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The basic idea of Shock Acceleration - I

A superintense laser pulse incident on an overdense plasma
(ω < ωp i.e. ne > nc = meω2/4πe2)

heats up electrons up to high (possibly relativistic)
temperatures
pushes the laser-plasma surface at the “hole boring”
velocity
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High temperature + strong piston (hopefully) drives fast

Collisionless Shock Wave
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The basic idea of Shock Acceleration - II

According to standard theory (D. A. Tidman and N. A. Krall, Shock
Waves in Collisionless Plasmas (Wiley/Interscience, New York, 1971),
chap. 6.)

a Collisionless Shock of velocity υs is preceded by
“reflected” ions of velocity υi = 2υs

necessary condition for ion reflection

υs > 1.6cs cs = (Te/me)1/2

otherwise if cs < υs < 1.6cs a non-reflecting soliton may exist

If υs & υhb the reflected ions have high (> MeV) energy and are
monochromatic (if υs is constant); appealing and possibly
dominant ion acceleration mechanism
[L.O.Silva et al, Phys. Rev. Lett. 92, 015002 (2004)]
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Short-pulse driven “Solitary Acoustic Wave”

1D PIC simulation: short (τ = 4T ), intense (a0 = 16) laser pulse
on an overdense (ne = 20nc), cold (Ti = 0) proton plasma slab
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Short-pulse driven “Solitary Acoustic Wave”

It looks like a soliton . . .



Short-pulse driven “Solitary Acoustic Wave”

. . . but occasionally reflects a short bunch of ions!
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Short-pulse driven “Solitary Acoustic Wave”

Acceleration is “pulsed”, solitary wave almost stays unchanged
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Short-pulse driven “Solitary Acoustic Wave”

Eventually a long-lasting “shock-like” reflection occurs . . .
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Short-pulse driven “Solitary Acoustic Wave”

. . . and the solitary wave damps out



Evolution of ion spectrum

Monoenergetic peak smears out as the solitary wave damps
(reflection from a moving, slowing down wall)



Our understanding and (supposed) lesson learned

For cold ions a a genuine shock wave can’t form (can’t
“pick up” a fraction of “resonant” ions for the reflected trail)
A solitary wave can reflect ions as short-duration,
small-number, monoenergetic bunches, otherwise damps
attempting to reflect all background ions

Hint: the ion distribution plays an important part
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Hot ions: steady ion reflection

Same 1D PIC simulation, but now Ti = 5 keV



Hot ions: steady ion reflection
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It looks like a shock which steadily reflects ions . . .
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Oscillations of the solitary wave field

Red: max(Ex) > 0 Blue: min(Ex) > 0

Oscillation mode: collective motion of the electron cloud across
the ion density spike



Solitary wave breaking in expanding sheath

Shorter slab: solitary wave reaches rear side sheath



Solitary wave breaking in expanding sheath
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Solitary wave breaking in expanding sheath



Solitary wave breaking in expanding sheath

Wave breaks at “resonant” point
[see also Zhidkov et al, Phys. Rev. Lett. 89, 215002 (2002)]



Conclusions (preliminary)

Short-pulse, superintense laser interaction with overdense
plasmas may generate collisionless shocks, solitons, or
something “hybrid”: a solitary wave with pulsed reflection
of ions
The initial ion distribution plays an important part
Monoenergeticity might be at odd with efficiency: large
numbers of reflected ions lead to wave loading and slowing
down
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