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The basic idea of Shock Acceleration - I

A superintense (a0 > 1), linearly polarized laser pulse incident
on an overdense plasma (ω < ωp i.e. ne > nc = meω2/4πe2)

I heats up electrons up to high temperatures
I pushes the laser-plasma surface at the “hole boring”

velocity (non-relativistic for simplicity)
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High temperature + strong piston =⇒ Collisionless Shock Wave
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The basic idea of Shock Acceleration - II

I Ion acceleration occurs in the plasma bulk by reflection
from the shock front: υi = 2υs

I If υs & υhb the reflected ions have high (> MeV) energy
I Reflected ions are monoenergetic if υs is constant
I Shock acceleration invoked to explain very narrow spectra

observed by Haberberger et al [Nature Phys.8, 95 (2012)]
in CO2 laser interaction with overdense Hydrogen jet
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Conditions for Shock generation ?
I Piston velocity should exceed sound velocity:

vpis ' vhb ' a0c
(

Zncme
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)1/2
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Te = mec2
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I Caveat: a0� ne/nc may bring into self-induced
transparency regime and reduce piston action
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Collisionless Shocks in textbooks
A Collisionless Electrostatic Shock (CES) of velocity υs is
preceded by “reflected” ions of velocity υi = 2υs

Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971), chap.6

necessary condition for ion reflection

eΦM(υs) > miυ
2
s /2
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Collisionless Solitons in textbooks
If cs < υs < 1.6cs a non-reflecting soliton may exist

Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971), chap.6

eΦM(υs) < miυ
2
s /2 ⇔ υs < 1.6cs cs = (ZTe/mi)1/2
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Short-pulse driven “Solitary Acoustic Wave” (SAW)

1D PIC simulation: short (τ = 4T ), intense (a0 = 16) laser pulse
on an overdense (ne = 20nc), cold (Ti = 0) proton plasma slab

High resolution (∆x = λ/200, Np = 800 part/cell)
to enforce accuracy and convergence of the results
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Short-pulse driven “Solitary Acoustic Wave” (SAW)
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Short-pulse driven “Solitary Acoustic Wave” (SAW)

It looks like a soliton . . .
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Short-pulse driven “Solitary Acoustic Wave” (SAW)

. . . but occasionally reflects a short bunch of ions!
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Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Short-pulse driven “Solitary Acoustic Wave” (SAW)

Acceleration is “pulsed”, solitary wave almost stays unchanged
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Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Short-pulse driven “Solitary Acoustic Wave” (SAW)
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Short-pulse driven “Solitary Acoustic Wave” (SAW)

Eventually a long-lasting “shock-like” reflection occurs . . .
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Short-pulse driven “Solitary Acoustic Wave” (SAW)
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Short-pulse driven “Solitary Acoustic Wave” (SAW)

. . . and the solitary wave damps out

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Evolution of ion spectrum

Peak: ' 4.3 MeV
υs ' 0.05c =⇒ mp

2 υ2
s = 4.7 MeV

υhb ' 0.06c (R' 0.75)

The “moving wall” slows down
As the solitary wave damps

⇒ broadening of
the monoenergetic peak
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Solitary wave pulsations - I

max(Ex) > 0 min(Ex) < 0

Temporal oscillation
of the electric field
in the SAW

Dotted vertical lines:
breaking and ion bunch
acceleration events

ΦM exceeds threshold
during the oscillation
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Solitary wave pulsations - II

Interpretation:
collective oscillation of
the electron cloud around
the ion density spike
(consistent with
∆Ex = max(Ex)−min(Ex)
remaining ∼ constant)
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Solitary wave pulsations - III

����������
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Generation of first
two bunches
quenches the
oscillation

Generation of third
bunch leads to
decrease of
velocity and amplitude
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Long pulses: multipeak structures

1D PIC simulation: long (τ = 65T ), intense (a0 = 16) laser pulse
on an overdense (ne = 10nc), cold (Ti = 0) proton plasma slab

Same as preceding simulation, but longer pulse

Parameters very similar to Silva et al, PRL 92, 015002 (2004)
Higher resolution reveal additional details in phase space
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Long pulses: multipeak structures
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Long pulses: multipeak structures
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Long pulses: multipeak structures

Spectrum of “reflected” ions is broad . . .
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Long pulses: multipeak structures

. . . even before re-acceleration in rear side sheath
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Long pulses: multipeak structures

Velocity dispersion of peaks and “trapped” ions are observed
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Long pulses: multipeak structures
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Long pulses: multipeak structures

Nonlinear wave breaks in the expanding sheath
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Long pulses: multipeak structures
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Effect of the initial ion distribution

I A “true” shock cannot form in a cold ions, quiescent
plasma: all ions would be reflected by the front
⇒ the wave quickly loses its energy and gets damped

I Solitary waves can be formed but seem not particularly
stable . . .

I In a warm ion plasma, ions in the tail of the distribution with
υi > υs−

√
2eΦM/mi may be reflected

I If Ti = mi
〈
υ2

i
〉
/2 is too high, too many ions are reflected

⇒ the shock front slows down and monoenergeticity is lost
again

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Effect of the initial ion distribution

I A “true” shock cannot form in a cold ions, quiescent
plasma: all ions would be reflected by the front
⇒ the wave quickly loses its energy and gets damped

I Solitary waves can be formed but seem not particularly
stable . . .

I In a warm ion plasma, ions in the tail of the distribution with
υi > υs−

√
2eΦM/mi may be reflected

I If Ti = mi
〈
υ2

i
〉
/2 is too high, too many ions are reflected

⇒ the shock front slows down and monoenergeticity is lost
again

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Effect of the initial ion distribution

I A “true” shock cannot form in a cold ions, quiescent
plasma: all ions would be reflected by the front
⇒ the wave quickly loses its energy and gets damped

I Solitary waves can be formed but seem not particularly
stable . . .

I In a warm ion plasma, ions in the tail of the distribution with
υi > υs−

√
2eΦM/mi may be reflected

I If Ti = mi
〈
υ2

i
〉
/2 is too high, too many ions are reflected

⇒ the shock front slows down and monoenergeticity is lost
again

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Effect of the initial ion distribution

I A “true” shock cannot form in a cold ions, quiescent
plasma: all ions would be reflected by the front
⇒ the wave quickly loses its energy and gets damped

I Solitary waves can be formed but seem not particularly
stable . . .

I In a warm ion plasma, ions in the tail of the distribution with
υi > υs−

√
2eΦM/mi may be reflected

I If Ti = mi
〈
υ2

i
〉
/2 is too high, too many ions are reflected

⇒ the shock front slows down and monoenergeticity is lost
again

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Warm ions: shock-like reflection

1D PIC simulation: short (τ = 4T ), intense (a0 = 16) laser pulse
on an overdense (ne = 20nc), warm (Ti = 1 keV) proton plasma slab

Same as “short pulse” simulation, but warm ions
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Warm ions: shock-like reflection
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Warm ions: shock-like reflection
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Warm ions: shock-like reflection

A steady reflection of quasi-monoenergetic ions is observed . . .
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Warm ions: shock-like reflection
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Warm ions: shock-like reflection
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Warm ions: shock-like reflection

. . . but shock front slows down
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Warm ions: shock-like reflection

Energy spectrum shifts towards lower energies
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Monoenergetic acceleration for warm ions -I

I In 1D finding a compromise between monoenergeticity and
efficiency seems to be the point:

- low numbers of reflected ions leave the shock velocity
imperturbed and give a narrow spectrum

- large numbers of reflected ions cause the shock front to
slow down and give a broad spectrum

I we searched for an “optimal” value of Ti for given laser and
plasma parameters (see poster for a survey of results)

I formation of monoenergetic spectra seem to be favored for
moderate values of a0 (∼ 1−4)
(see poster 33 for additional simulations)
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Monoenergetic acceleration for warm ions -II

a0 = 1 , ne = 2nc, Ti = 100 eV
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Remarks on experiments - I

Haberberger et al
[Nature Phys. 8, 95 (2012)]
observe very monoenergetic spectra
but with rather low number of ions

Is efficiency of shock acceleration
not compatible with
monoenergeticity?
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Remarks on experiments - II

Palmer et al
[PRL 106, 14801 (2011)]
report on acceleration by a
“radiation pressure driven shock”
using circular polarization

But no “shock acceleration” in the bulk
is observed with circular polarization:
this may be described as “hole boring”
or “pure piston” acceleration
[Macchi et al, PRL 94, 165003 (2005)
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Two-dimensional simulations (preliminary)

2D PIC simulation: laser pulse τ = 45T , a0 = 1, w = 5λ

on an overdense (ne = 2nc), Ti = 100 eV) proton plasma slab

Same as 1D (on axis) except unavoidable lower resolution
∆x = λ/100 , 100 part/cell

Ion spectrum
near axis
29.4λ < y < 30.6λ
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Two-dimensional simulations (preliminary)

Ion spectrum
near axis
29.4λ < y < 30.6λ

Development of
transverse “ripples”
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Two-dimensional simulations (preliminary)
Ion spectrum
near axis
29.4λ < y < 30.6λ

Reflected ions
spectrum is much
broader than in 1D
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Open issues and work in progress . . .

I What causes the different evolution of the shock front and
related acceleration in 2D vs 1D?

- rippling of the shock front? (transverse electrostatic
oscillations? Richtmyer-Meshkov-like instabilities? ... ?)

- Insufficient numerical resolution? (In 1D the results failed
to converge for Np < 100 particles/cell)

- Both?
I 2D simulations are challenging anyway if we aim to resolve

a low-density tail of high-energy ions . . .
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Conclusions

I “Shock acceleration” seems to be rather more complex
than “reflection from a moving wall”

I Two possible regimes of monoenergetic acceleration found
in 1D simulations:

- short bunch generation by solitary wave “pulsation” (not
easy to control)

- shock formation in a warm (∼ 102 eV) plasma
I 2D simulations (still preliminary) suggest rippling

instabilities may affect the ion spectrum
I Very large and accurate simulations are probably needed

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Conclusions

I “Shock acceleration” seems to be rather more complex
than “reflection from a moving wall”

I Two possible regimes of monoenergetic acceleration found
in 1D simulations:

- short bunch generation by solitary wave “pulsation” (not
easy to control)

- shock formation in a warm (∼ 102 eV) plasma
I 2D simulations (still preliminary) suggest rippling

instabilities may affect the ion spectrum
I Very large and accurate simulations are probably needed

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Conclusions

I “Shock acceleration” seems to be rather more complex
than “reflection from a moving wall”

I Two possible regimes of monoenergetic acceleration found
in 1D simulations:

- short bunch generation by solitary wave “pulsation” (not
easy to control)

- shock formation in a warm (∼ 102 eV) plasma
I 2D simulations (still preliminary) suggest rippling

instabilities may affect the ion spectrum
I Very large and accurate simulations are probably needed

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Conclusions

I “Shock acceleration” seems to be rather more complex
than “reflection from a moving wall”

I Two possible regimes of monoenergetic acceleration found
in 1D simulations:

- short bunch generation by solitary wave “pulsation” (not
easy to control)

- shock formation in a warm (∼ 102 eV) plasma
I 2D simulations (still preliminary) suggest rippling

instabilities may affect the ion spectrum
I Very large and accurate simulations are probably needed

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Conclusions

I “Shock acceleration” seems to be rather more complex
than “reflection from a moving wall”

I Two possible regimes of monoenergetic acceleration found
in 1D simulations:

- short bunch generation by solitary wave “pulsation” (not
easy to control)

- shock formation in a warm (∼ 102 eV) plasma
I 2D simulations (still preliminary) suggest rippling

instabilities may affect the ion spectrum
I Very large and accurate simulations are probably needed

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Conclusions

I “Shock acceleration” seems to be rather more complex
than “reflection from a moving wall”

I Two possible regimes of monoenergetic acceleration found
in 1D simulations:

- short bunch generation by solitary wave “pulsation” (not
easy to control)

- shock formation in a warm (∼ 102 eV) plasma
I 2D simulations (still preliminary) suggest rippling

instabilities may affect the ion spectrum
I Very large and accurate simulations are probably needed

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration



Reference and Acknowledgment

I A. Macchi, A. Singh Nindrayog, F. Pegoraro,
Solitary versus Shock Wave Acceleration in Laser-Plasma
Interactions,
Phys. Rev. E 85, 046402 (2012)
arXiv:physics/abs/1111.6392

I Work sponsored by the FIRB-MIUR (Italy) project SULDIS
(“Superintense Ultrashort Laser-Driven Ion Sources”)
– see talk by Matteo Passoni

Andrea Macchi CNR/INO

Solitary Vs Shock Wave Acceleration


