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Nice example of acceleration by a strong wave

From: T.Katsouleas, Nature 444 (2006) 688
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Outline

Ï Motivation: nonlinear, relativistic longitudinal waves are the
basis of plasma-based electron accelerators

Ï Purpose: show to newcomers of the field an “easy route”
(with respect to existing literature) to basic properties of
nonlinear plasma waves and estimates of the acceleration
potential

Ï Level: absolute beginners
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Starting point: cold plasma oscillations

One-dimensional
displacement of
electrons, described
by s(x, t ).
(Lagrangian coordinates)
- Ions are immobile
- Assume no overturn
between electrons

x+ dxx

s(x+ dx, t)

x+ dx+ s(x+ dx, t)x+ s(x, t)

s(x, t)
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Starting point: cold plasma oscillations

n0dx = ne (x, t )
[
x +dx + s(x +dx, t )−x − s(x, t )

]
ne (x, t ) = n0

1+∂x s(x, t )
.

assuming small displacements
|∂x s(x, t )|¿ 1

ne (x, t ) ' n0 [1−∂x s(x, t )] .

Electric field (from Gauss’s law)

Ex = Ex (x, t ) = 4πn0es(x, t ) ,

x+ dxx

s(x+ dx, t)

x+ dx+ s(x+ dx, t)x+ s(x, t)

s(x, t)
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Starting point: cold plasma oscillations

Equation of motion and its general solution

me∂
2
t s(x, t ) =−eEx (x, t ) =−4πn0e2s(x, t ) ,

s(x, t ) =Re[s̃(x)e−iωp t ] = 1

2

[
s̃(x)e−iωp t + s̃∗(x)e+iωp t

]
,

with the plasma frequency ωp =
(

4πe2n0

me

)1/2

Oscillations are localized and do not propagate
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Plasma oscillations from the wave equation
General wave equation for E from Maxwell’s equations1(

∇2 − 1

c2 ∂
2
t

)
E−∇(∇·E) = 4π

c2 ∂t J

Assume monochromatic fields e.g. E(r, t ) = Ẽ(r)e−iωt and use
linearized, non-relativistic equations (|ue |¿ c)

∂t ue =− e

me
E , J =−ene ue , J̃ =− i

4π

ω2
p

ω
Ẽ ,

(
∇2 + ω2

c2

)
Ẽ−∇(∇· Ẽ) =

ω2
p

c2 Ẽ (Helmoltz equation)

1Eulerian coordinates are used here
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Transverse electromagnetic waves
Taking Ẽ(r) = E0εei k·r , ∇·E = 0 , k ⊥ ε , B = k×E/k(

∇2 +ε(ω)
ω2

c2

)
Ẽ =

(
−k2 +n2(ω)

ω2

c2

)
Ẽ = 0

ε(ω) = n2(ω) = 1−
ω2

p

ω2 ε(ω) dielectric function, n(ω) refractive index

dispersion relation k2c2 = ε(ω)ω2 =ω2 −ω2
p

Phase and group velocities (assuming ω>ωp i.e. k real)

υp = ω

k
= c

(
1−

ω2
p

ω2

)−1/2

> c υg = ∂ω

∂k
= c

(
1−

ω2
p

ω2

)1/2

< c
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Longitudinal electrostatic waves

Taking Ẽ(r) = E0εei k·r , k ∥ ε , ∇·E = k ·E , B = 0

∇(∇· Ẽ) =∇2Ẽ ⇒ (ω2 −ω2
p )Ẽ = 0 ⇒ ω=ωp

Phase velocity is arbitrary, group velocity is zero

υp = ω

k
= ωp

k
, υg = ∂ω

∂k
= 0 .

Since these ES solutions do neither propagate nor transport
energy they may be called “fake” waves . . .
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From fake to wake

Idea: let plasma oscillations be excited by a moving perturbation

Bodensee at Bad Schachen,
Lindau, Germany.
Photo by Daderot, Wikipedia,
public domain.
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Wake plasma wave

Assume a delta-kick force pulse f (x, t ) = me u0δ(t −x/V )
to travel with velocity V through the plasma
Electrons located at x are displaced (by s0 = u0/ωp) at the
overtaking time t = x/V :

s(x, t ) =
{

0 (t < x/V ) ,
s0 cos

(
ωp (t −x/V )

)
(t > x/V ) .

The phase velocity of the wake wave υp =V “by construction”
and this determines k =ωp /V .
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Wake plasma wave

Example: a charged
particle or bunch
penetrating a plasma
loses its energy to the
wake (basic mech-
anism of collective
stopping)

J. Dawson, Phys. Fluids 5 (1962) 445
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Plasma wave breaking

The electron density becomes singu-
lar when ∂x s(x, t ) =−1, i.e. the trajec-
tories of electrons starting at x over-
lap with those starting at x +dx

ne (x, t ) = n0

1+∂x s(x, t )
−→∞ .

The regular “hydrodynamic” structure is lost: the wave breaks

Note that ∂x s(x, t ) = −1 violates the assumption of small
amplitude oscillations: a nonlinear analysis is required

s(x, t)

s(x+ dx, t)

x x+ dx
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A (not-so-correct) wavebreaking criterion
The electron density must obviously remain positive:

ne = n0 +δne > 0 ⇔ |δne | < n0

For an harmonic wave

s(x, t ) = s0 cos(kx −ωp t ) = s0 cos
(
k(x −υp t )

)
the |δne | ≤ n0 condition is equivalent to

ks0 ≤ 1 , u0 ≤ υp , E0 ≤ meω
2
pυp /e

(u0, E0: amplitudes of electron velocity and electric field)

Objection: when the wave becomes nonlinear, it cannot be
considered as harmonic!
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Principle of electron acceleration

LINAC principle: an electron of
velocity v crosses a cavity of length
L within half the period of oscillation
of the electric field T so to “see” the
electric field in a constant direction
−→ L ' vT /2

For strongly relativistic electrons

L ' cT /2 =πc/ω

(≈ independent of electron energy)

EE

v

vT/2
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Plasma wake as the perfect wave?

A plasma wave with phase velocity
υp can be seen as a sequence of
“cavities” with T = π/ωp and L = υp Tp

which may accelerate electrons
injected with velocity close to υp .

For a plasma wake υp is set by
the driver and E is only limited by
wavebreaking (not by electrical
breakdown of cavity components).

EE

v

vT/2
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Laser(-Plasma) wakefield accelerator
Tajima & Dawson’s famous proposal:
[Phys. Rev. Lett. 43, 267 (1979)]
use short laser pulses as a driver for wake
plasma waves
(as an alternative: use a relativistic particle
bunch)

A 3D simulation
Fonseca et al,
Plasma Phys.
Control. Fusion
50, 124034 (2008)
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Estimate the energy gain

In a reference frame S′

moving with the phase
velocity υp with respect to
the laboratory S the wave
field is time-independent
and can be derived by a
static potential.

A test electron moving from the top to the bottom of the potential
hill with initial velocity υ′x0 = 0 (hence υx0 = υp in the lab frame)
will get the maximum energy gain possible.

x′

−eΦ(x′)

+eE0/k
′

−eE0/k
′

e−
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The wave frame

(we use the complex notation for brevity)
Ï E-field in S: Ex = E0e−iωp (t−x/υp ) = E0ei kx−iωp t

Lorentz boost to S′ with β=βp x̂ , βp = υp /c:
Ï frequency & wavevector in S′:{

ω′ = γp (ωp −kυp ) = 0
k ′ = γp

(
k −ωpυp /c2

)= k/γp

where γp = (1−β2
p )−1/2

Ï E-field in S′: E ′
x = E0ei k ′x ′

, E ′
0 = E0

(E∥ is unchanged by Lorentz transformations)

Ï electric potential in S′: Φ′(x ′) = i

k ′ E0ei k ′x ′

(E ′
x =−∂′xΦ(x ′))
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Maximum energy gain in the wave frame

Potential energy

U ′ =U ′(x ′) =−eRe(Φ′) = eE0

k ′ sin(k ′x ′)
Maximum energy gain in S′

W ′ =max(U ′)−min(U ′) = 2eE0

k ′
Energy-momentum in S′

p ′
µ = (p ′

0, p ′
x ) =

(
W ′/c, (W

′2 −m2
e c4)1/2/c

)
(being pµpµ = p2

0 −p2
x = m2

e c2)

The maximum energy Wmax in the lab frame S can be ob-
tained by back-Lorentz transformation of p ′

µ .

x′

−eΦ(x′)

+eE0/k
′

−eE0/k
′

e−
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Tajima & Dawson’s maximum energy estimate

Ï Assume υ' c i.e. βp ' 1

Ï Assume E0 =
meω

2
p vp

e
(wavebreaking limit)

then p ′
x À me c , p ′

0 ' p ′
x c ,

Ï p0 = γp (p ′
0 +βp p ′

x ) ' 2γp p ′
0 = 4me cγ2

p

The maximum foreseeable energy for the “luckiest”
electron (optimal initial onditions) is

Wmax = p0c = 4me c2γ2
p

• Objection! The incorrect wavebreaking limit was used . . .
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Nonlinear relativistic approach
Since υp ' c we expect the electron dynamics near the
wavebreaking threshold to be strongly relativistic.
Start from the 1D relativistic equation of motion for the fluid
electron momentum pex = pex (x, t ) in an ES field Ex = Ex (x, t ):

d
dt

pex = (∂t +uex∂x )pex =−eEx ,

pex = meγe uex , γe = (1−u2
ex /c2)−1/2 = (1+p2

ex /m2
e c2)−1/2 .

In the wave frame ∂′t = 0 and u′
ex = u′

ex (x ′) etc . . .

u′
ex∂

′
x p ′

ex =−eE ′
x = e∂′xΦ

′

This can be integrated to give

me c2γ′e −eΦ′ = cost. . (1)
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Zero current condition
In a purely electrostatic (B = 0), time-independent configuration
the current density vanishes:

4π

c
J =∇×B− 1

c
∂t E = 0−0 = 0 .

We impose J ′x = J ′ex + J ′i x = 0 in the wave frame

J ′ex = −en′
e u′

ex

J ′i x = +en′
i u′

i x = e(γp n0)(−υp )

(the ion fluid in S′ has a density γp times the value in S due to
Lorentz contraction and a steady velocity −υp). Thus

n′
e u′

ex +γp n0υp = 0 . (2)
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Complete equations and normalizations

To close the system Poisson’s eq. (3) is added to (1) and (2):

∂
′2
x Φ

′ = 4πe(n′
e −n′

0) = 4πe(n′
e −n0γp )

It is now convenient to put the system in dimensionless form

τ≡ ωp x ′

c
, Ne ≡

n′
e

n0
, p ≡ p ′

x

me c
, φ≡ eΦ′

me c2 .

and write simply γ for γe :

γ≡ γe = (p2 +1)1/2 .

(primes are dropped for brevity).
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Pseudopotential equation
Three equations for φ, p and γ

all functions of τ= ωp x ′

c
:


∂2
τφ = Ne −γp ,

γ−φ = cost. ,

Ne
p

γ
= −γpβp ,

Eliminate φ and p as functions of γ using p =−(γ2 −1)1/2

(p < 0 because electrons flow in the direction opposite to the boost)
to obtain an equation for γ= γ(τ):

∂2
τγ= γpβp

γ

(γ2 −1)1/2
−γp ≡− ∂

∂γ
U (γ) ,

U (γ) = γp
(
γ−βp (γ2 −1)1/2) .

[A. C. L. Chian, Plasma Phys. 21, 509 (1979)]
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Pseudopotential analysis

∂2
τγ=− ∂

∂γ
U (γ) (3)

≡ Newton’s equation
of motion for a “pseu-
doparticle” of coordi-
nate γ = γ(τ) in the
potential
U =U (γ).

“Pseudo-energy” conservation:
1

2
(∂τγ)2 +U (γ) = E

1 γmin γp γmax

γ

1

E

γp

U
(γ
)
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Pseudopotential analysis - II

The value of “pseu-
doenergy” E deter-
mines the type of
trajectory γ(τ) which
corresponds to the
waveform γ

(ωp

c
x ′

)
.

If E < max(U ) = γp the pseudoparticle bounces back and forth
between γmin and γmax: the waveform is periodic

1 γmin γp γmax

γ

1

E

γp

U
(γ
)
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Linear harmonic wave

If E & min(U ) = 1 the pseudoparticle
performs small amplitude oscillations
around γ = γp (bottom of potential
well):
harmonic waveform

Note that the electric field
E = −∂τφ = −∂τγ is (minus
the) pseudovelocity ∂τγ

Numerical solution of EoM (3)
for γp = 9 and E = 1.0+2.445×10−4

8.8

9.0

9.2

γ

-0.02

0.0

+0.02

E

0 50 100 150 200

τ

-0.002

0.0

+0.002

N
e
−
γ
p
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Nonlinear anharmonic wave - I

Increasing E the pseudoparticle per-
forms anharmonic, asymmetric oscil-
lations in the well with strong accel-
eration on one side and weak on the
other:

“sawtooth” profile for pseu-
dovelocity (E) and spiky
profile for Ne = γp −∂τE

Numerical solution of EoM (3)
for γp = 9 and E = 1.8

10.0

20.0

30.0

γ
-1.0

0.0

+1.0

E

0 50 100 150 200

τ

0.0

0.2

0.4

0.6

N
e
−
γ
p
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Nonlinear anharmonic wave - II

When E approaches max(U ) = γp the
pseudoparticle has extremely differ-
ent accelerations and half-oscillation
times on either side of the well:

the pseudovelocity (E) be-
comes discontinous (rebound
on the steep potential hill) and
Ne becomes singular

Numerical solution of EoM (3)
for γp = 9 and E = 7.8

0

40

80

120

γ
-4

-2

0

+2

+4

E

0 50 100 150 200

τ

10

30

50

N
e
−
γ
p
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Relativistic wavebreaking threshold

For E >max(U ) = γp no regular solutions are found.
At threshold (E = γp) the pseudoparticle “falls” from
max(U ) =U (1) = γp down to min(U ) =U (γp ) = 1 acquiring a
maximum pseudovelocity −Emax:

Emax =
p

2(U (1)−U (γp ))1/2 =p
2(γp −1)1/2 .

In standard dimensional units the maximum possible field is

Ex,max =
me cωp

e

p
2(γp −1)1/2 ≡ EWB

(
> meυpωp

e

)
.

[Akhiezer & Polovin, Sov. Phys. JETP 3 (1956) 696]
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Improved estimate of energy gain - I
Since me c2γ′e −eΦ′ = cost., the maximum energy gain for a test
electron is obtained by the extrema in the γ-oscillation
(γmin , γmax)

W ′ = e
[
max(Φ′)−min(Φ′)

] = me c2(γmax −γmin) ,

At the wavebreaking threshold U (γ) = γp (À 1)
which yields two solutions

U (γ)
.= γp −→ γ=

{
2γ2

p ≡ γmax

1 ≡ γmin

W ′
max ≡max(W ′) = me c2(2γ2

p −1) ' 2me c2γ2
p
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Improved estimate of energy gain - II

Evaluate Wmax in the laboratory S:

p ′
0 =W ′

max/c ' 2me cγ2
p , p ′

x ' p ′
0 ,

Wmax = p0c = γp (p ′
0c +υp p ′

x ) ' me c2γp (2γ2
p +2γ2

p )

= 4me c2γ3
p

Tajima & Dawson’s estimate W (TD)
max = p0c = 4me c2γ2

p is increased
by a substantial factor γp , in agreement with detailed (more
complex) calculations
[E. Esarey and M. Pilloff, Phys. Plasmas 2, 1432 (1995)]
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Acceleration length
Lacc = how long must my plasma wave be to allow the maximum
energy gain = (max energy)/(max force)

Lacc = Wmax

eEWB
' 2

p
2

c

ωp
γ5/2

p .

For γp = 100 and 1017 cm−3 (SLAC experiments)

Wmax = 2 TeV for Lacc ' 90 m

Note that in S′ the acceleration length is half the plasma wavelength

L′
acc =

1

2
λ′

p , Lacc = γp L′
acc

the last relation comes from Lorentz contraction
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Other plasma wave features

From the pseudopotential analysis it is easy to estimate other
quantities at the WB threshold, e.g.

λ′
p ' 4

p
2γ3/2

p
c

ωp

or the minimum electron density (which does not vanish)

min(ne ) ' 1

2
n0

[see Macchi, Am. J. Phys. 88, 723 (2020) for details]
All these results are known from previous publications but the
present approach is apparently easier on the mathematical side
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“Dawson’s sheet” model - I
First plasma simulation model ever published!
J. Dawson, Phys. Fluids 5 (1962) 445

Figure from
Birdsall & Langdon,
Plasma Physics via
Computer Simulation
(Taylor & Francis,
1975/2004)
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“Dawson’s sheet” model - II

Each charged sheet (of position Xi (t ), i = 1, . . . , N ) is a “macro-
electron” (over a neutralizing background of density n0)

E-field on each sheet (Gauss):

Ei = Ex [x = Xi (t )] = 4πen0
[

Xi (t )−X eq
i

]
if Xi < Xi+1 ∀i

Equation of motion (with external force fext)

d2Xi

dt 2 =− e

me
Ex (Xi )+ fext

me
=−ω2

p

(
Xi −X eq

i

)+ fext

me
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“Dawson’s sheet” model - III

Sheet crossing is equivalent to a “reindexing” of sheets
−→ swapping of indices at each timestep keeps the ordering

All nonlinear effects are in the swap!

Andrea Macchi CNR/INO

Plasma Waves in a Different Frame



./LOGOS/LogoINO

Simulating wakes with Dawson’s sheet model

Simulation with impulsive force fext = me u0δ(t −x/υg )

weak forcing strong forcing

Andrea Macchi CNR/INO

Plasma Waves in a Different Frame



./LOGOS/LogoINO

Surface Plasmon (aka Surface Plasma Wave)

Ey , Bz

x ~E ~B

ε1 ~k

ε2
y

SP: a building block
of plasmonics
(mostly studied in
the linear regime)

SP excitation −→ EM field confinement and enhancement

Interface between vacuum and “simple metal” (cold plasma):

ε1 = 1 ε2 = 1−
ω2

p

ω2 = 1− ne

nc (ω)
< −1

k = ω

c

(
ω2

p −ω2

ω2
p −2ω2

)1/2

ω< ωpp
2

υp = ω

k
< c
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Surfin’ the Surface Wave
x ~E

y

Ey , |Ex|

e−

e−

Can a SP accelerate
electrons like a “bulk”
plasma wave?

Ï longitudinal E-component (Ey )
Ï sub-luminal phase velocity υp < c

(with υp → c when ωp Àω)

→ electrons may “surf” the SP
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Simple model of SP acceleration - I
SP field on the vacuum side is electrostatic in the wave frame S′

moving with phase velocity βp = υp/c with respect to S (lab)
Electrostatic potential in S′:

Φ′ =−
(
γpESP

k

)
ek ′x sink ′y ′ k ′ = k

γp
γp = (1−β2

p)−1/2

The motion is 2D: the energy
gain depends on the “kick an-
gle” from the top of the poten-
tial hill
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Simple model of SP acceleration - II
Assume as the most likely case an electron going downhill along
the x-direction and acquiring an energy W ′ = eESP/k ′

W ' γpW ′ ' me c2aSP

ω2
p

ω2 (aSP = eESP/meωc)

with ejection angle in L
(for W ′ À me c2)

tanφe = px

py
' 1

γp

→ high energy electrons are
beamed near the surface
(tanφe ¿ 1)
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Observation of “surfing” acceleration on a SP

LaserLAB experiment at SLIC, CEA Saclay
UHI laser: 25 fs pulse, 5×1019 Wcm−2, a0 = 4.8

contrast & 1012 at 5 ps
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Experimental results

collimated (' 20◦ cone) electron emission
near the surface tangent (φ' 2◦)
multi-MeV energy, total charge ' 100 pC
Excellent agreement with 3D simulations
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