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Outlook

I Laser-plasma ion acceleration
I High field plasmonics for enhanced acceleration (and

beyond)

- surface wave coupling with grating targets
- studies on tapered nanoguides

I Light sail acceleration: high gain and stability issues

- observation in simulation and experiment
- plasmonic effects on Rayleigh-Taylor instability
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Main coworkers for this talk

L. Fedeli1, A. Sgattoni, S. Sinigardi2, F. Pegoraro1

CNR/INO, Pisa, Italy
1Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Italy
2presently at Dipartimento di Fisica, Università di Bologna, Bologna,
Italy
Plus colleagues from several institutes abroad (Queen’s
University – Belfast, LULI Ecole Polytechnique – Palaiseau,
CEA/LyDyL – Saclay, Technical University –Prague, . . . )
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Laser-plasma acceleration of ions (2000–)

A. Macchi, M. Borghesi,
M. Passoni,
Rev. Mod. Phys. 85 (2013) 571

State of the art (2013):
- up to ' 70 MeV protons observed
(claims of > 100 MeV announced)
- > 1013 protons, > 1011 C ions accelerated in single shots
(as charge neutralized bunches)
- very low emittance measured (< 0.1π mm mrad)
- proofs-of-principle of spectral manipulation and beam focusing
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Applications

• Picosecond radiography of plasmas (sensitive to EM fields)
• Warm dense matter production and probing
• Short-lived isotope production
• Hadrontherapy
• High energy physics

Need to increase energy and/or optimize energy spectrum
and/or work at high repetition rate . . .
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Sheath acceleration of protons

Target Normal Sheath Acceleration
(TNSA) is driven by “fast” (Ee ∼MeV)
electrons generated in thin targets:
protons from surface contaminants are
accelerated in the rear sheath

TNSA picture “for dummies”:
Potential drop for static sheath e∆Φ = E

(max)
e

(sheath potential must confine electrons)
Energy gained by “test” proton in the sheath

Ep = e∆Φ = E (max)
e

Increasing electrons’ energy −→ increasing protons’ energy
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Fast electron generation: simple (rough) picture
The Lorentz force of the laser
wave (amplitude EL, frequency ω)
drives periodic “push-pull” of elec-
trons across the density gradient

Electrons perform “half-oscillations” on the
vacuum side and re-enter in the plasma
(where the EM field is screened) and are
“absorbed” keeping a net momentum

pe ∼ posc ∼ eEL/ω ≡ meca0

a0 =
(

eEL
mecω

)
> 1 −→ relativistic electrons

A. Macchi, A Superintense Laser-Plasma Interaction Primer (Springer, 2013)
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Plasmonics at high fields for enhanced coupling
Concept: exploit collective electron excitation in sub-wavelength
structures to concentrate light near the surface

Strategy: excitation of surface waves in peri-
odic structures (“Catching light by a grating”)

Phase matching
possible at a
plasma-vacuum
interface if the
shallow grating is
preserved! Fig.: O. Benson,

Nature 480, 193 (2011)

Question: is this possible in the high field, relativistic regime?
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Coworkers
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Experimental evidence: grating-enhanced TNSA
LaserLAB experiment at SLIC, CEA Saclay
laser UHI, 28 fs, 5×1019 W cm−2

contrast ∼ 1012

3X increase observed in proton en-
ergy at resonant angle
T.Ceccotti et al, PRL 111 (2013) 185001
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Surface wave in PIC simulations
Snapshots of EM fields show localized wave propagating along
the surface at resonant angle of incidence (plus reflection at var-
ious diffraction orders)
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Exploring high field plasmonics with simulations

First PIC simulations of a
tapered waveguide for light
nano-focusing and amplification

If 100X field amplification con-
firmed for ultraintense lasers,
1025 W cm−2 intensity is reached!

PICcante

Simulations performed on FERMI super-
computer with the Open Source Particle-In-
Cell code PICcante originally developed by
L.Fedeli, A.Sgattoni, S.Sinigardi
github.com/ALaDyn/piccante
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Radiation Pressure Acceleration: “Light Sail”

Model:
Perfect mirror boosted
by a plane wave:
mechanical efficiency η and
momentum transfer to mirror
derived by Doppler shift and
photon number conservation

d p
dt

=
2I
c

1−β

1+β
η =

2β

1+β

High efficiency (η → 1) but slow gain (d p/dt→ 0) as β −→ 1
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Light Sail formulas and scaling

Eion(t) ∝
(
2It/ρ`c2)1/3

(for t� ρ`c2/I , Eion > mpc2)

Emax = mpc2F 2/(2(F +1))

' mpc2F 2/2 (F � 1)

F = 2(ρ`)−1
∫

∞

0
I(t ′)dt ′ ' 2Iτp/ρ`

Favorable scaling with dimensionless laser pulse fluence F
“Perfect” monoenergeticity for “rigid”, coherent sail motion
Need of ultrathin (nm) foils and ultrahigh contrast pulses
Issues: slow energy gain, heating, transparency, deformation . . .
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F 2 scaling experimentally observed

VULCAN laser, RAL/CLF:
Laser pulse: tp ' 800 f s
3×1020 W cm−2

∼ 109 contrast
Target: ∼ 0.1 µm metal foil

Multispecies (Z/A = 1,1/2) peaks observed with ∆E /E ' 20%
Up to ' 10 MeV/amu observed at high flux
Simulations suggest > 100 MeV/nucleon are within reach

Kar, Kakolee, Qiao, Macchi, Borghesi et al PRL 109 (2012) 185006

Other recent expts: Steinke et al, PRST-AB 16 (2013) 11303;
Aurand et al, NJP 15 (2013) 33031
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High energy gain in 3D simulation of ELI regime

Laser: 24 fs, 4.8 µm spot, I = 0.85×1023 W cm−2 =⇒ 1.5 kJ
Target: 1 µm foil, ne = 1.1×1023 cm−3, ζ ' a0 ' 200

Emax ' 2.6 GeV > 4 times 1D model prediction
Macchi et al, Plasma Phys. Contr. Fus. 55 (2013) 124020
Sgattoni et al, Appl. Phys. Lett. 105 (2014) 084105
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Transverse Structures in 3D Simulation
- Code: ALaDyn
(originally developed by
Benedetti, Londrillo, Sgattoni,
Turchetti – Bologna University)
- Machine: FERMI BlueGene/Q at
CINECA sponsored by PRACE
- Set-up: 4096× 17922 grid points,
2×1010 particles, 16384 cores used
- 1023 W cm−2 laser pulse on solid
target (sub-µm thickness)

Formation of net-like structures
with size ∼ λ (laser wavelength)
What is their orgin?
What sets the dominant scale?
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Rayleigh-Taylor Instability in RPA?

Thin foil target of areal density σ accelerated by a laser
of intensity I is unstable with growth rate γ = (P0q/σ)1/2

with P0 = 2I/c and q the wavevector [Ott, PRL 29 (10972) 1429]

2D simulation
[F.Pegoraro & S.V.Bulanov,
PRL 99 (2007)065002]

Experimental indication from
accelerated ion beam profile
structures [Palmer et al, PRL 108
(2012) 225002]
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Rayleigh-Taylor Instability in space and lab plasmas

Crab Nebula,
Hubble Space
Telescope

Laser-driven
implosion for
Inertial
Confinement
Fusion studies,
1995
(Wikipedia)

RTI simulation
GAPS group,
Roma
(S.Atzeni et al)
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Plasmonic modulation of radiation pressure

The EM field at a rippled surface (e.g. 2D reflecting, sinusoidal
grating of period d) is modulated with plasmonic enhancement
of the P-component when d ∼ λ

The resulting modulation of laser light
pressure provides a spatial seed for RTI
[A.Sgattoni et al, arXiv:physics/1404.1260]

Geometry Matching with
surface plasmons
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Thin foil RTI with self-consistent pressure modulation
Model: reflection from shallow 2D grating of depth δ (first order
in δ/λ ) + modified Ott’s theory with modulated pressure:

P'P0(1+K(q)δ cosqy) , K(q)=


−(q2− k2)1/2 (S)
k2q(q2− k2)−1/2 (P)
(k2−q2/2)(q2− k2)−1/2 (C)

γ =(P0/σ)1/2
[(

q2 +K2(q)/4
)1/2

+K(q)/2
]1/2

S-polarization
P-polarization
C-ircular polarization
RT: no modulation (δ = 0)
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Symmetry of RTI structures
Nonlinear hexagonal-like
structures generated by
RTI have “wallpaper” p6m
symmetry

3D sim. (plane wave) Persian glazed tile

An example of spontaneous symmetry
breaking in a classical system (there’s
not only quantum physics and the Higgs
. . . )
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EXTRA SLIDES
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The paradigm of “coherent” acceleration

Early vision: V. Veksler, At. Energ. 2 (1957) 525
I accelerating field on each particle proportional to the

number of accelerated particles
I automatic synchrony between the particles and the

accelerating field
I field localization in the region where the particles are
I acceleration of quasi-neutral bunches with large numbers

of particles
• challenge: control of the dynamics of the plasma (complex

many-body system, leaning to instability)
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Need for ultraclean pulses: plasma mirrors

Plasma mirrors
yielding ∼ 1012 pulse-
to-prepulse contrast
allow to preserve
target structuring until
the short pulse
interaction

B. Dromey et al, Rev. Sci. Instrum. 75, 645 (2004);
C. Thaury et al, Nature Physics 3, 424 (2007);
figure from P. Gibbon, ibid., 369.
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