Extreme Plasmonics for Laser-driven Sources

Andrea Macchi

CNR, Istituto Nazionale di Ottica, Adriano Gozzini lab., Pisa, Italy

Dipartimento di Fisica Enrico Fermi, Università di Pisa, Italy

Symposium on Laser-created Plasmas Sources & Applications (LPSA), Campus Jussieu, Paris, August 1, 2019

Surface plasmon (polariton)

SP: a building block of plasmonics (mostly studied in the *linear* regime)

SP excitation — EM field confinement and enhancement

Interface between vacuum and "simple metal" (cold plasma):

$$\varepsilon_{1} = 1 \qquad \varepsilon_{2} = 1 - \frac{\omega_{p}^{2}}{\omega^{2}} = 1 - \frac{n_{e}}{n_{c}(\omega)} < -1$$

$$k = \frac{\omega}{c} \left(\frac{\omega_{p}^{2} - \omega^{2}}{\omega_{p}^{2} - 2\omega^{2}}\right)^{1/2} \qquad \omega < \frac{\omega_{p}}{\sqrt{2}} \qquad v_{p} = \frac{\omega}{k} < c$$

CNR/INO

Andrea Macchi

Three questions we started from

- Can we excite Surface Plasmon (polaritons) aka surface plasma waves using "extreme" laser pulses?
 (duration ~ 10 fs = 10⁻¹⁴ fs, intensity > 10¹⁸ W cm⁻² at focus)
- How do SPs behave (if they exist at all) for strong fields with relativistic electron dynamics (p_{osc} ~ eE/ω > m_ec)? non-trivial theoretical issues: nonlinear response, boundary conditions, kinetic damping, wavebreaking ...
 A. Macchi, Phys. Plasmas 25 (2018) 031906
- Can we exploit coupling to SPs for enhancement of "secondary" sources of laser-driven radiation? (ions, electrons, XUV rays)

イロト イヨト イヨト イヨト

CNR/INO

Femtosecond pulses with ultrahigh contrast needed to preserve sharp interface and surface structuring against hydrodynamic expansion and prepulse effects

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Andrea Macchi

Electron heating and acceleration by SP fields

Transverse electric field (E_x) enhances anomalous skin effect or "vacuum heating" (when electrons cross the target surface) \rightarrow enhanced laser absorption, "hot" electrons into the target \rightarrow energetic ions accelerated by sheath fields First experimental evidence: Ceccotti et al, PRL **111** (2013) 185001

 \boldsymbol{u}

CNR/INO

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Longitudinal electric field (E_y) accelerates electrons along the surface by "surfing" the SP (phase velocity $v_p = \omega/k \leq c$)

Andrea Macchi

Simple model of SP "surfing" acceleration

SP field on the vacuum side is electrostatic in the frame L'moving with phase velocity $\beta_p = v_p/c$ with respect to L (lab) $\Phi' = -(\gamma_p E_{SP}/k)e^{k'x}\sin k'y'$ $k' = k/\gamma_p$ $\gamma_p = (1 - \beta_p^2)^{-1/2}$ A "lucky" electron injected with velocity v_p goes downhill the potential $-e\Phi'$ acquiring an energy $W' = eE_{SP}/k'$

Observation of "surfing" acceleration on a SP

PRL 116, 015001 (2016)

PHYSICAL REVIEW LETTERS

week ending 8 JANUARY 2016

イロト イヨト イヨト イヨト

CNR/INO

Electron Acceleration by Relativistic Surface Plasmons in Laser-Grating Interaction

L. Fedeli, ^{1,2,*} A. Sgattoni,² G. Cantono, ^{3,4,1,2} D. Garzella,³ F. Réau,³ I. Prencipe,^{5,†} M. Passoni,⁵ M. Raynaud,⁶ M. Květoň,⁷ J. Proska,⁷ A. Macchi,^{2,1} and T. Ceccotti³ ¹Enrico Fermi Department of Physics, University of Pias, 56127 Pias, Italy ²National Institute of Optics, National Research Council (CNR/INO), u.o.s Adriano Gozzini, 56124 Pisa, Italy ³LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France ⁴Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France ⁵Department of Energy, Politecnico di Milano, Milan 20156, Italy ⁶Laboratoire des Solides irradiés, Ecole Polytechnique, CNRS, CEA/DSM/IRAMIS, Université Paris-Saclay, 91128 Palaiseau Cedex, France ⁷FNSPE, Czech Technical University, Prague 11519, Czech Republic (Received 30 June 2015; published 7 January 2016)

LaserLAB experiment at SLIC, CEA Saclay UHI laser: 25 fs pulse, 5×10^{19} Wcm⁻², $a_0 = 4.8$ contrast $\gtrsim 10^{12}$ at 5 ps

Andrea Macchi

Features of SP electron acceleration

Optimizing SP electron acceleration

G. Cantono et al, Phys. Plasmas 25 (2018) 031907

CNR/INO

イロト イヨト イヨト イヨト

Andrea Macchi

High harmonic emission

High laser harmonics (HH) up to the XUV range are emitted in specular reflection from flat targets

From gratings HH are separated at angles ϕ_{mn} according to:

 $\frac{n\lambda}{md} = \sin(\phi_i) + \sin(\phi_{mn})$

(*m*: harmonic order, *n*: diffraction order, ϕ_i : incidence angle) Expt: Cerchez et al, PRL **110** (2013) 065003

Idea: SP-enhanced HH with angular ** separation [Sim: Fedeli et al, APL 110 (2017) 051103]

CNR/INO

Andrea Macchi

Observation of SP-enhanced harmonics from gratings

PHYSICAL REVIEW LETTERS 120, 264803 (2018)

Extreme Ultraviolet Beam Enhancement by Relativistic Surface Plasmons

G. Cantono,^{1,2,3,4,*} L. Fedeli,⁵ A. Sgattoni,^{6,7} A. Denoeud,¹ L. Chopineau,¹ F. Réau,¹ T. Ceccotti,¹ and A. Macchi^{3,4}
 ¹LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
 ²Université Paris Sud, Paris, 91400 Orsay, France
 ³National Institute of Optics, National Research Council (CNRINO) A. Gozzini unit, 56124 Pisa, Italy
 ⁴Enrico Fermi Department of Physics, University of Pisa, 56127 Pisa, Italy
 ⁶LULI-UPMC: Sorbonne Universités, CNRS, École Polytechnique, CEA, 75005 Paris, France
 ⁷LESIA, Observatoire de Paris, CNRS, UPMC: Sorbonne Universites, 92195 Meudon, France

Experiment at SLIC, CEA Saclay UHI laser: 25 fs pulse, 2×10^{19} Wcm⁻², $a_0 = 3$ contrast $\gtrsim 10^{12}$ at 5 ps

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

SP-enhancement and optimization of HH

Simultaneous measurements of HH & electrons

HH optimization via density profile tailoring (scalelength $L \simeq 0.1 \lambda_L$) by a femtosecond prepulse Kahaly et al, PRL **110** (2013) 175001 **Notice:** $L \sim$ grating depth!

< <p>O > < <p>O >

Andrea Macchi

HH boosting by electron nanobunching

Electrons (\rightarrow) trapped and accelerated by the SP self-organize into short bunches

Coherent scattering of the laser field by the electron bunches produce bright quasi-collinear HH

similar to collective instability operation in a Free Electron Laser 2D simulations by L. Fedeli

CNR/INO

SP shortening by wavefront rotation

Wavefront Rotation (WFR): the effective incidence angle rotates during the laser pulse → "resonant" condition for a short temporal interval only

 \rightarrow excitation of a SP (much) shorter than the laser pulse?

WFR obtained by focusing a tilted wavefront pulse

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

Proposed scheme for few-cycle SP generation

Few-Cycle Surface Plasmon Polariton Generation by Rotating Wavefront Pulses

F. Pisani,^{*,†}[®] L. Fedeli,^{*,‡} and A. Macchi^{*,¶,†}[®]

[†]Enrico Fermi Department of Physics, University of Pisa, 56127 Pisa, Italy [‡]Department of Energy, Politecnico di Milano, 20133 Milano, Italy [¶]National Institute of Optics, National Research Council (CNR/INO), A.Gozzini unit, 56124 Pisa, Italy

F. Pisani, L. Fedeli, A. Macchi, ACS Photonics 5 (2018) 1068

CNR/INC

Andrea Macchi

A near "single-cycle" SP

MEEP¹ simulations of WFR pulse on Ag grating (only linear response, no nonlinear dynamics)

 $E = E(r, z, t) \exp(-i\omega_L t + ir\zeta t + \phi)$ $\zeta : WFR \text{ parameter}$ A 3.8 fs (~ 1.4 cycles) SP is generated from a 30 fs, $\lambda_L = 0.8 \ \mu \text{m}$ laser pulse

CNR/INO

¹ http://ab-initio.mit.edu/wiki/index.php/Meep

Andrea Macchi

WFR at high fields: PIC simulations (in progress)

Smilei) simulations

- $a_0 = 1$, $c\tau_L = 10\lambda$, $w = 6\lambda$, $\theta_{res} = 30^\circ$, $n_e = 20n_c$
- SP shortening observed
- impact on electrons

S. Marini, P. Kleji, M. Grech et al, Proc. EPS-DPP 2019

CNR/INO

Andrea Macchi

Summary

- Surface plasmon-enhanced emission has been demonstrated experimentally in the "relativistic" regime for MeV protons and electrons and for XUV photons
- Optimization of electrons via blazed gratings and of high harmonics via fs prepulse-produced sub-µm gradient
- → static and dynamic nanostructuring is effective!
 - New generation mechanism for high harmonics correlated with electrons
 - Particle-In-Cell simulations validated by comparison with experiments as a tool to explore new schemes

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

CNR/INO

 Concept for generation of near single-cycle surface plasmons tested by simulations in the linear regime

Andrea Macchi

Outlook - I

- Improve control in high field femtosecond plasmonics
- exploit wavefront rotation at high fields [PIC simulation in progress]
- optimized ad-hoc design of blazed gratings? [MEEP simulation in progress]
- → use of transient laser-induced gratings? S. Monchocé et al, Phys. Rev. Lett. **112** (2014) 145008
- → Test of plasmonic schemes in the high-field regime

Example: tapered waveguide for light nano-focusing and amplification Original plasmonic concept: M.Stockman, PRL **93** (2004) 137404 PIC simulation: L. Fedeli, PhD thesis "High Field Plasmonics" (Springer, 2017)

Andrea Macchi

Outlook -II

- Higher electron energies? Simple model suggests that acceleration length is limited by the laser spot size
- → line focus possible?
 - Feasibility and scaling at higher intensities?

"Parasitic" lanex image from PULSER laser (GIST, Korea) $I = 5 \times 10^{20}$ W/cm²

Beamed near-tangent emission from grating still observed

CNR/INO

Andrea Macchi

Funding acknowledgments

- LASERLAB-EUROPE, grant No. 284464, EU's 7th Framework Programme, proposals SLIC001693-SLIC002004.
- "Investissement d'Avenir" LabEx PALM (Grant ANR-10-LABX-0039)
- Triangle de la physique (contract nbr. 2014-0601T ENTIER)

イロト イヨト イヨト イヨト

CNR/INO

- Czech Science Foundation project No. 15-02964S
- ► PRACE & ISCRA & LISA awards for access to FERMI BlueGene/Q[™] and MARCONI at CINECA (Italy)

EXTRA SLIDES

Andrea Macchi

Extreme Plasmonics

CNR/INO

æ

<ロ> <同> <同> < 同> < 同>

3D simulations of the experiment Fully kinetic, EM Particle-In-Cell simulations with PICcante open source code² on 16384 cores of BlueGene/Q FERMI at CINECA, Italy

CNR/INO

Simulations confirm excitation of relativistic SP and reproduce measurements quantitatively and in detail!

Andrea Macchi

²available at http://aladyn.github.io/piccante

Preplasma optimization of HH

A further $\sim x \ 10$ enhancement of HH is obtained by adding a preplasma (pp) of scalelength $L \sim 0.1 \lambda_L$ in front of the target (effect known in flat targets with preplasma produced by controlled fs prepulse)

Issue: $L \sim \delta$ (grating depth) can coexist with modulation in real experimental conditions?

2D simulations Giada Cantono, PhD thesis, 2017

CNR/INO

Andrea Macchi

Effect of WFR sign

With WFR the "incidence point" ((centroid of laser field at the target plane) slides along the target surface

Sliding must be parallel to SP velocity ($\xi > 0$) for shortening effect (spoiled for $\xi < 0$)

b)

C

Normal incidence: excitation of two symmetric SPs) a): no rotation b): counterclockwise rotation c): clockwise rotation

CNR/INO

・ロト ・回ト ・ヨト ・ヨト

Andrea Macchi

a)

First evidence from proton emission

PRL 111, 185001 (2013)

PHYSICAL REVIEW LETTERS

week ending 1 NOVEMBER 2013

イロン イヨン イヨン

CNR/INO

Evidence of Resonant Surface-Wave Excitation in the Relativistic Regime through Measurements of Proton Acceleration from Grating Targets

T. Ceccotti,^{1,*} V. Floquet,¹ A. Sgattoni,^{2,3} A. Bigongiari,⁴ O. Klimo,^{5,6} M. Raynaud,⁷ C. Riconda,⁴ A. Heron,⁸ F. Baffigi,² L. Labate,² L. A. Gizzi,² L. Vassura,^{9,10} J. Fuchs,⁹ M. Passoni,³ M. Květon,⁵ F. Novotny,⁵ M. Possolt,⁵ J. Prokůpek,^{5,6} J. Proška,⁵ J. Přiškal,^{5,6} L. Štolcová,^{5,6} A. Velyhan,⁶ M. Bougeard,¹ P. D'Oliveira,¹ O. Tcherbakoff,¹ F. Réau,¹ P. Martin,¹ and A. Macchi^{2,11,7} ¹*CEA/IRAMISSPAM*, *F-91191 Gif-sur-Yvette*, France
 ²Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit "Adriano Gozzini," 56124 Pisa, Italy ³Dipartimento di Energia, Politecnico di Milano, 20133 Milano, Italy ³UDI furtimento di Energia, Politecnico di Milano, 20133 Milano, Italy ⁴UULI, Université Pierre et Marie Curie, Ecole Polytechnique, CRS, CEA, 75252 Paris, France ⁵FNSPE, Czech Technical University in Prague, CR-11519 Prague, Czech Republic ⁷CEA/DSM/LSJ, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France ⁸CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France ⁸ULUI, UMR7605, CNRS-CEA-Ecole Polytechnique-Paris 6, 91128 Palaiseau, France ⁹LULI, UMR7605, CNRS-CEA-Ecole Polytechnique Paris 6, 91128 Palaiseau, France ¹⁰Dipartimento SBAI, Università di Roma ¹²La Sago Bruno Pomtecorvo 3, I-56127 Pisa, Italy ¹¹Dipartimento di Fisca "Enrico Fermi," Università di Pisa, Largo Bruno Pomtecorvo 3, I-56127 Pisa, Italy

T. Ceccotti et al, Phys. Rev. Lett. 111 (2013) 185001

Andrea Macchi

