Light Sail Acceleration: Recent Results

Andrea Macchi

National Institute of Optics, National Research Council (CNR/INO), Pisa, Italy

Department of Physics "Enrico Fermi", University of Pisa, Italy

LULI, École Polytechnique, October 30, 2013

イロト イヨト イヨト イヨト

CNR/INO

Main coworkers for this talk

A. Sgattoni^{1,2}, S. Sinigardi³, M. Tamburini^{1,4,*}, F. Pegoraro^{1,4},
T. V. Liseykina⁵, P. Londrillo⁶, D. Doria⁷, C. Scullion⁷, S. Kar⁷,
L. Romagnani⁸, M. Borghesi⁷

¹CNR/INO, Pisa, Italy
²Dipartimento di Energia, Politecnico di Milano, Milan, Italy
³Dipartimento di Fisica, Università di Bologna, Bologna, Italy
⁴Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Italy
⁵Institut für Physik, Universität Rostock, Germany
⁶INAF and INFN, Bologna, Italy
⁷Center for Plasma Physics, Queen's University of Belfast, UK
⁸LULI, École Polytechnique, Palaiseau Cedex, France
*presently at MPI-K, Heidelberg, Germany

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

CNR/INO

Outline

- Quick review of the Radiation Pressure Acceleration concept
- an argument for the onset of important RPA effects
- Quick review of the Light Sail concept
- Recent experimental results
- VULCAN data: "fast" scaling
- GEMINI data: polarization dependence
- Simulations for GEMINI experiments
- Simulations at ultra-high intensities (relativistic ions):

イロン イヨン イヨン イヨン

CNR/INO

- high gain regimes
- instabilities and beam structuring

The "accelerating mirror" paradigm

Perfect mirror boosted by a plane wave: mechanical efficiency η and momentum transfer to mirror derived by Doppler shift and photon number conservation

$$\begin{matrix} I \ , \ \omega \\ I_r \ , \ \omega_r \end{matrix}$$

$$V = \beta c$$

CNR/INO

$$\frac{dP}{dt} = \frac{2I}{c}\frac{1-\beta}{1+\beta} \qquad \eta = \frac{2\beta}{1+\beta}$$

High efficiency but slow gain as $\beta \longrightarrow 1$

Andrea Macchi

Beyond the mirror: ion motion in the skin layer

Electrostatic pressure balances $P_{rad} \simeq 2I/c$ and accelerates ions [Macchi et al PRL 94 (2005) 165003; 103 (2009) 85003]

Andrea Macchi

CNR/INO

Simple criteria for RPA "dominance" - I

Heuristic criterion:

ions must respond promptly to charge separation (before electrons heat up too much \rightarrow expansion dominates)

lons become promptly (nearly) relativistic sticking to electrons when:

$$v_i/c = 1/2 \longrightarrow a_0 \simeq 30 \left(\frac{n_e}{n_c}\right)^{1/2} > 300$$

 $\longrightarrow I\lambda^2 > 10^{23} \text{ W cm}^{-2}\mu\text{m}^2$

イロト イヨト イヨト イヨト

CNR/INO

[see also: Esirkepov et al, PRL 92 (2004) 175003]

Andrea Macchi

Simple criteria for RPA "dominance" - II

lons move across the skin layer within a laser halfcycle: prompt "cancellation" of charge separation

$$t_c < \pi/\omega \longrightarrow \frac{1}{2a_0} \left(\frac{Am_p}{Zm_e}\right)^{1/2} \simeq \frac{30}{a_0} < 1$$
$$\longrightarrow I\lambda^2 > 1.2 \times 10^{21} \text{ W cm}^{-2} \mu \text{m}^2$$

Consequence: important RPA effects in current experiments (also for Linear Polarization)

イロト イヨト イヨト イヨト

CNR/INO

See B.Qiao et al PRL **108** (2012) 115002, for a different argument leading to similar estimate

Role of laser polarization

Suppress electron longitudinal oscillations and heating using Circular Polarization (CP) at normal incidence

Ions respond "smoothly" to steady component: CP supposed to optimize RPA and to enforce dominance at "any" intensity [Macchi et al, PRL **95** (2005) 185003]

Image: A matrix

CNR/INO

Favorable scaling with laser pulse fluence \mathscr{F} 100% efficiency in the relativistic limit "Perfect" monoenergeticity for "rigid", coherent sail motion

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

CNR/INO

Light Sail "accelerating mirror" model - II

Issues with LS:

- need of ultrathin (nm) foils and ultrahigh contrast pulses
- heating and transverse deformation: expansion, loss of planarity

• "slow" gain with time in the relativistic limit $\mathscr{E}_{ion}(t) \propto (2It/\rho \ell c^2)^{1/3}$ $(t \gg \rho \ell c^2/I, \mathscr{E}_{ion} > m_p c^2);$ acceleration length limited by diffraction?

 $V = \beta c$

D

CNR/INC

Andrea Macchi

Evidence of \mathscr{F}^2 "fast" scaling on VULCAN

VULCAN laser, RAL/CLF: Laser pulse: $t_p \simeq 800 \ fs$ $3 \times 10^{20} \ \text{W cm}^{-2}$ $\sim 10^9 \ \text{contrast}$ Target: $\sim 0.1 \ \mu \text{m}$ metal foil

イロン イヨン イヨン イヨン

CNR/INO

- ► multispecies (Z/A = 1, 1/2) peaks observed (Δε/ε ≃ 20%)
- peak energy scaling $\propto \left(a_0^2 \tau_p / \zeta\right)^2$
- polarization dependence weak or absent
- spectral separation of different Z/A species

S.Kar, K.Kakolee, B.Qiao, A.Macchi et al, PRL 109 (2012) 185006

Andrea Macchi

Open issues from LS-RPA experiments

Other LS investigations besides Kar et al.: Henig et al, PRL **103** (2009) 245003 Steinke et al, PRST-AB **16** (2013) 11303 Aurand et al, NJP **15** (2013) 33031.

- limited effect of CP vs LP
- non-thermal but not monoenergetic energy spectrum
- species separation (as in multispecies expansion)
- → too much heating (e.g. due to target deformation) leading to post-RPA broadening?

< ロ > < 同 > < 回 > < 回 >

CNR/INO

GEMINI experiment

- Laser pulse:
 - $t_p \simeq 40 \ fs$, $w_0 \simeq 3 \ \mu m$ $I \simeq 3.5 \times 10^{20} \ W \ cm^{-2}$ $(a_0 = 12.7)$
- Contrast: > 10⁹
- ► Targets: 10 50 nm C foils (with H impurities)

< E > < E >

CNR/INO

Ion energy vs thickness and polarization

- cut-off energy higher for CP vs LP for lowest thickness (both for protons and carbon ions)
- qualitative agreement with 2D PIC simulations (lines)

CNR/INO

Ion spectra from 2D simulations

Peaked spectra observed for protons with $\Delta \mathscr{E}/\mathscr{E} \simeq 20\%$

→ 프 → < 프 →</p>

CNR/INO

Andrea Macchi

Structures in proton beam profiles CP

CP

LP

CNR/INO

Pulse transmission vs polarization

Earlier breakthrough and stronger transmission for LP

Andrea Macchi

CNR/INO

Pushing LS forward: "unlimited" acceleration?

Transverse expansion of the target reduces surface density $\rho\ell$

- — "unlimited" acceleration possible at the expense of the number of ions
- \longrightarrow "faster" gain $E_{ion}(t) \simeq (2It/\rho \ell c^2)^{3/5}$ predicted

[S.V.Bulanov et al, PRL 104 (2010) 135003]

Mechanism is effective for *relativistic* ions ($\mathscr{F} \gg 1$)

Relativistic motion may also relax the relativistic transparency thanks to laser frequency downshift in the "sail" frame $\rightarrow a_0 \gtrsim \zeta$

イロン イヨン イヨン イヨン

3D simulations of RPA-LS with "extreme" pulses

Laser: 24 fs, 8 μ m spot, $I = 1.7 \times 10^{23}$ W cm⁻², U = 1.5 kJ Target: 1 μ m foil, $n_e = 1.1 \times 10^{23}$ cm⁻³, Z/A = 1, $\zeta \simeq a_0 \simeq 200$

[M.Tamburini, T.Liseykina, F.Pegoraro, A.Macchi, PRE 85 (2012) 016407]

CNR/INO

Andrea Macchi

3D, radiation friction, and numerical resolution effects

Comparison of spectra for 3D vs. 2D for S/P polarization (LP), same/higher resolution, with/without radiation friction (RR)

[M.Tamburini, T.Liseykina, F.Pegoraro, A.Macchi, PRE 85 (2012) 016407]

Andrea Macchi

CNR/INO

High energy gain in 3D RPA-LS simulations - I

Simulation with ALaDyn PIC code on CINECA/FERMI supercomputer up to longer times: 60 T vs 20 T

CP pulse: $\mathscr{E}_{max} \simeq 2.6 \text{ GeV} > 4$ times 1D model prediction Good agreement with Bulanov's $\sim t^{3/5}$ scaling in 3D

CNR/INO

Andrea Macchi

High energy gain in 3D RPA-LS simulations -II

Simulation with ALaDyn PIC code on CINECA/FERMI supercomputer up to longer times: 60 T vs 20 T

(4) E (4) E (4) E

CNR/INO

Energy increase stopped by the onset of transparency Higher gain (2X) with CP with respect to LP

High energy gain in 3D RPA-LS simulations -III

Simulation with ALaDyn PIC code on CINECA/FERMI supercomputer up to longer times: 60 T vs 20 T

C and H reach same energy/nucleon asymptotically for CP case

CNR/INO

イロト イヨト イヨト イヨト

Andrea Macchi

High energy gain in 3D RPA-LS simulations -IV

(Preliminary) Simulation with reduced energy: 4 μ m spot, $I = 4 \times 10^{22}$ W cm⁻², $\zeta \simeq a_0 \simeq 100$, U = 100 J

Ec [MeV/nucleon]

- Energy still higher than in 1D case, but lower gain with respect to fully relativistic regime

- Separation of species in energy spectrum 500 CP protons CP carbons 0 10 20 30 40 50 60 1(T]

イロン イヨン イヨン

CNR/INO

proton cutoff energy vs time a₀=140(99) w₀=3λ

Andrea Macchi

Growth of transverse structures

t = 20T

t = 35T

t = 50T

CNR/INO

Seed of transverse perturbation already appears during acceleration stage (well before transparency onset)

Andrea Macchi

Conclusions

- VULCAN and GEMINI data support typical features of "Light Sail" acceleration:
 - "fast" energy scaling
 - role of polarization
- several issues need to be addressed:
 - heating and post-acceleration effects
 - ion beam modulation (transverse instability?)
- 3D simulations for ELI-class lasers reveal high-gain regimes of relativistic ion acceleration for circular polarization

CNR/INO

instabilities possibly also present

Acknowledgments

- Work sponsored by the FIRB-MIUR, Italy (project SULDIS – "Superintense Ultrashort Laser-Driven Ion Sources")
- Use of supercomputing facilities at CINECA (Italy) via grant awards:
- IBM-SP6, ISCRA award (project TOFUSEX "TOwards FUII-Scale simulations of laser-plasma EXperiments" N.HP10A25JKT-2010)
- FERMI BlueGene/QTM, PRACE award (project LSAIL "Large Scale Acceleration of Ions by Lasers")

イロト イヨト イヨト イヨト