High Field, Short Pulse Plasmonics for Laser-Driven Sources

Andrea Macchi

CNR, Istituto Nazionale di Ottica, sez. Adriano Gozzini, Pisa, Italy

Dipartimento di Fisica Enrico Fermi, Università di Pisa, Italy

PPLA 2019, Pisa, Ocotber 29, 2019

Andrea Macchi

Main Contributing Authors

Giada Cantono^{3,4,2,1,*}, Andrea Sgattoni^{1,5}, Luca Fedeli^{6,2,1,3}, Francesco Pisani², Tiberio Ceccotti⁴, Samuel Marini⁵, Paula S. Kleij^{1,5}, Caterina Riconda⁵

¹CNR/INO, Pisa, Italy
 ²Dipartimento di Fisica Enrico Fermi, Università di Pisa, Italy
 ³CNRS-CEA/LIDYL, Universitè Paris-Saclay, Gif-sur-Yvette, France, and Universitè Paris Sud, Orsay, France
 ⁴CNRS-CEA/LIDYL, centre du Saclay, Gif-sur-Yvette, France
 ⁵Universitè P. et M. Curie, Sorbonne Universities, CNRS, École Polytechnique/LULI, CEA, Paris, France
 ⁶Dipartimento di Energia, Politecnico di Milano, Italy

< 注入 < 注入 :

CNR/INO

* Now at Department of Physics, University of Lund, Sweden

Other coworkers will be introduced in papers' headers!

Andrea Macchi

Two theses, three awards :-)

Giada Cantono *"Relativistic plasmonics for ultra-short radiation sources"* APS Outstanding Doctoral Thesis Research in Beam Physics Award 2019 & EPS-PPD PhD Research Award 2019 Luca Fedeli *"High field plasmonics"* EPS-PPD PhD Research Award 2017 & publication in Springer Theses collection

CNR/INO

Andrea Macchi

Outline

- Surface Plasmons driven by "extreme" pulses (high intensity, short duration)
- SP-enhanced short-pulse radiation sources
- protons
- electrons (direct SP "surfing" acceleration)
- high (XUV) harmonics with angular selection
- A concept for single-cycle SP generation
- Unipolar picosecond hot electron-driven SP
- beam steering of laser-accelerated protons

イロン イヨン イヨン イヨン

CNR/INO

Surface Plasmons at very high fields?

Inspired by "ordinary" (linear) plasmonics ...

- Can we excite Surface Plasmon (polaritons) aka surface plasma waves using "extreme" laser pulses? (duration ~ 10 fs - 1 ps, intensity > 10¹⁸ W cm⁻² at focus)
- ► Do such SPs exist at all in the regime of very strong fields, → i.e. relativistic electron dynamics (posc ~ eE/ω > mec)? not trivial issues: nonlinear response, kinetic damping, wavebreaking ...

イロト イヨト イヨト イヨト

CNR/INO

A. Macchi, Phys. Plasmas 25 (2018) 031906

 Can we exploit high field SPs for enhancement of "secondary" laser-driven radiation pulses? (ions, electrons, XUV rays)

Direct SP excitation by intense laser pulses

Assuming that SPs exist for very strong fields ...

► Ultrafast field ionization provides free electrons instantaneously \rightarrow any target material (e.g. plastic) becomes a simple metal $d = 2\pi/q$

$$\varepsilon_1 = 1$$
 $\varepsilon_2 \simeq 1 - \frac{\omega_p^2}{\omega^2} \ll 1$

Femtosecond pulses with ultrahigh contrast to preserve sharp interface and surface structuring against early target damage and ionization by "prepulses"

 $\omega_n \gg \omega$

θ

イロト イヨト イヨト イヨト

 ε_2

CNR/INO

Electron heating & acceleration by surface plasmons

SPs enhance EM field near the surface E_y , $|E_x|$ \rightarrow generation of energetic electrons

Transverse electric field (E_x) enhances anomalous skin effect or "vacuum heating" (when electrons cross the target surface) \rightarrow enhanced laser absorption, "hot" electrons into the target \rightarrow energetic ions accelerated by sheath fields

Longitudinal electric field (E_y) accelerates electrons along the surface by "surfing" the SP (phase velocity $v_f = \omega/k \lesssim c$)

イロト イヨト イヨト イヨト

CNR/INO

First evidence from proton emission

PRL 111, 185001 (2013)

PHYSICAL REVIEW LETTERS

week ending 1 NOVEMBER 2013

Evidence of Resonant Surface-Wave Excitation in the Relativistic Regime through Measurements of Proton Acceleration from Grating Targets

T. Ceccotti,^{1,*} V. Floquet,¹ A. Sgattoni,^{2,3} A. Bigongiari,⁴ O. Klimo,^{5,6} M. Raynaud,⁷ C. Riconda,⁴ A. Heron,⁸ F. Baffigi,² L. Labate,² L. A. Gizzi,² L. Vassura,^{9,10} J. Fuchs,⁹ M. Passoni,³ M. Květon,⁵ F. Novotny,⁵ M. Possolt,⁵ J. Prokůpek,^{5,6} J. Proška,⁵ J. Přiškal,^{5,6} L. Štolcová,^{5,6} A. Velyhan,⁶ M. Bougeard,¹ P. D'Oliveira,¹ O. Tcherbakoff,¹ F. Réau,¹ P. Martin,¹ and A. Macchi^{2,11,7} ¹*CEA/IRAMISSPAM*, *F-91191 Gif-sur-Yvette*, France
 ²Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit "Adriano Gozzini," 56124 Pisa, Italy ³Dipartimento di Energia, Politecnico di Milano, 20133 Milano, Italy ³UDI furtimento di Energia, Politecnico di Milano, 20133 Milano, Italy ⁴UULI, Université Pierre et Marie Curie, Ecole Polytechnique, CRS, CEA, 75252 Paris, France ⁵FNSPE, Czech Technical University in Prague, CR-11519 Prague, Czech Republic ⁷CEA/DSM/LSJ, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France ⁸CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France ⁸ULUI, UMR7605, CNRS-CEA-Ecole Polytechnique-Paris 6, 91128 Palaiseau, France ⁹LULI, UMR7605, CNRS-CEA-Ecole Polytechnique Paris 6, 91128 Palaiseau, France ¹⁰Dipartimento SBAI, Università di Roma ¹²La Sago Bruno Pomtecorvo 3, I-56127 Pisa, Italy ¹¹Dipartimento di Fisca "Enrico Fermi," Università di Pisa, Largo Bruno Pomtecorvo 3, I-56127 Pisa, Italy

T. Ceccotti et al, Phys. Rev. Lett. 111 (2013) 185001

Andrea Macchi

CNR/INO

イロン イヨン イヨン

Andrea Macchi

Observation of "surfing" acceleration on a SP

PRL 116, 015001 (2016)

PHYSICAL REVIEW LETTERS

week ending 8 JANUARY 2016

Electron Acceleration by Relativistic Surface Plasmons in Laser-Grating Interaction

L. Fedeli, ^{1,2,*} A. Sgattoni,² G. Cantono,^{3,4,1,2} D. Garzella,³ F. Réau,³ I. Prencipe,^{5,†} M. Passoni,⁵ M. Raynaud,⁶ M. Květoň,⁷ J. Proska,⁷ A. Macchi,^{2,-1} and T. Ceccotti³ ¹Enrico Fermi Department of Physics, University of Pisa, 50127 Pisa, Italy ²National Institute of Optics, National Research Council (CNR/INO), u.o.s Adriano Gozzini, 56124 Pisa, Italy ³LIDYL, CEA, CNRS, University of Paris Sud, Orsay 91405, France ⁴University of Paris Sud, Orsay 91405, France ⁵Department of Energy, Politecnico di Milano, Milan 20156, Italy ⁶Laboratoire des Solides irradiés, Ecole Polytechnique, CNRS, CEA/DSM/IRAMIS, Université Paris-Saclay, 91128 Palaiseau Cedex, France ⁷FNSPE, Czech Technical University, Prague 11519, Czech Republic (Received 30 June 2015; published 7 January 2016)

L. Fedeli et al, Phys. Rev. Lett. 116 (2016) 015001

CNR/INO

Andrea Macchi

Features of SP electron acceleration

Optimizing SP-enhanced electron emission

イロト イヨト イヨト イヨト

CNR/INO

G. Cantono et al, Phys. Plasmas 25 (2018) 031907

Andrea Macchi

High harmonic emission

High laser harmonics (HH) up to the XUV range are emitted in specular reflection from flat targets

From gratings HH are separated at angles ϕ_{mn} according to:

 $\frac{n\lambda}{md} = \sin(\phi_i) + \sin(\phi_{mn})$

(*m*: harmonic order, *n*: diffraction order, ϕ_i : incidence angle) Expt: Cerchez et al, PRL **110** (2013) 065003

Idea: SP-enhanced HH with angular ** separation [Sim: Fedeli et al, APL 110 (2017) 051103]

Andrea Macchi

Observation of SP-enhanced harmonics from gratings

PHYSICAL REVIEW LETTERS 120, 264803 (2018)

Extreme Ultraviolet Beam Enhancement by Relativistic Surface Plasmons

G. Cantono,^{1,2,3,4,*} L. Fedeli,⁵ A. Sgattoni,^{6,7} A. Denoeud,¹ L. Chopineau,¹ F. Réau,¹ T. Ceccotti,¹ and A. Macchi^{3,4}
 ¹LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gifsur-Yvette, France
 ²Université Paris Sud, Paris, 91400 Orsay, France
 ³National Institute of Optics, National Research Council (CNR/INO) A. Gozzini unit, 56124 Pisa, Italy
 ⁴Enrico Fermi Department of Physics, University of Pisa, 56127 Pisa, Italy
 ⁵Department of Energy, Politecnico di Milano, 2013 Milano, Italy
 ⁶LUII-UPMC: Sorbonne Universités, CNRS, École Polytechnique, CEA, 75005 Paris, France
 ⁷LESIA, Observatoire de Paris, CNRS, UPMC: Sorbonne Universites, 92195 Meudon, France

G. Cantono et al, Phys. Rev. Lett. 120 (2018) 264803

(ロ) (四) (三) (三) (三) (三) (○)

CNR/INO

Andrea Macchi

SP-enhancement and optimization of HH

Simultaneous measurements of HH & electrons

HH optimization via density profile tailoring (scalelength $L \simeq 0.1 \lambda_L$) by a femtosecond prepulse Kahaly et al, PRL **110** (2013) 175001 **Notice:** $L \sim$ grating depth!

 ω_m/ω

CNR/INO

Andrea Macchi

HH boosting by electron nanobunching

Electrons (\rightarrow) trapped and accelerated by the SP self-organize into short bunches

Coherent scattering of the laser field by the electron bunches produce bright quasi-collinear HH

similar to collective instability operation in a Free Electron Laser 2D simulations by L. Fedeli

CNR/INO

SP shortening by wavefront rotation

Wavefront Rotation (WFR): the effective incidence angle rotates during the laser pulse → "resonant" condition for a short temporal interval only

→ excitation of a SP (much) shorter than the laser pulse?

WFR obtained by focusing a tilted wavefront pulse

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Andrea Macchi

Proposed scheme for few-cycle SP generation

Few-Cycle Surface Plasmon Polariton Generation by Rotating Wavefront Pulses

F. Pisani,*^{,†}[®] L. Fedeli,^{*,‡} and A. Macchi^{*,¶,†}[®]

[†]Enrico Fermi Department of Physics, University of Pisa, 56127 Pisa, Italy [‡]Department of Energy, Politecnico di Milano, 20133 Milano, Italy [¶]National Institute of Optics, National Research Council (CNR/INO), A.Gozzini unit, 56124 Pisa, Italy

F. Pisani, L. Fedeli, A. Macchi, ACS Photonics 5 (2018) 1068

CNR/INC

Andrea Macchi

A near "single-cycle" SP

MEEP¹ simulations of WFR pulse on Ag grating (only linear response, no nonlinear dynamics)

 $E = E(r, z, t) \exp(-i\omega_L t + ir\zeta t + \phi)$ $\zeta : WFR \text{ parameter}$ A 3.8 fs (~ 1.4 cycles) SP is generated from a 30 fs, $\lambda_L = 0.8 \ \mu\text{m}$ laser pulse

CNR/INO

¹ http://ab-initio.mit.edu/wiki/index.php/Meep

Andrea Macchi

WFR at high fields: PIC simulations (work in progress)

Smilei) Particle-In-Cell code $a_0 = 1, c\tau_L = 10\lambda, w = 6\lambda, \theta_{res} = 30^\circ, n_e = 20n_c$ - SP shortening observed - impact on electrons S. Marini, P. Kleij, M. Grech et al, Proc. EPS-DPP 2019

Andrea Macchi

CNR/INO

First observation of unipolar picosecond SP

PRL 102, 194801 (2009)

PHYSICAL REVIEW LETTERS

week ending 15 MAY 2009

CNR/INO

Ś

Laser-Driven Ultrafast Field Propagation on Solid Surfaces

K. Quinn,^{1,*} P. A. Wilson,¹ C. A. Cecchetti,^{1,†} B. Ramakrishna,¹ L. Romagnani,¹ G. Sarri,¹ L. Lancia,² J. Fuchs,²
 A. Pipahl,³ T. Toncian,³ O. Willi,³ R. J. Clarke,⁴ D. Neely,⁴ M. Notley,⁴ P. Gallegos,⁴ 5 D. C. Carroll,⁵ M. N. Quinn,⁵ X. H. Yuan,⁵ P. McKenna,⁵ T. V. Liseykina,^{6,4} A. Macchi,⁷ and M. Borghesi¹
 ¹Department of Physics and Astronomy, Queen's University Belfast, Belfast B77 INN, United Kingdom

⁷Laboratiore pour l'Utilisation des Lavers Intenses, École Polytechnique, 91/28 Palaiseau, France ³Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany ⁴Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxfonkhire OX11 0QX, United Kingdom ⁵SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom ⁶Max Planck Institute for Nuclear Physics, Heidelberg, Germany ⁷CNR/INFM/polyLAB, Dipartimento di Fisica "E. Fermi," Pisa, Italy (Received 28 January 2009; published 14 May 2009)

Andrea Macchi

Unipolar SP driven by hot electron sheath

Escaping "hot" electrons in laser-solid interaction act as a pulsed giant dipole antenna for unipolar SPs which drive the charge neutralization of the target

probed SP by a picosecond proton pulse 45

K. Quinn et al PRL 103 (2009) 194801

55

60 65

50

CNR/INO

Andrea Macchi

Efficient propagation along a folded wire

The unipolar pulse propagates as a Sommerfeld-Zenneck wave with low losses and dispersion along ~cm distances carrying ~kA current and ~ 10^8 V m⁻¹ electric field Experiment on ARCTURUS laser (30 fs, $\geq 10^{20}$ W cm⁻²), Düsseldorf S. Kar et al, Nature Comm. **7** (2016) 10792 Demonstrated also on TARANIS (600 fs, $\geq 10^{19}$ W cm⁻²), Belfast H. Ahmed et al, Scient. Rep. **7** (2017) 10891 and recently on VULCAN (H. Ahmed et al, in preparation)

CNR/INO

Andrea Macchi

Application: steering of laser-accelerated protons

ARTICLE

Received 22 Jun 2015 | Accepted 20 Jan 2016 | Published 18 Apr 2016

DOI: 10.1038/ncomms10792

OPEN

Guided post-acceleration of laser-driven ions by a miniature modular structure

Satyabrata Kar¹, Hamad Ahmed¹, Rajendra Prasad², Mirela Cerchez², Stephanie Brauckmann², Bastian Aurand², Giada Cantono³, Prokopis Hadjisolomou¹, Ciaran L.S. Lewis¹, Andrea Macchi^{3,4}, Gagik Nersisyan¹, Alexander P.L. Robinson⁵, Anna M. Schroer², Marco Swantusch², Matt Zepf^{1,6,7}, Oswald Willi² & Marco Borghesi¹

S. Kar et al, Nature Comm. 7 (2016) 10792

Andrea Macchi

CNR/INO

Collimation and post-acceleration of protons

(a)

SP traveling along coil structure: synchronization with protons longitudinal E-field for energy enhancement radial E-field for collimation

(b)

Andrea Macchi

Summary

- Successful exploitation of "relativistic" propagating surface plasmons for improvements of short pulse sources (protons, electrons, XUV harmonics)
- Spatio-temporal optimization at sub-micrometer and femtosecond scales demonstrated
- New concept for SPP shortening at the sub-cycle limit
- Laser-driven transient charge separation as antenna for unipolar SP exploited for steering of laser-accelerated protons

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Outlook - I

- Improve control in high field femtosecond plasmonics
- exploit wavefront rotation at high fields [PIC simulation in progress]
- optimized ad-hoc design of blazed gratings? [MEEP simulation in progress]
- → use of transient laser-induced gratings? S. Monchocé et al, Phys. Rev. Lett. **112** (2014) 145008
- → Test of plasmonic schemes in the high-field regime

Example: tapered waveguide for light nano-focusing and amplification Original plasmonic concept: M.Stockman, PRL **93** (2004) 137404 PIC simulation: L. Fedeli, PhD thesis "High Field Plasmonics" (Springer, 2017)

Outlook - I

- Improve control in high field femtosecond plasmonics
- exploit wavefront rotation at high fields [PIC simulation in progress]
- optimized ad-hoc design of blazed gratings? [MEEP simulation in progress]
- → use of transient laser-induced gratings? S. Monchocé et al, Phys. Rev. Lett. **112** (2014) 145008
- --- Test of plasmonic schemes in the high-field regime

Experimental activity at CNR/INO/ILIL in Pisa with 100 TW laser? (pulse contrast enhancement under development)

CNR/INO

Andrea Macchi

Outlook -II

- Higher electron energies? Simple model suggests that acceleration length is limited by the laser spot size
- → line focus possible?
 - Feasibility and scaling at higher intensities?

"Parasitic" lanex image from PULSER laser (GIST, Korea) $I = 5 \times 10^{20}$ W/cm²

Beamed near-tangent emission from grating still observed

CNR/INO

 Exploit picosecond SP for THz pulse generation? (near single-cycle, high fields)

Andrea Macchi

Two review papers

 A. Macchi, G. Cantono, L. Fedeli, F. Pisani, T. Ceccotti, Extreme high field plasmonics: electron acceleration and XUV harmonic generation from ultrashort surface plasmons, Phys. Plasmas 26 (2019) 042114

[Special issue with invited talks from APS/DPP meeting 2018]

A. Macchi,

Surface plasmons in superintense laser-solid interactions, Phys. Plasmas **25** (2018) 031906 [Invited paper for Special Topic collection "Plasmonics and solid

・ロン ・回 と ・ ヨ と ・ ヨ と

CNR/INO

state physics"]

Funding acknowledgments

- LASERLAB-EUROPE, grant No. 284464, EU's 7th Framework Programme, proposals SLIC001693-SLIC002004.
- "Investissement d'Avenir" LabEx PALM (Grant ANR-10-LABX-0039)
- Triangle de la physique (contract nbr. 2014-0601T ENTIER)
- Czech Science Foundation project No. 15-02964S
- ► PRACE & ISCRA & LISA awards for access to FERMI BlueGene/QTM and MARCONI at CINECA (Italy)

イロト イヨト イヨト イヨト

CNR/INO

EXTRA SLIDES

Andrea Macchi

≣ ୬९९ CNR/INO

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶

"Ultraclean" high-contrast pulses

 $\begin{array}{ll} \mbox{lonization} & \mbox{shutters} \\ \mbox{("plasma mirrors")} \\ \mbox{yield} & \mbox{pulse-to-} \\ \mbox{prepulse} & \mbox{intensity} \\ \mbox{contrast} > 10^{11} \\ \end{array}$

→ sub-wavelength structuring is preserved until the short pulse interaction

Time

CNR/INO

< ロ > < 同 > < 回 > < 回 >

B. Dromey et al, Rev. Sci. Instrum. **75** (2004) 645
A. Levy et al, Opt. Lett. **32** (2007) 310
C. Thaury et al, Nature Physics **3** (2007) 424
figure from P. Gibbon, *ibid.* 369

Andrea Macchi

Simple model of SP "surfing" acceleration

SP field on the vacuum side is electrostatic in the frame L'moving with phase velocity $\beta_p = v_p/c$ with respect to L (lab) $\Phi' = -(\gamma_p E_{SP}/k)e^{k'x}\sin k'y'$ $k' = k/\gamma_p$ $\gamma_p = (1 - \beta_p^2)^{-1/2}$ A "lucky" electron injected with velocity v_p goes downhill the potential $-e\Phi'$ acquiring an energy $W' = eE_{SP}/k'$

3D simulations of the experiment Fully kinetic, EM Particle-In-Cell simulations with PICcante open source code² on 16384 cores of BlueGene/Q FERMI at CINECA, Italy

Simulations confirm excitation of relativistic SP and reproduce measurements quantitatively and in detail!

Andrea Macchi

CNR/INO

²available at http://aladyn.github.io/piccante

Preplasma optimization of HH

A further $\sim x \ 10$ enhancement of HH is obtained by adding a preplasma (pp) of scalelength $L \sim 0.1\lambda_L$ in front of the target (effect known in flat targets with preplasma produced by controlled fs prepulse)

Issue: $L \sim \delta$ (grating depth) can coexist with modulation in real experimental conditions?

2D simulations Giada Cantono, PhD thesis, 2017

CNR/INO

Andrea Macchi

Effect of WFR sign

With WFR the "incidence point" ((centroid of laser field at the target plane) slides along the target surface

Sliding must be parallel to SP velocity ($\xi > 0$) for shortening effect (spoiled for $\xi < 0$)

C

b)

Normal incidence: excitation of two symmetric SPs) a): no rotation b): counterclockwise rotation c): clockwise rotation

・ロト ・回ト ・ヨト ・ヨト

Andrea Macchi

a)

