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Outlook
We consider two cases of ion acceleration driven by the
steady ponderomotive force (i.e. by radiation pressure):

1. Radial acceleration after self-channeling in underdense
plasma (ωp < ω)
S. Kar, M. Borghesi, C. Cecchetti, F. Ceccherini, T. V. Liseikina, A. Macchi et al,
arXiv:physics/0701332, New J. Phys. (in press)
A.Macchi, F.Ceccherini, F.Cornolti, S.Kar, M.Borghesi, arXiv:physics/0701139

2. Longitudinal acceleration by circularly polarized pulses
in overdense plasma (ωp < ω)
A. Macchi, F. Cattani, T. V. Liseikina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005);
T. V. Liseikina and A. Macchi, arXiv:0705.4019, Appl. Phys. Lett. (in press).

We emphasize similiarities in the physical mechanisms
of ion acceleration, in particular the role of
hydrodynamical “breaking” in the ion fluid.
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PART 1: RADIAL ION
ACCELERATION AFTER

SELF-CHANNELING IN AN
UNDERDENSE PLASMA
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Channeling in underdense plasma
The interaction of a 1 ps, 1018

÷ 1019 W/cm2 pulse with
a gas jet has been investigated at RAL using the proton
imaging technique
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S.Kar et al, NJP, in press [arxiv:physics/0701332]
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Channeling in underdense plasma
The interaction of a 1 ps, 1018

÷ 1019 W/cm2 pulse with
a gas jet has been investigated at RAL using the proton
imaging technique

Experimental data show
that a charge-displacement
channel is produced by the
laser pulse
In the trail of the channel a
reversal of the radial field is
inferred

S.Kar et al, NJP, in press [arxiv:physics/0701332]
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Laser amplitude aL = 1.7÷ 2.7
duration τL = 150÷ 300TL (TL = λ/c)
⇒ I = 1018

÷ 1019 W/cm2,
τL = 0.5÷ 1 ps for λ = 1 µm.
S-polarization (Ez)
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2D PIC simulations show that the laser pulse drills a regular
charge-displacement channel in the low-density region
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Self-channeling and radial field evolution
2D PIC simulations show that the laser pulse drills a regular
charge-displacement channel in the low-density region

The profile of the
“radial” space-charge
field (Ey) changes in
the trailing part of the
pulse where field
reversal occurs

S.Kar et al., NJP, in press [arXiv:physics/0702177]
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Ponderomotive electrostatic 1D model

- 1D electrostatic PIC simulation, cylindrical geometry
- Laser pulse action is included via the radial

ponderomotive force on electrons (as an “external”
driver)

Fp = −mec
2
∇

√

1 + a2(r, t)/2

a2(r, t) = a2
Le
−(r/r0)

2
−(t/τ)2

- Model equations
dpe

dt = −eEr + Fp,
dpi

dt = ZeEr
1
r

∂
∂r (rEr) = 4πρ = e(Zni − ne).

[A. Macchi et al, arXiv:physics/0701139]
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Comparison with experimental results

The simple 1D
model has been
integrated with a
particle tracing code
(developed by A.
Schiavi) to simulate
the proton projection
images: very good
agreement is found
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Comparison with experimental results

The simple 1D
model has been
integrated with a
particle tracing code
(developed by A.
Schiavi) to simulate
the proton projection
images: very good
agreement is found

The model reproduces fairly experimental and numerical
results of radial ion acceleration in similar conditions
[see e.g. Sarkisov et al, JETP 66, 828 (1997);Krushelnick et al, PRL 83, 737 (1999);
Fritzler et al, PRL 89, 165004 (2002).]
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Echo effect in the radial field
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Echo effect in the radial field
1D electrostatic PIC simulation
aL = 2.7, τL = 300TL, rL = 7.5λ
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During the laser
pulse the space-
charge field Er

created by electron
depletion in the
channel exactly
balances the PM
force Fp
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Echo effect in the radial field
1D electrostatic PIC simulation
aL = 2.7, τL = 300TL, rL = 7.5λ

Er appears back
(“echo”) where a
sharp spike of ni is
produced;
the spike then
“breaks” producing
a fast bunch of ions
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Analysis of ion phase space show that hydrodynamical
breaking occurs when faster ions overlap the slowest ones
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At breaking, strong
electron heating
occurs

An ambipolar
electric field is
generated around
the density spike
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Breaking time and place

Ions are accelerated by
ZeEr ' ZFr.
For r > rmax ' r0,
dFr/dr < 0 ⇒ ions tend to
pile up at the edge of the
pulse profile

A. Macchi et al, arXiv:physics/0701139
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Breaking time and place

If Fr was a linear function,
all ions would get to a
same point rb at the same
time tb.

ZFr ' −k(r − rb)

A. Macchi et al, arXiv:physics/0701139
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Breaking time and place

If Fr was a linear function,
all ions would get to a
same point rb at the same
time tb.

ZFr ' −k(r − rb)

By performing a linear approximation of Fr we obtain

rb = (3/2)3/2r0 tb =
π

2

√

k

mi
=

π

2
e3/4

√

A

Z

mp

me

r0

a0c

A. Macchi et al, arXiv:physics/0701139
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Electric field generation after breaking

A “hot” electron tail is gen-
erated near the breaking
point
Thot ' 12.8 keV ' 6Tcold

A. Macchi et al, arXiv:physics/0701139
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Electric field generation after breaking
Hot electrons (density nh)
generate an antisymmet-
rical sheath field (exten-
sion `s, peak field Es)
around the density spike
(thickness d)

Es = 2πenhd `s =
8λ2

D
d

A. Macchi et al, arXiv:physics/0701139
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Electric field generation after breaking
Hot electrons (density nh)
generate an antisymmet-
rical sheath field (exten-
sion `s, peak field Es)
around the density spike
(thickness d)

Es = 2πenhd `s =
8λ2

D
d

Hot electron generation might be ascribed to non-
adiabatic electron oscillations across the sharp density
gradient or to local two-stream-like instabilities

A. Macchi et al, arXiv:physics/0701139
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Ion dynamics after breaking
After breaking the
ion spectrum “splits”:
only faster ions are
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Conclusions of Part 1

A “minimal” 1D electrostatic, ponderomotive, kinetic
model has been used to interpretate experimental
results in the charge-displacement self-channeling
regime of laser propagation in underdense plasmas
Simulations gave an insight into ion dynamics and
electric field generation
Hydrodynamical breaking of the ion fluid leads to
non-trivial effects (electric field “echo”, ion reflection . . . )
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PART 2: LONGITUDINAL ION
ACCELERATION BY CIRCULARLY
POLARIZED LASER PULSES IN

AN OVERDENSE PLASMA
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1D simulation example of ion acceleration
1D PIC simulation, 26 cycles pulse, normal incidence,
linear polarization, a = 16.0, ne0/nc = 10.
(λ = 1µm → I = 3.5× 1020 W/cm2, τL = 86 fs,
ne = 1022 cm−3.)
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Three groups of MeV ions:
two from “sheath” acceler-
ation (from front and rear
sides), one from the front –
“shock” acceleration?
[Silva et al, PRL 95, 195002 (2004)]
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1D simulation example of ion acceleration
1D PIC simulation, 26 cycles pulse, normal incidence,
linear polarization, a = 16.0, ne0/nc = 10.
(λ = 1µm → I = 3.5× 1020 W/cm2, τL = 86 fs,
ne = 1022 cm−3.)

laser

Three groups of MeV ions:
two from “sheath” acceler-
ation (from front and rear
sides), one from the front –
“shock” acceleration?
[Silva et al, PRL 95, 195002 (2004)]

Electrons are heated up to
several tens of MeV
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Switch fast electrons off
Fast electron generation at a steep
laser-plasma interface requires an
oscillating force across the boundary.

For normal incidence, it is the 2ωL

component of the v ×B force.
For circular polarization, the 2ωL

component vanishes; only the
secular (0ωL) component remains

⇒ The laser plasma interaction is
dominated by radiation pressure
(rather than by fast electron genera-
tion and related effects)
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Circular polarization
1D PIC simulation, circular polarization
a = 11.3 ⇒ same energy of the linear polarization case;
other parameters are the same

T. V. Liseikina and A. Macchi, arXiv:0705.4019, Appl. Phys. Lett. (in press).
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Circular polarization
1D PIC simulation, circular polarization
a = 11.3 ⇒ same energy of the linear polarization case;
other parameters are the same

Only one group of MeV ions
accelerated at the front side
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Circular polarization
1D PIC simulation, circular polarization
a = 11.3 ⇒ same energy of the linear polarization case;
other parameters are the same

Only one group of MeV ions
accelerated at the front side

Electron energy is
below 1 MeV;
almost no “fast” electrons!

T. V. Liseikina and A. Macchi, arXiv:0705.4019, Appl. Phys. Lett. (in press).
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A. Macchi – PHELIX Theory Workshop, Darmstadt, October 15, 2007 – p.20/26
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Ion acceleration with circular
polarization promises high ef-
ficiency: 13.7% absorption for
the simulation shown.
Absorption into electrons is
negligible
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Ion acceleration with circular
polarization promises high ef-
ficiency: 13.7% absorption for
the simulation shown.
Absorption into electrons is
negligible
The simulation for same en-
ergy, linear polarization shows
comparable absorption, but
reached later, dependent on
target thickness, and into
several ion populations
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Energy spectrum: circular vs linear
Linear polarization: higher
peak energies, but a thermal-
like spectrum already in 1D.

T. V. Liseikina and A.Macchi, arXiv:0705.4019, Appl. Phys. Lett. (in press).
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2D simulations
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dependent angular
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Ion bunch acceleration
Circular polarization, but weaker (a = 2.0) and shorter
(20 fs) pulse now: ne0/nc = 5
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Ion bunch acceleration
Circular polarization, but weaker (a = 2.0) and shorter
(20 fs) pulse now: ne0/nc = 5

Electrostatic field Ex

accelerates ions
Density spiking and breaking
of the ion fluid
Production of a single ion
bunch with narrow energy
spectrum

Highly reminiscent of the ra-
dial dynamics in the
underdense plasma case!
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(Another) simple model

- We take simple profiles . . .
. . . which crudely approximate
“realistic” ones

- ion profile is compressed
- “breaking” at the time when

all ions reach the
evanescence point
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Model predictions

Input parameters d, E0, np0 are related by the Poisson
equation and the constraints of charge conservation
and total radiation pressure Prad ' 2IL/c:
E0 = 4πen0d , n0(d+ ls) = np0ls ,

1
2eE0np0ls '

2
cIL

Equations of motion are easily solved to yield maximum
ion velocity and breaking time, assuming ls ' c/ωp:

vm = 2c
√

Z
A

me

mp

nc

ne
aL τi ' TL

1
2πaL

√

A
Z

mp

me
.

The average ion front velocity vf = vm/2 is the “hole
boring” speed.
Similar predictions, but different physics with respect to
the “shock” acceleration picture
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Conclusions of Part 2

The use of circular polarization leads to a new regime of
“radiation-pressure-dominated” ion acceleration
Ion acceleration features may be interesting for specific
applications (creation of warm dense matter?)
Other recent works suggest that using very thin targets
extremely high energies may be produced
(see Zhang et al, Phys. Plasmas 14, 073101 (2007); Robinson et al, arXiv:0708.2050)

Ion acceleration in this regime can be illustrated by a
simple model, which accounts for ion “bunch” fomation
via hydrodynamical breaking
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A general conclusion . . .

During a stay in Darmstadt (end of
1999), Prof. Peter Mulser suggested
me to work on a problem of breaking
of (electron) plasma waves driven by
laser-plasma interactions
This work has never been finalized :-(

It was my destiny to eventually re-
alize that hydrodynamical breaking
is a very basic and important phe-
nomenon in laser-plasma interaction,
although in a different context
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