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Background and motivations

laser-plasma simulation projects running at CINECA
almost continously since 1997 (sponsored by the INFM
and CNR/INFM supercomputing initiative)
simulations mostly based on Lagrangian particle-in-cell
(PIC) codes (but also Eulerian “Vlasov” codes, “hybrid”
codes, . . . )
Topics:
nonlinear dynamics in collisionless, relativistic plasmas
support to experimental activities
“design and feasibility” for future projects (e.g. ELI,
HiPER, PLASMONX, . . . )
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“Coherent” EM structures observed?
Experimental data from the
Proton Imaging Technique give
evidence of slowly-varying,
long-living electric and/or mag-
netic structures generated by
laser-plasma interaction
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evidence of slowly-varying,
long-living electric and/or mag-
netic structures generated by
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[Kar et al, New J. Phys. 9, 502 (2007);
Liseikina et al, arXiv:physics/0702177]
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Laser pulse intensity
I = 1018

÷ 1019 W/cm2,
pulse duration τL = 1 ps
for λ = 1 µm.
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Generation of both isolated and pattern-organized field
structures
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Slowly-varying EM structures

Both isolated “cavitons” or “post-solitons” and patterns in-
side density channels
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Slowly-varying EM structures

Axially symmetrical pattern inside the main channel, in the
low-density region
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“Hybrid” electromagnetic structures
Structures from the pattern in the low-density region re-
veal a hybrid “vortex-caviton” nature with both oscillating
and quasi-static components
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“Hybrid” electromagnetic structures
Structures from the pattern in the low-density region re-
veal a hybrid “vortex-caviton” nature with both oscillating
and quasi-static components

EE

Bω

ω 0

Antisymmetric “soliton” fields:
oscillating Ez, Bx and By and
electrostatic Ex, Ey
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“Hybrid” electromagnetic structures
Structures from the pattern in the low-density region re-
veal a hybrid “vortex-caviton” nature with both oscillating
and quasi-static components

EE

Bω

ω 0 B0

J0

We may expect “toroidal”
structures in 3D –
related simulations
are in progress
(3200× 320× 320 grid,
8 points per λ,
∼ 5× 109 particles –
8 per cell,
400 PEs, ∼ 360 GBytes load)
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Radiation Pressure Acceleration
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Radiation Pressure Acceleration
Goal: accelerate plasma ions to high energies using the
radiation pressure of the laser pulse

laser pulse target
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Radiation Pressure Acceleration
Goal: accelerate plasma ions to high energies using the
radiation pressure of the laser pulse

- Relevant to foreseeable applica-
tions (e.g. medical hadrontherapy)

- May be the dominant acceleration
mechanism in the ELI experiment
(www.eli-laser.eu)

- Use of Circularly Polarized pulses
optimise RPA
Macchi et al, Phys. Rev. Lett 94, 165003 (2005);
Liseikina and Macchi, Appl. Phys. Lett. 91, 171502 (2007)
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3D issues in CP-RPA

3D simulations would generally be required for “physical
realism”
however, available computational resources limits 3D to
“easy” parameters (low density, thin targets, short
pulses, . . . )
a CP pulse carries electromagnetic angular momentum:
its conservation gives an additional constraint in 3D
theory shows that absorption of angular momentum
does not occur for adiabatic acceleration of ions, thus it
provides a diagnostic of the non-adiabatic or dissipative
nature of energy transfer to ions (of possible interest for
a collisionless system)
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3D simulations of CP-RPA
plasma: 0.3µm slab with ne = 16nc = 1.8× 1022 cm−3

pulse: I = 3.4× 1019 W/cm2, 6µm focal diameter, 50 fs duration.
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3D simulations of CP-RPA
182 PEs, 320× 1050× 1050 grid, 80 points per λ

∼ 1.5× 109 particles (27 per cell), 360 GBytes load
Ion density (thin foil target)

A. Macchi – CSFI Rimini, May 29, 2008 – p.11/17



3D simulations of CP-RPA
182 PEs, 320× 1050× 1050 grid, 80 points per λ

∼ 1.5× 109 particles (27 per cell), 360 GBytes load

A. Macchi – CSFI Rimini, May 29, 2008 – p.11/17



3D simulations of CP-RPA
182 PEs, 320× 1050× 1050 grid, 80 points per λ

∼ 1.5× 109 particles (27 per cell), 360 GBytes load

A. Macchi – CSFI Rimini, May 29, 2008 – p.11/17



3D simulations of CP-RPA
182 PEs, 320× 1050× 1050 grid, 80 points per λ

∼ 1.5× 109 particles (27 per cell), 360 GBytes load

A. Macchi – CSFI Rimini, May 29, 2008 – p.11/17



3D simulations of CP-RPA
182 PEs, 320× 1050× 1050 grid, 80 points per λ
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3D simulations of CP-RPA
182 PEs, 320× 1050× 1050 grid, 80 points per λ

∼ 1.5× 109 particles (27 per cell), 360 GBytes load
Electromagnetic energy density at two times
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Angular momentum absorption
The total a.m. of plasma ions (electrons) is∼ 4% (∼ 10−3) of the
pulse a.m. – to be compared with a ∼ 10% energy absorption.

A. Macchi – CSFI Rimini, May 29, 2008 – p.12/17



Angular momentum absorption
The total a.m. of plasma ions (electrons) is∼ 4% (∼ 10−3) of the
pulse a.m. – to be compared with a ∼ 10% energy absorption.

Angular momentum absorption is confirmed by integrating the
azimuthal ion current (Ji,φ) over the transverse plane (y, z)

Integrated ion current Ji,φ(x),
black line: all r, red line: r < 2.5λ,
r =

p

y2 + z2.
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Conclusions
Laser-plasma physics is experiencing a very active
growth: strong interplay between theory, experiment,
and numerical simulations

“Plasma physics is (just) waiting for bigger computers” –
access to supercomputing resources is vital for this
research
Strong interest by our group in maintaining its long-term
activity at CINECA and in other projects
Thanks to D. Bauer, C. Benedetti, M. Borghesi, F.
Cattani, F. Ceccherini, F. Cornolti, S. Kar, F. Pegoraro, L.
Romagnani (et al) for discussions, support and many
other things, and to the CINECA staff for their help
Would you like to see it again?
www.df.unipi.it/∼macchi/talks.html
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Mathematical model

Vlasov + Maxwell equations

∂fi,e
∂t

+~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, with ~Fi,e = qi,e

(

~E + ~v × ~B
)

,

rot ~B = ~j +
∂ ~E

∂t
, rot ~E = −

∂ ~B

∂t
, div ~E = ρ, div ~B = 0

dimensionless parameters:
λ, t0 = 2πc/ω0, E0 = mecω0/(2πe), n0 = meω

2
0
/16π3e2

Charge and current density
~j =

∑

i,e
qi,e

∫

fi,e~v d~v, ρ =
∑

i,e
qi,e

∫

fi,e d~v

~p = mγ~v – particle momenta with γ =
(

1− v2
)

−1/2

A. Macchi – CSFI Rimini, May 29, 2008 – p.15/17



Mathematical model
Vlasov + Maxwell equations

∂fi,e
∂t

+~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, with ~Fi,e = qi,e

(

~E + ~v × ~B
)

,

rot ~B = ~j +
∂ ~E

∂t
, rot ~E = −

∂ ~B

∂t
, div ~E = ρ, div ~B = 0

dimensionless parameters:
λ, t0 = 2πc/ω0, E0 = mecω0/(2πe), n0 = meω

2
0
/16π3e2

Charge and current density
~j =

∑

i,e
qi,e

∫

fi,e~v d~v, ρ =
∑

i,e
qi,e

∫

fi,e d~v

~p = mγ~v – particle momenta with γ =
(

1− v2
)

−1/2

A. Macchi – CSFI Rimini, May 29, 2008 – p.15/17



Mathematical model
Vlasov + Maxwell equations

∂fi,e
∂t

+~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, with ~Fi,e = qi,e

(

~E + ~v × ~B
)

,

rot ~B = ~j +
∂ ~E

∂t
, rot ~E = −

∂ ~B

∂t
, div ~E = ρ, div ~B = 0

dimensionless parameters:
λ, t0 = 2πc/ω0, E0 = mecω0/(2πe), n0 = meω

2
0
/16π3e2

Charge and current density
~j =

∑

i,e
qi,e

∫

fi,e~v d~v, ρ =
∑

i,e
qi,e

∫

fi,e d~v

~p = mγ~v – particle momenta with γ =
(

1− v2
)

−1/2

A. Macchi – CSFI Rimini, May 29, 2008 – p.15/17



Mathematical model
Vlasov + Maxwell equations

∂fi,e
∂t

+~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, with ~Fi,e = qi,e

(

~E + ~v × ~B
)

,

rot ~B = ~j +
∂ ~E

∂t
, rot ~E = −

∂ ~B

∂t
, div ~E = ρ, div ~B = 0

dimensionless parameters:

λ, t0 = 2πc/ω0, E0 = mecω0/(2πe), n0 = meω
2
0
/16π3e2

Charge and current density
~j =

∑

i,e
qi,e

∫

fi,e~v d~v, ρ =
∑

i,e
qi,e

∫

fi,e d~v

~p = mγ~v – particle momenta with γ =
(

1− v2
)

−1/2

A. Macchi – CSFI Rimini, May 29, 2008 – p.15/17



Mathematical model
Vlasov + Maxwell equations

∂fi,e
∂t

+~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, with ~Fi,e = qi,e

(

~E + ~v × ~B
)

,

rot ~B = ~j +
∂ ~E

∂t
, rot ~E = −

∂ ~B

∂t
, div ~E = ρ, div ~B = 0

dimensionless parameters:
λ, t0 = 2πc/ω0, E0 = mecω0/(2πe), n0 = meω

2
0
/16π3e2

Charge and current density
~j =

∑

i,e
qi,e

∫

fi,e~v d~v, ρ =
∑

i,e
qi,e

∫

fi,e d~v

~p = mγ~v – particle momenta with γ =
(

1− v2
)

−1/2

A. Macchi – CSFI Rimini, May 29, 2008 – p.15/17



Mathematical model
Vlasov + Maxwell equations

∂fi,e
∂t

+~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, with ~Fi,e = qi,e

(

~E + ~v × ~B
)

,

rot ~B = ~j +
∂ ~E

∂t
, rot ~E = −

∂ ~B

∂t
, div ~E = ρ, div ~B = 0

dimensionless parameters:
λ, t0 = 2πc/ω0, E0 = mecω0/(2πe), n0 = meω

2
0
/16π3e2

Charge and current density

~j =
∑

i,e
qi,e

∫

fi,e~v d~v, ρ =
∑

i,e
qi,e

∫

fi,e d~v

~p = mγ~v – particle momenta with γ =
(

1− v2
)

−1/2

A. Macchi – CSFI Rimini, May 29, 2008 – p.15/17



Mathematical model
Vlasov + Maxwell equations

∂fi,e
∂t

+~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, with ~Fi,e = qi,e

(

~E + ~v × ~B
)

,

rot ~B = ~j +
∂ ~E

∂t
, rot ~E = −

∂ ~B

∂t
, div ~E = ρ, div ~B = 0

dimensionless parameters:
λ, t0 = 2πc/ω0, E0 = mecω0/(2πe), n0 = meω

2
0
/16π3e2

Charge and current density
~j =

∑

i,e
qi,e

∫

fi,e~v d~v, ρ =
∑

i,e
qi,e

∫

fi,e d~v

~p = mγ~v – particle momenta with γ =
(

1− v2
)

−1/2

A. Macchi – CSFI Rimini, May 29, 2008 – p.15/17



Mathematical model
Vlasov + Maxwell equations

∂fi,e
∂t

+~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, with ~Fi,e = qi,e

(

~E + ~v × ~B
)

,

rot ~B = ~j +
∂ ~E

∂t
, rot ~E = −

∂ ~B

∂t
, div ~E = ρ, div ~B = 0

dimensionless parameters:
λ, t0 = 2πc/ω0, E0 = mecω0/(2πe), n0 = meω

2
0
/16π3e2

Charge and current density
~j =

∑

i,e
qi,e

∫

fi,e~v d~v, ρ =
∑

i,e
qi,e

∫

fi,e d~v

~p = mγ~v – particle momenta with γ =
(

1− v2
)

−1/2

A. Macchi – CSFI Rimini, May 29, 2008 – p.15/17



Realisation
PIC

Lee lattice for electromagnetic fields
Boris algorithm for equations of motion
“Exact charge conservation” – continuity equation is
exactly fulfilled on the grid
Cartesian geometry
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Evolution of field structures
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Evolution of field structures

Pattern of standing “cavitons” grow
inside low-density channels (due to
the trapping of low-frequency light?)
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Evolution of field structures

Pattern of standing “cavitons” grow
inside low-density channels (due to
the trapping of low-frequency light?)
Comparison with experiments,
based on reconstruction of
Proton Imaging data by computing
probe particles deflection in the
slowly varying field patterns, is very
promising

[A.Bigongiari, Thesis, Pisa, 2008].
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