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1. Radiation Pressure Acceleration: 

    concept and overview of some recent results
 

2. Radiation Reaction effects on RPA

 - Motivations

 - RR modeling via Landau-Lifshitz equation

 - Single particle tests and inclusion in PIC codes

 - Effects on RPA: role of laser polarization  

OUTLOOK
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TWO RPA-BASED VISIONS (1996 - 2010)
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Originally proposed as a way to 

accelerate a massive mirror 

by the Radiation Pressure of an Earth-based laser

R.L.Forward,  “Roundtrip interstellar travel using 

laser-pushed lightsails”, 

J. Spacecraft and Rockets 21 (1964) 187

G.Marx, “Interstellar vehicle propelled by terrestrial

laser beam”, Nature 211 (1966) 22

THE “LIGHT SAIL” CONCEPT
to  -Centauri
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3D simulations suggest “Radiation Pressure Dominance” 

in interactions at I ≥ 1023 W/cm2  with thin plasma foils

Modeling based on simple LS or “accelerating mirror” model

T.Esirkepov, M.Borghesi, S.V.Bulanov,G.Mourou, T.Tajima, 
PRL 92, 175003 (2004)

“LIGHT SAIL” AND LASER ION ACCELERATION
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perfectly reflecting, rigid mirror of 

mass M=ℓS boosted by a plane light wave

Mirror velocity as a function of the light pulse

 intensity I and duration  and of the surface 

density n
e
ℓ of of the target:

ACCELERATING MIRROR MODEL
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SCALING TO LASER-SOLID INTERACTIONS

Velocity and energy/nucleon for 
LS-RPA of a ultrathin solid target 

vs. laser pulse fluence F
for (dimensionless) surface 
target densities 

  = 1, 3.16 , 10 , 31.6 , 100

Experimental requirements:
- nm foil targets (e.g. DLC)
- ultrahigh contrast (plasma mirrors)
- possibly circular polarization? 
 a

0
 :dimensionless amplitude, 

τ  : duration in cycles
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WHY CIRCULAR POLARIZATION?

Using CP and normal incidence fast electron generation is 
strongly suppressed, maximizing radiation pressure and 
preventing foil expansion of the foil target

Early study in “thick” targets: 
Macchi et al, PRL 94 (2005) 165003

Proposal of CP-RPA of 
ultrathin foils for efficient 
and monoenergetic acceleration: 
Zhang et al, PoP 14 (2007) 073101 
Robinson et al, NJP 10 (2008) 013201;
Klimo et al, PRST-AB 11 (2008) 031301.

First experimental study reported:
Henig et al, PRL 103 (2009) 245003



18/05/10

“LIGHT SAIL” REVISITED

Recent Results on thin foil RPA with CP pulses:

- Improved formula accounting for relativistic 
  Self-Induced Transparency effects 
- Determination of “optimal” thickness
- Dynamics and self-organization underlying the LS picture
- Solution of somewhat puzzling issues concerning energy and    
  pressure balance

See:

 Macchi et al, PRL 103 (2009) 085003;
Macchi et al, NJP 12 (2010) 045013.
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LS MODEL VS 1D PIC SIMULATIONS - II

Energy spectra vs. a
0
 and ℓ:

(Dashed line: LS model prediction, dotted line: a
0
= )
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TRANSPARENCY AND “OPTIMAL” THICKNESS

Ultrathin slab model: n
e
(x)=n

0
ℓ(x) , foil thickness  ℓ<<

Total radiation pressure in rest frame  P
rad

=(2I/c)R
Nonlinear reflectivity R=R(,a

0
) includes Self-Induced Transparency

 R≈2/(2+1)  (a
0
< ) 

R≈2/a
0

2          (a
0
> )

P
rad

 does not depend on 

 a
0
 for a

0
> ! (since I∼a

0
2)

The maximum boost of the foil is at  a
0
≈  
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LS MODEL WITH SIT INCLUDED 

Modified foil velocity formula for R<1, a
0
<  

Ion energy and 
conversion efficiency 
vs. intensity and 
thickness
(solid: theory,
points: PIC sims.)

9 cycles pulse, n
e
=250n

c 
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TWO-DIMENSIONAL SIMULATIONS

2D sims for 

=31.4 and

a
0
 =20 (left)

a
0
 =30 (right)

stronger electron 
heating and lower 
“penetration” 
threshold with 
respect to 1D:
ion spectrum is 
broad
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THREE-DIMENSIONAL SIMULATIONS

3D sims for =15 , 
a

0
 =5 , =18 cycles 

left: Supergaussian
  spot profile
right: Gaussian

Note that only in 3D 
angular momentum 
conservation is taken 
into account 

Supergaussian “flat-top” profiles keep a “quasi-1D” geometry and 
prevent early breakthrough of laser pulse due to lateral expansion
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RADIATION REACTION EFFECTS

Motivation: Radiation Reaction is important for ultra-relativistic 
particles in EM fields and is thus expected to play a strong role in 
next generation experiments at ultra-high intensities.

The typical intensity for relevant RR effects is estimated to be 
~1023 W/cm2 . This corresponds, to the foreseen regime of RPA 
dominance (for Linear Polarization)
[Esirkepov et al, PRL 92 (2004) 175003]

Two RPA simulation studies (for Circular Polarization at lower 
intensity) suggest a “beneficial” effect of “electron cooling” by RR
[Schlegel et al, PoP 16 (2009) 083103; 
 Chen et al, arXiv:0909.5144, 
 to appear in Plasma Phys. Contr. Fus.]  
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RADIATION REACTION FORCES

EoM of classical particle 
with spin in EM field:
Landau-Lifshitz formula 
for RR term f

RR
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RADIATION REACTION MODELING

EoM with Landau-Lifshitz force in non-covariant notation

The last “friction” term is the dominant one
(the first terms is ordinarily smaller than spin contribution)
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BENCHMARK WITH EXACT SOLUTIONS 

Exact solution of the Landau-Lifshitz equation in a plane wave
[A.Di Piazza, Lett.Math.Phys. 83 (2008) 305] 

Based on this test case we identify suitable approximations to the 
electron EoM with RR included:

- the spin force is ~137  X the first LL term in the RR force

- the second LL term is  ~a
0
/ 137 X the spin force

→ for intensities >> 1022 W/cm2 it is consistent to neglect both the 
1st LL term and the spin force 
[M.Tamburini, F.Pegoraro, A. Di Piazza, C.H.Keitel, A.Macchi,
 preprint arxiv:1008.1685 ]
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TEST OF PARTICLE PUSHER

A numerical solution of motion in a plane wave based on simple 2nd order
leap-frog method has been compared with the exact solution and with 
4th order Runge-Kutta integration

“Figure of Eight” drifts away
 when RR is included

- excellent agreement for         
  intensities up to 1024 W/cm2 
- straightforward to include in  
  a “standard” PIC code           
  (based on Boris particle 
pusher)
- only ~10% increase in 
  CPU time

Black – with RR

Red   → without RR
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RR EFFECTS ON ION SPECTRA – I  (LP)

RP-dominated regime: 2.3 x 1023 W/cm2 , 11 cycles pulse

1 um foil, 100n
c
  , linear polarization

Lower energy, 
narrower spectrum 
with RR included

~25% reduction in 
“peak” ion energy “ 
due to RR effects
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RR EFFECTS ON ION SPECTRA – II (CP)

RP-dominated regime:  2.3 x 1023 W/cm2 , 11 cycles pulse

1 um foil, 100n
c
  , circular polarization

Negligible RR effects 
on ion spectrum!

Higher energy than in 
LP case
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RR EFFECTS ON ION SPECTRA – III (CP)

RP-dominated regime:  2.3 x 1023 W/cm2 , 11 cycles pulse

0.3 um foil, 100n
c
  , circular polarization

The pulse penetrates 
through the foil due to 
“relativistic” Self-Induced 
Transparency

RR effects are now 
important for CP and 
increase the ion energy, 
but the regime is not 
optimal for ion acceleration
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ENERGY BALANCE  (LP)

RP-dominated regime: 2.3 x 1023 W/cm2 , 11 cycles pulse

1 um foil, 100n
c
  , linear polarization

~20% energy 
“dissipated” by RR
as incoherent, high 
frequency radiation 
escaping from the 
plasma
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SUMMARY AND CONCLUSIONS

- Superintense Radiation Pressure Acceleration is appealing

- The simple “Light Sail” model provides promising scalings

  and is in agreement with 1D simulation predictions

  (although the dynamics is much more complex than 

  suggested by the model)

- Circular Polarization affects RPA even at extreme

  intensities (Radiation Pressure dominance)

- Radiation Reaction (or Friction) effects have been included 

 in a PIC code via the Landau-Lifshitz equation 

- RR effects on RPA at ultrahigh intensities are important      

  only for Linear Polarization or in the Self-Induced

  Transparency regime
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WANT TO SEE MORE?

EXTRA SLIDES
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Thick (semi-infinite) targets 
(“Hole Boring”):
Liseikina & Macchi, APL 94 (2007) 165003;
Naumova et al, PRL 102 (2009) 025002;
Schlegel et al, PoP 16 (2009) 083103;
Robinson et al, PPCF 51 (2009) 024004 & 095006;
Macchi & Benedetti, NIM A 620 (2010) 41
Tikhonchuk et al, Nucl. Fus. 50 (2010) 045003

Ultrathin (sub-wavelength) targets 
(“Light sail”):
Yan et al, PRL 100, (2008) 135003 ;
Qiao et al, PRL 102 (2009) 145002;
Tripathi et al, PPCF 51 (2009) 024014;
Eliasson et al. NJP 11 (2009) 073006;
Yan et al, PRL 103 (2009) 135001;
Macchi et al, PRL 103 (2009) 085003;
Macchi et al, NJP 12 (2010) 045013.

THEORETICAL INTEREST IN CP-RPA...

Variations on the theme
 (side effects,multi-species or
  structured targets, ...):
Liseikina et al, PPCF 50 (2008) 124033;
Rykovanov et al., NJP 10, (2008) 113005;
Ji et al, PRL 101 (2008) 164802;
Yin et al, PoP 15 (2008) 093106; 
Holkundkara & Gupta, PoP 15 (2008) 123104;
Chen et al, PoP 15 (2008) 113103;
Zhang et al, PRST-AB 12 (2009) 021301;
Gonoskov et al, PRL 102 (2009) 145002;
Chen et al, PRL 103 (2009) 024801
Grech et al, NJP 11 (2009) 093035
Yu et al, PRL 105 (2010) 065002 

Andrea MACCHI, MPI-K, 24/08/2010

Results presented 
in this talk
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MECHANICAL EFFICIENCY

The efficiency  of the acceleration process 
can be obtained by a simple argument of 
conservation of  “number of photons” 
plus the  Doppler shift of the reflected light:

100% efficiency in the relativistic limit!

Andrea MACCHI, MPI-K, 24/08/2010
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LS MODEL VS 1D PIC SIMULATIONS - I

Laser pulse: a
0
=5-50, =8 cycles (“flat-top” envelope)

Thin foil target: n
e
=250n

c 
, ℓ=0.01-0.1   (=7.8-78.5)

A narrow spectral peak is 
observed for a

0
<.

The energy of the peak is 
in good agreement with 
the LS formula 

For a
0
>, the dynamics is 

dominated by a Coulomb 
explosion of the foil 
following a complete 
blow-out of electrons

Andrea MACCHI, MPI-K, 24/08/2010
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LS MODEL VS 1D PIC SIMULATIONS - II

Energy spectra vs. a
0
 and ℓ:

(Dashed line: LS model prediction, dotted line: a
0
= )

Andrea MACCHI, MPI-K, 24/08/2010
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TRANSPARENCY AND “OPTIMAL” THICKNESS

Ultrathin slab model: n
e
(x)=n

0
ℓ(x) , foil thickness  ℓ<<

Total radiation pressure in rest frame  P
rad

=(2I/c)R
Nonlinear reflectivity R=R(,a

0
) includes Self-Induced Transparency

 R≈2/(2+1)  (a
0
< ) 

R≈2/a
0

2          (a
0
> )

P
rad

 does not depend on 

 a
0
 for a

0
> ! (since I∼a

0
2)

The maximum boost of the foil is at  a
0
≈  

Andrea MACCHI, MPI-K, 24/08/2010
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LS MODEL WITH SIT INCLUDED 

Modified foil velocity formula for R<1, a
0
<  

Ion energy and 
conversion efficiency 
vs. intensity and 
thickness
(solid: theory,
points: PIC sims.)

9 cycles pulse, n
e
=250n

c 

Andrea MACCHI, MPI-K, 24/08/2010
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A PUZZLING ISSUE: “DARK”  MASS

The RPA peak contains only
 ~30% of all the ions 
(and ~64% of their energy)

Only the rear side of the foil 
is accelerated (thus LS RPA 
may work for double-layer 
targets!)

 Why there is very good 
Agreement of the energy with 
the LS formula when inserting 
there the whole mass of the target 
(and not ~30% of it)?

H
(rear side)

C
(front 
side)

Andrea MACCHI, MPI-K, 24/08/2010
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RADIATION VS ELECTROSTATIC PRESSURE

Radiation pressure drives electron depletion and generates 
back-holding electrostatic pressure

P
rad

=(2I/c)R ≤  P
es
=2(en

0
ℓ)2  for a

0
≤      

If a
0
<  and  , R≈ and no electrons are pushed away 

For a
0
  all electrons must pile up near the rear surface in 

order that P
rad

 ≃  P
es
 .

→ the electron pile-up layer is much thinner than the foil
→ only a fraction of the foil is accelerated  

Andrea MACCHI, MPI-K, 24/08/2010
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TWO ION POPULATIONS: TAIL & SAIL

Andrea MACCHI, LULI, 25/05/2010

Sail (S): ions are bunched accelerated by E
x
=f

p 
/e and move 

coherently as a “foil” : monoenergetic component

Tail (T): ions are accelerated by their own space-charge field 
and “Coulomb explode”: broad spectrum component
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SAIL CHARGING/DISCHARGING

PIC simulations show 
ions in the compression 
layer to form a “Sail” 
thinner than the original 
foil and negatively 
charged (excess of 
electrons)

The excess electrons
“detach” from the Sail
near the end of the laser 
pulse, moving 
backwards and leaving 
a neutral plasma bunch  

Andrea MACCHI, MPI-K, 24/08/2010
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COLLAPSE OF ELECTRON EQUILIBRIUM

Near the end of the acceleration stage the pressure balance for 
electrons breaks down: formation of bunches in forward & 
backward directions and heating 

Ion spectrum broadens in the post-acceleration stage

Andrea MACCHI, MPI-K, 24/08/2010



18/05/10

MISSING INERTIA IS LOWER PRESSURE

Equilibrium of radiation 
and electrostatic 
pressure on electrons:

Electrostatic pressure
on ions:

Calculation on equilibrium 
profiles yields:

Equation of motion:

→ The Sail moves as if it had the total mass of the foil

Andrea MACCHI, MPI-K, 24/08/2010
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DYNAMIC PRESSURE BALANCE

 P
rad

 decreases with 

velocity in the Lab frame
 (P

rad
)L=(1­)/(1+)P

rad
  

 
To keep pressure 
equilibrium there is 
a mass flow 
(ion current) from
 M

tail
 to M

sail
 

Andrea MACCHI, MPI-K, 24/08/2010



18/05/10

ENERGY BALANCE

Efficiency depends only on  (the Sail velocity) 
BUT the kinetic energy of the Sail is less than the total!

Energy stored in the 

electrostatic field E
x
 :

“Conversion efficiency” 
into electrostatic 

energy  
es
 :

For a
0
= , the depletion width d≈ℓ  thus 

es
≈2 : 

most of the stored energy is converted into electrostatic energy
and eventually goes to Tail ions 

Andrea MACCHI, MPI-K, 24/08/2010
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TWO-DIMENSIONAL SIMULATIONS

2D sims for 

=31.4 and

a
0
 =20 (left)

a
0
 =30 (right)

stronger electron 
heating and lower 
“penetration” 
threshold with 
respect to 1D:
ion spectrum is 
broad

Andrea MACCHI, MPI-K, 24/08/2010



18/05/10

THREE-DIMENSIONAL SIMULATIONS

3D sims for =15 , 
a

0
 =5 , =18 cycles 

left: Supergaussian
  spot profile
right: Gaussian

Note that only in 3D 
angular momentum 
conservation is taken 
into account 

Supergaussian “flat-top” profiles keep a “quasi-1D” geometry and 
prevent early breakthrough of laser pulse due to lateral expansion

Andrea MACCHI, MPI-K, 24/08/2010
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TEST OF PARTICLE PUSHER - II 

A numerical solution of motion in a plane wave based on simple 2nd order
leap-frog method has been compared with the exact solution and with 
4th order Runge-Kutta integration

Crosses: analytical
Line: numerical

- excellent agreement for         
  intensities up to 1024 W/cm2 
- straightforward to include in  
  a “standard” PIC code           
  (based on Boris particle 
pusher)
- only ~10% increase in 
  CPU time

Black – with RR

Red   → without RR

Andrea MACCHI, MPI-K, 24/08/2010
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TEST OF PARTICLE PUSHER - III 

A numerical solution of motion in a plane wave based on simple 2nd order
leap-frog method has been compared with the exact solution and with 
4th order Runge-Kutta integration

Crosses: analytical
Line: numerical

- excellent agreement for         
  intensities up to 1024 W/cm2 
- straightforward to include in  
  a “standard” PIC code           
  (based on Boris particle 
pusher)
- only ~10% increase in 
  CPU time

Black – Leap Frog

Red   → Runge-Kutta

Andrea MACCHI, MPI-K, 24/08/2010
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