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Outline of the talk

A short selection of recent experimental results and of our
group’s theoretical and simulation work loosely related to such
experiments, on the following mechanisms:
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Outline of the talk

A short selection of recent experimental results and of our
group’s theoretical and simulation work loosely related to such
experiments, on the following mechanisms:
» Radiation Pressure Acceleration (RPA)
= exploring “unlimited” RPA in 3D
» Collisional Shock Acceleration (CSA):
= conditions for monoenergetic acceleration
» Target Normal Sheath Acceleration (TNSA):
= enhanced TNSA in foam-covered targets
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Reviews of ion acceleration

A. Macchi, M. Borghesi, M. Passoni,
Superintense Laser-Plasma lon Acceleration,
Rev. Mod. Phys. (2012), submitted.

H. Daido, M. Nishiuchi, A. S. Pirozhkov,

Review of laser-driven ion sources and their applications,
Rep. Prog. Phys. 75, 056401 (2012).

Andrea Macchi

CNR/INO

Routes to Advanced Laser-Plasma lon Acceleration



RPA of thin foils: Light Sail model
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RPA of thin foils: Light Sail model

Eon(t) >~ (2[1‘/p€cz)1/3 (t — o0)

Eox = mpczﬁz/@(f—}— 1)) I V =pfc

F =2(pl)~! [ I(t")dt' ~ 20, /pl
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RPA of thin foils: Light Sail model

Eon(t) >~ (2[1‘/p€cz)1/3 (t — o0)

Eox = mpczﬁz/@(f—}— 1)) I V =pec

F =2(pl)~! [ I(t")dt' ~ 20, /pl

“Dream” features:
Favorable scaling with laser pulse fluence .7
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RPA of thin foils: Light Sail model
Eont) = (21t/pt?)'* (1 = o0)
Enae =~ mpc> T2 ) (2(F +1))
F =2pl)"! J§1(t")dt’ =217, /pl
“Dream” features:

Favorable scaling with laser pulse fluence .7
100% efficiency in the relativistic limit
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“Dream” features:

Favorable scaling with laser pulse fluence .7
100% efficiency in the relativistic limit
‘Perfect” monoenergeticity for “rigid” coherent motion of the foil
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RPA of thin foils: Light Sail model

Eon(t) >~ (2[1‘/p€cz)1/3 (t — o0)

Eox = mpczﬁz/@(f—}— 1)) I V =pfc

F =2(pl)~! [ I(t")dt' ~ 20, /pl

“Dream” features:

Favorable scaling with laser pulse fluence .#
100% efficiency in the relativistic limit
‘Perfect” monoenergeticity for “rigid” coherent motion of the foil
Limits: “slow” energy gain, foil transparency and deformation
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RPA: .%2 scaling observed on VULCAN (RAL, UK)
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RPA: .%2 scaling observed on VULCAN (RAL, UK)
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S.Kar, K.F.Kakolee, B.Qiao, A.Macchi, M.Borghesi et al.,
Phys. Rev. Lett. (2012), accepted, arXiv:physics/abs/1207.4288

Andrea Macchi CNR/INO

Routes to Advanced Laser-Plasma lon Acceleration



RPA: .%2 scaling observed on VULCAN (RAL, UK)

Emax ~ F? (for F <K 1) = @ ga-os | 1w (b)
£ 107 —1 —2 —3 |§ g] IRERCP]
g E . = Z/A=05
Laser pulse: 1, ~ 800 fs [£* i
3% 1020 W em™2 £ o0 a|fod
1 09 c OntraSt N ’ Energ:/nucleon(n::v) ® 10 3"t/ 100

Target: ~ 0.1 um metal foil

S.Kar, K.F.Kakolee, B.Qiao, A.Macchi, M.Borghesi et al.,
Phys. Rev. Lett. (2012), accepted, arXiv:physics/abs/1207.4288
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RPA: .%2 scaling observed on VULCAN (RAL, UK)

Emax ~ F? (for F <K 1) = @ ga-os | 1w (b)
£ 107 —1 —2 —3 |§ g] IRERCP]
8 3 = Z/A=05
] S 6
Laser pulse: 1, ~ 800 fs [£* i
3% 1020 W em™2 £ o0 a|fod
1 09 c OntraSt N ’ Energ:/nucleon(n::v) ® 10 3"t/ 100

Target: ~ 0.1 um metal foil
Multispecies (Z/A = 1,1/2) peak observed with A& /& ~20%
Almost no laser polarization dependence observed

S.Kar, K.F.Kakolee, B.Qiao, A.Macchi, M.Borghesi et al.,
Phys. Rev. Lett. (2012), accepted, arXiv:physics/abs/1207.4288
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Pushing LS forward: “unlimited” acceleration?
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Pushing LS forward: “unlimited” acceleration?

Transverse expansion of the target reduces
surface density p/

\ 4
Y

Andrea Macchi CNR/INO

Routes to Advanced Laser-Plasma lon Acceleration



Pushing LS forward: “unlimited” acceleration?

Transverse expansion of the target reduces
surface density p/

= “unlimited” acceleration possible

at the expense of the number of ions

[Bulanov et al, PRL 104, 135003 (2010)] >
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Pushing LS forward: “unlimited” acceleration?

Transverse expansion of the target reduces
surface density p/

= “unlimited” acceleration possible

at the expense of the number of ions

[Bulanov et al, PRL 104, 135003 (2010)] >
“Faster” gain Ei, (1) ~ (2Iz/p€c2)3/ > predicted
Route to relativistic (>GeV) ions?

Andrea Macchi
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Open issues: polarization, geometry, radiation friction
» Early 3D simulation demonstration of RPA

[Esirkepov et al, PRL 92, 175003 (2004)]
at 7 > 102> W cm? suggests polarization is inessential
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Open issues: polarization, geometry, radiation friction

» Early 3D simulation demonstration of RPA
[Esirkepov et al, PRL 92, 175003 (2004)]
at 7 > 102> W cm? suggests polarization is inessential

» Unlimited acceleration later demonstrated by 2D simulation
and circular polarization (CP)

[Bulanov et al, PRL 104, 135003 (2010)]

» Several studies (after [Macchi et al, PRL 94, 165003 (2005)])
suggested use of Circular Polarization (CP) for RPA at
1=10'""—102' W cm~2; but also Linear Polarization (LP)
may work [Qiao et al, PRL 108, 115002 (2012)]
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Open issues: polarization, geometry, radiation friction

» Early 3D simulation demonstration of RPA
[Esirkepov et al, PRL 92, 175003 (2004)]
at 7 > 102> W cm? suggests polarization is inessential

» Unlimited acceleration later demonstrated by 2D simulation
and circular polarization (CP)

[Bulanov et al, PRL 104, 135003 (2010)]

» Several studies (after [Macchi et al, PRL 94, 165003 (2005)])
suggested use of Circular Polarization (CP) for RPA at
1=10'""—102' W cm~2; but also Linear Polarization (LP)
may work [Qiao et al, PRL 108, 115002 (2012)]

» Radiation Friction (RF) important at 7 > 10** W cm ™2 ?
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Open issues: polarization, geometry, radiation friction

» Early 3D simulation demonstration of RPA
[Esirkepov et al, PRL 92, 175003 (2004)]
at 7 > 102> W cm? suggests polarization is inessential

» Unlimited acceleration later demonstrated by 2D simulation
and circular polarization (CP)

[Bulanov et al, PRL 104, 135003 (2010)]

» Several studies (after [Macchi et al, PRL 94, 165003 (2005)])
suggested use of Circular Polarization (CP) for RPA at
1=10'""—102' W cm~2; but also Linear Polarization (LP)
may work [Qiao et al, PRL 108, 115002 (2012)]

» Radiation Friction (RF) important at 7 > 102> W cm~2 ?
= Address polarization, RF and 3D effects in “unlimited” RPA
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Set-up of 3D RPA simulations
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Set-up of 3D RPA simulations

» Laser pulse: (9T) x (104)? (FWHM) [T = A /c]
sin? x Gaussian shape, ag = 280 (198) for LP (CP),
A=0.8um(I=17x10*Wcm?)
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Set-up of 3D RPA simulations

» Laser pulse: (9T) x (104)? (FWHM) [T = A /c]
sin? x Gaussian shape, ag = 280 (198) for LP (CP),
A=0.8um(I=17x10*Wcm?)

» Plasma: ¢ =1A ,ng=64n.,, Z=A=1
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Set-up of 3D RPA simulations

» Laser pulse: (9T) x (104)? (FWHM) [T = A /c]
sin? x Gaussian shape, ag = 280 (198) for LP (CP),
A=0.8um(I=17x10*Wcm?)

» Plasma: ¢ =1A ,ng=64n.,, Z=A=1
Note: ao ~ ¢ = x(n/ne)(£/2)
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Set-up of 3D RPA simulations

» Laser pulse: (9T) x (104)? (FWHM) [T = A /c]
sin? x Gaussian shape, ag = 280 (198) for LP (CP),
A=0.8um(I=17x10*Wcm?)

» Plasma: ¢ =1A ,ng=64n.,, Z=A=1
Note: ag ~ § = w(n./n.)(¢/A)

» RF included via Landau-Lifshitz force
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Set-up of 3D RPA simulations

» Laser pulse: (9T) x (104)? (FWHM) [T = A /c]
sin? x Gaussian shape, ag = 280 (198) for LP (CP),
A=0.8um(I=17x10*Wcm?)

» Plasma: /=14 ,ng=64n.,Z=A=1
Note: ap ~ § = w(n./n.)(L/1)

» RF included via Landau-Lifshitz force

» Numerical: 1320 x 896 x 896 grid, Ax = Ay = Az = A /44,
At =T /80 = A4/80c, 216 particles per cell (for both ¢ and p),
1.526 x 10'7 in total

Runs performed on 1024 processors (1.7 GBytes each) of
IBM-SP6 at CINECA (ltaly)
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Space-energy distribution in 3D simulations
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[Tamburini, Liseykina, Pegoraro, Macchi, PRE 85, 016407 (2012)]
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Space-energy distribution in 3D simulations

{c} CPRR . (a)
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CP: symmetric, collimated ion distribution, weak RF effects

[Tamburini, Liseykina, Pegoraro, Macchi, PRE 85, 016407 (2012)]
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Space-energy distribution in 3D simulations

: ®

LPRR  (b)
20T

LP NoRR (a)
=20T

CPRR (d)
t=20T

isisiriBiesbmiss  iSieivisimmosiss | 1Sisivisismomims

CP: symmetric, collimated ion distribution, weak RF effects
LP: asymmetric two-lobe ion distribution, strong RF effects
[Tamburini, Liseykina, Pegoraro, Macchi, PRE 85, 016407 (2012)]

Andrea Macchi CNR/INO

Routes to Advanced Laser-Plasma lon Acceleration



Pulse self-wrapping by the foil
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Pulse self-wrapping by the foil
Sections of 3D fields [a1)-d3)] vs 2D simulations [e)-f)]
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Pulse self-wrapping by the foil
Sections of 3D fields [a1)-d3)] vs 2D simulations [e)-f)]
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Focusing of the pulse down to ~ A3 volume for CP [see series -3)]
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Pulse self-wrapping by the foil
Sections of 3D fields [a1)-d3)] vs 2D simulations [e)-f)]
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Focusing of the pulse down to ~ A3 volume for CP [see series -3)]
“Wrapping” and focusing effects are weaker in 2D vs 3D [see e)-f)]
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Pulse self-wrapping by the foil
Sections of 3D fields [a1)-d3)] vs 2D simulations [e)-f)]
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Focusing of the pulse down to ~ A3 volume for CP [see series -3)]

“Wrapping” and focusing effects are weaker in 2D vs 3D [see e)-f)]
Breakthrough in the foil occurs for LP [see series -1)-2)]

Andrea Macchi CNR/INO

Routes to Advanced Laser-Plasma lon Acceleration



Effects of reduced dimensionality and resolution

Comparison of 3D ion spectra with 2D results (both S and P for LP)
for both the same and higher resolution
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Effects of reduced dimensionality and resolution

Comparison of 3D ion spectra with 2D results (both S and P for LP)
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Effects of reduced dimensionality and resolution

Comparison of 3D ion spectra with 2D results (both S and P for LP)
for both the same and higher resolution
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Effects of 2D vs 3D and
of limited resolution

7 are evident, but kept
1 below physical effects
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Effects of reduced dimensionality and resolution

Comparison of 3D ion spectra with 2D results (both S and P for LP)
for both the same and higher resolution
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Effects of 2D vs 3D and
of limited resolution

are evident, but kept
below physical effects

The “optimal” CP case
is the most robust

(but energy is lower
in2D vs 3D !)
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Unlimited acceleration confirmed (and enforced?)
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Unlimited acceleration confirmed (and enforced?)

» For CP: the energy cut-off corresponds to ions on axis and
is higherin 3D than in 2D/1D
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Unlimited acceleration confirmed (and enforced?)
» For CP: the energy cut-off corresponds to ions on axis and

is higherin 3D than in 2D/1D
1: more efficient rarefaction by transverse expansion
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Unlimited acceleration confirmed (and enforced?)

» For CP: the energy cut-off corresponds to ions on axis and
is higherin 3D than in 2D/1D

1: more efficient rarefaction by transverse expansion

2: increase of energy density on axis by pulse
self-wrapping
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Unlimited acceleration confirmed (and enforced?)

» For CP: the energy cut-off corresponds to ions on axis and
is higherin 3D than in 2D/1D

1: more efficient rarefaction by transverse expansion
2: increase of energy density on axis by pulse
self-wrapping

» CP optimizes ion acceleration (collimated distribution,
negliglible RR effects) with respect to LP
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negliglible RR effects) with respect to LP
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Unlimited acceleration confirmed (and enforced?)

» For CP: the energy cut-off corresponds to ions on axis and
is higherin 3D than in 2D/1D

1: more efficient rarefaction by transverse expansion
2: increase of energy density on axis by pulse
self-wrapping

» CP optimizes ion acceleration (collimated distribution,
negliglible RR effects) with respect to LP

» Breaking of the pulse through the foil destroys RPA

¢ Notice, however, that in the transparency regime
high-energy ions have been observed
(B.M.Hegelich and LANL team)
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Collisionless Shock Acceleration

» Basic idea: a Collisionless Shock Wave of velocity v, = Mc;
with M > 1 (¢, = /ZT,/Amy,) is driven into an overdense
plasma by either piston-like push of radiation pressure or
“suprathermal” pressure of fast electrons
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» lon acceleration occurs in the plasma bulk by reflection
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Collisionless Shock Acceleration

» Basic idea: a Collisionless Shock Wave of velocity v, = Mc,
with M > 1 (¢, = /ZT,/Amy,) is driven into an overdense
plasma by either piston-like push of radiation pressure or
“suprathermal” pressure of fast electrons

» lon acceleration occurs in the plasma bulk by reflection
from the shock front: v; ~ 2v, (“moving wall” reflection)

» Reflected ions are monoenergetic if v, is constant and

have multi-MeV energy if T, ~ m,c? (, [1+a3/2— 1) (fast

electron temperature)
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Monoenergetic protons from CO, laser-gas interaction

a

Normalized pra

) 2 5 B 2 4
Proton energy (MeV)
Figure 2 | Proton energy spectra. a, Protan spectra abtained with a
100-ps-long laser pulse (red) and a 100 ps macropulse consisting of a
number of 3 ps micrapulses (blued both containing 601 The typical noise
level on a single CR3% detector was 100 pits. The total number of protans
contained within the moncenergetic peak was 2.5 x 10°. b, The details of
the energy spectra an four different laser shots with different macropulse
structures (number of pulses and ap values ranging from 15 to 2.5).
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Monoenergetic protons from CO, laser-gas interaction

[Haberberger et al,
Nat. Phys. 8, 95 (2012)]
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Figure 2 | Proton energy spectra. a, Protan spectra abtained with a
100-ps-long laser pulse (red) and a 100 ps macropulse consisting of a
number of 3 ps micrapulses (blued both containing 601 The typical noise
level on a single CR3% detector was 100 pits. The total number of protans
contained within the moncenergetic peak was 2.5 x 10°. b, The details of
the energy spectra an four different laser shots with different macropulse
structures (number of pulses and ap values ranging from 15 to 2.5).
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Monoenergetic protons from CO, laser-gas interaction

[Haberberger et al,

Nat. Phys. 8, 95 (2012)]

Laser: A =10 um

1=6.5%x10""W cm™>

modulated 100 ps train

of 3 ps pulses

Target: H, jet, ng < x4 x 10" cm~3
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Figure 2 | Proton energy spectra. a, Protan spectra abtained with a
100-ps-long laser pulse (red) and 2100 ps macropulse consisting of a
number of 3 ps micrapulses (blued both containing 601 The typical noise
level on a single CR3% detector was 100 pits. The total number of protans
contained within the moncenergetic peak was 2.5 x 10°. b, The details of
the energy spectra an four different laser shots with different macropulse
structures (number of pulses and ap values ranging from 15 to 2.5).
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Monoenergetic protons from CO, laser-gas interaction

[Haberberger et al,

Nat. Phys. 8, 95 (2012)]

Laser: A =10 um

1=6.5%x10""W cm™>

modulated 100 ps train

of 3 ps pulses

Target: H, jet, ng < x4 x 10" cm~3

Figure 2 | Proton energy spectra. a, Protan spectra abtained with a
100-ps-long laser pulse (red) and 2100 ps macropulse consisting of a
number of 3 ps micrapulses (blued both containing 601 The typical noise
level on a single CR3% detector was 100 pits. The total number of protans

Very peaked spectra at ~20 MeV il i i mocnie sos e 25415 b Toe st o

the energy spectra an four different laser shats with different macropulse

but with low number of ions structures (number of pulses and ag values ranging from 15 10 2.5).
Is efficiency of CSA not compatible with monoenergeticity?
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More on CO, experiments: CSA or RPA?
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More on CO, experiments: CSA or RPA?

Proton énérgy (MeV) -
08 12

Monoenergetic acceleration o o

[Palmer et al, PRL 106, 14801 (2011)]

attributed to a ;

“radiation pressure driven shock”

using circular polarization ”r}':}"m”'} Q‘;ﬂ.ﬂ':ﬁ. Ti.f( S howing seling

with (a) 1= L
(e) I =59, n="T6n,

natch those of raw lineouts. Lincout corresponding
d 4% to fit on the same scale
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More on CO, experiments: CSA or RPA?

Monoenergetic acceleration o e T
[Palmer et al, PRL 106, 14801 (2011)]
attributed to a ;

“radiation pressure driven shock”
using circular polarization varving e

\\m\m to the

with  (a =
() I=59. n="T6n., (d) ]
J(l' W em?). (e) Background \uhm

But no CSA in the bulk is observed = «m= ;1;:;:;y:;,;»;\:;m
using CP since 7, ~ 0; mechanism o
may be “hole boring” (“piston”) RPA s

[Macchi et al, PRL 94, 165003 (2005);

raw
m) [=55 n=6ln.

n = 8&0n, (/ in units of
(solid lines) and also
of corrected spectra
incout corresponding

Macchi, Nindrayog, Pegoraro, f |
0 A - A

PRE 85, 046402 (2012)]
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Hints from Collisionless Shocks theory

[Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971)]
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» lon reflection may not form at all in the absence of
reflected ions
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» Background ions must have some energy spread
otherwise they would all either reflected or not
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[Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971)]
» lon reflection may not form at all in the absence of
reflected ions

» Background ions must have some energy spread
otherwise they would all either reflected or not

» Reflected ions are on the tail of the ion distribution
(Vi > vy — /2eDy/m; with Oy, shock potential barrier)
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Hints from Collisionless Shocks theory

[Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971)]

» lon reflection may not form at all in the absence of
reflected ions

» Background ions must have some energy spread
otherwise they would all either reflected or not

» Reflected ions are on the tail of the ion distribution
(Vi > vy — /2eDy/m; with Oy, shock potential barrier)
» Too many ions reflected may lead to shock loading
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Hints from Collisionless Shocks theory

[Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971)]
» lon reflection may not form at all in the absence of
reflected ions

» Background ions must have some energy spread
otherwise they would all either reflected or not

» Reflected ions are on the tail of the ion distribution
(v; > vy — \/2e®y/m; with @y, shock potential barrier)

» Too many ions reflected may lead to shock loading
= shock front slows down and monoenergeticity is lost
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Hints from Collisionless Shocks theory

[Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971)]
» lon reflection may not form at all in the absence of
reflected ions

» Background ions must have some energy spread
otherwise they would all either reflected or not

» Reflected ions are on the tail of the ion distribution
(v; > vy — \/2e®y/m; with @y, shock potential barrier)

» Too many ions reflected may lead to shock loading
= shock front slows down and monoenergeticity is lost

Optimize ion temperature T;
for energy spread vs. number of ions
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CSA with warm ions: 1D simulation - |

t=80.T t=140T t=168T t=200T

30 -
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CSA with warm ions: 1D simulation - |

Pal’ametel’S: t=80.T t=140T t=168T t=200T

30
ay = e T TSR TR T
T, = AT = 4) /c S 10 %:Yi’vz) o o &

o A A "
ne = 2n, 8
T, = 100 eV 2

2

4
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CSA with warm ions: 1D simulation - |

Pal’ametel’S: t=80.T t=140T t=168T t=200T
30
ay = e T TSR TR T
7, = 4T =4A/c 2 10f¥ed 4,12 1 5
(0] ¥sd M i Al
ne = 2n, +0.6

T _100 Y mkmmn pF - \
=100 e 5 1 , .
! E —o.% |

(o

0.00 " smm——t /,A/%Hm W /.‘Ar:,/.p";;.,/uﬂ&f“w“’ -0

2 4 6 2 4 6 2 4 6 2 4 6
z/\ z/\ z/\ z/\

Steady ion reflection produces a narrow energy spectrum

Andrea Macchi
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CSA with warm ions: 1D simulation - Il

t=25T t=565T t=85T
1o 107 107
\10073456 ”:!456 ”8456
£ so/\f(mv) E (MeV) E (MeV)
0 WAt ”
+4
S +2
ﬁ 0 W/WW)VWMW
R -2
-4
o 0.10 ;
Es 0.05
& 0.00 %WWW

2 3 4 5 6 2 3 4 5 6
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CSA with warm ions: 1D simulation - Il

Parameters: t=25T t=55T t=85T
_ 150 s a s
ap = 16 & 100l 1005 1005 105
TP = 4T = 42,/0 } 50 ;f‘,(ufv)e EE‘?MEWG azrltufv)s
o Pl ”
n, = 20n, )
S +2
T, =1keV ﬁ QE/MWWMWW
B -2
-4
o 0.10
i 0.05
& 0.00 W}

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
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CSA with warm ions: 1D simulation - Il

Parameters: t=25T t=55T t=85T
_ 150 2 e 0t
ao =16 PRI L N T N
T *4T 742//6‘ } 3E4(M5V)e EE4(M5V)6 azrltusv)s
P - 58,AA... - "
n, = 20n, )
S +2
R -2
-4
o 0.10 .
i 0.05(
& 0.00 %WWW

2 3 4 5 6 2 3 4 5 6

Too high T; causes shock to slow down and spectrum to broaden
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CSA with warm ions: 2D simulation (preliminary)

2D PIC simulation
laser pulse: 7, =45T,ap =1, w =54
target: n, =2n., ; =100 eV, Z/A =1

Same parameters as 1D (on axis) except lower resolution
(Ax=2/100, 100 part/cell)
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CSA with warm ions: 2D simulation (preliminary)

time=10cycles
T

0.02—

Px/mo

-0.08—

20 26 30 36 40
/A
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CSA with warm ions: 2D simulation (preliminary)

lon spectrum
d near axis
2941 <y < 30.6A

time=>50cycles
T

0.04

Px/mo

0.00

| Development of
] transverse “ripples”

—0.02
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CSA with warm ions: 2D simulation (preliminary)

lon spectrum
time:ll‘Ocycles ‘ . near aXiS
29.4) <y < 30.6A

0.04
time=110 cycles
8000
L_." 000"
002 E A
2 A &
£ 4000 l pdy
© L ( Y
% 2 2000+ J 5\
a d .
0 s
0.00 co 02 04 0.8

E, MeV

Reflected ions
I spectrum is much
: w - : » broader thanin 1D

-0.02
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Promises and open issues with CSA
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» Use of both gas laser and gas target is very suitable for
high repetition rate
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» Use of both gas laser and gas target is very suitable for
high repetition rate

(Gas jets with clusters seem also efficient with table-top
optical lasers [Fukuda et al, PRL 103, 165002 (2009)])
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Promises and open issues with CSA

» Use of both gas laser and gas target is very suitable for
high repetition rate
(Gas jets with clusters seem also efficient with table-top
optical lasers [Fukuda et al, PRL 103, 165002 (2009)])

» Further theoretical investigation needed to understand
shock front rippling and conditions for monoenergetic
acceleration in 2D/3D
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Promises and open issues with CSA

» Use of both gas laser and gas target is very suitable for
high repetition rate
(Gas jets with clusters seem also efficient with table-top
optical lasers [Fukuda et al, PRL 103, 165002 (2009)])

» Further theoretical investigation needed to understand
shock front rippling and conditions for monoenergetic
acceleration in 2D/3D

» More general issue: is it possible to have both efficiency
and monoenergeticity in CSA?
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TNSA: enhancing fast electron generation
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TNSA: enhancing fast electron generation

TNSA is driven by fast electrons
generated at the front surface
of solid targets
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TNSA: enhancing fast electron generation

TNSA is driven by fast electrons
generated at the front surface
of solid targets

Key issue: increase conversion
efficiency of laser energy
in fast electrons
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TNSA: enhancing fast electron generation

TNSA is driven by fast electrons
generated at the front surface
of solid targets

Key issue: increase conversion
efficiency of laser energy
in fast electrons

A strategy: special targets
(mass-reduced, microstructured, low-density, . ..)
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Enhanced TNSA in microcone targets
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Enhanced TNSA in microcone targets

[Gaillard et al, Phys.Plasmas 18, 056710 (2011)]
Experiment at TRIDENT, LANL (USA)
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Enhanced TNSA in microcone targets

[Gaillard et al, Phys.Plasmas 18, 056710 (2011)]
Experiment at TRIDENT, LANL (USA)
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Use of cone target leads to
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Enhanced TNSA in microcone targets

[Gaillard et al, Phys.Plasmas 18, 056710 (2011)] E,
Experiment at TRIDENT, LANL (USA) k

Use of cone target leads to

- effective grazing incidence
= more efficient

fast electron generation

- geometrical collimation of
fast electrons (“funnel” effect)
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Enhanced TNSA in microcone targets

[Gaillard et al, Phys.Plasmas 18, 056710 (2011)] E,
Experiment at TRIDENT, LANL (USA) k

Use of cone target leads to
- effective grazing incidence
= more efficient

fast electron generation

- geometrical collimation of T rnmentven
fast electrons (“funnel” effect)

Proton Number / MeV

IR EEEE

Up to 67.5 MeV protons observed with 80 J pulse energy
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Enhanced TNSA in foam-covered targets
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Enhanced TNSA in foam-covered targets

solid foil

Ne > N

[Sgattoni, Londrillo, Macchi, Passoni,
PRE 85, 036405 (2012)]

proton layer
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Enhanced TNSA in foam-covered targets

solid foil
Ne > N

[Sgattoni, Londrillo, Macchi, Passoni,
PRE 85, 036405 (2012)]

(b)

o m

Self-generated channel e
behaves similar to cone

proton layer

u
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Enhanced TNSA in foam-covered targets

solid foil
Ne > N

[Sgattoni, Londrillo, Macchi, Passoni,
PRE 85, 036405 (2012)]
Self-generated channel e
behaves similar to cone

u

proton layer

émax doubles with foam
up to 15 MeV ol
in 3D simulation ol o foam

with 1 J energy pulse & 1| g

max (MeV]

no foam
0 50 100 150 200 250 10
time [fs] z[pm]

0
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Foam-enhanced fast electron generation

2D parametric simulations:
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Foam-enhanced fast electron generation

(a) 100

. . . 1 foam ng=n, ‘iwg ——
2D parametric simulations: o' R ! 3;=§nm o
10° =8um
Optimal foam mass density n./¢ exists 107 LA
107 o
to enhance fast electron generation o ™
g 10 [\ foamni=2ne E%Ea :
g X I=8um
© 10 o =0um ——
10'2‘ solid foil n=2n,, }:z;§m+
s 0 li=4um —a—
1073 H\ I=8um
10 \
10° \1\\
0 10 20 30 40 50 60
E [MeV]
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Foam-enhanced fast electron generation

(a) 100

. . . foam ng=n, ‘iwg ——
2D parametric simulations: o' R ! 3;=§nm o
10° =8um
Optimal foam mass density ./ exists 10° L
107 o
to enhance fast electron generation 108 -
mz 10! foam n=2n,, }:i;ﬁm -
g \ l=4um —a—
s K I=8um
fast electron temperature 7y 2 37, y
where T, = m,c? ( 14+d3/2— 1) o =
oI solidfoil n=2n \:;152 e
10 | l=2um
10° \‘ }:zgﬁrm" —
10 \
108 \\
0 10 20 30 40 50 60
E [MeV]
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Foam-enhanced fast electron generation

. . . @ o f - l=lum —m—
2D parametric simulations: N chn <
10° =8um
Optimal foam mass density n./¢ exists 107 LA
107 o
to enhance fast electron generation o ™
) 1 [\ foamni=2n, }:i;m -

dN/dE [arb. units]

fast electron temperature 7 2 37,

where T, = m,c* («/1+a(2)/2—1) "
P-component of E
accelerates electrons

(coupling with
channel walls)
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Foam-enhanced fast electron generation

(a) 100

foam n=1
=N l=2um

2D parametric simulations: 12;; \ i 2
=8um
Optimal foam mass density n./¢ exists 107 LA
107 o
to enhance fast electron generation 108 ™

-1 foam n=2n, l=2um

dN/dE [arb. units]

fast electron temperature 7 2 37,

where T, = m,c* («/1+a(2)/2—1) "
P-component of E
accelerates electrons
(coupling with

channel walls)
Remarkable similarity with cone-enhanced acceleration

Andrea Macchi CNR/INO

Routes to Advanced Laser-Plasma lon Acceleration



Conclusions

Andrea Macchi CNR/INO

Routes to Advanced Laser-Plasma lon Acceleration



Conclusions

RPA: Promising for acceleration to >1 GeV (with next term laser
facilities)
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CSA: Attractive because of monoenergetic spectra and for
gas-based scheme at high repetition

— may be not efficient enough for applications
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Conclusions

RPA: Promising for acceleration to >1 GeV (with next term laser
facilities)
— need to improve spectrum, increase acceleration length,

CSA: Attractive because of monoenergetic spectra and for
gas-based scheme at high repetition

— may be not efficient enough for applications
TNSA: Most tested mechanism, structured targets may increase
energy and efficiency
— need to improve spectrum and to check for high repetition
rate operation
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