www.ino.it_

INO-CNR Istituto Nazionale di Ottica

Laser-Driven Ion Acceleration, High Field Plasmonics, and Classical Instabilities

Andrea Macchi

Event: INO Annual Symposium 2014

INO Sensor Lab Section University of Brescia, Ingegneria Area Via Branze, 38 – Brescia, Italy

Laser-driven ion acceleration, high field plasmonics, and classic instabilities

Andrea Macchi

Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR/INO), research unit "Adriano Gozzini", Pisa, Italy

(also Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Italy)

INO Annual Symposium, Brescia, Italy Friday, October 3, 2014

CNR/INO

Andrea Macchi

Outlook

- Laser-plasma ion acceleration
- High field plasmonics for enhanced acceleration (and beyond)
 - surface wave coupling with grating targets
 - studies on tapered nanoguides
- Light sail acceleration: high gain and stability issues
 - observation in simulation and experiment
 - plasmonic effects on Rayleigh-Taylor instability

イロト イヨト イヨト イヨト

CNR/INO

Main coworkers for this talk

L. Fedeli¹, A. Sgattoni, S. Sinigardi², F. Pegoraro¹

CNR/INO, Pisa, Italy

¹Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Italy

²presently at Dipartimento di Fisica, Università di Bologna, Bologna, Italy

Plus colleagues from several institutes abroad (Queen's University – Belfast, LULI Ecole Polytechnique – Palaiseau, CEA/LyDyL – Saclay, Technical University –Prague, ...)

< ロ > < 同 > < 回 > < 回 >

CNR/INO

Laser-plasma acceleration of ions (2000–)

A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. **85** (2013) 571

State of the art (2013):

- up to $\ \simeq 70 \ {\rm MeV}$ protons observed

(claims of > 100 MeV announced)

- $>10^{13}$ protons, $>10^{11}$ C ions accelerated in single shots

(as charge neutralized bunches)

- very low emittance measured ($< 0.1\pi$ mm mrad)

- proofs-of-principle of spectral manipulation and beam focusing

Applications

- Picosecond radiography of plasmas (sensitive to EM fields)
- Warm dense matter production and probing
- Short-lived isotope production
- Hadrontherapy
- High energy physics

Need to increase energy and/or optimize energy spectrum and/or work at high repetition rate ...

イロト イヨト イヨト イヨト

CNR/INO

Sheath acceleration of protons

Target Normal Sheath Acceleration (TNSA) is driven by "fast" ($\mathcal{E}_e \sim \text{MeV}$), electrons generated in thin targets: protons from surface contaminants are accelerated in the rear sheath

TNSA picture "for dummies":

Potential drop for static sheath $e\Delta\Phi = \mathscr{E}_e^{(\max)}$ (sheath potential must confine electrons) Energy gained by "test" proton in the sheath

$$\mathscr{E}_p = e\Delta\Phi = \mathscr{E}_e^{(\max)}$$

CNR/INO

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Increasing electrons' energy \longrightarrow increasing protons' energy

Fast electron generation: simple (rough) picture

E

The Lorentz force of the laser wave (amplitude E_L , frequency ω) drives periodic "push-pull" of electrons across the density gradient

Electrons perform "half-oscillations" on the vacuum side and re-enter in the plasma (where the EM field is screened) and are "absorbed" keeping a net momentum

$$p_e \sim p_{\rm osc} \sim eE_L/\omega \equiv m_e ca_0$$

 $a_0 = \left(\frac{eE_L}{m_e c \omega}\right) > 1 \longrightarrow$ relativistic electrons

A. Macchi, A Superintense Laser-Plasma Interaction Primer (Springer, 2013)

・ロ・・ 日本・ ・ 日本・

Laser-driven ion acceleration, high field plasmonics, and classic instabilities

Andrea Macchi

Plasmonics at high fields for enhanced coupling

Concept: exploit collective electron excitation in sub-wavelength structures to concentrate light near the surface

Strategy: excitation of surface waves in periodic structures ("Catching light by a grating")

Question: is this possible in the high field, relativistic regime?

Andrea Macchi

ヘロト ヘヨト ヘヨト ヘヨ

Coworkers

PRL 111, 185001 (2013)

PHYSICAL REVIEW LETTERS

week ending 1 NOVEMBER 2013

Evidence of Resonant Surface-Wave Excitation in the Relativistic Regime through Measurements of Proton Acceleration from Grating Targets

T. Ceccotti,^{1,*} V. Floquet,¹ A. Sgattoni,^{2,3} A. Bigongiari,⁴ O. Klimo,^{5,6} M. Raynaud,⁷ C. Riconda,⁴ A. Heron,⁸ F. Baffigi,² L. Labate,² L. A. Gizzi,² L. Vassura,^{9,10} J. Fuchs,⁹ M. Passoni,³ M. Květon,⁵ F. Novotny,⁵ M. Possolt,⁵ J. Prokúpek,^{5,6} J. Proška,⁵ J. Příska,^{5,5} L. Štolcová,^{5,6} A. Velyhan,⁶ M. Bougeard,¹ P. D'Oliveira,¹ O. Tcherbakoff,¹ F. Réau,¹ P. Martin,¹ and A. Macchi^{2,11,7} ¹CEA/RAMISSPAM, F-91191 Gif-sur-Yvette, France
 ²Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit "Adriano Gozzini," 56124 Pisa, Italy ³Dipartimento di Energia, Politecnico di Milano, 20133 Milano, Italy ⁴LULI, Université Pierre et Marie Curie, Ecole Polytechnique, CRRS, CEA, 75252 Paris, France ⁵FNSPE, Czech Technical University in Prague, CR-11519 Prague, Czech Republic ⁶Institute of Physics of the ASCR, ELI-Beamlines project. Na Slovance 2, 18221 Prague, Czech Republic ⁷CEA/DSM/LSI, CNRS, Ecole Polytechnique-Paris 6, 91128 Palaiseau Cedex, France ⁸CPHT, CNRS, Ecole Polytechnique-Paris 6, 91128 Palaiseau, France ¹⁰Dipartimento SBAI, Università di Ponseria ¹¹Dipartine, 5, 91128 Palaiseau, France ¹⁰Dipartimento BSAI, Università di Roma ¹¹La Spienza, ¹¹Van Pangue, 14, 00161 Roma, Italy ¹¹Dipartimento di Fisica "Enrico Fermi," Università di Pisa, Largo Bruno Pontecorvo 3, 1-56127 Pisa, Italy ¹¹Dipartimento di Fisica "Enrico Fermi," Università di Pisa, Largo Bruno Pontecorvo 3, 1-56127 Pisa, Italy ¹¹Dipartimento di Fisica "Enrico Fermi," Università di Pisa, Largo Bruno Pontecorvo 3, 1-56127 Pisa, Italy ¹¹Dipartimento di Fisica "Enrico Fermi," Università di Pisa, Largo Bruno Pontecorvo 3, 1-56127 Pisa, Italy ¹¹Dipartimento di Fisica "Enrico Fermi," Università di Pisa, Largo Bruno Pontecorvo 3, 1-56127 Pisa, Italy ¹¹Dipartimento di Fisica "Enrico Fermi," Università di Pisa, Largo Bruno Pontecorvo 3, 1-56127 Pisa, Italy ¹¹Diparatimento di Fisica "Enrico Fermi," Università di Pisa, Largo

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ

CNR/INO

Andrea Macchi

Experimental evidence: grating-enhanced TNSA LaserLAB experiment at SLIC, CEA Saclay laser UHI, 28 fs, 5×10^{19} W cm⁻²

Andrea Macchi

Surface wave in PIC simulations

Snapshots of EM fields show localized wave propagating along the surface at resonant angle of incidence (plus reflection at various diffraction orders)

Exploring high field plasmonics with simulations

First PIC simulations of a tapered waveguide for light nano-focusing and amplification

If 100X field amplification confirmed for ultraintense lasers, 10^{25} W cm⁻² intensity is reached!

Simulations performed on FERMI supercomputer with the Open Source Particle-In-Cell code PICcante originally developed by L.Fedeli, A.Sgattoni, S.Sinigardi github.com/ALaDyn/piccante

Andrea Macchi

Radiation Pressure Acceleration: "Light Sail"

Model:

Perfect mirror boosted

by a plane wave:

mechanical efficiency η and momentum transfer to mirror derived by Doppler shift and photon number conservation

ヘロト ヘ団ト ヘヨト ヘヨト

CNR/INO

$$\frac{dp}{dt} = \frac{2I}{c}\frac{1-\beta}{1+\beta} \qquad \eta = \frac{2\beta}{1+\beta}$$

High efficiency $(\eta \rightarrow 1)$ but slow gain $(\frac{dp}{dt} \rightarrow 0)$ as $\beta \rightarrow 1$

Andrea Macchi

Light Sail formulas and scaling

$$\begin{aligned} \mathscr{E}_{\max} &= m_p c^2 \mathscr{F}^2 / (2(\mathscr{F} + 1)) \\ &\simeq m_p c^2 \mathscr{F}^2 / 2 \qquad (\mathscr{F} \ll 1) \end{aligned}$$
$$\begin{aligned} \mathscr{F} &= 2(\rho \ell)^{-1} \int_0^\infty I(t') dt' \simeq 2I \tau_p / \rho \ell \end{aligned}$$
$$\begin{aligned} \mathscr{E}_{\text{ion}}(t) \propto \left(2It / \rho \ell c^2\right)^{1/3} \end{aligned}$$

 $I \longrightarrow P$ ρ

(for $t \gg
ho \ell c^2/I$, $\mathscr{E}_{ ext{ion}} > m_p c^2$)

Favorable scaling with dimensionless laser pulse fluence \mathscr{F} "Perfect" monoenergeticity for "rigid", coherent sail motion Need of ultrathin (nm) foils and ultrahigh contrast pulses Issues: slow energy gain, heating, transparency, deformation ...

Andrea Macchi

\mathscr{F}^2 scaling experimentally observed

VULCAN laser, RAL/CLF: Laser pulse: $t_p \simeq 800 \ fs$ $3 \times 10^{20} \ \text{W cm}^{-2}$ $\sim 10^9 \ \text{contrast}$ Target: $\sim 0.1 \ \mu \text{m}$ metal foil

イロン イヨン イヨン イヨン

Multispecies (Z/A = 1, 1/2) peaks observed with $\Delta \mathscr{E}/\mathscr{E} \simeq 20\%$ Up to $\simeq 10$ MeV/amu observed at high flux Simulations suggest > 100 MeV/nucleon are within reach

Kar, Kakolee, Qiao, Macchi, Borghesi et al PRL 109 (2012) 185006

Other recent expts: Steinke et al, PRST-AB **16** (2013) 11303; Aurand et al, NJP **15** (2013) 33031

High energy gain in 3D simulation of ELI regime

Laser: 24 fs, 4.8 μ m spot, $I = 0.85 \times 10^{23}$ W cm⁻² \implies 1.5 kJ Target: 1 μ m foil, $n_e = 1.1 \times 10^{23}$ cm⁻³, $\zeta \simeq a_0 \simeq 200$

 $\mathscr{E}_{max} \simeq 2.6 \text{ GeV} > 4 \text{ times 1D model prediction}$ Macchi et al, Plasma Phys. Contr. Fus. **55** (2013) 124020 Sgattoni et al, Appl. Phys. Lett. **105** (2014) 084105

Andrea Macchi

<ロ> (四) (四) (日) (日) (日)

Transverse Structures in 3D Simulation

- Code: ALaDyn (originally developed by Benedetti, Londrillo, Sgattoni. Turchetti – Bologna University) - Machine: FERMI BlueGene/Q at CINECA sponsored by PRACE - Set-up: 4096×1792^2 grid points, 2×10^{10} particles, 16384 cores used - 10^{23} W cm⁻² laser pulse on solid target (sub- μ m thickness)

Formation of net-like structures with size $\sim \lambda$ (laser wavelength) What is their orgin? What sets the dominant scale?

0.01

Andrea Macchi

→ E → < E →</p>

Rayleigh-Taylor Instability in RPA?

Thin foil target of areal density σ accelerated by a laser of intensity *I* is unstable with growth rate $\gamma = (P_0 q / \sigma)^{1/2}$ with $P_0 = 2I/c$ and *q* the wavevector [Ott, PRL **29** (10972) 1429]

2D simulation [F.Pegoraro & S.V.Bulanov, PRL **99** (2007)065002] Experimental indication from accelerated ion beam profile structures [Palmer et al, PRL **108** (2012) 225002]

◆□ → < 部 → < 注 → 注 → 注 → ○ へ ○</p> CNR/INO

Andrea Macchi

Rayleigh-Taylor Instability in space and lab plasmas

Crab Nebula, Hubble Space Telescope Laser-driven implosion for Inertial Confinement Fusion studies, 1995 (Wikipedia)

RTI simulation GAPS group, Roma (S.Atzeni et al)

イロト イヨト イヨト イヨト

Andrea Macchi

Plasmonic modulation of radiation pressure

The EM field at a rippled surface (e.g. 2D reflecting, sinusoidal grating of period *d*) is modulated with plasmonic enhancement of the *P*-component when $d \sim \lambda$

Andrea Macchi

Thin foil RTI with self-consistent pressure modulation

Model: reflection from shallow 2D grating of depth δ (first order in δ/λ) + modified Ott's theory with modulated pressure:

$$P \simeq P_0(1 + K(q)\delta\cos qy), \qquad K(q) = \begin{cases} -(q^2 - k^2)^{1/2} & (S) \\ k^2 q(q^2 - k^2)^{-1/2} & (P) \\ (k^2 - q^2/2)(q^2 - k^2)^{-1/2} & (C) \end{cases}$$

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

Symmetry of RTI structures

Nonlinear hexagonal-like structures generated by RTI have "wallpaper" p6m

Persian glazed tile

CNR/INO

An example of spontaneous symmetry breaking in a classical system (there's not only quantum physics and the Higgs ...)

イロン イヨン イヨン イヨン

EXTRA SLIDES

Andrea Macchi

Laser-driven ion acceleration, high field plasmonics, and classic instabilities

CNR/INO

æ

(日)

The paradigm of "coherent" acceleration

Early vision: V. Veksler, At. Energ. 2 (1957) 525

- accelerating field on each particle proportional to the number of accelerated particles
- automatic synchrony between the particles and the accelerating field
- field localization in the region where the particles are
- acceleration of quasi-neutral bunches with large numbers of particles
- challenge: control of the dynamics of the plasma (complex many-body system, leaning to instability)

イロト イヨト イヨト イヨト

CNR/INO

Need for ultraclean pulses: plasma mirrors

Plasma mirrors

yielding $\sim 10^{12}$ pulseto-prepulse contrast allow to preserve target structuring until the short pulse interaction

Image: A matrix

CNR/INO

C. Thaury et al, Nature Physics 3, 424 (2007); figure from P. Gibbon, ibid., 369.

Andrea Macchi