Plasma Waves in a Different Frame: a Tutorial for Plasma-based Electron Accelerators

Andrea Macchi

CNR, Istituto Nazionale di Ottica, Adriano Gozzini lab., Pisa, Italy

Dipartimento di Fisica Enrico Fermi, Università di Pisa, Italy

LPA seminar, June 18, 2021

Image: A matrix

Andrea Macchi

Nice example of acceleration by a strong wave

From: T.Katsouleas, Nature 444 (2006) 688

- ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 = ろんの

CNR/INO

Andrea Macchi

Outline

- Motivation: nonlinear, relativistic longitudinal waves are the basis of plasma-based electron accelerators
- Purpose: show to newcomers of the field an "easy route" (with respect to existing literature) to basic properties of nonlinear plasma waves and estimates of the acceleration potential

CNR/INO

Level: absolute beginners

Starting point: cold plasma oscillations

Image: A matrix

CNR/INO

Andrea Macchi

Starting point: cold plasma oscillations

$$n_0 dx = n_e(x, t) [x + dx + s(x + dx, t) - x - s(x, t)]$$

$$n_{e}(x,t) = \frac{n_{0}}{1 + \partial_{x}s(x,t)}.$$
assuming small displacements
$$|\partial_{x}s(x,t)| \ll 1$$

$$n_{e}(x,t) \simeq n_{0} [1 - \partial_{x}s(x,t)].$$
Electric field (from Gauss's law)
$$E_{x} = E_{x}(x,t) = 4\pi n_{0}es(x,t),$$

→ E → < E →</p>

CNR/INO

Andrea Macchi

Starting point: cold plasma oscillations

Equation of motion and its general solution

$$m_e \partial_t^2 s(x, t) = -eE_x(x, t) = -4\pi n_0 e^2 s(x, t)$$
,

$$s(x,t) = \mathsf{Re}[\tilde{s}(x)\mathsf{e}^{-i\omega_p t}] = \frac{1}{2} \left[\tilde{s}(x)\mathsf{e}^{-i\omega_p t} + \tilde{s}^*(x)\mathsf{e}^{+i\omega_p t} \right],$$

프 🖌 🛪 프 🕨

CNR/INO

Image: A matrix

with the plasma frequency
$$\omega_p = \left(\frac{4\pi e^2 n_0}{m_e}\right)^{1/2}$$

Oscillations are localized and do not propagate

Andrea Macchi

1

Plasma oscillations from the wave equation General wave equation for E from Maxwell's equations¹

$$\left(\nabla^2 - \frac{1}{c^2}\partial_t^2\right)\mathbf{E} - \nabla(\nabla \cdot \mathbf{E}) = \frac{4\pi}{c^2}\partial_t\mathbf{J}$$

Assume monochromatic fields e.g. $\mathbf{E}(\mathbf{r}, t) = \tilde{\mathbf{E}}(\mathbf{r})e^{-i\omega t}$ and use linearized, non-relativistic equations ($|\mathbf{u}_e| \ll c$)

$$\partial_t \mathbf{u}_e = -\frac{e}{m_e} \mathbf{E}, \qquad \mathbf{J} = -en_e \mathbf{u}_e, \qquad \tilde{\mathbf{J}} = -\frac{i}{4\pi} \frac{\omega_p^2}{\omega} \tilde{\mathbf{E}},$$

CNR/INO

$$\left(\nabla^2 + \frac{\omega^2}{c^2}\right)\tilde{\mathbf{E}} - \nabla(\nabla \cdot \tilde{\mathbf{E}}) = \frac{\omega_p^2}{c^2}\tilde{\mathbf{E}} \qquad \text{(Helmoltz equation)}$$

¹Eulerian coordinates are used here

Andrea Macchi

Transverse electromagnetic waves Taking $\tilde{\mathbf{E}}(\mathbf{r}) = E_0 \boldsymbol{\epsilon} \mathbf{e}^{i\mathbf{k}\cdot\mathbf{r}}$, $\nabla \cdot \mathbf{E} = 0$, $\mathbf{k} \perp \boldsymbol{\epsilon}$, $\mathbf{B} = \mathbf{k} \times \mathbf{E}/k$

$$\left(\nabla^2 + \varepsilon(\omega)\frac{\omega^2}{c^2}\right)\tilde{\mathbf{E}} = \left(-k^2 + n^2(\omega)\frac{\omega^2}{c^2}\right)\tilde{\mathbf{E}} = 0$$

 $\varepsilon(\omega) = n^2(\omega) = 1 - \frac{\omega_p^2}{\omega^2}$ $\varepsilon(\omega)$ dielectric function, $n(\omega)$ refractive index

dispersion relation
$$k^2 c^2 = \varepsilon(\omega) \omega^2 = \omega^2 - \omega_p^2$$

Phase and group velocities (assuming $\omega > \omega_p$ i.e. k real)

$$v_p = \frac{\omega}{k} = c \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{-1/2} > c \qquad v_g = \frac{\partial \omega}{\partial k} = c \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{1/2} < c$$

・ロン ・回 と ・ ヨン・

CNR/INO

Andrea Macchi

Longitudinal electrostatic waves

Taking
$$\tilde{\mathbf{E}}(\mathbf{r}) = E_0 \boldsymbol{\epsilon} e^{i\mathbf{k}\cdot\mathbf{r}}$$
, $\mathbf{k} \parallel \boldsymbol{\epsilon}$, $\nabla \cdot \mathbf{E} = \mathbf{k} \cdot \mathbf{E}$, $\mathbf{B} = 0$
 $\nabla (\nabla \cdot \tilde{\mathbf{E}}) = \nabla^2 \tilde{\mathbf{E}} \implies (\omega^2 - \omega_p^2) \tilde{\mathbf{E}} = 0 \implies \omega = \omega_p$
Phase velocity is arbitrary group velocity is zero

Phase velocity group veio

$$v_p = \frac{\omega}{k} = \frac{\omega_p}{k}$$
, $v_g = \frac{\partial \omega}{\partial k} = 0$

Since these ES solutions do neither propagate nor transport energy they may be called "fake" waves

Image: A matrix

CNR/INO

Andrea Macchi

From fake to wake

Idea: let plasma oscillations be excited by a moving perturbation

Bodensee at Bad Schachen, Lindau, Germany. Photo by Daderot, Wikipedia, public domain.

◆□▶★@▶★≧▶★≧▶ ≧ のへぐ

CNR/INO

Andrea Macchi

Wake plasma wave

Assume a delta-kick force pulse $f(x, t) = m_e u_0 \delta(t - x/V)$ to travel with velocity *V* through the plasma Electrons located at *x* are displaced (by $s_0 = u_0/\omega_p$) at the overtaking time t = x/V:

$$s(x,t) = \begin{cases} 0 & (t < x/V), \\ s_0 \cos\left(\omega_p(t-x/V)\right) & (t > x/V). \end{cases}$$

The phase velocity of the wake wave $v_p = V$ "by construction" and this determines $k = \omega_p / V$.

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

Wake plasma wave

Example: a charged particle or bunch penetrating a plasma > loses its energy to the wake (basic mechanism of collective stopping)

FIG. 6. The drag on a fast sheet.

CNR/INO

J. Dawson, Phys. Fluids 5 (1962) 445

Andrea Macchi

Plasma wave breaking

The electron density becomes singular when $\partial_x s(x, t) = -1$, i.e. the trajectories of electrons starting at *x* overlap with those starting at *x* + d*x*

$$n_e(x,t) = \frac{n_0}{1 + \partial_x s(x,t)} \longrightarrow \infty \,.$$

CNR/INO

The regular "hydrodynamic" structure is lost: the wave breaks

Note that $\partial_x s(x, t) = -1$ violates the assumption of small amplitude oscillations: a nonlinear analysis is required

Andrea Macchi

A (not-so-correct) wavebreaking criterion The electron density must obviously remain positive:

$$n_e = n_0 + \delta n_e > 0 \quad \Leftrightarrow \quad |\delta n_e| < n_0$$

For an harmonic wave

$$s(x,t) = s_0 \cos(kx - \omega_p t) = s_0 \cos\left(k(x - v_p t)\right)$$

the $|\delta n_e| \le n_0$ condition is equivalent to

$$ks_0 \le 1$$
, $u_0 \le v_p$, $E_0 \le m_e \omega_p^2 v_p/e$

 $(u_0, E_0: amplitudes of electron velocity and electric field)$

Objection: when the wave becomes nonlinear, it cannot be considered as harmonic!

CNR/INC

Andrea Macchi

Principle of electron acceleration

LINAC principle: an electron of velocity v crosses a cavity of length L within half the period of oscillation of the electric field T so to "see" the electric field in a constant direction $\longrightarrow L \approx vT/2$

For strongly relativistic electrons

 $L\simeq cT/2=\pi c/\omega$

(\approx independent of electron energy)

Andrea Macchi

Plasma wake as the perfect wave?

A plasma wave with phase velocity v_p can be seen as a sequence of "cavities" with $T = \pi/\omega_p$ and $L = v_p T_p$ which may accelerate electrons injected with velocity close to v_p .

For a plasma wake v_p is set by the driver and **E** is only limited by wavebreaking (not by electrical breakdown of cavity components).

CNR/INO

Andrea Macchi

Laser(-Plasma) wakefield accelerator

Tajima & Dawson's famous proposal: [Phys. Rev. Lett. **43**, 267 (1979)] use short laser pulses as a driver for wake plasma waves (as an alternative: use a relativistic particle bunch)

A 3D simulation Fonseca et al, Plasma Phys. Control. Fusion **50**, 124034 (2008)

CNR/INO

Andrea Macchi

Estimate the energy gain

In a reference frame $S' -e\Phi(x')^{4}$ moving with the phase $+eE_{0}/k'$ velocity v_{p} with respect to the laboratory *S* the wave field is time-independent and can be derived by a static potential.

CNR/INC

A test electron moving from the top to the bottom of the potential hill with initial velocity $v'_{x0} = 0$ (hence $v_{x0} = v_p$ in the lab frame) will get the maximum energy gain possible.

Andrea Macchi

The wave frame

(we use the complex notation for brevity)

► *E*-field in *S*: $E_x = E_0 e^{-i\omega_p(t-x/v_p)} = E_0 e^{ikx-i\omega_p t}$ Lorentz boost to *S'* with $\beta = \beta_p \hat{\mathbf{x}}$, $\beta_p = v_p/c$:

frequency & wavevector in S':

$$\begin{cases} \omega' = \gamma_p(\omega_p - kv_p) = 0\\ k' = \gamma_p \left(k - \omega_p v_p / c^2\right) = k / \gamma_p \end{cases}$$

where $\gamma_p = (1 - \beta_p^2)^{-1/2}$

- E-field in S': E'_x = E₀e^{ik'x'}, E'₀ = E₀ (E_∥ is unchanged by Lorentz transformations)
- electric potential in S': $\Phi'(x') = \frac{i}{k'} E_0 e^{ik'x'}$ $(E'_x = -\partial'_x \Phi(x'))$

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Andrea Macchi

Maximum energy gain in the wave frame

Potential energy

$$U' = U'(x') = -e \operatorname{Re}(\Phi') = \frac{eE_0}{k'} \sin(k'x')$$
Maximum energy gain in S'

$$W' = \max(U') - \min(U') = \frac{2eE_0}{k'}$$
Energy-momentum in S'

$$p'_{\mu} = (p'_0, p'_x) = \left(W'/c, (W'^2 - m_e^2 c^4)^{1/2}/c\right)$$
(being $p_{\mu}p^{\mu} = p_0^2 - p_x^2 = m_e^2 c^2$)

The maximum energy $W_{\rm max}$ in the lab frame *S* can be obtained by back-Lorentz transformation of p'_{μ} .

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Andrea Macchi

Tajima & Dawson's maximum energy estimate

• Assume $v \simeq c$ i.e. $\beta_p \simeq 1$

• Assume $E_0 = \frac{m_e \omega_p^2 v_p}{e}$ (wavebreaking limit)

then $p_x' \gg m_e c$, $p_0' \simeq p_x' c$,

The maximum foreseeable energy for the "luckiest" electron (optimal initial onditions) is

$$W_{\rm max} = p_0 c = 4 m_e c^2 \gamma_p^2$$

・ロト ・回ト ・ヨト ・ヨト

CNR/INO

Objection! The incorrect wavebreaking limit was used ...

Nonlinear relativistic approach

Since $v_p \simeq c$ we expect the electron dynamics near the wavebreaking threshold to be strongly relativistic. Start from the 1D relativistic equation of motion for the fluid electron momentum $p_{ex} = p_{ex}(x, t)$ in an ES field $E_x = E_x(x, t)$:

$$\frac{\mathrm{d}}{\mathrm{d}t} p_{ex} = (\partial_t + u_{ex}\partial_x)p_{ex} = -eE_x ,$$

$$p_{ex} = m_e \gamma_e u_{ex} , \quad \gamma_e = (1 - u_{ex}^2/c^2)^{-1/2} = (1 + p_{ex}^2/m_e^2c^2)^{-1/2} .$$

In the wave frame $\partial'_t = 0$ and $u'_{ex} = u'_{ex}(x')$ etc . . .

$$u_{ex}^{\prime}\partial_{x}^{\prime}p_{ex}^{\prime}=-eE_{x}^{\prime}=e\partial_{x}^{\prime}\Phi^{\prime}$$

This can be integrated to give

$$m_e c^2 \gamma'_e - e \Phi' = \text{cost.}$$
 (1)

CNR/INO

Andrea Macchi

Zero current condition

In a purely electrostatic ($\mathbf{B} = 0$), time-independent configuration the current density vanishes:

$$\frac{4\pi}{c}\mathbf{J} = \nabla \times \mathbf{B} - \frac{1}{c}\partial_t \mathbf{E} = 0 - 0 = 0.$$

We impose $J'_x = J'_{ex} + J'_{ix} = 0$ in the wave frame

$$J'_{ex} = -en'_{e}u'_{ex} J'_{ix} = +en'_{i}u'_{ix} = e(\gamma_{p}n_{0})(-v_{p})$$

(the ion fluid in *S*' has a density γ_p times the value in *S* due to Lorentz contraction and a steady velocity $-v_p$). Thus

$$n'_e u'_{ex} + \gamma_p n_0 v_p = 0.$$

イロト イヨト イヨト イヨト

CNR/INC

Andrea Macchi

Complete equations and normalizations

To close the system Poisson's eq. (3) is added to (1) and (2):

$$\partial_x'^2 \Phi' = 4\pi e(n_e' - n_0') = 4\pi e(n_e' - n_0 \gamma_p)$$

It is now convenient to put the system in dimensionless form

$$\tau \equiv \frac{\omega_p x'}{c} , \quad N_e \equiv \frac{n'_e}{n_0} , \quad p \equiv \frac{p'_x}{m_e c} , \quad \phi \equiv \frac{e \Phi'}{m_e c^2} .$$

and write simply γ for γ_e :

$$\gamma \equiv \gamma_e = (p^2 + 1)^{1/2} \, .$$

イロト イヨト イヨト イヨト

CNR/INO

(primes are dropped for brevity).

Andrea Macchi

Pseudopotential equation

Three equations for
$$\phi$$
, p and γ
all functions of $\tau = \frac{\omega_p x'}{c}$:
$$\begin{cases} \partial_{\tau}^2 \phi &= N_e - \gamma_p \\ \gamma - \phi &= \text{ cost.}, \\ N_e \frac{p}{\gamma} &= -\gamma_p \beta_p, \end{cases}$$

,

・ロト ・回 ト ・ヨト ・ヨト

CNR/INO

Eliminate ϕ and p as functions of γ using $p = -(\gamma^2 - 1)^{1/2}$ (p < 0 because electrons flow in the direction opposite to the boost) to obtain an equation for $\gamma = \gamma(\tau)$:

$$\partial_{\tau}^{2} \gamma = \gamma_{p} \beta_{p} \frac{\gamma}{(\gamma^{2} - 1)^{1/2}} - \gamma_{p} \equiv -\frac{\partial}{\partial \gamma} U(\gamma) ,$$

$$U(\gamma) = \gamma_p \left(\gamma - \beta_p (\gamma^2 - 1)^{1/2}\right) \,. \label{eq:U}$$

[A. C. L. Chian, Plasma Phys. 21, 509 (1979)]

Andrea Macchi

Pseudopotential analysis

→ E → < E →</p>

CNR/INO

"Pseudo-energy" conservation: $\frac{1}{2}(\partial_{\tau}\gamma)^2 + U(\gamma) = \mathscr{E}$

Andrea Macchi

Pseudopotential analysis - II

If $\mathscr{E} < \max(U) = \gamma_p$ the pseudoparticle bounces back and forth between γ_{\min} and γ_{\max} : the waveform is periodic

CNR/INO

Andrea Macchi

Linear harmonic wave

If $\mathscr{E} \gtrsim \min(U) = 1$ the pseudoparticle performs small amplitude oscillations around $\gamma = \gamma_p$ (bottom of potential well):

harmonic waveform

Note that the electric field $E = -\partial_{\tau}\phi = -\partial_{\tau}\gamma$ is (minus the) pseudovelocity $\partial_{\tau}\gamma$

Numerical solution of EoM (3) for $\gamma_p = 9$ and $\mathscr{E} = 1.0 + 2.445 \times 10^{-4}$

CNR/INO

Andrea Macchi

Nonlinear anharmonic wave - I

Increasing & the pseudoparticle performs anharmonic, asymmetric oscillations in the well with strong acceleration on one side and weak on the other:

"sawtooth" profile for pseudovelocity (*E*) and spiky profile for $N_e = \gamma_p - \partial_\tau E$

Numerical solution of EoM (3) for $\gamma_p = 9$ and $\mathscr{E} = 1.8$

CNR/INO

Andrea Macchi

Nonlinear anharmonic wave - II

When \mathscr{E} approaches max(U) = γ_p the pseudoparticle has extremely different accelerations and half-oscillation times on either side of the well

the pseudovelocity (*E*) becomes discontinous (rebound on the steep potential hill) and N_e becomes singular

Numerical solution of EoM (3) for $\gamma_p = 9$ and $\mathscr{E} = 7.8$

CNR/INO

Andrea Macchi

Relativistic wavebreaking threshold

For $\mathscr{E} > \max(U) = \gamma_p$ no regular solutions are found. At threshold ($\mathscr{E} = \gamma_p$) the pseudoparticle "falls" from $\max(U) = U(1) = \gamma_p$ down to $\min(U) = U(\gamma_p) = 1$ acquiring a maximum pseudovelocity $-E_{\max}$:

$$E_{\max} = \sqrt{2} (U(1) - U(\gamma_p))^{1/2} = \sqrt{2} (\gamma_p - 1)^{1/2} .$$

In standard dimensional units the maximum possible field is

$$E_{x,\max} = \frac{m_e c \omega_p}{e} \sqrt{2} (\gamma_p - 1)^{1/2} \equiv E_{\text{WB}} \quad \left(> \frac{m_e v_p \omega_p}{e} \right).$$

< ロ > < 同 > < 回 > < 回 >

CNR/INO

[Akhiezer & Polovin, Sov. Phys. JETP 3 (1956) 696]

Andrea Macchi

Improved estimate of energy gain - I

Since $m_e c^2 \gamma'_e - e \Phi' = \text{cost.}$, the maximum energy gain for a test electron is obtained by the extrema in the γ -oscillation (γ_{\min} , γ_{\max})

$$W' = e \left[\max(\Phi') - \min(\Phi') \right] = m_e c^2 (\gamma_{\max} - \gamma_{\min}),$$

At the wavebreaking threshold $U(\gamma) = \gamma_p (\gg 1)$ which yields two solutions

$$U(\gamma) \doteq \gamma_p \longrightarrow \gamma = \begin{cases} 2\gamma_p^2 \equiv \gamma_{\max} \\ 1 \equiv \gamma_{\min} \end{cases}$$

$$W'_{\max} \equiv \max(W') = m_e c^2 (2\gamma_p^2 - 1) \simeq 2m_e c^2 \gamma_p^2$$

・ロン ・回 と ・ ヨ と ・ ヨ と

CNR/INO

Andrea Macchi

Improved estimate of energy gain - II

Evaluate W_{max} in the laboratory S:

$$p_0' = W_{\max}'/c \simeq 2m_e c \gamma_p^2$$
, $p_x' \simeq p_0'$,

$$W_{\text{max}} = p_0 c = \gamma_p (p'_0 c + v_p p'_x) \simeq m_e c^2 \gamma_p (2\gamma_p^2 + 2\gamma_p^2)$$
$$= 4m_e c^2 \gamma_p^3$$

Tajima & Dawson's estimate $W_{\text{max}}^{(\text{TD})} = p_0 c = 4 m_e c^2 \gamma_p^2$ is increased by a substantial factor γ_p , in agreement with detailed (more complex) calculations [E. Esarey and M. Pilloff, Phys. Plasmas **2**, 1432 (1995)]

イロト イヨト イヨト イヨト

CNR/INO

Andrea Macchi

Acceleration length

 L_{acc} = how long must my plasma wave be to allow the maximum energy gain = (max energy)/(max force)

$$L_{\rm acc} = \frac{W_{\rm max}}{eE_{\rm WB}} \simeq 2\sqrt{2} \frac{c}{\omega_p} \gamma_p^{5/2} \,.$$

For $\gamma_p = 100$ and 10^{17} cm⁻³ (SLAC experiments)

 $W_{\rm max} = 2 \text{ TeV}$ for $L_{\rm acc} \simeq 90 \text{ m}$

Note that in S' the acceleration length is half the plasma wavelength

$$L'_{\rm acc} = \frac{1}{2}\lambda'_p$$
, $L_{\rm acc} = \gamma_p L'_{\rm acc}$

・ロン ・回 と ・ ヨン・

CNR/INO

the last relation comes from Lorentz contraction

Andrea Macchi

Other plasma wave features

From the pseudopotential analysis it is easy to estimate other quantities at the WB threshold, e.g.

$$\lambda_p' \simeq 4\sqrt{2}\gamma_p^{3/2}\frac{c}{\omega_p}$$

or the minimum electron density (which does not vanish)

$$\min(n_e) \simeq \frac{1}{2}n_0$$

[see Macchi, Am. J. Phys. **88**, 723 (2020) for details] All these results are known from previous publications but the present approach is apparently easier on the mathematical side

イロト イポト イヨト イヨト

CNR/INO

"Dawson's sheet" model - I

First plasma simulation model ever published!

J. Dawson, Phys. Fluids 5 (1962) 445

Figure 13-2a Original Dawson (1962) model, with thin electron sheets spaced $\delta = 1/n$ apart (in equilibrium) in a uniform positive ion background. The lower part shows E(x) with one sheet displaced.

CNR/INO

Andrea Macchi

"Dawson's sheet" model - II

Each charged sheet (of position $X_i(t)$, i = 1,...,N) is a "macroelectron" (over a neutralizing background of density n_0)

Equation of motion (with external force f_{ext})

$$\frac{\mathrm{d}^2 X_i}{\mathrm{d}t^2} = -\frac{e}{m_e} E_x(X_i) + \frac{f_{\mathrm{ext}}}{m_e} = -\omega_p^2 \left(X_i - X_i^{\mathrm{eq}}\right) + \frac{f_{\mathrm{ext}}}{m_e}$$

CNR/INO

Andrea Macchi

"Dawson's sheet" model - III

Sheet crossing is equivalent to a "reindexing" of sheets \rightarrow swapping of indices at each timestep keeps the ordering

CNR/INO

All nonlinear effects are in the swap!

Plasma Waves in a Different Frame

Andrea Macchi

Simulating wakes with Dawson's sheet model

Simulation with impulsive force $f_{\text{ext}} = m_e u_0 \delta(t - x/v_g)$

Andrea Macchi

Plasma Waves in a Different Frame

CNR/INO

★ 문 → ★ 문 →

Surface Plasmon (aka Surface Plasma Wave)

SP: a building block of plasmonics E_y, B_z (mostly studied in the *linear* regime)

CNR/INO

SP excitation — EM field confinement and enhancement

Interface between vacuum and "simple metal" (cold plasma):

$$\varepsilon_{1} = 1 \qquad \varepsilon_{2} = 1 - \frac{\omega_{p}^{2}}{\omega^{2}} = 1 - \frac{n_{e}}{n_{c}(\omega)} < -1$$

$$k = \frac{\omega}{c} \left(\frac{\omega_{p}^{2} - \omega^{2}}{\omega_{p}^{2} - 2\omega^{2}}\right)^{1/2} \qquad \omega < \frac{\omega_{p}}{\sqrt{2}} \qquad v_{p} = \frac{\omega}{k} < c$$

Andrea Macchi

Surfin' the Surface Wave

Can a SP accelerate electrons like a "bulk" plasma wave?

- longitudinal *E*-component (E_y)
- ▶ sub-luminal phase velocity $v_p < c$

(with $v_p \rightarrow c$ when $\omega_p \gg \omega$)

→ electrons may "surf" the SP

(日) 《聞》 《聞》 《聞》 「聞」 ろんの

CNR/INO

Andrea Macchi

Simple model of SP acceleration - I

SP field on the vacuum side is electrostatic in the wave frame S' moving with phase velocity $\beta_p = v_p/c$ with respect to S (lab) Electrostatic potential in S':

$$\Phi' = -\left(\frac{\gamma_{\rm p} E_{\rm SP}}{k}\right) {\rm e}^{k'x} \sin k' y'$$

The motion is 2D: the energy gain depends on the "kick angle" from the top of the potential hill

Andrea Macchi

Simple model of SP acceleration - II

Assume as the most likely case an electron going downhill along the *x*-direction and acquiring an energy $W' = eE_{SP}/k'$

$$W \simeq \gamma_{\rm p} W' \simeq m_e c^2 a_{\rm SP} \frac{\omega_p^2}{\omega^2}$$

$$(a_{\rm SP} = eE_{\rm SP}/m_e\omega c)$$

CNR/INO

with ejection angle in *L* (for $W' \gg m_e c^2$) $\tan \phi_e = \frac{p_x}{p_y} \approx \frac{1}{\gamma_p}$ \rightarrow high energy electrons are beamed near the surface $(\tan \phi_e \ll 1)$

Andrea Macchi

Observation of "surfing" acceleration on a SP

PRL 116, 015001 (2016)

PHYSICAL REVIEW LETTERS

week ending 8 JANUARY 2016

< ロ > < 同 > < 回 > < 回 >

CNR/INO

Electron Acceleration by Relativistic Surface Plasmons in Laser-Grating Interaction

L. Fedeli,^{1,2,*} A. Sgattoni,² G. Cantono,^{3,4,1,2} D. Garzella,³ F. Réau,³ I. Prencipe,^{5,1} M. Passoni,⁵ M. Raynaud,⁶ M. Květoň,⁷ J. Proska,⁷ A. Macchi,^{2,1} and T. Ceccotti³ ¹Enrico Fermi Department of Physics, University of Pias, 56127 Pisa, Italy ²National Institute of Optics, National Research Council (CNR/INO), u.o.s Adriano Gozzini, 56124 Pisa, Italy ³LIDYL, CEA, CNRS, University of Paris Salay, CSA Saclay, 91191 Gifsur-Yvette, France ⁴University of Paris Saclay, CEA Saclay, 91191 Gifsur-Yvette, France ⁵Department of Energy, Politecnico di Milano, Milan 20156, Italy ⁶Laboratoire des Solides irradiés, Ecole Polytechnique, CNRS, CEA/DSM/IRAMIS, Université Paris-Saclay, 91128 Palaiseau Cedex, France ⁷FNSPE, Czech Technical University, Prague 11519, Czech Republic (Received 30 June 2015: unblished 7 January 2016)

LaserLAB experiment at SLIC, CEA Saclay UHI laser: 25 fs pulse, 5×10^{19} Wcm⁻², $a_0 = 4.8$ contrast $\gtrsim 10^{12}$ at 5 ps

Andrea Macchi

Experimental results

References

- A. Macchi, *Plasma waves in a different frame*, Am. J. Phys.
 88 (2020) 723
- A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, 2013), sec. 2.3, 3.6 & 4.1
- A. Macchi, G. Cantono, L. Fedeli, F. Pisani, T. Ceccotti, Extreme high field plasmonics: electron acceleration and XUV harmonic generation from ultrashort surface plasmons, Phys. Plasmas 26 (2019) 042114

→ E → < E →</p>

CNR/INO