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OUTLOOK

- Plasma simulations for beginners: a simple electrostatic model

- The PIC approach for the kinetic simulation of collisionless plasmas 

  - basics: the Particle and the Cell

  - standard methods and algorithms

  - use on supercomputers and parallelization

- Adding extra physics: the example of Radiation Friction

  (from theory to numerical implementation)

- Snapshots from multi-dimensional PIC simulations



FOR ABSOLUTE BEGINNERS: SHEET MODEL

Dawson, “One-dimensional plasma model”, Phys.Fluids 5 (1962) 445



BASICS OF THE SHEET MODEL - I

Motion of N electrons in 1D (so, “charge sheets”), fixed ions 

under the action of electrostatic field E
x
 (+ external force driver F

ext
) 

If F
ext

=0 and no crossing occurs between the sheets, the latter 

oscillate around x=X
i
0 at the plasma frequency

(for a homogeneous plasma)



BASICS OF THE SHEET MODEL - II

 Crossing of neighboring

 sheets can be modeled as

 an “elastic collision”

equivalent to a remapping

of the sheet index:

the field on a sheet due to 

other electron sheet is 

constant: E
el
[X

i
0(t)]=E

el
(X

i
0)

Using this trick + numerical integration of the equations of motion

(with Runge-Kutta, Leapfrog, Verlet, ..., algorithms as preferred) 

yields an elementary plasma simulation code (can be generalized 

to inhomogenous plasma and/or external driver)



PLAYING WITH THE SHEET MODEL - I

The sheet model can be used 

for a first numerical insight into 

kinetic dynamics (plasma

oscillations, Debye shielding, 

Landau damping, wake excitation 

and collisionless stopping)
[see Birdsall & Langdon, “Plasma 

Physics via Computer Simulation” 

(IOP, 1991) Chap.13, p.277-292]



PLAYING WITH THE SHEET MODEL - II

Simulation of wake plasma wave

generation by a fast projectile 

(EM pulse or energetic particle) 

Relevant to wakefield acceleration 

of electrons

Upper plot: linear regime

(red: theory, blue: simulation)

Lower plot: nonlinear regime

(density spikes) 

Courtesy of P. dell'Osso, seminar for the 

M.Sc. course, Pisa, 2012



PLAYING WITH THE SHEET MODEL - III

Application to stochastic heating 

in plasma discharge sheaths
[Lieberman & Lichtenberg, Principles of Plasma 

Discharges and Materials Processing (Wiley, 2005)]

or at a steep laser-plasma interface 

(leading to collisionless absorption)
[Mulser & Bauer, High Power Laser-Matter 

Interaction (Springer, 2010)]

Example figure shows 

nonlinear electron oscillations driven 

by an external laser field at a sharp plasma boundary
[Macchi, Borghesi, Passoni, Rev. Mod. Phys (2012) in press]



Continuity equation in 6D phase space (r,p) for each species a 

coupled via momenta of f
a
 to Maxwell's equations

(“natural” units are used!) 

VLASOV-MAXWELL EQUATIONS

Basis for the kinetic description of a collisionless, relativistic, 

classical plasma with self-consistent mean EM fields



- Discretize phase space:

 x=i∆ x  , i=0,1,2, ... , 
p

x
=j∆ p , j=0,1,2, ... ,

6D Numerical Grid

(not necessarily Cartesian!)   

DULLY NUMERICAL IMPLEMENTATION

x y z p
x 
p

y 
p

z

X

- Discretize time: t=n∆ t  , n=0,1,2, ... , 
- Find an algorithm (i.e. finite differences) to advance f with the 

desired accuracy (test conservation laws: mass, energy, ...)

- Write the code, debug, test, optimize, and run 

(and check if the results converge with increasing resolution ...)

Assume an initial value problem (a study of plasma dynamics)



In physical space the number of points on each axis is N
q
=L/∆ x 

 L = size of the system to be simulated

∆ x<d = smallest scale to be resolved: depending on the problem 

 d=λ
D
 , c/ω

p 
 , λ  (wavelength of an EM driver), ...

Rule of thumb L~10d ,  ∆ x~d/10 ==> N
q
~102

In 3D we get N
q
3~106 gridpoints for the spatial sub-grid

If the grid is similar for momentum space N
p
~102

total N~N
q
3N

p
3~1012  gridpoints (for each species)

--> 8 TBytes allocated to represent f as a double precision number   

HOW LARGE MUST MY GRID BE? 



“Plasma physics is just waiting 
 for bigger computers” (Anonymous)

- Use ROADRUNNER if you can 

(needs efficient parallel programming)

- Use a different, memory-saving 

Approach: Particle-In-Cell (PIC) method – see next slides

- Restrict yourself to a “model problem”: 

  lower dimensionality (1D, 2D), “feasible” parameters, ...

- Remember: NO simulation can be really “realistic”  

  i.e. take actual space and time scales with appropriate resolution:  

  Simulations are models for “real” physics

SIZE MATTERS: HOW TO DEAL WITH IT? 



Assume a discrete “particle” representation of f : 

PARTICLE-IN-CELL (PIC) METHOD 

By substituting into the kinetic Eq. for  f we obtain the Equations of 

Motion for the N
p
 (vector) variables p

i
(t) and q

i
(t) :  

The phase space is represented as an ensemble of particles 

 (delta-like in p and extended in q via the function g(q) ): 
PIC is a “Lagrangian” approach vs. “Eulerian” (also called “Vlasov”) 



THE PARTICLE AND THE CELL 

- The plasma is represented by a large

(but limited) set of computational particles

(simply named “electrons” and “ions”)

- The EM fields are allocated on a discrete

grid, i.e. “in the cell” 

- Each particle (usually extended in space) 

contributes to the charge and current densities

in its parent cell (and its neighbors)

- The Lorentz force is evaluated as an average 

over the fields in the overlapping cells

On a supercomputer up to some ~109 particles may be allocated

(still typically orders of magnitude smaller than real numbers)



FDTD AND YEE LATTICE

- FDTD : Finite-Difference Time-Domain

  typical method to solve Maxwell 

  equations in PIC codes

- Yee lattice: typical distribution of 

  EM fields used in the cell of a 

  Cartesian grid (2D, 3D)

Pictures taken from Wikipedia:

http://en.wikipedia.org/wiki/

Finite-difference_time-domain_method



ENFORCING THE CONTINUITY EQUATION 

- Fields are advanced from  

- the scheme preserves  

- possible inconsistency of  the electrostatic field 

- the equivalent continuity equation 

  is not exactly satisfied on the grid if densities are calculated

  “trivially” as 

- solution: “smart” (non-trivial) reconstruction of J from the 

  particle displacement to satisfy the continuity equation 

  (or, improperly, “charge conservation”)

[Eastwood, Comp.Phys.Comm. 64, 252 (1991); 

Villanesor & Buneman, ibid. 69, 306 (1992); Esirkepov, ibid. 135, 144 (2001)]



PARTICLE PUSHER EXAMPLE 

- Advance positions: 

Leapfrog algorithm

- Advance momenta:

Boris pusher

( 1st half boost by E 

 + rotation by B

+ 2nd half boost by E)

More accurate schemes (better than ∆ t2  accuracy)

may be used at some computational cost 



A PARALLELIZATION STRATEGY - I 

- Divide the spatial domain (grid) along a direction of size L 

  into N equal domains (subgrids) of size a=L/N
- Assign each domain to a processing node  

(“Single Program Multiple Data” paradigm)



A PARALLELIZATION STRATEGY - II 

If the algorithms are local*, only data from neighboring 

rows (layers) of cells need to be exchanged 

via message passing:

- communication effort is minimized

==> linear scaling of performance with number of nodes

* Since |∆ r|<c∆ t for numerical stability reasons, particles 

move (and fields propagate) by at most one cell per timestep 



A PARALLELIZATION STRATEGY - III 

For most typical problems the memory allocated on each node is 

proportional to the number of particles located in the corresponding 

spatial sub-domain:

- for uniform domain decomposition, the plasma should be 

  homogeneous along the direction chosen for the partition

- as particles move across domains the work load on each domain

  becomes different resulting in loss of performance:

  load balancing would need a dynamic partition reconfiguration  



RADIATION FRICTION IN PIC 

For point-like, highly relativistic electrons in strong fields

the equation of motion must be modified in order to: 

- take the back-reaction of the fields generated by the electron itself

  into account

- make the energy-momentum balance consistent with the emission

  of radiation due to the electron acceleration

Radiative losses and radiation friction may play a dominant role

in relativistic current sheets whose dynamics and instabilities may

explain ultra-high energy acceleration in astrophysics    

See e.g.: Jaroschek and Hoshino, Phys. Rev. Lett. 103, 075002 (2009)



CHOICE OF THE RF FORCE

Classical force on the electron modified by Radiation Friction (RF)

[Landau and Lifshitz (LL), The Classical Theory of Fields (ch.76)]

Note: RF is being intensively revisited in the laser-plasma context 

because of forthcoming interaction regimes at ultra-high laser fields 

(offering the first possible direct tests of RF theories) 

Underlying approximations are almost always justified within the 

limits of validity of classical electrodynamics 



SOME REMARKS ON RF INCLUSION

- Unlike in standard Vlasov equation, the momentum divergence does

  not commute with the force: 

 

However the PIC method solves the more general continuity equation

- The radiation emission is incoherent and dominant frequencies are

  high enough to be not resolved on the spatial grid: 

  f
rad

  acts as a dissipative force (energy disappears from the system)

(in principle there might be a double counting of low-frequency 

contributions in f
rad

 but the effect is negligibly small)



RF IMPLEMENTATION AND BENCHMARKS

- Benchmark of the numerical implementation 

with exact solution for electron motion in plane wave including RF
[Di Piazza, Lett. Math. Phys. 83, 305 (2008)]

Red: no RF, closed “Figure of 8”

Black: with RF, “drifting 8”

Good news: the non-time local term 

containing d
t
E and d

t
B in f

rad
  

is almost always negligible 

- LL force can be inserted in a modular way in a standard PIC code 
[Tamburini et al, New. J. Phys. 10, 123005 (2010)]



PIC VS VLASOV: PROS AND CONS

EASY   
HARD  

FEASIBLE  
UNKNOWN

PIC VLASOV

DEVELOPMENT
easy, quite general, well 
documented

non trivial, 
specific

NOISE significant negligible (control of 
physical instabilities)

WORKLOAD saving very large

DENSITY RESOLUTION
problems with statistics 
& large gradients 

excellent

MOMENTUM 
SPACE

unbounded bounded

PARALLELIZATION

well suitable but 
non trivial load 
balancing

straightforward for 
local algorithms

FLEXIBILITY / 
ADD. PHYSICS

SWF models,  collisions, 
ionization, ...

?
unable to judge 



SOME LASER-PLASMA PIC-TURES - 2D

Top: self-channeling, breakup and soliton

 formation by an intense laser pulse   

Right: momentum vs angle distribution 

of ions for radiation pressure acceleration 

of a dense plasma slab

Simulations performed at CINECA, Italy

T.V.Liseykina and A.Macchi, IEEE Trans. Pl. Sc. 36, 1136 (2008), 

Special Issue on "Images in Plasma Science"  



SOME LASER-PLASMA PIC-TURES - 3D

Radiation Pressure Acceleration of a thin plasma layer in 3D

with radiation friction included
Tamburini, Lyseikina, Pegoraro, Macchi, Phys. Rev. E 85, 16407 (2012)



OTHER BEAUTIFUL 3D PIC-TURES ...

Right: plasma “bubble” formation 

for laser-plasma electron acceleration

Simulation by OSIRIS code
L.Fonseca et, Lect. Notes Comp. Sci. 2331(2002) 342

Left:  radiation pressure acceleration

in the extreme intensity regime
T.Esirkepov et al, 

Phys.Rev.Lett. 92 (2004) 175003 

Smart data visualization is important (and a key to success...) 



FINAL CONSIDERATIONS

- PIC is a well established approach to “ab initio” kinetic simulation

  of collisionless plasmas in a mean-field approach

- PIC may be adapted to suitable problem-oriented approximations

  (gyrokinetic, hybrid, ...) and may include additional physics 

  (collisions, ionization, radiation friction, ...) and/or diagnostics

- Work is always in progress to fully exploit progress in computer 

  hardware (new architectures, GPUs, ...), to better visualize data, ...

Advice to absolute beginners: 

- don't always use codes as a black box

- be nit-pickers with testing, debugging, and comparing with known 

  solutions (if there is any)

- train yourself on tool models (e.g. the sheet model)

- have fun!
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