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Pair Plasmas in the Laboratory

Laser-plasma experiments:
I ∼ 1010 positrons at ∼ 20 MeV, estimated density

np ∼ 1016 cm−3 into target
F. Chen et al PRL 105 (2010) 015003

I > 100 MeV positron beams at high density (np ∼ 1015 cm−3)
G. Sarri et al, PRL 110 (2013) 255002

I generation of a neutral pair plasma ne ' np ' 1015 cm−3

with ∼ 7 MeV energy
G. Sarri et al, arXiv:1312.0211
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Pair Plasmas in Space

T.Piran, Rev. Mod. Phys. 76 (2005) 1143
Astrophysical settings:

I Gamma-ray Bursts (GRB)
I plasma outflows in Pulsar Wind Nebulae (PWN)
I relativistic jets from Active Galactic Nuclei (AGN)
I Thunderstorms! Beams of antimatter and gamma-ray

flashes launched by thunderstorms (TGF) have been
detected by FERMI space telescope
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The Crab Flares Problem

Gamma-Ray flares from Crab
nebula (detected by FERMI and
AGILE) challenge current models for
particle acceleration in pair plasmas:
- MHD validity violated
- radiative effects dominant
→ kinetic simulations with radiation
friction included are necessary
See e.g. Cerutti et al ApJ 770 (2013)
147; Jaroschek and Hoshino, Phys. Rev.
Lett. 103 (2009) 075002; and refs.
therein
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Motivations for this work

I revisit the filamentation instability (FI aka “Weibel”) in pair
plasmas
only electrons case: see e.g. Califano et al PRE 58 (2008) 7837

• (Notice: only the transverse case in 2D (k ·pbeam = 0) is
considered here)

I extend to this context our approach to radiation friction in
PIC simulations of ultrarelativistic laser-plasma interactions
Tamburini et al, New J. Phys. 12 (2010) 123005

Some previous work on FI in pair plasmas: Kazimura et al, ApJ
498 (1998) L183; Silva et al, ApJ 596 (2003) L121
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About PIC simulations

PICcante

2D simulations performed on FERMI
BlueGene/QTM supercomputer with the
Open Source Particle-In-Cell code PICcante
developed and maintained by L.Fedeli,
A.Sgattoni, S.Sinigardi, A.Marocchino
github.com/ALaDyn/piccante

Access to FERMI at CINECA (Italy) sponsored by PRACE
project “LSAIL”
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1D3P simulation: parameters
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• ne�1
= ne+1

= ne�2
= ne+2

= n0/4

• pe�1 = pe+1 = p0 pe�2 = pe+2 = �p0

• Lg = 150 lp where lp = c/!p

• Tf = 103 Tp where Tp = 2⇡/!p

• Ncp = 3⇥ 106 per specie

We performed simulations with                  . Here I will show the most 
representative case               .              

p0 2 [1, 103]

p0 = 200
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Current filaments
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Current filaments
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Current filaments

Linear phase
for t < 50Tp



Current filaments

Linear phase
for t < 50Tp

Merging phase Quasi-saturated phase
for 50Tp < t < 200Tp for t > 200Tp
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Growth rate

Exponential growth

Mode with k
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Non-linear phase

Current filament with + polarity is characterized by two consecutive maxima

!

Current filament with - polarity is characterized by two consecutive minima
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Non-linear phase
• Size of a filament d ⇠ k�1
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• Saturation ! magnetic confinement
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Particle spectra

The distribution function changes: the majority of particles loses its kinetic energy.

Energy spectrum Momentum spectrum
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Confined and accelerated particles
e�1 e�2
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Non-linear phase
Most of particles is confined within current filaments

Single particle dynamics:

!

Conservation of the canonical momentum ⇧ = p± a = ±p0z
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Confined and accelerated particles
e�1 e�2
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Peak in the spectra
Energy spectrum Mometum spectrum

The energy spectrum presents a peak at         and the momentum spectrum 
presents a peak at 

2�0
2p0
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Why this peak?
1. Why does a maximum energy value exist?  

2. Why does a cusp form in the energy spectrum?  

e�1 e+2
e�2 e+1

Spatial separation of the species

Locally E = �@tA subtracts p0 to e�1 and adds p0 to e�2

dA

dx

(x0) = 0

In the      interval, centered around      , particles acquire the same 
momentum at first order

dx

x0
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Radiative losses
Problem of the effects of e.m. radiation emitted by a charged particle on the 
motion of the particle itself: radiation friction

!
(L.Landau and E. Lifshitz The Classical Theory of Fields. Number v.2 in Course of theoretical physics. Butterworth-Heinemann, 1975)     

Code implementation:

dp
dt = FL � dv where d ⌘ (4⇡re/3lp)�2[F2

L � (v · FL)2]

Dissipative term

M.Tamburini et al. New Journal of physics, 12(12):123005, 2010 24



Effects due to RF: energies
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Effects due to RF: energy spectrum

/mec
2

Simulation without radiative losses Simulation with radiative losses
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2D3P simulations
Pz = 200

Pz = -200

e+ e-

e+ e-

Simulation area

Simulation grid

Lx = 100.0 Lp (1000 cells)

Ly = 100.0 Lp (1000 cells)

Δx = 0.1 Lp

Δy = 0.1 Lp

Δt = 0.05 Tp

Simulation parameters

Density: 0.25 per specie

Temperature: 4x10-8

Particles per cell: 7x7 per specie

 2D3P simulations
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Current density
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Particle and energy density
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2D simulations with RF
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Spectrum in pz
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Conclusions
• Filamentation instability is characterized by a linear phase and by a non-

linear quasi-saturated phase

• Current and magnetic field organize themselves into filamentary structures

on length scale of the order of lp

• Energy spectrum presents a peak at twice the initial kinetic energy

• Implementation of radiative losses
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Backup



PIC algorithm

Numerical 
integration

Temporal loop



Linear phase
Case: p0 = 10 t = 5Tp

Local fluctuations 
on current

Local fluctuations 
on magnetic field

Growth of the 
instability



Magnetic efficiency
Efficiency: capability to transform initial kinetic energy        into magnetic 
energy 

(K0)

⌘ ⌘ B2/8⇡

K0p0 = 10 ⌘f = 0.06 p0 = 200 ⌘f = 0.07



Effects due to RF

Non radiative simulation Radiative simulation
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Field energy


