High intensity laser-grating interactions: a step towards relativistic plasmonics?

Andrea Macchi

¹Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR/INO), research unit "Adriano Gozzini", Pisa, Italy

²Dipartimento di Fisica "Enrico Fermi". Università di Pisa, Italy

School of Mathematics and Physics, Queen's University of Belfast, Monday, February 10, 2014

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

Coworkers

T. Ceccotti¹, V. Floquet¹, M. Bougeard¹, P. D'Oliveira¹, O. Tcherbakoff¹,
F. Réau¹, P. Martin¹, A. Sgattoni^{2,3}, F. Baffigi², L. Labate², L. A. Gizzi²,
M. Passoni³, A. Bigongiari⁴, C. Riconda⁴, M. Raynaud⁵, A. Heron⁶,
L. Vassura^{7,8}, J. Fuchs⁷, O. Klimo^{9,10}, M. Květon⁹, F. Novotny⁹, M. Possolt⁹,
J. Proška⁹, J. Prokůpek^{9,10}, J. Pšikal⁹, L. Štolcová⁹, A. Velyhan¹⁰

 ¹CEA/IRAMIS/SPAM, centre du Saclay, Gif-sur-Yvette, France
 ²CNR/INO, Pisa, Italy
 ³Dipartimento di Energia, Politecnico di Milano, Italy
 ⁴Université Pierre et Marie Curie, Ecole Polytechnique/LULI, CNRS, CEA, Paris, France
 ⁵CEA/DSM/LSI, CNRS, Ecole Polytechnique, Palaiseau, France
 ⁶CNRS, Ecole Polytechnique/CPhT, Palaiseau, France
 ⁷CNRS, CEA, Ecole Polytechnique/LULI, Palaiseau, France
 ⁸Dipartimento SBAI, Università di Roma "La Sapienza", Roma, Italy
 ⁹FNSPE, Czech Technical University in Prague, Czech Republic

¹⁰ELI-Beamlines project, Prague, Czech Republic

ヘロト ヘヨト ヘヨト ヘヨト

Ultrashort laser-solid interactions: what for?

Ultrashort pulses: <100 fs duration, up to $\sim 10^{20}~\text{W}~\text{cm}^{-2}$ intensity

laser

イロト イヨト イヨト イヨト

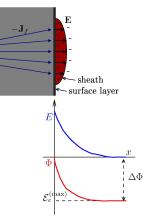
CNR/INO

Applications:

- laser-driven particle sources (electrons, ions)
- high harmonic generation for coherent ultrashort X-ray emission
- isochoric heating of matter efficient laser-target coupling is a key issue for these processes

Andrea Macchi

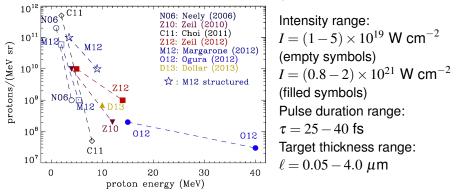
Example: sheath acceleration of protons


Target Normal Sheath Acceleration (TNSA) is driven by "fast" ($\mathcal{E}_e \sim \text{MeV}$), electrons generated in thin targets: protons from surface contaminants are accelerated in the rear sheath

TNSA picture "for dummies":

Potential drop for static sheath $e\Delta\Phi = \mathscr{E}_e^{(\max)}$ (sheath potential must confine electrons) Energy gained by "test" proton in the sheath

$$\mathscr{E}_p = e\Delta\Phi = \mathscr{E}_e^{(\max)}$$


Efficient electron heating is key to TNSA

CNR/INO

Andrea Macchi

Recent TNSA data with "table-top" lasers

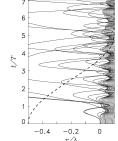
Need to find strategies to increase absorption and fast electron energy to boost TNSA

A. Macchi et al, Plasma Phys. Contr. Fus. 55, 124020 (2013)

Andrea Macchi

Fast electron generation: simple (rough) picture

E


The Lorentz force of the laser wave (amplitude E_L , frequency ω) drives periodic "push-pull" of electrons across the density gradient

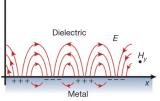
Electrons perform "half-oscillations" on the vacuum side and re-enter in the plasma (where the EM field is screened) and are "absorbed" keeping a net momentum

$$p_e \sim p_{\rm osc} \sim eE_L/\omega \equiv m_e ca_0$$

 $a_0 = \left(\frac{eE_L}{m_e c \omega}\right) > 1 \longrightarrow$ relativistic electrons

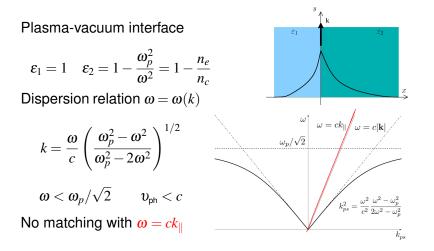
A. Macchi, A Superintense Laser-Plasma Interaction Primer (Springer, 2013)

イロト イヨト イヨト イヨト


Looking for resonant coupling

Idea: enhancement of the surface field and of absorption by exciting a normal mode of the target plasma

Resonant coupling requires matching of the phase $\varphi = \mathbf{k}_{\parallel} \cdot \mathbf{r} - \omega t$ between the laser and the resonant mode characterized by (ω_m, \mathbf{k}_m) :


$$\boldsymbol{\omega} \doteq \boldsymbol{\omega}_m \qquad k_{\parallel} = k \cos \boldsymbol{\theta} \doteq (k_m)_{\parallel} z$$

Normal modes of step boundary metal/plasma: surface waves figure from: O.Benson, Nature **480**, 193 (2011)

CNR/INO

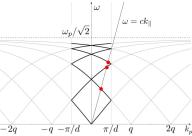
Surface wave coupling: the matching problem

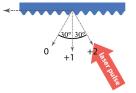
CNR/INO

イロト イヨト イヨト イヨト

Andrea Macchi

Surface wave matching in periodic structures

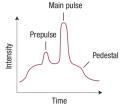

In a spatially periodic medium with period *d*, folding of $\omega_{SW}(k)$ in the Brillouin zone $|k| < \pi/d$ (Floquet-Bloch theorem) allows phase matching


Figure: M.Lupetti, M.Sc. Thesis, 2011

Resonant coupling with EM _____ wave is possible in a grating at an angle of incidence

$$\sin \theta_{\rm res} + \lambda/d = \left(\frac{1 - \omega_p^2/\omega^2}{2 - \omega_p^2/\omega^2}\right)^{1/2}$$

(provided $\omega_{SW}(k)$ does not change much)


CNR/INO

Andrea Macchi

Earlier work on laser-grating interaction

Coupling of laser field with surface waves is a "building block" of plasmonics: the art of light concentration and manipulation on the sub-wavelength scale

Experiments performed since 1990's at high intensity have been limited by prepulse effects causing distruption of shallow grating structure before short pulse interaction

イロン イヨン イヨン イヨン

CNR/INO

A general issue: do surface waves exist in a high-field, nonlinear and relativistic regime?

Need for ultraclean pulses: plasma mirrors

Plasma mirrors yielding $\sim 10^{12}$ pulse-toprepulse contrast allow to preserve taraet structuring until the short pulse interaction

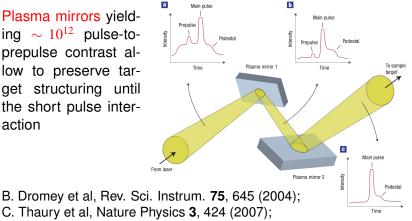
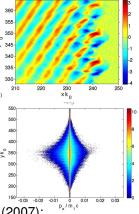


Image: A matrix

CNR/INO

C. Thaury et al, Nature Physics 3, 424 (2007); figure from P. Gibbon, ibid., 369.

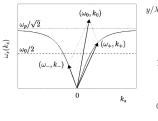

Andrea Macchi

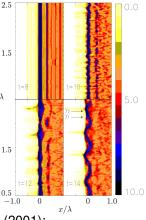
Surface wave coupling in the "relativistic" regime

No theory for SW in the nonlinear, high field, relativistic electrons regime

$$a_0 > 1 \longrightarrow I\lambda^2 > 1.4 \times 10^{18} \mathrm{W cm}^{-2} \mu \mathrm{m}^2$$

However, particle-in-cell simulations ^(a) show enhancement of absorption, electron heating and ion acceleration for laser-grating interactions up to $\lesssim I\lambda^2 \sim 10^{20} \ Wcm^{-2}\mu m^2$


M. Raynaud et al, Phys. Plasmas **14**, 092702 (2007); ^{P_x/m,c} A. Bigongiari et al, *ibid.* **18**, 102701 (2011); **20**, 052701 (2013)


CNR/INO

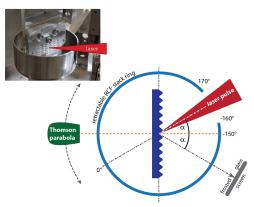
Another early evidence for relativistic SW n_e/n_c

Laser-driven periodic surface oscillations decay in two surface waves via a period-doubling process; similarity to Faraday Waves (Ripples) in a liquid

No grating necessary for nonlinear phase matching

< 2 → < 2 →

CNR/INO


A. Macchi et al, Phys. Rev. Lett. **87**, 205004 (2001); Phys. Plasmas **9**, 1704 (2002)

Andrea Macchi

Experimental set-up

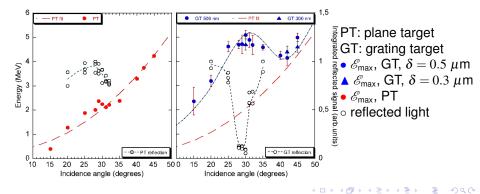
LaserLAB experiment at SLIC, CEA Saclay laser UHI, 28 fs, 5×10^{19} W cm⁻², contrast $\sim 10^{12}$

Grating:

- $d = 2\lambda
 ightarrow heta_{res} = 30^\circ$
- depth $\delta = 0.3 0.5 \mu m$ Diagnostics:
- Thomson Parabola for proton detection
- Radio-Chromic Film (RCF) "ring" for radiation emission at any angle

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

- Reflected light

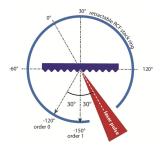

Andrea Macchi

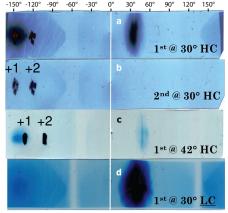
Plane target vs grating

Proton energy cut-off \mathscr{E}_{max} and reflected light vs incidence angle:

- broad maximum (minimum) around $\theta_{res} = 30^{\circ}$

- \sim 2.5X enhancement in \mathscr{E}_{max} at θ_{res} , \sim 2 at small angles



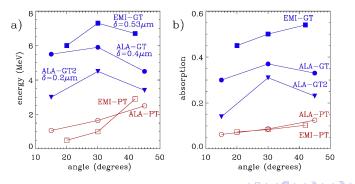

CNR/INO

Andrea Macchi

Grating signatures on RCF

Diffraction orders produce angle-dependent "burn "^{150° -120° -90° -60° -30°} spots" for High Contrast (HC), not observed with Low Contrast (LC)

イロト イヨト イヨト イヨト

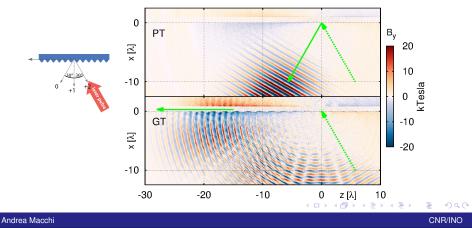

Andrea Macchi

CNR/INO

Comparison with PIC simulations

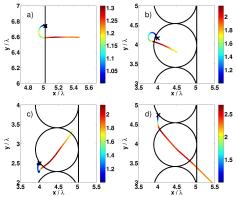
Two simulations campaigns with Particle-In-Cell codes EMI2D (CPhT, École Polytechnique) and ALADYN (Italy) fairly reproduce experimental trend

(2D simulations, different set-up for the two codes)



CNR/INO

Andrea Macchi


Surface wave in simulations

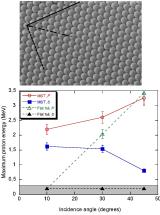
Snapshots of EM fields show localized wave propagating along the surface at resonant angle of incidence (plus reflection at various diffraction orders)

Enhanced electron heating out of resonance

Stochastic heating at a modulated interface is more efficient than in plane targets: electrons have more "re-entering trajectories" available Effect observed in microsphere-covered targets (PIC sim. by O. Klimo et al)

V. Floquet et al, J. Appl. Phys. 114, 083305 (2013)

CNR/INO


★ E → < E →</p>

Andrea Macchi

Experiment on microsphere-covered targets

Measurements taken in same campaign at SLIC

Some enhancement of proton energy observed only at small angles of incidence (compare with Margarone et al, Phys. Rev. Lett. **109**, 234801 (2012))

CNR/INO

V. Floquet et al, J. Appl. Phys. 114, 083305 (2013)

Andrea Macchi

Conclusions: open issues and future work - I

From the point of view of using grating targets for "enhanced" proton acceleration:

- energy increase at resonant angle does not exceed maximum energy in plane targets at grazing incidence: need to test different (larger) angles
- grating structure (and also microsphere covering ...) did not work with very thin foils: need to use smarter materials to guarantee target integrity
- efficiency of grating effect for longer pulses (delivering more energy) uncertain because of hydrodynamics on ~ 100 fs temporal scale
- is it feasible to embed gratings in a complex target design (e.g. microcones, ...)?

Conclusions: open issues and future work - II

- From a point of view of "general interest":
- First experimental indication of surface waves in the regime of relativistic electrons possible next steps:
- work out theory of nonlinear, relativistic SW
- investigate detailed mechanism of energy absorption and electron acceleration by SW
- design plasmonics applications in the high fields regime, exploiting the SW resonance

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Andrea Macchi

Main reference

PRL 111, 185001 (2013)

PHYSICAL REVIEW LETTERS

week ending 1 NOVEMBER 2013

Evidence of Resonant Surface-Wave Excitation in the Relativistic Regime through Measurements of Proton Acceleration from Grating Targets

T. Ceccotti,^{1,*} V. Floquet,¹ A. Sgattoni,^{2,3} A. Bigongiari,⁴ O. Klimo,^{5,6} M. Raynaud,⁷ C. Riconda,⁴ A. Heron,⁸ F. Baffigi,² L. Labate,² L. A. Gizzi,² L. Vassura,^{9,10} J. Fuchs,⁶ M. Passoni,³ M. Květon,⁵ F. Novotny,⁵ M. Possolt,⁵ J. Prokůpek,^{5,6} J. Proška,⁵ J. Proška,⁵ J. Proška,^{5,6} L. Velyhan,⁶ M. Bougeard,¹ P. D'Oliveira,¹ O. Tcherbakoff,¹ F. Réau,¹ P. Martin,¹ and A. Macchi^{2-11,7} ¹*CEA/IRAMISSPAM, F-91191 Gif-sur-Yvette, France* ²Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit "Adriano Gozzini," 56124 Pisa, Italy ³Dipartimento di Energia, Politecnico di Milano, 20133 Milano, Italy
 ⁴UULI, Université Pierre et Marie Curie, Ecole Polytechnique, SURS, CEA, 75252 Paris, France
 ⁵FNSPE, Czech Technical University in Prague, CR-11519 Prague, Czech Republic
 ⁶Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, 18221 Prague, Czech Republic
 ⁷CEA/DSM/LSJ, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France
 ⁸CPHT, CNRS, Ecole Polytechnique-Paris 6, 91128 Palaiseau, France
 ⁹LULI, UMR7605, CNRS-CEA-Ecole Polytechnique-Paris 6, 91128 Palaiseau, France
 ⁹LULI, UMR7605, CNRS-CEA-Ecole Polytechnique Paris 6, 91128 Palaiseau, France
 ¹⁰Dipartimento SBAL, Università di Roma 'La Sapienza'' Via A. Scarpa 14, 00161 Roma, Italy
 ¹¹Dipartimento BAL, Università di Roma, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

T. Ceccotti et al, Phys. Rev. Lett. 111, 185001 (2013)

Andrea Macchi

CNR/INO

・ロト ・回ト ・ヨト ・ヨト

Funding acknowledgments - 1

The research leading to these results has received funding from LASERLAB-EUROPE, grant No. 284464, EU's 7th Framework Programme, proposal n.SLIC001693.

Additional sources of support:

- PRACE supercomputing awarrd, project LSAIL ("Large Scale Acceleration of Ions by Lasers") for access to resource FERMI BlueGene/QTM at CINECA (Italy)
- FIRB-MIUR (Italy) project SULDIS ("Superintense Ultrashort Laser-Driven Ion Sources")

Andrea Macchi

Laser

イロト イヨト イヨト イヨト

Furope

Funding acknowledgments -2

- LABEX Plas@Par project ANR program "Investissements d'avenir", ANR-11-IDEX-0004-02
- Conseil General de l'Essonne (ASTRE program) by Region Ile de France (SESAME Project)
- Saphir Consortium (OSEO)
- RTRA Triangle de la Physique
- Agence Nationale de la Recherche, grant n.BLAN08-1_380251

イロト イヨト イヨト イヨト

CNR/INO

- GENCI-CCRT, grant 2012-t2012056851
- Czech Science Foundation, grant P205/11/1165
- ECOP, CZ.1.07/2.3.00/20.0087
- CNR/ELI-Italy