

INO-CNR Istituto Nazionale di Ottica

*also at Dipartimento di Fisica "Enrico Fermi", Largo Bruno Pontecorvo 3, 56127 Pisa, Italy www.df.unipi.it/~macchi August 24, 2010

Modeling Radiation Pressure and Radiation Friction Effects in Superintense Laser-Plasma Interactions

Andrea MACCHI *

Seminar, Max Planck Institute for Nuclear Physics, Heidelberg August 24, 2010

INO Research Unit "Adriano Gozzini" CNR Research Area, Pisa, Italy

INO-CNR ISTITUTO NAZIONALE DI OTTICA

COWORKERS

Matteo Tamburini, Silvia Veghini, Francesco Pegoraro* Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Pisa, Italy *also with CNISM, Italy

Tatiana V. Liseykina Institute of Computer Technologies, SD-RAS, Novosibirsk, Russia and Institute of Physics, University of Rostock, Germany

Antonio Di Piazza, Christoph H. Keitel MPI-K, Heidelberg, Germany

OUTLOOK

- 1. Radiation Pressure Acceleration: concept and some recent results
- "Light Sail" acceleration revisited
- LS improved: Self-Induced Transparency effects
- The "dark mass" puzzle
- Electron and ion dynamics and self-organization
- 2. Radiation Reaction effects on RPA
- Motivations
- RR modeling via Landau-Lifshitz equation
- Single particle tests and inclusion in PIC codes
- Effects on RPA: role of laser polarization

22

NATURE

JULY 2, 1966 VOL. 211

INTERSTELLAR VEHICLE PROPELLED BY TERRESTRIAL LASER BEAM

By PROF. G. MARX

Institute of Theoretical Physics, Roland Eötvös University, Budapest

PRL 104, 135003 (2010)

PHYSICAL REVIEW LETTERS

week ending 2 APRIL 2010

Unlimited Ion Acceleration by Radiation Pressure

S. V. Bulanov,^{1,*} E. Yu. Echkina,² T.Zh. Esirkepov,¹ I. N. Inovenkov,² M. Kando,¹ F. Pegoraro,³ and G. Korn⁴

¹Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215, Japan ²CMC, Moscow State University, Moscow 119899, Russia ³Physics Department, University of Pisa and CNISM, Pisa 56127, Italy ⁴Max Plank Institute of Quantum Optics, Garching 85748, Germany (Received 18 November 2009; published 2 April 2010)

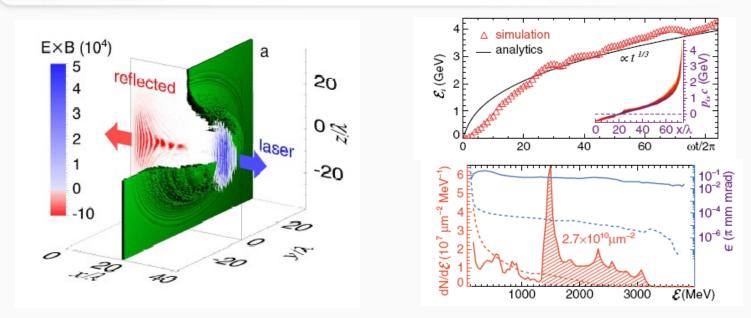
18/05/10

THE "LIGHT SAIL" CONCEPT

to *α*-Centauri

Originally proposed as a way to accelerate a massive mirror

by the Radiation Pressure of an Earth-based laser


R.L.Forward, "Roundtrip interstellar travel using laser-pushed lightsails",

J. Spacecraft and Rockets **21** (1964) 187

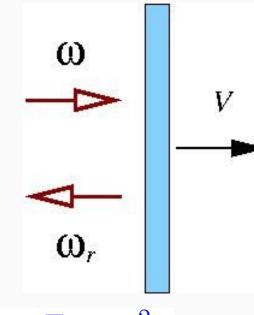
G.Marx, "Interstellar vehicle propelled by terrestrial laser beam", Nature **211** (1966) 22

LASER

3D simulations suggest "Radiation Pressure Dominance"

in interactions at $I \ge 10^{23} \text{ W/cm}^2$ with thin plasma foils Modeling based on simple LS or "accelerating mirror" model

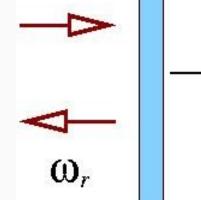
T.Esirkepov, M.Borghesi, S.V.Bulanov, G.Mourou, T.Tajima, PRL **92**, 175003 (2004)


18/05/10

ACCELERATING MIRROR MODEL

perfectly reflecting, rigid mirror of mass $M = \rho \ell S$ boosted by a plane light wave

Mirror velocity as a function of the light pulse intensity I and duration τ and of the surface density $n_{e}\ell$ of of the target:


$$\beta(t) = \frac{(1+\mathcal{E})^2 - 1}{(1+\mathcal{E})^2 + 1}, \qquad \mathcal{E} = \frac{2F(t)}{\rho\ell c^2} = 2\pi \frac{Z}{A} \frac{m_e}{m_p} \frac{a_0^2 \tau}{\zeta}$$
$$F(t) = \int_0^t I(t')dt' \propto a_o^2 \tau, \qquad \zeta = \pi \frac{n_e}{n_c} \frac{\ell}{\lambda}$$

MECHANICAL EFFICIENCY

The efficiency η of the acceleration process can be obtained by a simple argument of conservation of "number of photons" plus the Doppler shift of the reflected light:

$$\begin{split} N &= \frac{IS\tau}{\hbar\omega}, \qquad \omega_r = \omega \frac{1-\beta}{1+\beta} \\ \eta &= \frac{\mathcal{E}_{\rm abs}}{\mathcal{E}_{\rm laser}} = \frac{N\hbar(\omega-\omega_r)}{IS\tau} = \frac{2\beta}{1+\beta} \\ \beta &\to 1 \Rightarrow \eta \to 1 \end{split}$$

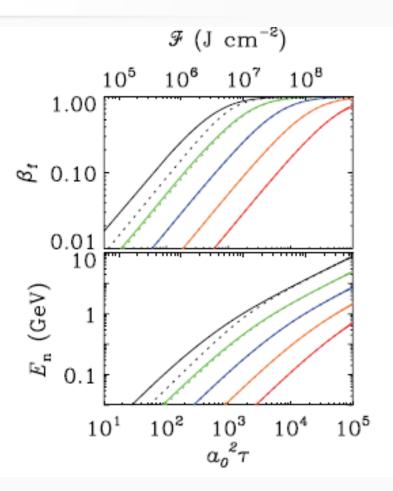
100% efficiency in the relativistic limit!

18/05/10

Andrea MACCHI, MPI-K, 24/08/2010

www.ino.it

SCALING TO LASER-SOLID INTERACTIONS


Velocity and energy/nucleon for LS-RPA of a ultrathin solid target

vs. laser pulse fluence \mathcal{F} for (dimensionless) surface target densities

$$\zeta = 1, 3.16, 10, 31.6, 100$$

Experimental requirements:

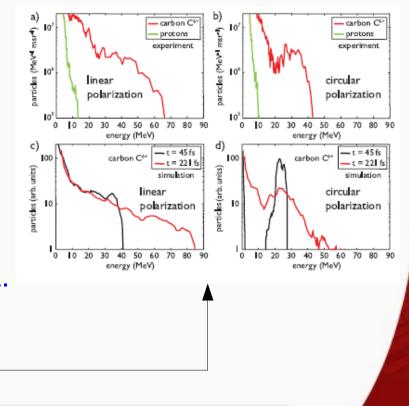
- nm foil targets (e.g. DLC)
- ultrahigh contrast (plasma mirrors)
- possibly circular polarization?

 a_0 : dimensionless amplitude,

 τ : duration in cycles

18/05/10

ISTITUTO NAZIONALE DI


WHY CIRCULAR POLARIZATION?

Using CP and normal incidence fast electron generation is strongly suppressed, maximizing radiation pressure and preventing foil expansion of the foil target

Early study in "thick" targets: Macchi et al, PRL 94 (2005) 165003

Proposal of CP-RPA of ultrathin foils for efficient and monoenergetic acceleration: Zhang et al, PoP 14 (2007) 073101 Robinson et al, NJP 10 (2008) 013201; Klimo et al, PRST-AB 11 (2008) 031301.

First experimental study reported: Henig et al, PRL 103 (2009) 245003

INO-CNR ISTITUTO NAZIONALE DI OTTICA

THEORETICAL INTEREST IN CP-RPA...

 Thick (semi-infinite) targets
 Variations on the theme

 ("Hole Boring"):
 Side effects, multi-species or

 Liseikina & Macchi, APL 94 (2007) 165003;
 Structured targets, ...):

 Naumova et al, PRL 102 (2009) 025002;
 Liseikina et al, PPCF 50 (2008) 1

 Schlegel et al, PoP 16 (2009) 083103;
 Rykovanov et al., NJP 10, (2008)

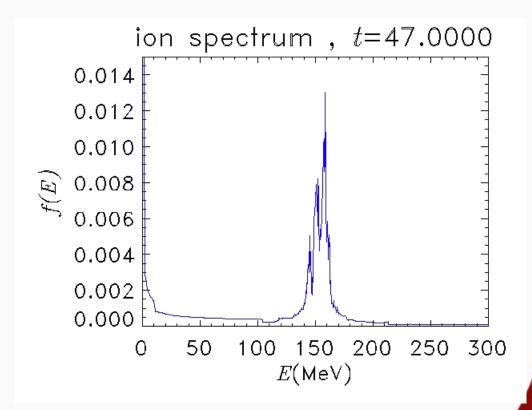
 Robinson et al, PPCF 51 (2009) 024004 & 095006;
 Ji et al, PRL 101 (2008) 164802;

 Macchi & Benedetti, NIM A 620 (2010) 41
 Yin et al, PoP 15 (2008) 093106;

 Tikhonchuk et al, Nucl. Fus. 50 (2010) 045003
 Holkundkara & Gupta, PoP 15 (2008)

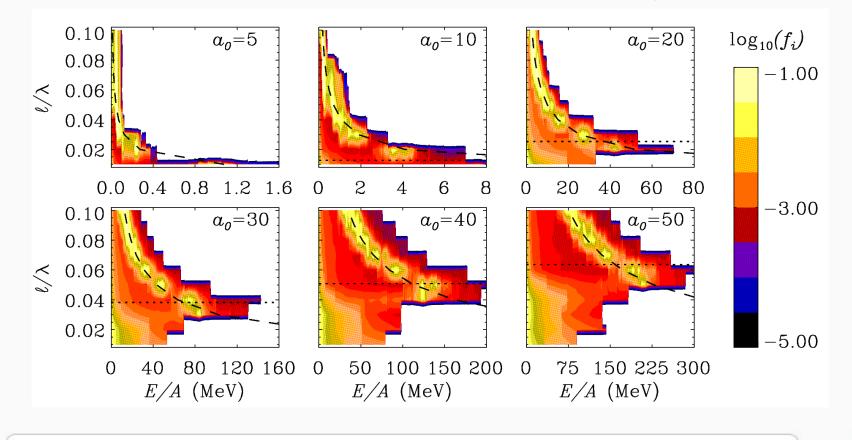
Ultrathin (sub-wavelength) targets ("Light sail"): Yan et al, PRL **100**, (2008) 135003 ; Qiao et al, PRL **102** (2009) 145002; Tripathi et al, PPCF **51** (2009) 024014; Eliasson et al. NJP **11** (2009) 073006; Yan et al, PRL **103** (2009) 135001; Macchi et al, PRL **103** (2009) 085003; Macchi et al, NJP **12** (2010) 045013. Variations on the theme (side effects, multi-species or structured targets, ...): Liseikina et al, PPCF 50 (2008) 124033; Rykovanov et al., NJP 10, (2008) 113005; Yin et al, PoP 15 (2008) 093106; Holkundkara & Gupta, PoP **15** (2008) 123104; Chen et al, PoP 15 (2008) 113103; Zhang et al, PRST-AB 12 (2009) 021301; Gonoskov et al, PRL 102 (2009) 145002; Chen et al, PRL 103 (2009) 024801 Grech et al, NJP 11 (2009) 093035 Yu et al, PRL 105 (2010) 065002

Results presented in this talk

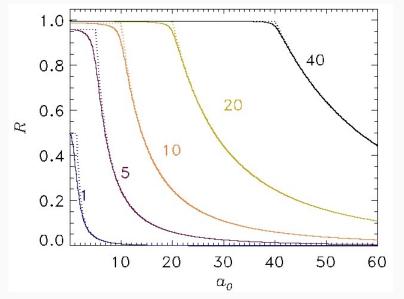


Laser pulse: $a_0 = 5-50$, $\tau = 8$ cycles ("flat-top" envelope) Thin foil target: $n_0 = 250n_0$, $\ell = 0.01-0.1\lambda$ ($\zeta = 7.8-78.5$)

A narrow spectral peak is observed for $a_0 < \zeta$.


The energy of the peak is in good agreement with the LS formula

For $a_0 > \zeta$, the dynamics is dominated by a Coulomb explosion of the foil following a complete blow-out of electrons



Energy spectra vs. a_0 and ℓ : (Dashed line: LS model prediction, dotted line: $a_0 = \zeta$)

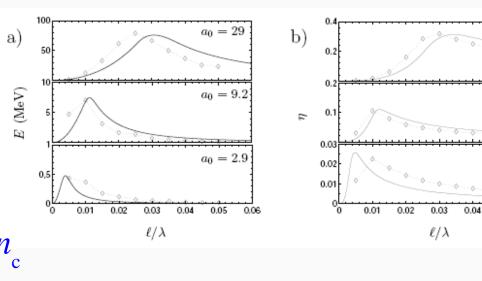
Ultrathin slab model: $n_e(x) = n_o \ell \delta(x)$, foil thickness $\ell < <\lambda$ Total radiation pressure in rest frame $P_{rad} = (2I/c)R$ Nonlinear reflectivity $R = R(\zeta, a_o)$ includes Self-Induced Transparency

$$R \approx \zeta^{2} / (\zeta^{2} + 1) \quad (a_{0} < \zeta)$$
$$R \approx \zeta^{2} / a_{0}^{2} \qquad (a_{0} > \zeta)$$

 $P_{\rm rad}$ does not depend on a_0 for $a_0 > \zeta$! (since $I \sim a_0^2$)

The maximum boost of the foil is at $a_{\beta} \approx \zeta$

18/05/10



Modified foil velocity formula for R < 1, $a_0 < \zeta$

 $\beta(t) = \frac{(1 + \mathcal{E} - \zeta^{-2})^2 + (1 + \mathcal{E} - \zeta^{-2})\sqrt{(1 + \mathcal{E} - \zeta^{-2})^2 + 4\zeta^{-2}} + 2\zeta^{-2} - 2}{(1 + \mathcal{E} - \zeta^{-2})^2 + (1 + \mathcal{E} - \zeta^{-2})\sqrt{(1 + \mathcal{E} - \zeta^{-2})^2 + 4\zeta^{-2}} + 2\zeta^{-2} + 2\zeta$

$$\mathcal{E} = \frac{2F(t)}{\rho\ell c^2} = 2\pi \frac{Z}{A} \frac{m_e}{m_p} \frac{a_0^2 \tau}{\zeta}$$

Ion energy and conversion efficiency vs. intensity and thickness (solid: theory, points: PIC sims.)

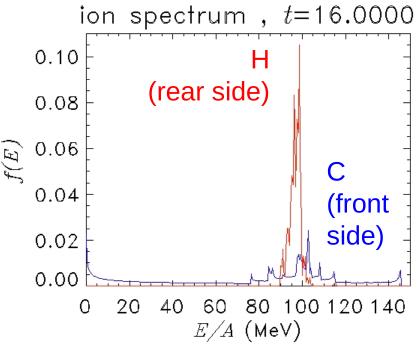
9 cycles pulse, $n_e = 250n_e$

 $a_0 = 9.2$

 $a_0 = 2.9$

0.05

0.06

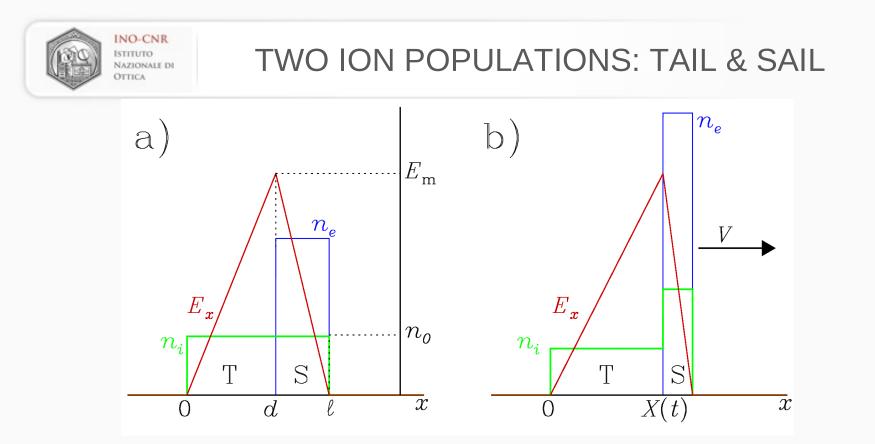


A PUZZLING ISSUE: "DARK" MASS

The RPA peak contains only ~30% of all the ions (and ~64% of their energy)

Only the rear side of the foil is accelerated (thus LS RPA may work for double-layer targets!)

 \rightarrow Why there is very good Agreement of the energy with the LS formula when inserting there the whole mass of the target (and not ~30% of it)?


Radiation pressure drives electron depletion and generates back-holding electrostatic pressure

$$P_{\text{rad}} = (2I/c)R \leq P_{\text{es}} = 2\pi (en_0 \ell)^2 \text{ for } a_0 \leq \zeta$$

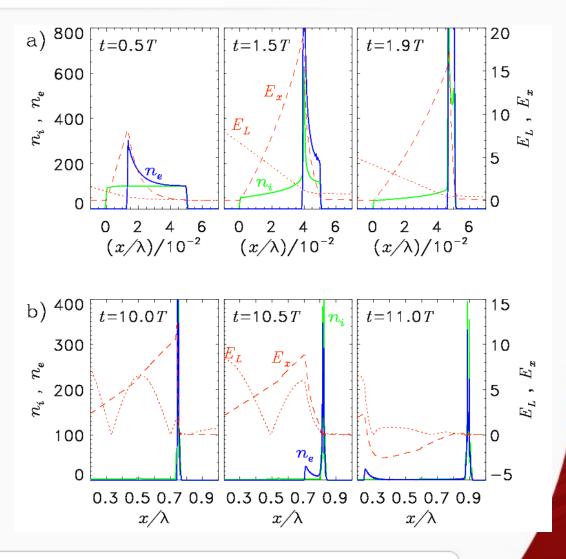
If $a_0 < \zeta$ and $\zeta >> 1$, $R \approx 1$ and no electrons are pushed away

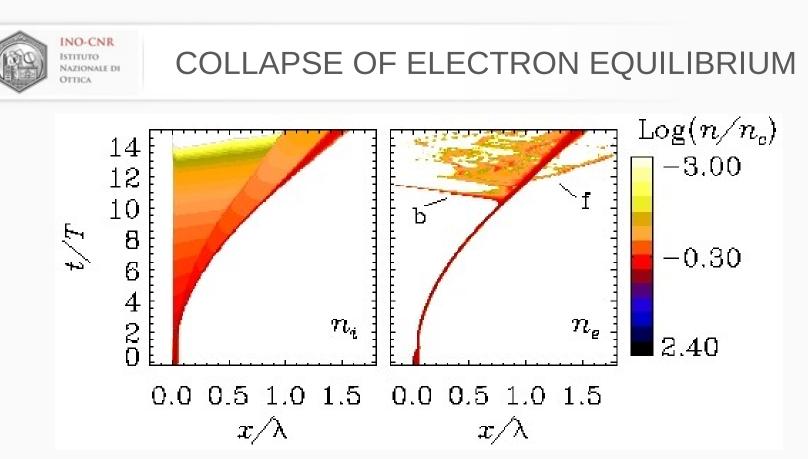
For $a_0 \rightarrow \zeta$ all electrons must pile up near the rear surface in order that $P_{rad} \simeq P_{es}$.

 \rightarrow the electron pile-up layer is much thinner than the foil \rightarrow only a fraction of the foil is accelerated

Sail (S): ions are bunched accelerated by $E_x = f_p / e$ and move coherently as a "foil" : monoenergetic component

Tail (T): ions are accelerated by their own space-charge field and "Coulomb explode": broad spectrum component




ISTITUTO NAZIONALE DI

SAIL CHARGING/DISCHARGING

PIC simulations show ions in the compression layer to form a "Sail" thinner than the original foil and negatively charged (excess of electrons)

The excess electrons "detach" from the Sail near the end of the laser pulse, moving backwards and leaving a neutral plasma bunch

Near the end of the acceleration stage the pressure balance for electrons breaks down: formation of bunches in forward & backward directions and heating

Ion spectrum broadens in the post-acceleration stage

MISSING INERTIA IS LOWER PRESSURE

Equilibrium of radiation and electrostatic pressure on *electrons*:

Electrostatic pressure on *ions*:

Calculation on equilibrium P_{a} profiles yields:

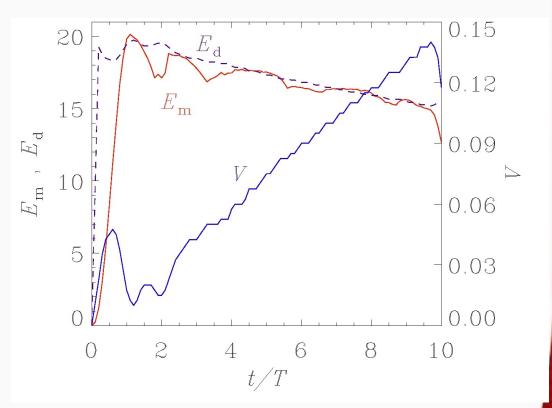
Equation of motion:

$$P_{\rm \tiny rad} \doteq \int (-e) n_e E_x dx = \int n_e f_p dx$$

$$P_{\text{\tiny es}} = \int Zen_i E_x dx < P_{\text{\tiny rad}} \qquad (Zn_i < n_e)$$

$$P_{\scriptscriptstyle{ ext{es}}} = rac{M_{\scriptscriptstyle{ ext{Sail}}}}{M_{\scriptscriptstyle{ ext{Foil}}}} P_{\scriptscriptstyle{ ext{rad}}}$$

$$P_{_{\mathrm{es}}} = rac{d}{dt} \left(M_{_{\mathrm{Sail}}} \mathbf{V}
ight) \Longleftrightarrow P_{_{\mathrm{rad}}} = rac{d}{dt} \left(M_{_{\mathrm{Foil}}} \mathbf{V}
ight)$$


\rightarrow The Sail moves as if it had the total mass of the foil

DYNAMIC PRESSURE BALANCE

 P_{rad} decreases with velocity in the Lab frame $(P_{rad})^{L} = (1-\beta)/(1+\beta)P_{rad}$

To keep pressure equilibrium there is a mass flow (ion current) from M_{tail} to M_{sail}

Andrea MACCHI, MPI-K, 24/08/2010

www.ino.it

INO-CNR ISTITUTO NAZIONALE DI OTTICA

ENERGY BALANCE

Efficiency depends only on β (the Sail velocity) BUT the kinetic energy of the Sail is less than the total!

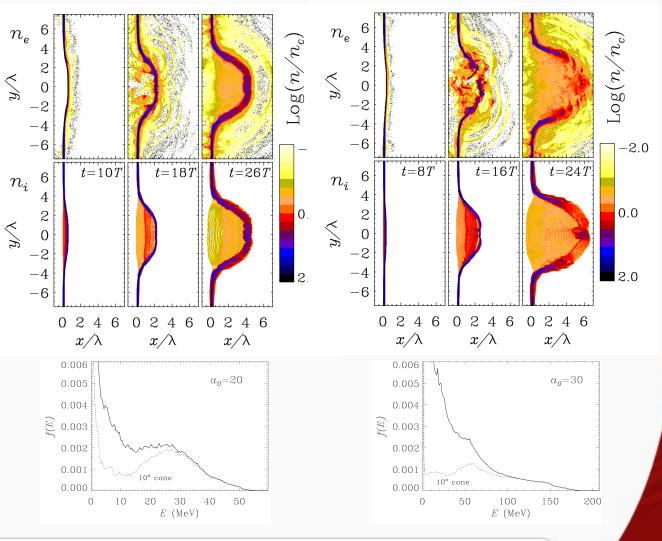
Energy stored in the electrostatic field E_x :

"Conversion efficiency" into electrostatic energy η_{μ} :

$$\begin{split} U_{\text{\tiny es}} &= U_{\text{\tiny es}}(t) = \int_{0}^{X(t)} \frac{E_{x}^{2}(x,t)}{8\pi} dx\\ \frac{dU_{\text{\tiny es}}}{dt} &= \frac{1}{8\pi} E_{x}^{2} [X(t),t] \frac{dX}{dt} = \frac{1}{8\pi} E_{0}^{2} \beta c\\ \eta_{\text{\tiny es}} &= \frac{1}{I} \frac{dU_{\text{\tiny es}}}{dt} = 2\beta \left(\frac{d}{\ell}\right)^{2} \left(\frac{\zeta}{a_{0}}\right)^{2} \end{split}$$

0 /

For $a_0 = \zeta$, the depletion width $d \approx \ell$ thus $\eta_{es} \approx 2\beta$: most of the stored energy is converted into electrostatic energy and eventually goes to Tail ions



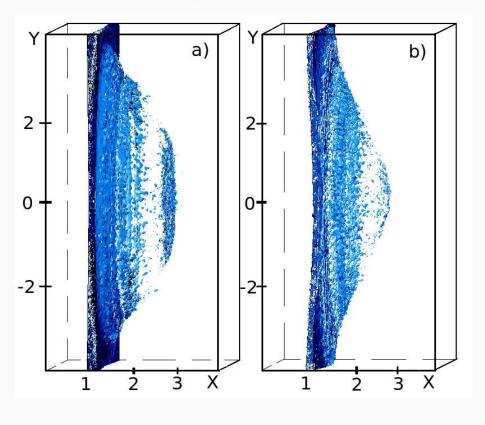
TWO-DIMENSIONAL SIMULATIONS

2D sims for $\zeta = 31.4$ and $a_0 = 20$ (left)

 $a_0 = 30$ (right)

stronger electron heating and lower "penetration" threshold with respect to 1D: ion spectrum is broad

Andrea MACCHI, MPI-K, 24/08/2010


18/05/10

THREE-DIMENSIONAL SIMULATIONS

3D sims for $\zeta = 15$, $a_0 = 5$, $\tau = 18$ cycles left: Supergaussian spot profile right: Gaussian

Note that only in 3D angular momentum conservation is taken into account

Supergaussian "flat-top" profiles keep a "quasi-1D" geometry and prevent early breakthrough of laser pulse due to lateral expansion

INO-CNR ISTITUTO NAZIONALE DI OTTICA

Motivation: Radiation Reaction is important for ultra-relativistic particles in EM fields and is thus expected to play a strong role in next generation experiments at ultra-high intensities.

The typical intensity for relevant RR effects is estimated to be $\sim 10^{23}$ W/cm². This corresponds, to the foreseen regime of RPA dominance (for Linear Polarization) [Esirkepov et al, PRL **92** (2004) 175003]

Two RPA simulation studies (for Circular Polarization at lower intensity) suggest a "beneficial" effect of "electron cooling" by RR [Schlegel et al, PoP **16** (2009) 083103; Chen et al, arXiv:0909.5144, to appear in Plasma Phys. Contr. Fus.]

RADIATION REACTION FORCES

$$\begin{split} mc \frac{du^{\mu}}{d\tau} &= f_{L}^{\mu} + f_{RR1}^{\mu} + f_{RR2}^{\mu} + f_{S}^{\mu} & \text{Ec}_{\text{with}} \\ f_{L}^{\mu} &= eF^{\mu\nu}u_{\nu} & \text{La}_{\text{for}} \\ f_{RR1}^{\mu} &= e\tau_{0}\left(\partial_{\alpha}F^{\mu\nu}u_{\nu}u^{\alpha}\right) \\ f_{RR2}^{\mu} &= \frac{e^{2}}{mc}\tau_{0}\left(F^{\mu\nu}F_{\nu\alpha}u^{\alpha} + (F^{\nu\beta}u_{\beta}F_{\nu\alpha}u^{\alpha})\right) \\ f_{S}^{\mu} &= -\frac{1}{2c}S^{\gamma\delta}\partial^{\mu}F_{\gamma\delta} + \frac{1}{2c}\left(S^{\gamma\delta}\partial_{\alpha}F_{\gamma\delta}u^{\alpha}\right)u^{\mu} \\ u^{\alpha} &= \left(\gamma, \gamma \frac{\mathbf{v}}{c}\right) & \partial^{\mu} &= \left(\frac{\partial}{\partial t}, -c\nabla\right) \end{split}$$

EoM of classical particle with spin in EM field: Landau-Lifshitz formula for RR term f^{μ}_{RR}

18/05/10

Andrea MACCHI, MPI-K, 24/08/2010

www.ino.it

RADIATION REACTION MODELING

EoM with Landau-Lifshitz force in non-covariant notation

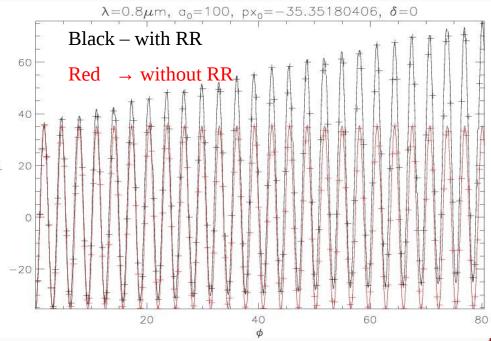
$$\begin{split} \frac{d\mathbf{p}}{dt} &= -\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right) \\ &- \left(\frac{4}{3}\pi \frac{r_e}{\lambda}\right) \gamma \Big[\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{E} + \mathbf{v} \times \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{B} \Big] \\ &+ \left(\frac{4}{3}\pi \frac{r_e}{\lambda}\right) \Big[\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right) \times \mathbf{B} + \left(\mathbf{v} \cdot \mathbf{E}\right) \mathbf{E} \Big] \\ &- \left(\frac{4}{3}\pi \frac{r_e}{\lambda}\right) \gamma^2 \Big[\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)^2 - \left(\mathbf{v} \cdot \mathbf{E}\right)^2 \Big] \mathbf{v} \end{split}$$

The last "friction" term is the dominant one (the first terms is ordinarily smaller than spin contribution)

Exact solution of the Landau-Lifshitz equation in a plane wave [A.Di Piazza, Lett.Math.Phys. 83 (2008) 305]

Based on this test case we identify suitable approximations to the electron EoM with RR included:

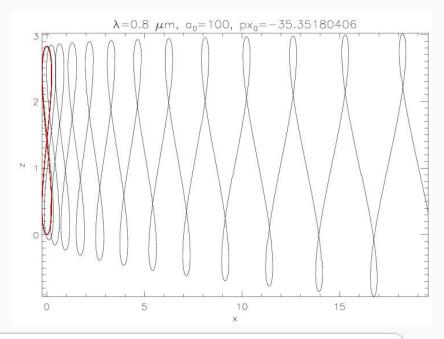
- the spin force is $\sim 137 \gamma$ X the first LL term in the RR force
- the second LL term is $\sim a_0 \omega \tau / 137$ X the spin force


 \rightarrow for intensities >> 10²² W/cm² it is consistent to neglect both the 1st LL term and the spin force [M.Tamburini, F.Pegoraro, A. Di Piazza, C.H.Keitel, A.Macchi, preprint arxiv:1008.1685]

A numerical solution of motion in a plane wave based on simple 2nd order leap-frog method has been compared with the exact solution and with 4th order Runge-Kutta integration

Crosses: analytical Line: numerical

- excellent agreement for intensities up to 10²⁴ W/cm² a
- straightforward to include in a "standard" PIC code (based on Boris particle pusher)
- only ~10% increase in CPU time

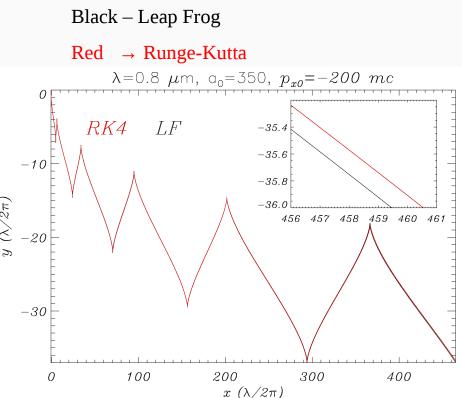


A numerical solution of motion in a plane wave based on simple 2nd order leap-frog method has been compared with the exact solution and with 4th order Runge-Kutta integration

- "Figure of Eight" drifts away when RR is included
- excellent agreement for intensities up to 10²⁴ W/cm²
- straightforward to include in a "standard" PIC code (based on Boris particle pusher)
- only ~10% increase in CPU time

Black – with RR

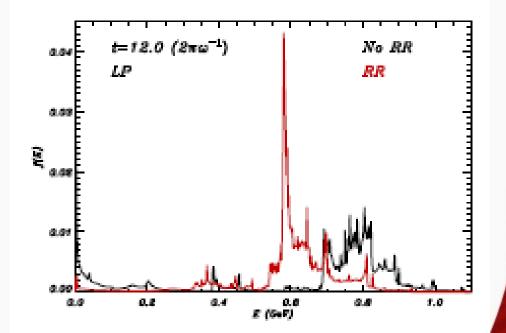
Red \rightarrow without RR



A numerical solution of motion in a plane wave based on simple 2nd order leap-frog method has been compared with the exact solution and with 4th order Runge-Kutta integration

Crosses: analytical Line: numerical

- excellent agreement for intensities up to 10²⁴ W/cm²
- straightforward to include in a "standard" PIC code (based on Boris particle pusher)
- only ~10% increase in CPU time


RP-dominated regime: $2.3 \times 10^{23} \text{ W/cm}^2$, 11 cycles pulse 1 Um foil, $100n_c$, linear polarization

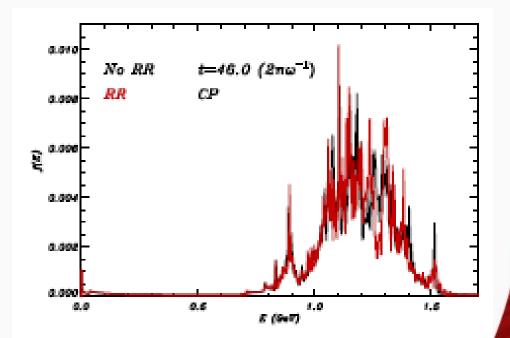
Lower energy, narrower spectrum with RR included

INO-CNR

ISTITUTO Nazionale di

~25% reduction in "peak" ion energy " due to RR effects

www.ino.it

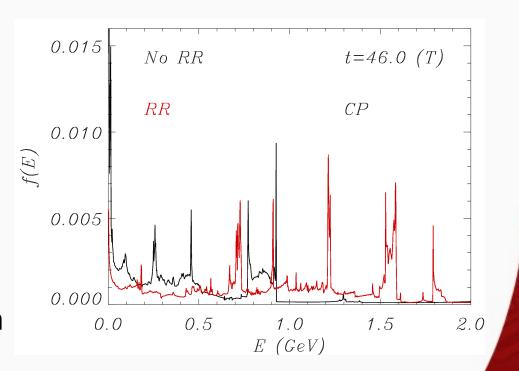

RP-dominated regime: $2.3 \times 10^{23} \text{ W/cm}^2$, 11 cycles pulse 1 um foil, $100n_c$, circular polarization

Negligible RR effects on ion spectrum!

INO-CNR

ISTITUTO Nazionale di

Higher energy than in LP case

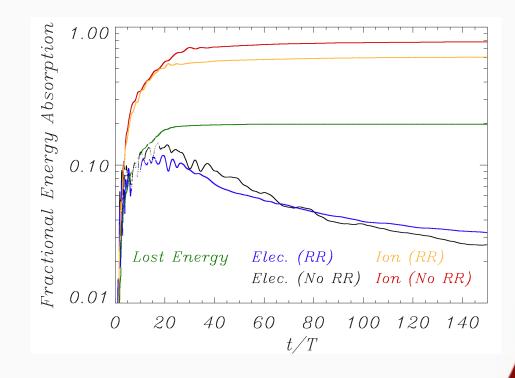

RP-dominated regime: $2.3 \times 10^{23} \text{ W/cm}^2$, 11 cycles pulse 0.3 um foil, $100n_c$, circular polarization

The pulse penetrates through the foil due to "relativistic" Self-Induced Transparency

INO-CNR

ISTITUTO Nazionale di

RR effects are now important for CP and *increase* the ion energy, but the regime is *not* optimal for ion acceleration



ENERGY BALANCE (LP)

RP-dominated regime: $2.3 \times 10^{23} \text{ W/cm}^2$, 11 cycles pulse 1 Um foil, $100n_c$, linear polarization

~20% energy "dissipated" by RR as incoherent, high frequency radiation escaping from the plasma

"Light Sail" regime of Radiation Pressure Acceleration:

- Underlying dynamics and self-organization have been studied in detail
- Formation of two ion populations and "puzzling" issues in pressure and energy balance have been unfolded

Radiation Reaction (or Friction) effects:

- Development and test of a simple model for inclusion in PIC codes via Landau-Lifshitz equation
- RR effects on RPA at ultrahigh intensities are important only for Linear Polarization or in the Self-Induced Transparency regime

INO-CNR Istituto Nazionale di Ottica

ACKNOWLEDGMENTS

Thanks to Sergey Propuzhenko for intriguing discussions on RR modeling, angular momentum absorption, and so on

Use of Supercomputing facilities at CINECA (Bologna, Italy) is greatly acknowledged