Superintense Laser-Plasma Interactions: Relativistic Condensed Matter Physics

Andrea Macchi

¹Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR/INO), Pisa, Italy

²Dipartimento di Fisica "Enrico Fermi". Università di Pisa, Italy

FisMat 2013 – Italian National Conference on Condensed Matter Physics Milano, 09–13/09/2013

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

Outline

Ultrashort introduction to "relativistic" laser-plasma physics and survey of recent results from our group:

- structured targets for high laser absorption
- resonant coupling in grating targets: "high field plasmonics"
- radiation pressure acceleration of thin targets: experiments and theory
- laser-plasma physics investigated by proton probing on picosecond scales
- ultrafast discharge dynamics of a laser-irradiated target

ヘロト ヘヨト ヘヨト ヘヨト

CNR/INO

- dynamics of self-generated multi-MG magnetic fields

Additional aims

- Emphasize similar problems, analogies, interdisciplinary applications and relations between relativistic laser-plasma research and other fields in condensed matter physics and beyond
- Advocate the strategic placement in condensed matter physics of ultraintense laser-produced plasmas as collective, nonlinear many-body systems which can be controlled and diagnosed by laser light

< ロ > < 同 > < 回 > < 回 >

CNR/INO

Main coworkers for this talk

A. Sgattoni^{1,2}, M. Passoni², F. Pegoraro^{1,3}, T. V. Liseykina⁴,
S. Sinigardi⁵, P. Londrillo⁶, V. Floquet⁷, T. Ceccotti⁷, S. Kar⁸,
K. Quinn⁸, M. Borghesi⁸

¹CNR/INO, Pisa, Italy
 ²Dipartimento di Energia, Politecnico di Milano, Milan, Italy
 ³Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Pisa, Italy
 ⁴Institut fuer Physik, Universitaet Rostock, Germany
 ⁵Dipartimento di Fisica, Università di Bologna, Bologna, Italy
 ⁶INAF and INFN, Bologna, Italy
 ⁷CEA/DSM/IRAMIS/SPAM/PHI, Saclay, France
 ⁸Center for Plasma Physics, Queen's University of Belfast, UK

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

The relativistic plasma

- Definition: a many-body system containing free charges, dominated by collective behavior and with a relevant population (typically the electrons) of particles with "relativistic" energy & > mc².
- ► Production in the laboratory: generation and "heating" of a plasma by short duration (10⁻¹² 10⁻¹⁵ s), high-intensity laser pulses focused on matter

$$p_{\rm osc} = \frac{eE}{\omega} > m_e c \implies I\lambda^2 > 1.4 \times 10^{18} \text{ W cm}^{-2} \mu \text{m}^2$$

State of the art: $I > 10^{21}$ W cm⁻² for $\lambda = 0.8 \ \mu$ m²

Superintense Laser-Plasma Interactions: Relativistic Condensed Matter Physics

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Relativistic nonlinearity sources

Nonlinear conductivity:

$$\mathbf{p}_{\text{osc}} = -i\frac{e\mathbf{E}}{\omega} \qquad \mathbf{v}_{\text{osc}} = \frac{\mathbf{p}_{\text{osc}}c}{(p^2 + m_e^2 c^2)^{1/2}}$$
$$\mathbf{J} = -en_e \mathbf{v} = \frac{in_e e^2}{m_e \omega c} \frac{\mathbf{E}}{(1 + (eE/\omega m_e c)^2))^{1/2}}$$

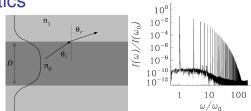
- Non-negligible $\mathbf{v} \times \mathbf{B}$ force
- Relativistic ponderomotive force (local light pressure per unit volume) and effective mass

$$\frac{d}{dt} \left(m_{\text{eff}} \left\langle \mathbf{v} \right\rangle \right) = -\nabla m_{\text{eff}} c^2 \qquad m_{\text{eff}} = m_e \left(1 + \left(e \left\langle \mathbf{A} \right\rangle / m_e c^2 \right)^2 \right)^{1/2}$$

★ 문 → ★ 문 →

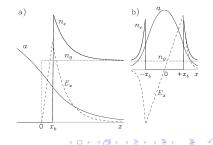
CNR/INO

Andrea Macchi


Relativistic nonlinear optics

Relativistic Self-Focusing

High harmonic generation


Self-induced transparency

Electromagnetic solitons

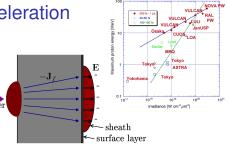
A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, 2013)

CNR/INO

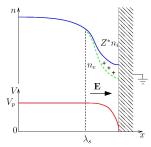
Andrea Macchi

Focus on: ion accelerators

Pioneer vision of "coherent" particle acceleration [V. Veksler, At. Energ. **2** (1957) 525]



- accelerating field proportional to number of particles
- automatic spatio-temporal synchrony between particles and accelerating field
- acceleration of quasi-neutral bunches with large numbers of particles
- All realized in laser-plasma acceleration of ions!


A. Macchi, M. Borghesi, M. Passoni, Ion Acceleration by Superintense Laser-Plasma Interaction, Rev. Mod. Phys. 85 (2013) 571

Target Normal Sheath Acceleration

TNSA is driven by "fast" electrons generated in thin solid targets: protons from surface contaminants are accelerated in the rear sheath

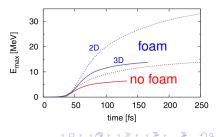
CNR/INO

Connection with plasma discharge and AC/DC sheath physics:

- stochastic acceleration of electrons
- sheath formation and ion acceleration

Andrea Macchi

Foam targets for low density-enhanced absorption

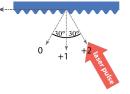

With low-density layer at near cut-off values $n_e \simeq n_c$ proton energy doubles in 3D simulations with 25 fs, 1 J energy pulse

[Sgattoni, Londrillo, Macchi, Passoni, PRE **85** (2012) 036405]

Foam target manufacturing: Zani et al, Carbon **56** (2013) 358 NEMAS lab, Politecnico Milano

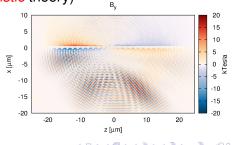
ip III

solid foil foam $n_e \simeq n_c$ proton layer


CNR/INO

Andrea Macchi

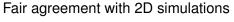
Grating targets for surface wave-enhanced absorption

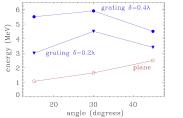

Irradiating grating targets at resonant angle

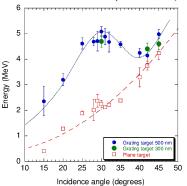
$$\sin \theta_{\rm res} + \lambda/d = \left(\frac{1 - n_e/n_c}{2 - n_e/n_c}\right)^{1/2} \simeq 1$$

leads to surface wave (SW) excitation (according to *linear*, *non-relativistic* theory)

Simulations suggest SW excitation to occur also in the relativistic, nonlinear regime: perspectives for high field plasmonics?


CNR/INO


Andrea Macchi


TNSA enhancement in grating targets: experiment

LaserLAB experiment at SLIC facility, CEA Saclay (laser UHI, 28 fs, 5×10^{19} W cm⁻², contrast $\sim 10^{12}$)

Proton energy peak around $\theta_{res} = 30^{\circ}$

T. Ceccotti, V. Floquet, A. Sgattoni, A. Macchi et al, PRL (2013), submitted

Andrea Macchi

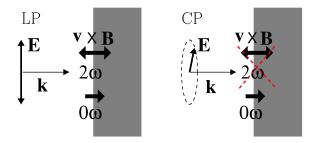
Radiation Pressure Acceleration

Accelerating mirror paradigm: momentum transfer to mirror from Doppler shift and photon number conservation

$$\frac{dP}{dt} = \frac{2I}{c}\frac{1-\beta}{1+\beta}$$

$$\omega = \beta c$$

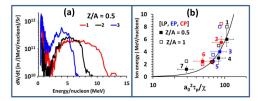
$$\omega_r$$


•

Andrea Macchi

Optimizing RPA using circular polarization

Suppress electron longitudinal oscillations and electron stochastic heating using normal incidence and circular polarization (CP) instead of linear polarization (LP)



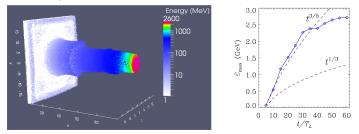
[Macchi, Cattani, Liseykina, Cornolti, PRL 95 (2005) 185003]

Andrea Macchi

Fast RPA scaling experimentally observed

VULCAN laser, RAL/CLF: Laser pulse: $t_p \simeq 800 \ fs$ $3 \times 10^{20} \ \text{W cm}^{-2}$ $\sim 10^9 \ \text{contrast}$ Target: $\sim 0.1 \ \mu \text{m}$ metal foil

イロト イヨト イヨト イヨト

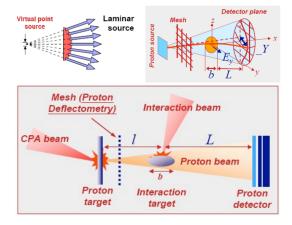

- Multispecies (Z/A = 1,1/2) peaks observed with $\Delta \mathscr{E}/\mathscr{E} \simeq 20\%$
- Up to $\simeq 10~\text{MeV}/\text{amu}$ observed at high flux
- Theoretical fast scaling of ion energy $\propto (I \tau_p / \rho \ell)^2$ confirmed
- Simulations suggest > 100 MeV/amu are within reach
- Foreseen applications: heating of warm dense matter, isotope production, hadrontherapy (but not anytime soon ...)

Kar, Kakolee, Qiao, Macchi, Borghesi et al PRL 109 185006 (2012)

Andrea Macchi

3D simulations of future GeV ion accelerator

Laser: 24 fs, 4.8 μ m spot, $I = 0.85 \times 10^{23}$ W cm⁻² \implies 1.5 kJ Extreme Light Infrastructure (ELI) class laser

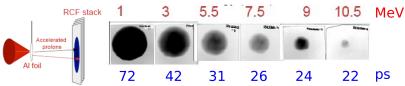

High gain RPA regime identified in 3D simulations on CINECA/FERMI BlueGene/QTM, sponsored by PRACE Macchi, Sgattoni, Sinigardi, Borghesi, Passoni, arXiv:1306.6859

Andrea Macchi

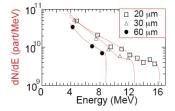
イロト イヨト イヨト イヨト

Proton probing of laser-plasma interactions

- charged beam:
- field detection
- low emittance:
- imaging capability
- laser driver:
- easy synchronization
- broad spectrum:
- time-of-flight arrangement
- short duration:
- ultrafast resolution



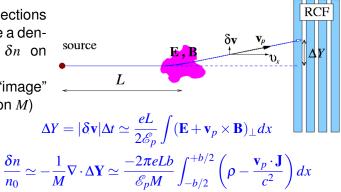
Borghesi et al, PPCF 43 (2001) A267


・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Achieving single-shot "movies"

In a time-of-flight arrangement, each RCF layer produces a "snapshot" at a given proton energy \rightarrow probing time (values refer to 1 mm flight distance) Achievable resolution up to \sim 1 ps



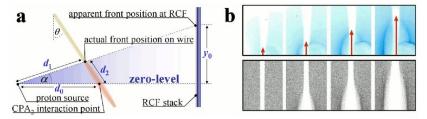
< <p>O > < <p>O >

Andrea Macchi

Proton "image" formation and analysis

Small angle deflections by **E** and **B** create a density modulation δn on the RCF plane producing an "image" (with magnification *M*)

・ロ・ ・ 日・ ・ ヨ・ ・ 日・


CNR/INO

Structure and strength of probed fields inferred by comparison with synthetic images from particle tracing simulations

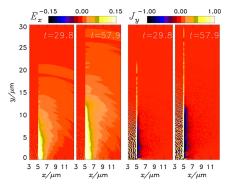
Andrea Macchi

Imaging ultrafast charging and EM field propagation

Aim: shoot at some point a wire target to image (dis-)charging due to escaping fast electrons

A field front propagates along the wire at $v_f = 0.96 \pm 0.04c$

[K.Quinn et al, PRL **102**, 194801 (2009)]



CNR/INO

Andrea Macchi

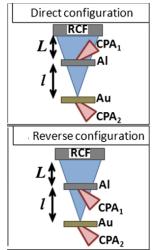
"Antenna" emission from transient charging

2D simulations of a model problem show return surface currents driven by an EM front at velocity $\sim c$ EM fields are generated by the transient charge distribution behaving as a dipole antenna

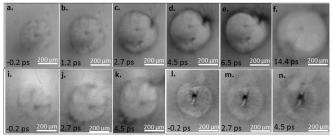
Corresponding THz radiation of GW power recenty measured [Gopal et al PRL 111 (2013) 074802]

[K.Quinn et al, PRL 102, 194801 (2009)]

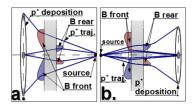
CNR/INO


Probing magnetic fields

Purpose: detect magnetic fields "surrounding" the sheath region

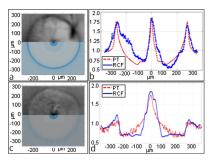

Technique: probing perpendicular to the target surface, (anti/)parallel to the symmetry axis of **B**

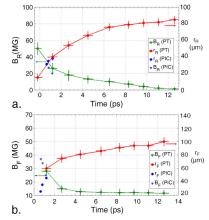
[**B**-field in 3D simulation -A.Pukhov, PRL **86**, 3562 (2001)]


→ E → → E

"Double-ring" pattern from magnetic field deflections

(a-k: direct config., I-n: reverse config.)


Front/rear side magnetic fields of opposite polarity cause focusing/defocusing of protons [Sarri, Macchi, Cecchetti et al, PRL **109**, 205002 (2012)]

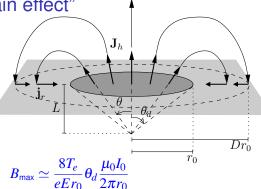

< 🗗 ▶

CNR/INO

Temporal evolution of magnetic fields

 $\mbox{B-field}$ up to ~ 80 MG confines the sheath expansion

Generation of relativistic (MHD) plasmas for "laboratory astrophysics" scaled-down experiments?


CNR/INO

Andrea Macchi

Toy model of the "fountain effect"

The divergent flow of fast electrons from the rear side forms loops due to the "gravity" action of E-field: a net current circulates

Proposed scaling for B-field

Experimental value of B_{max} consistent with $T_e \simeq 0.5$ MeV, $E \simeq 10^{12}$ V/m, $r_0 = 15 \ \mu$ m, $\theta_d = 25^{\circ}$

A.Macchi, Toy model of the 'fountain effect' for magnetic field generation in intense laser-solid interactions, arXiv:1202.0389

Conclusions and comments

 "Relativistic" laser-plasma physics has citizenship rights in condensed matter physics

Keywords: many-body physics, collective dynamics, nonlinear phenomena, self-organization, material science, ultrafast phenomena, high-field plasmonics ...

- At the same time it has bridges to high-energy physics (accelerator development) and astrophysics (modeling and scaled-down experiments on "extreme" phenomena)
- The present "abundance" of high power lasers is a solution looking for (more) problems

ヘロト ヘヨト ヘヨト ヘヨト

CNR/INO

Acknowledgments

- Work sponsored by the FIRB-MIUR, Italy (project SULDIS – "Superintense Ultrashort Laser-Driven Ion Sources")
- Use of supercomputing facilities at CINECA (Italy) via grant awards:
- IBM-SP6, ISCRA award (project TOFUSEX "TOwards FUII-Scale simulations of laser-plasma EXperiments" N.HP10A25JKT-2010)
- FERMI BlueGene/QTM, PRACE award (project LSAIL "Large Scale Acceleration of Ions by Lasers")

イロト イヨト イヨト イヨト

CNR/INO