Gaillard et al, Phys. Plasmas 18 (2011) 056710)
- mostly broad energy spectra (exponential-like)
- ► large numbers e.g. ~ 2 × 10¹³ protons, ~kA current (Snavely et al, PRL 85 (2000) 2945)
- charge neutralization by comoving electrons ("plasma beam")
- good collimation with energy-dependent spread $\sim 10^{\circ} 30^{\circ}$
- ► low emittance ~ 4 × 10⁻³ mm mrad with cautious definition for broadband spectra (Nuernberg et al., Rev. Sci. Instrum. 80 (2009) 033301)
- ultrashort duration (\sim pulse duration, $\sim 0.1 10 \text{ ps}$)

Interest in multi-MeV protons

Energy deposition dominated by Bragg peak: optimal for localized heating of matter figure from:

U. Amaldi, G. Kraft,

Rep. Prog. Phys. 68 (2005) 1861

Foreseen applications:

- oncology: hadrontherapy, ion beam therapy
- triggering of nuclear reactions, isotope production
- production of warm dense matter
- diagnostic of materials
- ultrafast probing of electromagnetic fields

Andrea Macchi

Proton probing of laser-plasma interactions

- charged beam:
- field detection
- low emittance:
- imaging capability
- laser driver:
- easy synchronization
- broad spectrum:
- time-of-flight arrangement
- short duration:
- ultrafast resolution

イロン イヨン イヨン イヨン

CNR/INO

Andrea Macchi

Achieving single-shot proton "movies" 5.5 7.5 9 RCF stack 3 10.5 MeV Accelerated protons Al foil 72 42 31 26 24 22 ps

Radiochromic film (RCF) stack: each layer a Bragg peak \rightarrow a proton energy Time-of-flight arrangement: each layer \rightarrow a probing time (values refer to 1 mm flight distance) Temporal resolution up to \sim 1 ps

Proton "image" formation

Small angle deflections by **E** and **B** distributions create a density modulation δn on the RCF detector plane producing an "image" (with magnification *M*)

$$\Delta Y = |\delta \mathbf{v}| \Delta t \simeq \frac{eL}{2\mathscr{E}_p} \int (\mathbf{E} + \mathbf{v}_p \times \mathbf{B})_{\perp} dx$$
$$\frac{\delta n}{n_0} \simeq -\frac{1}{M} \nabla \cdot \Delta \mathbf{Y} \simeq \frac{-2\pi eLb}{\mathscr{E}_p M} \int_{-b/2}^{+b/2} \left(\boldsymbol{\rho} - \frac{\mathbf{v}_p \cdot \mathbf{J}}{c^2} \right) dx$$

Andrea Macchi

CNR/INO

Proton beam focusing and manipulation

TNSA-based "lenses" for spatial and spectral control of protons

Toncian et al, Science 312 (2006) 410

Kar et al, PRL **100** (2008) 105004

Andrea Macchi

Application to post-acceleration of protons: results

Tight beam focusing and 50% energy gain!

S.Kar, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann, B. Aurand, G. Cantono, P. Hadjisolomou, C. L. S. Lewis, A. Macchi, G. Nersisyan, A. P. L. Robinson, A. M. Schroer, M. Swantusch, M. Zepf, O. Willi, M. Borghesi, "A laser-driven travelling-wave ion accelerator" (2015), submitted for publication

Andrea Macchi