Solitary- versus Shock-Wave Acceleration in Laser-Plasma Interactions

Andrea Macchi

¹National Institute of Optics, National Research Council (CNR/INO), Pisa, Italy

²Department of Physics "Enrico Fermi", University of Pisa, Italy

ENLITE12 Workshop, April 17, 2012, MPI-PKS, Dresden

イロト イヨト イヨト

CNR/INO

Andrea Macchi

Coworkers

<u>Amritpal Singh Nindrayog</u>^{1,2,*}, Andrea Sgattoni^{3,2}, Tatyana V.Liseykina⁴, Francesco Pegoraro^{1,2}

¹Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Pisa, Italy
 ²CNR/INO, Pisa, Italy
 ³Dipartimento di Energia, Politecnico di Milano, Milan, Italy
 ⁴Institut fuer Physik, Universitaet Rostock, Germany

<ロ> <同> <同> < 同> < 同>

CNR/INO

*See also Amrit's poster 33 on these topics for more results and discussion

Andrea Macchi

A superintense ($a_0 > 1$), linearly polarized laser pulse incident on an *overdense* plasma ($\omega < \omega_p$ i.e. $n_e > n_c = m_e \omega^2 / 4\pi e^2$)

- heats up electrons up to high temperatures
- pushes the laser-plasma surface at the "hole boring" velocity (non-relativistic for simplicity)

$$v_{\rm hb} \simeq a_0 c \left(\frac{1+R}{2} \frac{Z}{A} \frac{m_e}{m_p} \frac{n_c}{n_e} \right)^{1/2} \qquad a_0 = 0.85 \left(\frac{I\lambda^2}{10^{18} \,\,\mathrm{W}\,\,\mathrm{cm}^{-2}} \right)^{1/2}$$

High temperature + strong piston \implies Collisionless Shock Wave

CNR/INO

A superintense ($a_0 > 1$), linearly polarized laser pulse incident on an *overdense* plasma ($\omega < \omega_p$ i.e. $n_e > n_c = m_e \omega^2 / 4\pi e^2$)

- heats up electrons up to high temperatures
- pushes the laser-plasma surface at the "hole boring" velocity (non-relativistic for simplicity)

$$v_{\rm hb} \simeq a_0 c \left(\frac{1+R}{2} \frac{Z}{A} \frac{m_e}{m_p} \frac{n_c}{n_e} \right)^{1/2} \qquad a_0 = 0.85 \left(\frac{I\lambda^2}{10^{18} \,\mathrm{W}\,\mathrm{cm}^{-2}} \right)^{1/2}$$

High temperature + strong piston \implies Collisionless Shock Wave

CNR/INO

A superintense ($a_0 > 1$), linearly polarized laser pulse incident on an *overdense* plasma ($\omega < \omega_p$ i.e. $n_e > n_c = m_e \omega^2 / 4\pi e^2$)

- heats up electrons up to high temperatures
- pushes the laser-plasma surface at the "hole boring" velocity (non-relativistic for simplicity)

$$v_{\rm hb} \simeq a_0 c \left(\frac{1+R}{2} \frac{Z}{A} \frac{m_e}{m_p} \frac{n_c}{n_e} \right)^{1/2} \qquad a_0 = 0.85 \left(\frac{I\lambda^2}{10^{18} \,\,\mathrm{W}\,\mathrm{cm}^{-2}} \right)^{1/2}$$

High temperature + strong piston \implies Collisionless Shock Wave

CNR/INO

A superintense ($a_0 > 1$), linearly polarized laser pulse incident on an *overdense* plasma ($\omega < \omega_p$ i.e. $n_e > n_c = m_e \omega^2 / 4\pi e^2$)

- heats up electrons up to high temperatures
- pushes the laser-plasma surface at the "hole boring" velocity (non-relativistic for simplicity)

$$v_{\rm hb} \simeq a_0 c \left(\frac{1+R}{2} \frac{Z}{A} \frac{m_e}{m_p} \frac{n_c}{n_e} \right)^{1/2} \qquad a_0 = 0.85 \left(\frac{I\lambda^2}{10^{18} \,\,\mathrm{W}\,\mathrm{cm}^{-2}} \right)^{1/2}$$

High temperature + strong piston \implies Collisionless Shock Wave

CNR/INO

- Ion acceleration occurs in the plasma bulk by reflection from the shock front: υ_i = 2υ_s
- If $v_s \gtrsim v_{hb}$ the reflected ions have high (> MeV) energy
- Reflected ions are *monoenergetic* if v_s is constant
- Shock acceleration invoked to explain very narrow spectra observed by Haberberger et al [Nature Phys.8, 95 (2012)] in CO₂ laser interaction with overdense Hydrogen jet

イロト イヨト イヨト イヨト

- Ion acceleration occurs in the plasma bulk by reflection from the shock front: υ_i = 2υ_s
- If $v_s \gtrsim v_{\text{hb}}$ the reflected ions have high (> MeV) energy
- Reflected ions are *monoenergetic* if v_s is constant
- Shock acceleration invoked to explain very narrow spectra observed by Haberberger et al [Nature Phys.8, 95 (2012)] in CO₂ laser interaction with overdense Hydrogen jet

イロト イヨト イヨト イヨト

- Ion acceleration occurs in the plasma bulk by reflection from the shock front: υ_i = 2υ_s
- If $v_s \gtrsim v_{\text{hb}}$ the reflected ions have high (> MeV) energy
- Reflected ions are *monoenergetic* if v_s is constant
- Shock acceleration invoked to explain very narrow spectra observed by Haberberger et al [Nature Phys.8, 95 (2012)] in CO₂ laser interaction with overdense Hydrogen jet

イロト イヨト イヨト イヨト

- Ion acceleration occurs in the plasma bulk by reflection from the shock front: υ_i = 2υ_s
- If $v_s \gtrsim v_{\text{hb}}$ the reflected ions have high (> MeV) energy
- Reflected ions are *monoenergetic* if v_s is constant
- Shock acceleration invoked to explain very narrow spectra observed by Haberberger et al [Nature Phys.8, 95 (2012)] in CO₂ laser interaction with overdense Hydrogen jet

(日) (日) (日) (日) (日)

CNR/INO

Piston velocity should exceed sound velocity:

$$v_{\rm pis} \simeq v_{\rm hb} \simeq a_0 c \left(\frac{Z n_c m_e}{A n_e m_p}\right)^{1/2} > c_s \simeq \left(\frac{Z T_e}{A m_p}\right)^{1/2}$$

イロト イヨト イヨト イヨト

CNR/INO

• Assuming

$$T_e = m_e c^2 \left((1 + a_0^2/2)^{1/2} - 1 \right) \simeq m_e c^2 a_0 / \sqrt{2} \qquad (a_0 \gg 1)$$

 $\Longrightarrow a_0 > \frac{1}{\sqrt{2}} \frac{n_e}{n_c}$

► Caveat: a₀ ≫ n_e/n_c may bring into self-induced transparency regime and reduce piston action

Andrea Macchi

Piston velocity should exceed sound velocity:

$$v_{\rm pis} \simeq v_{\rm hb} \simeq a_0 c \left(\frac{Zn_c m_e}{An_e m_p}\right)^{1/2} > c_s \simeq \left(\frac{ZT_e}{Am_p}\right)^{1/2}$$

イロト イヨト イヨト イヨト

CNR/INO

• Assuming

$$T_e = m_e c^2 \left((1 + a_0^2/2)^{1/2} - 1 \right) \simeq m_e c^2 a_0 / \sqrt{2} \qquad (a_0 \gg 1)$$

 $\Longrightarrow a_0 > \frac{1}{\sqrt{2}} \frac{n_e}{n_e}$

► Caveat: a₀ ≫ n_e/n_c may bring into self-induced transparency regime and reduce piston action

Andrea Macchi

Piston velocity should exceed sound velocity:

$$v_{\rm pis} \simeq v_{\rm hb} \simeq a_0 c \left(\frac{Zn_c m_e}{An_e m_p}\right)^{1/2} > c_s \simeq \left(\frac{ZT_e}{Am_p}\right)^{1/2}$$

CNR/INO

► Assuming

$$T_e = m_e c^2 \left((1 + a_0^2/2)^{1/2} - 1 \right) \simeq m_e c^2 a_0 / \sqrt{2} \qquad (a_0 \gg 1)$$

$$\implies a_0 > \frac{1}{\sqrt{2}} \frac{n_e}{n_c}$$

► Caveat: a₀ ≫ n_e/n_c may bring into self-induced transparency regime and reduce piston action

Andrea Macchi

Piston velocity should exceed sound velocity:

$$v_{\rm pis} \simeq v_{\rm hb} \simeq a_0 c \left(\frac{Z n_c m_e}{A n_e m_p}\right)^{1/2} > c_s \simeq \left(\frac{Z T_e}{A m_p}\right)^{1/2}$$

CNR/INO

► Assuming

$$T_e = m_e c^2 \left((1 + a_0^2/2)^{1/2} - 1 \right) \simeq m_e c^2 a_0 / \sqrt{2} \qquad (a_0 \gg 1)$$

 $\implies a_0 > \frac{1}{\sqrt{2}} \frac{n_e}{n_c}$

► Caveat: a₀ ≫ n_e/n_c may bring into self-induced transparency regime and reduce piston action

Andrea Macchi

Piston velocity should exceed sound velocity:

$$v_{\rm pis} \simeq v_{\rm hb} \simeq a_0 c \left(\frac{Zn_c m_e}{An_e m_p}\right)^{1/2} > c_s \simeq \left(\frac{ZT_e}{Am_p}\right)^{1/2}$$

CNR/INO

► Assuming

$$T_e = m_e c^2 \left((1 + a_0^2/2)^{1/2} - 1 \right) \simeq m_e c^2 a_0 / \sqrt{2} \qquad (a_0 \gg 1)$$

 $\implies a_0 > \frac{1}{\sqrt{2}} \frac{n_e}{n_c}$

► Caveat: a₀ ≫ n_e/n_c may bring into self-induced transparency regime and reduce piston action

Andrea Macchi

Collisionless Shocks in textbooks

A Collisionless Electrostatic Shock (CES) of velocity v_s is preceded by "reflected" ions of velocity $v_i = 2v_s$

Fig. 6.2. An oscillatory electrostatic shock transition with some ions reflected from the leading pulse.

Tidman & Krall, *Shock Waves in Collisionless Plasmas* (Wiley, 1971), chap.6

necessary condition for ion reflection

 $e\Phi_{\rm M}(v_s) > m_i v_s^2/2$

Image: A matrix

- E - - E

CNR/INO

Andrea Macchi

Collisionless Shocks in textbooks

A Collisionless Electrostatic Shock (CES) of velocity v_s is preceded by "reflected" ions of velocity $v_i = 2v_s$

Fig. 6.2. An oscillatory electrostatic shock transition with some ions reflected from the leading pulse.

Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971), chap.6

necessary condition for ion reflection

 $e\Phi_{\rm M}(v_s) > m_i v_s^2/2$

Image: A matrix

CNR/INO

Andrea Macchi

Collisionless Shocks in textbooks

A Collisionless Electrostatic Shock (CES) of velocity v_s is preceded by "reflected" ions of velocity $v_i = 2v_s$

Fig. 6.2. An oscillatory electrostatic shock transition with some ions reflected from the leading pulse.

Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971), chap.6

necessary condition for ion reflection

 $e\Phi_{\rm M}(v_s) > m_i v_s^2/2$

Image: A matrix

CNR/INO

Andrea Macchi

Collisionless Solitons in textbooks

If $c_s < v_s < 1.6c_s$ a non-reflecting *soliton* may exist

Fig. 6.1. Potential function $\Psi(\phi)$ for nonlinear ion-waves, and an example showing the variation $\phi(x)$ through an ion-wave soliton.

Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971), chap.6

$$e\Phi_{M}(v_{s}) < m_{i}v_{s}^{2}/2 \qquad \Leftrightarrow \quad v_{s} < 1.6c_{s} \qquad c_{s} = (ZT_{e}/m_{i})^{1/2}$$

CNR/INO

Andrea Macchi

Collisionless Solitons in textbooks

If $c_s < v_s < 1.6c_s$ a non-reflecting *soliton* may exist

Fig. 6.1. Potential function $\Psi(\phi)$ for nonlinear ion-waves, and an example showing the variation $\phi(x)$ through an ion-wave soliton.

Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971), chap.6

$e\Phi_{M}(v_{s}) < m_{i}v_{s}^{2}/2 \qquad \Leftrightarrow \quad v_{s} < 1.6c_{s} \qquad c_{s} = (ZT_{e}/m_{i})^{1/2}$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

CNR/INO

Andrea Macchi

Collisionless Solitons in textbooks

If $c_s < v_s < 1.6c_s$ a non-reflecting *soliton* may exist

Fig. 6.1. Potential function $\Psi(\phi)$ for nonlinear ion-waves, and an example showing the variation $\phi(x)$ through an ion-wave soliton.

Tidman & Krall, Shock Waves in Collisionless Plasmas (Wiley, 1971), chap.6

$$e\Phi_{M}(v_s) < m_i v_s^2/2 \qquad \Leftrightarrow \quad v_s < 1.6c_s \qquad c_s = (ZT_e/m_i)^{1/2}$$

토 🕨 🛪 토 🕨

CNR/INO

Andrea Macchi

1D PIC simulation: short ($\tau = 4T$), intense ($a_0 = 16$) laser pulse on an overdense ($n_e = 20n_c$), *cold* ($T_i = 0$) proton plasma slab

<ロ> <同> <同> < 同> < 同>

CNR/INO

High resolution ($\Delta x = \lambda/200$, $N_p = 800$ part/cell) to enforce accuracy and convergence of the results

Andrea Macchi

(ロ・・御・・ヨ・・ヨ・・ ヨ・ のへぐ

CNR/INO

Andrea Macchi

CNR/INO

It looks like a soliton ...

Andrea Macchi

... but occasionally reflects a short bunch of ions!

Andrea Macchi

CNR/INO

(ロ) 《母) 《ヨ) 《ヨ) 『日 ろくぐ

CNR/INO

Andrea Macchi

(ロ・・団・・ヨ・・ヨ・ つくぐ

CNR/INO

Andrea Macchi

Acceleration is "pulsed", solitary wave almost stays unchanged

CNR/INO

Andrea Macchi

(ロ・ドロ・ドロ・ドロ・ 白) ろくの

CNR/INO

Andrea Macchi

(日) 《聞) 《臣) 《臣) 三日 ろんの

CNR/INO

Andrea Macchi

CNR/INO

Eventually a long-lasting "shock-like" reflection occurs ...

Andrea Macchi

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

CNR/INO

Andrea Macchi

CNR/INO

... and the solitary wave damps out

Andrea Macchi

Evolution of ion spectrum

Peak:
$$\simeq 4.3 \text{ MeV}$$

 $v_s \simeq 0.05c \Longrightarrow \frac{m_p}{2} v_s^2 = 4.7 \text{ MeV}$
 $v_{hb} \simeq 0.06c \quad (R \simeq 0.75)$

As the solitary wave damps The "moving wall" slows down ⇒ broadening of the monoenergetic peak

★ 문 ► ★ 문

CNR/INO

Andrea Macchi

Evolution of ion spectrum

Peak:
$$\simeq 4.3 \text{ MeV}$$

 $v_s \simeq 0.05c \Longrightarrow \frac{m_p}{2} v_s^2 = 4.7 \text{ MeV}$
 $v_{hb} \simeq 0.06c \quad (R \simeq 0.75)$

As the solitary wave damps The "moving wall" slows down \Rightarrow broadening of the monoenergetic peak

CNR/INO

Andrea Macchi

Solitary wave pulsations - I

Temporal oscillation of the electric field in the SAW

Dotted vertical lines: breaking and ion bunch acceleration events

 Φ_M exceeds threshold during the oscillation

 $\max(E_x) > 0 \quad \min(E_x) < 0$

Solitary wave pulsations - II

Interpretation: collective oscillation of the electron cloud around the ion density spike (consistent with $\Delta E_x = \max(E_x) - \min(E_x)$ remaining ~ constant)

CNR/INO

Andrea Macchi

Solitary wave pulsations - III

Andrea Macchi

CNR/INO

Solitary wave pulsations - III

Andrea Macchi

CNR/INO

Solitary wave pulsations - III

Andrea Macchi

CNR/INO

1D PIC simulation: long ($\tau = 65T$), intense ($a_0 = 16$) laser pulse on an overdense ($n_e = 10n_c$), *cold* ($T_i = 0$) proton plasma slab

Same as preceding simulation, but longer pulse

Parameters very similar to Silva et al, PRL **92**, 015002 (2004) Higher resolution reveal additional details in phase space

・ロト ・回ト ・ヨト

Andrea Macchi

CNR/INO

ъ

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のQで

CNR/INO

Andrea Macchi

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のQで

CNR/INO

Andrea Macchi

Andrea Macchi

Solitary Vs Shock Wave Acceleration

Andrea Macchi

CNR/INO

Andrea Macchi

CNR/INO

・ロト・西・・日・・日・ つくぐ

CNR/INO

Andrea Macchi

Andrea Macchi

CNR/INO

- 《 다 》 《 다 》 《 단 》 《 단 》 《 단 》 《 단 》

CNR/INO

Andrea Macchi

Andrea Macchi

CNR/INO

Andrea Macchi

CNR/INO

- A "true" shock cannot form in a *cold ions*, quiescent plasma: all ions would be reflected by the front
 the wave quickly loses its energy and gets damped
- Solitary waves can be formed but seem not particularly stable ...
- ▶ In a *warm* ion plasma, ions in the tail of the distribution with $v_i > v_s \sqrt{2e\Phi_M/m_i}$ may be reflected
- If *T_i* = *m_i* ⟨*v_i²*⟩/2 is too high, too many ions are reflected
 ⇒ the shock front slows down and monoenergeticity is lost again

・ロン ・回 と ・ ヨ と ・ ヨ と

- A "true" shock cannot form in a *cold ions*, quiescent plasma: all ions would be reflected by the front
 the wave quickly loses its energy and gets damped
- Solitary waves can be formed but seem not particularly stable . . .
- ▶ In a *warm* ion plasma, ions in the tail of the distribution with $v_i > v_s \sqrt{2e\Phi_M/m_i}$ may be reflected
- ▶ If $T_i = m_i \langle v_i^2 \rangle / 2$ is too high, too many ions are reflected ⇒ the shock front slows down and monoenergeticity is lost again

・ロト ・回 ト ・ヨト ・ヨト

- A "true" shock cannot form in a *cold ions*, quiescent plasma: all ions would be reflected by the front
 the wave quickly loses its energy and gets damped
- Solitary waves can be formed but seem not particularly stable ...
- ► In a *warm* ion plasma, ions in the tail of the distribution with $v_i > v_s \sqrt{2e\Phi_M/m_i}$ may be reflected
- If T_i = m_i ⟨v_i²⟩/2 is too high, too many ions are reflected
 ⇒ the shock front slows down and monoenergeticity is lost again

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

- A "true" shock cannot form in a *cold ions*, quiescent plasma: all ions would be reflected by the front
 the wave quickly loses its energy and gets damped
- Solitary waves can be formed but seem not particularly stable ...
- ► In a *warm* ion plasma, ions in the tail of the distribution with $v_i > v_s \sqrt{2e\Phi_M/m_i}$ may be reflected
- If *T_i* = *m_i* ⟨*v_i²*⟩/2 is too high, too many ions are reflected
 ⇒ the shock front slows down and monoenergeticity is lost again

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

CNR/INC

1D PIC simulation: short ($\tau = 4T$), intense ($a_0 = 16$) laser pulse on an overdense ($n_e = 20n_c$), warm ($T_i = 1$ keV) proton plasma slab

イロト イヨト イヨト イヨト

CNR/INO

Same as "short pulse" simulation, but warm ions

Andrea Macchi

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ●

CNR/INO

Andrea Macchi

《日》《聞》《臣》《臣》 臣 のの(で)

CNR/INO

Andrea Macchi

(ロ) 《母) 《臣) 《臣) 三三 のへで

CNR/INO

Andrea Macchi

A steady reflection of quasi-monoenergetic ions is observed ...

CNR/INO

Andrea Macchi

(ロ) 《母) 《臣) 《臣) 三三 のへで

CNR/INO

Andrea Macchi

(ロ・《母・《臣・《臣・ 臣・ の々で

CNR/INO

Andrea Macchi

... but shock front slows down

Andrea Macchi

Solitary Vs Shock Wave Acceleration

CNR/INO

Energy spectrum shifts towards lower energies

Andrea Macchi

- In 1D finding a compromise between monoenergeticity and efficiency seems to be the point:
- low numbers of reflected ions leave the shock velocity imperturbed and give a narrow spectrum
- large numbers of reflected ions cause the shock front to slow down and give a broad spectrum
- ▶ we searched for an "optimal" value of *T_i* for given laser and plasma parameters (see poster for a survey of results)
- ▶ formation of monoenergetic spectra seem to be favored for moderate values of a₀ (~ 1 − 4)

(see poster 33 for additional simulations)

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

- In 1D finding a compromise between monoenergeticity and efficiency seems to be the point:
- low numbers of reflected ions leave the shock velocity imperturbed and give a narrow spectrum
- large numbers of reflected ions cause the shock front to slow down and give a broad spectrum
- we searched for an "optimal" value of T_i for given laser and plasma parameters (see poster for a survey of results)
- ▶ formation of monoenergetic spectra seem to be favored for moderate values of a₀ (~ 1 − 4)

・ロン ・四 と ・ 回 と ・ 回 と

CNR/INO

- In 1D finding a compromise between monoenergeticity and efficiency seems to be the point:
- low numbers of reflected ions leave the shock velocity imperturbed and give a narrow spectrum
- large numbers of reflected ions cause the shock front to slow down and give a broad spectrum
- ▶ we searched for an "optimal" value of *T_i* for given laser and plasma parameters (see poster for a survey of results)
- ▶ formation of monoenergetic spectra seem to be favored for moderate values of a₀ (~ 1 − 4)

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

CNR/INO

- In 1D finding a compromise between monoenergeticity and efficiency seems to be the point:
- low numbers of reflected ions leave the shock velocity imperturbed and give a narrow spectrum
- large numbers of reflected ions cause the shock front to slow down and give a broad spectrum
- we searched for an "optimal" value of T_i for given laser and plasma parameters (see poster for a survey of results)
- ▶ formation of monoenergetic spectra seem to be favored for moderate values of a₀ (~ 1 − 4)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

CNR/INO

- In 1D finding a compromise between monoenergeticity and efficiency seems to be the point:
- low numbers of reflected ions leave the shock velocity imperturbed and give a narrow spectrum
- large numbers of reflected ions cause the shock front to slow down and give a broad spectrum
- we searched for an "optimal" value of T_i for given laser and plasma parameters (see poster for a survey of results)
- ▶ formation of monoenergetic spectra seem to be favored for moderate values of a₀ (~ 1 − 4)

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

CNR/INO

- In 1D finding a compromise between monoenergeticity and efficiency seems to be the point:
- low numbers of reflected ions leave the shock velocity imperturbed and give a narrow spectrum
- large numbers of reflected ions cause the shock front to slow down and give a broad spectrum
- we searched for an "optimal" value of T_i for given laser and plasma parameters (see poster for a survey of results)
- ▶ formation of monoenergetic spectra seem to be favored for moderate values of a₀ (~ 1-4)

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Andrea Macchi

CNR/INO
Remarks on experiments - I

Haberberger et al [Nature Phys. 8, 95 (2012)] observe very monoenergetic spectra but with rather low number of ions

Is efficiency of shock acceleration not compatible with monoenergeticity?

Figure 2 | Proton energy spectra. a, Proton spectra obtained with a 100-ps-long later pulse (red) and a 100 ps macropulse consisting of a number of 3 ps micropulses (blue) both containing 60.1. The typical noise level on a single CR30 detector was 100 pits. The total number of protons contained within the monenergetic peak was 2.5×10^{-1} b, The details of the energy spectra on four different laser shots with different macropulse structures (number of pulses and ao values ranging from 15 to 2.5).

CNR/INO

Remarks on experiments - II

Palmer et al [PRL **106**, 14801 (2011)] report on acceleration by a "radiation pressure driven shock" using *circular* polarization

But no "shock acceleration" in the bulk is observed with circular polarization: this may be described as "hole boring" or "pure piston" acceleration [Macchi et al, PRL **94**, 165003 (2005)

FIG. I (color online). Raw and processed proton spectra for varying peak density *n* and vacuum intensity *I* showing scaling of peak proton energy $E_{max} = I/nc$ [MeV]. Parameter *I/n* isoborn to the right of the respective raw images. Shots taken with (a) l = 6.4, $n = 6.1a_{cr}$. (b) l = 5.5, $n = 6.1a_{cr}$. (c) l = 5.7, $n = 5.0a_{cr}$ (d) l = 5.5 or l = 5.1 m⁻¹o. In O^{10} W cm⁻²), (c) Background subtracted (solid lines) and also corrected (dashed lines) spectra. Heights of corrected spectra adjusted to match those of raw lineouts. Lineout corresponding to (b) reduced $J \times 0$ for the same scale.

2D PIC simulation: laser pulse $\tau = 45T$, $a_0 = 1$, $w = 5\lambda$ on an overdense ($n_e = 2n_c$), $T_i = 100$ eV) proton plasma slab

Same as 1D (on axis) except unavoidable lower resolution $\Delta x = \lambda/100$, 100 part/cell

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Andrea Macchi

▲日▼▲圖▼▲国▼▲国▼ 回 ろんの

CNR/INO

Andrea Macchi

▲日▼▲圖▼▲国▼▲国▼ 回 ろんの

CNR/INO

Andrea Macchi

- イロ・ イヨ・ イヨ・ イヨ・ クへぐ

CNR/INO

Andrea Macchi

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

CNR/INO

Andrea Macchi

CNR/INO

Andrea Macchi

Andrea Macchi

Solitary Vs Shock Wave Acceleration

CNR/INO

- ▲ 문 → - ▲ 문

Andrea Macchi

Solitary Vs Shock Wave Acceleration

CNR/INO

イロン イヨン イヨン イヨン

Andrea Macchi

Solitary Vs Shock Wave Acceleration

CNR/INO

Andrea Macchi

Solitary Vs Shock Wave Acceleration

CNR/INO

Andrea Macchi

Solitary Vs Shock Wave Acceleration

CNR/INO

イロン イヨン イヨン イヨン

lon spectrum near axis $29.4\lambda < y < 30.6\lambda$

Reflected ions spectrum is much broader than in 1D

Andrea Macchi

Solitary Vs Shock Wave Acceleration

Open issues and work in progress

- What causes the different evolution of the shock front and related acceleration in 2D vs 1D?
- rippling of the shock front? (transverse electrostatic oscillations? Richtmyer-Meshkov-like instabilities? ... ?)
- Insufficient numerical resolution? (In 1D the results failed to converge for $N_p < 100$ particles/cell)
- Both?
- 2D simulations are challenging anyway if we aim to resolve a low-density tail of high-energy ions ...

イロト イヨト イヨト イヨト

Open issues and work in progress ...

- What causes the different evolution of the shock front and related acceleration in 2D vs 1D?
- rippling of the shock front? (transverse electrostatic oscillations? Richtmyer-Meshkov-like instabilities? ... ?)
- Insufficient numerical resolution? (In 1D the results failed to converge for $N_p < 100$ particles/cell)
- Both?
- 2D simulations are challenging anyway if we aim to resolve a low-density tail of high-energy ions ...

イロト イヨト イヨト イヨト

Open issues and work in progress ...

- What causes the different evolution of the shock front and related acceleration in 2D vs 1D?
- rippling of the shock front? (transverse electrostatic oscillations? Richtmyer-Meshkov-like instabilities? ... ?)
- Insufficient numerical resolution? (In 1D the results failed to converge for $N_p < 100$ particles/cell)
- Both?
- 2D simulations are challenging anyway if we aim to resolve a low-density tail of high-energy ions ...

イロト イヨト イヨト イヨト

Open issues and work in progress ...

- What causes the different evolution of the shock front and related acceleration in 2D vs 1D?
- rippling of the shock front? (transverse electrostatic oscillations? Richtmyer-Meshkov-like instabilities? ... ?)
- Insufficient numerical resolution? (In 1D the results failed to converge for $N_p < 100$ particles/cell)
- Both?
- 2D simulations are challenging anyway if we aim to resolve a low-density tail of high-energy ions ...

イロト イヨト イヨト イヨト

Open issues and work in progress

- What causes the different evolution of the shock front and related acceleration in 2D vs 1D?
- rippling of the shock front? (transverse electrostatic oscillations? Richtmyer-Meshkov-like instabilities? ... ?)
- Insufficient numerical resolution? (In 1D the results failed to converge for $N_p < 100$ particles/cell)
- Both?
- 2D simulations are challenging anyway if we aim to resolve a low-density tail of high-energy ions ...

イロト イヨト イヨト イヨト

- Shock acceleration" seems to be rather more complex than "reflection from a moving wall"
- Two possible regimes of monoenergetic acceleration found in 1D simulations:
- short bunch generation by solitary wave "pulsation" (not easy to control)
- shock formation in a warm ($\sim 10^2 \text{ eV}$) plasma
- 2D simulations (still preliminary) suggest rippling instabilities may affect the ion spectrum
- Very large and accurate simulations are probably needed

- Shock acceleration" seems to be rather more complex than "reflection from a moving wall"
- Two possible regimes of monoenergetic acceleration found in 1D simulations:
- short bunch generation by solitary wave "pulsation" (not easy to control)
- shock formation in a warm ($\sim 10^2 \text{ eV}$) plasma
- 2D simulations (still preliminary) suggest rippling instabilities may affect the ion spectrum
- Very large and accurate simulations are probably needed

- Shock acceleration" seems to be rather more complex than "reflection from a moving wall"
- Two possible regimes of monoenergetic acceleration found in 1D simulations:
- short bunch generation by solitary wave "pulsation" (not easy to control)
- shock formation in a warm ($\sim 10^2 \text{ eV}$) plasma
- 2D simulations (still preliminary) suggest rippling instabilities may affect the ion spectrum
- Very large and accurate simulations are probably needed

- Shock acceleration" seems to be rather more complex than "reflection from a moving wall"
- Two possible regimes of monoenergetic acceleration found in 1D simulations:
- short bunch generation by solitary wave "pulsation" (not easy to control)
- shock formation in a warm ($\sim 10^2 \text{ eV}$) plasma
- 2D simulations (still preliminary) suggest rippling instabilities may affect the ion spectrum
- Very large and accurate simulations are probably needed

イロト イヨト イヨト イヨト

- Shock acceleration" seems to be rather more complex than "reflection from a moving wall"
- Two possible regimes of monoenergetic acceleration found in 1D simulations:
- short bunch generation by solitary wave "pulsation" (not easy to control)
- shock formation in a warm ($\sim 10^2 \text{ eV}$) plasma
- 2D simulations (still preliminary) suggest rippling instabilities may affect the ion spectrum

イロト イヨト イヨト イヨト

Very large and accurate simulations are probably needed

- Shock acceleration" seems to be rather more complex than "reflection from a moving wall"
- Two possible regimes of monoenergetic acceleration found in 1D simulations:
- short bunch generation by solitary wave "pulsation" (not easy to control)
- shock formation in a warm ($\sim 10^2 \text{ eV}$) plasma
- 2D simulations (still preliminary) suggest rippling instabilities may affect the ion spectrum
- Very large and accurate simulations are probably needed

イロト イヨト イヨト イヨト

Reference and Acknowledgment

- A. Macchi, A. Singh Nindrayog, F. Pegoraro, Solitary versus Shock Wave Acceleration in Laser-Plasma Interactions, Phys. Rev. E 85, 046402 (2012) arXiv:physics/abs/1111.6392
- Work sponsored by the FIRB-MIUR (Italy) project SULDIS ("Superintense Ultrashort Laser-Driven Ion Sources")
 – see talk by Matteo Passoni

< ロ > < 同 > < 回 > < 回 >