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Abstract.- The plasmas produced by interaction of intense laser pulses with solid targets are bright X-
-ay sources for a number of applications. In order to optimize the performance of these sources, a
yroad study is currently in progress worldwide. A review of the basic principles of X-ray generation
n laser-produced plasmas and an experimental study of the X-ray emission from laser-irradiated

Aluminium targets in the nanosecond regime will be presented. This may supply a novel, debris-
Tee X-ray source.
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la supuesta hemeroteca del edificio de Fisicas.



Outline

 The “new era” of laser acceleration of ions (mainly protons):

their discovery and (foreseen) applications
« Target Normal Sheath Acceleration (TNSA)
- Theory (plasma expansion model)
- Experimental evidence
- Review of experimental results and progress
« Radiation Pressure Acceleration (RPA)
- Theory (role of circular polarization)

- Preliminary experimental indications
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The discovery of MeV proton emission
In superintense interaction with metallic targets

Reported in 2000

by three experimental groups Plasma  Larget
-
[Clark et al, PRL 84, 670 (2000); \ e o
Maksimchuk et al, ibid., 4108; o‘. .
Snavely et al, PRL 85, 2945 (2000) (*)] . ::q
& .._..
...:_-
.H

- high number (up to 10*9)
. - good collimation
Remarkable properties - ultra-low emittance (4 x 103 mm mrad)
of the proton beam: - maximum energy and efficiency
observed (*):
58 MeV , 12% of laser energy
@ /=3 x 10°° W/cm?
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The discovery of MeV proton emission
In superintense interaction with metallic targets

Reported in 2000
by three experimental groups

[Clark et al, PRL 84, 670 (2000);
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Question: why protons
from metallic targets?

Answer: presence of a layer
of hydrocarbon or water

Plasma

(up to 10*%)

Impurities on
the target surface
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The discovery of MeV proton emission
In superintense interaction with metallic targets

Reported in 2000
by three experimental groups

[Clark et al, PRL 84, 670 (2000);
Maksimchuk et al, ibid., 4108;
Snavely et al, PRL 8 2000) (*)]

More debated
question: are protons

coming from the front or

from the rear side?

tion

ittance (4 x 10° mm mrad)
energy and efficiency

(*):

eV, 12% of laser energy

@ /=3 x 10°° W/cm?

I.e. what is the

acceleration mechanism?



relative dose

MeV protons (ions) are appealing for applications
requiring localized energy deposition in matter
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Sharp spatial maximum of
deposited energy
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Peak location depends
on energy
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[U. Amaldi & G. Kraft, Rep. Prog.
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MeV protons (ions) are appealing for applications
requiring localized energy deposition in matter

Medical Applications

ONCOLOGICAL HADRONTHERAPY
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If feasible with table-top, high repetition lasers,
cost might be reduced with respect to an accelerator facility
(CAUTION: see Linz & Alonso, PRSTAB 10 (2007) 094801)

Other foreseen application in medicine:
iIsotope production (e.g. for Proton Emission Tomography)



MeV protons (ions) are appealing for applications
requiring localized energy deposition in matter

Inertial Confinement nuclear Fusion

FAST IGNITION

Protons can be used to create
a “spark” in a pre-compressed
ICF capsule achieving isochoric
burn and high energy gain

IR AN AN AN NN |
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[Roth et al, Phys. Rev. Lett. 86 (2001) 436;
Atzeni et al, Nuclear Fusion 42 (2002) L1;
Macchi et al, Nuclear Fusion 43 (2003) 362]

(a)

Proton-heated
10 pm thick Al folls

Geometrical focusing of laser-
accelerated protons and
localized isochoric heating
has been demonstrated

[Patel et al, Phys. Rev. Lett. 91 (2003) 125004]



Fast ions seen in PIC simulations suggest
several possible mechanisms of ion acceleration

1D PIC simulation

1=3.5%10°"W/cm?,
n =10"cm”™

’ laser
PIC (Particle-In-Cell): pulse
solves kinetic equations
for ions and electrons

+ Maxwell's equations for
laser and plasma fields

“Ildealized” conditions:

- Ideal, collisionless plasma

- slab with step-like
density profile



Fast ions seen in PIC simulations suggest
several possible mechanisms of ion acceleration

1D PIC simulation
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Fast ions seen in PIC simulations suggest
several possible mechanisms of ion acceleration
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Fast ions seen in PIC simulations suggest
several possible mechanisms of ion acceleration
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Fast ions seen in PIC simulations suggest
several possible mechanisms of ion acceleration
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Fast ions seen In

PIC simulations suggest
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Fast ions seen in PIC simulations suggest
several possible mechanisms of ion acceleration

1D PIC simulation _ 1=156.000
1=3.5x10""W/cm”, 80E _
123 S 60F ]
ne—lO cm } 10F _;
20F ]
Three ion populations,o

accelerated &
o

- from rear side |
In forward direction

- from front side i
In forward direction &

- from front side
In backward direction

Which is the dominant “channel” for given conditions?



Fast ions seen in PIC simulations suggest
several possible mechanisms of ion acceleration

1D PIC simulation
1=3.5%10°"W/cm?,
ne=10220m'3

laser
Three ion populations, pulse

accelerated -

- from rear side

in forward direction 4

10115

- from front side FBW
In forward direction

10158

- from front side
In backward direction

Which is the dominant “channel” for given conditions?



The “front vs rear side” debate

Clark et al: “It is likely that the protons originate from the
front surface of the target and are bent by large magnetic
fields which exist in the target interior.”

Maksimchuk et al: “The protons [...] appear to originate
from impurities on the front side of the target [...] The
maximum proton energy can be explained by the charge-
separation electrostatic-field acceleration due to vacuum
heating.

Snavely et al: “We have CH2 target
concluded that light e
pressure effects at the

front surface [...] could not
generate the observed ions
because of the clear

evidence that the protons

are emitted perpendicular

to the rear surface(s) of FIG. 4 icolor). Contours of dose in krads as a function of
( ) angle recorded on a RC film through 300 gm Ta (proton £ =

”n
the ta rget' 18 MeV). The image clearly shows two proton beams, the larger
from the major face and the smaller from the minor face of the
wedge.




The Target Normal Sheath Acceleration (TNSA)
model of proton acceleration

Physical mechanism:
acceleration in the space-charge
electric field generated

at the rear surface by

escaping from the target




The Target Normal Sheath Acceleration (TNSA)
model of proton acceleration

Physical mechanism:

acceleration in the space-charge

electric field generated
at the rear surface by

escaping from the target

Rear target surface

Ei nit _E'Tl'u 1-1"'IIC"E
-

________ lon front

o]

e, hot

lom charge sheet Debye sheath

The fast electrons generate
an expanding charged layer
(Debye sheath)

[S. Wilks et al,
Phys. Plasmas 8 (2001) 542]



Modeling of sheath acceleration:
the classic problem of plasma expansion in vacuum

Concept: model of the “hot” electrons + “cold” protons as an
ideal plasma expanding in vacuum

1. 1
= | — >y = |— (e < my;)
M, m;

- electrons attempt to leave the (globally neutral) plasma
- space charge unbalance generates an electrostatic field
- the electric field accelerates ions

- asymptotic state: equal velocities v =U

fluid and kinetic models are available in the literature

(with S|mpI|fy|ng assumptlons 1D geometry, quasi-neutrality,
self-similarity, .

model geometry (i.e. planar vs. spherical) and
Input parameters (electron temperature Te , density n )

are either inferred from or adapted to “experimental” conditions



1D planar, fluid model — | (isothermal)

Analytical approach:

- electrostatic ed 2
_ fluid ions Ne = N EXP (k T)’ VO = Zen; — en,
. B
- electrons in Boltzmann ; , GZ
equilibrium vi  de o L€ e
- step-like, semi-infinite g ~ Am T A, v 0= Z Vv
initial density profile
- _"*‘ IEni i mFiII:SCIII | |
t “Ei 10” H}.- o
"1 ™ ncl'mpit:SD] \:\\‘H
& T 7z AN,
“Mora's formula” from | RAN
iIsothermal, semi-infinite ot e
Slab mOdeI 4.5 ] 55 }L.E:I f.5
[P.Mora, PRL 90 (2003) 185002] :
- diverges with time (infinite v; = 2¢4 In (wpitp + \/wgitg + 1)
energy available!)
- “corrected” assuming .
finite acceleration time 7 . — J Zhkple oy — \l47anie
[J.Fuchs et al, Nature Phys. 2 (2005) 48] Amy, Amy,



1D planar, fluid model - Il (non-isothermal)

Analytical approach:

- electrostatic ed 5
_ fluid ions Ne = N CXP (k ik VO = Zen; — en,
. B
- electrons in Boltzmann ; , GZ
equilibrium vi  de o L€ o .
- thin plasma slab di AmpE - AmpV<D, Omi = =V-(nivi)
to account
for finite energy
7 i et UgT.o AN
.'l' ii 20 - 100
j i. 15k 10-1 :
| _..*'! lx‘_ - 10-2f
.l b B 10-3
- T decreases in time 10-4
10-3

e . . C . . . .
(adiabatic cooling) L

Fig. 3. The kinetic energy acquired by the fastest ion during
the expansion of a slab of total thickness 2a = 40 as pre-

EXC e I I e n t a g re e m e n t dicted by the numerical simulations (solid line}, by the ana-

tical model {dashed line), and by the semi-infinite model

With numerical PIC Flrl]idmtecllinej.
results

S.Betti, F.Ceccherini, F.Cornolti, F.Pegoraro,
Plasma Phys. Control. Fusion 47 (2005) 521;

Fig. 4. Ion velocity spectrum at T = 5 (dashed ling), T = 10
(dotted line). and t© = 20 (solid line). The initial slab total
size is 2a = 40 and + is normalized to the initial sound
speed.

F.Ceccherini, S.Betti, F.Cornolti, F.Pegoraro, Laser Physics 16 (2006) 1



How to diagnose the electric fields directly?
Idea: use the protons as a probe

Virtual polnt
source

Due to high laminarity

the proton beam has b oLzt

imaging properties 7'

The short duration of
the proton burst allows
picosecond
temporal resolution

Protons of a given energy
will cross the probed object
at a particular time.

An energy-resolving detector
(e.g. Radiochromic Film)
thus provides

multiframe capability

the proton probe is easily

Laminar
source

Mesh

Proton source

Detector plane

Mesh (Proton
Deflectometry)

CPA beam \‘

Proton
target

Interaction beam

> - L

[

_+—»

-
w» Proton
b

Interaction
target

-
beam

Proton
detector

Borghesi et al, Phys.Plasmas 9 (2002) 2214
Borghesi et al, Phys.Rev.Lett. 92 (2004) 055003
In a Iaser-plasma experiment Cowan et al, Phys.Rev.Lett. 92 (2004) 204851

synchronized with the interaction (more in tomorrow’s talk)



Experimental detection of sheath fields
using the proton diagnostic

Mesh (Proton Interaction Interaction
Deflectometry) CPA beam target

fd.ﬂ um Al)
Proton \ .

generation : .
CPA be‘ﬁN : Probing -

proton beam
Proton : Pl s
roton
target B 11 ps
(40 pm Proton
Au) detectors

Protons accelerated
from interaction beam

Expanding, bell-shaped
electric field front
observed in proton
iImages and d
deflectograms 4 0 3 7 13 25 _ t(ps)
L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert, F. Ceccherini, T. Cowan,

T. Grismayer, S. Kar, A. Macchi, P. Mora, G. Pretzler, A. Schiavi, T. Toncian, O. Willi,
Phys. Rev. Lett. 95 (2005) 195001




Experimental detection of sheath fields
using the proton diagnostic

Experimental results
have been compared
with PIC simulations
using the plasma
expansion model.

Particle tracing
simulations of proton
deflection in the PIC

Front position [um]

500

: —Eia— expenment

of — PIC

I
-
-

L
-
-

- 200

-
O

[ _I_':l

fields (plus an “heuristic”

modeling of the 2D
expansion) fit well
experimental images
and deflectrograms

]

150 pm

200 pm

m—aw

E (V/m)

. g’
3.6e11 t=0.07ps R g :
SN T4
- = g =
1.8¢11 & e 7
o 10 20 30 40 =
O X (pm_]
1.2e10F t=5.0_p8 —
6.0e9 K
(
1. 210} t=70.6}35‘ _
6.0e9 J\
[ YO e = . T
o 100 200 300 400 500
x (um)

Comparison of fluid

and kinetic (PIC) results
show the importance
of kinetic and
non-thermal effects in
the plasma expansion

L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert, F. Ceccherini, T. Cowan,
T. Grismayer, S. Kar, A. Macchi, P. Mora, G. Pretzler, A. Schiavi, T. Toncian, O. Willi,
Phys. Rev. Lett. 95 (2005) 195001



Maximum proton energy iMeW

Observed energy scaling in TNSA experiments
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M.Borghesi et al,
Fusion Sci.Tech.
49 (20006) 412;
J. Fuchs et al,
Nature Physics
2 (2005) 48 .

Weaker scaling
found at higher
Intensities
(up to

6 X 10* W/cm?)

L.Robson et al,
Nature Physics
3 (2007) 58



Target microstructuring for spectral optimization
and ion species selection

Titanium foil with
proton-rich dot

Accelerated

@E‘i
Laser incidence @
@®
@B protons
2 oy
¥ ® op gim®
:«é@ P @ &
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Blow-off >,
plasma ®
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Target-normal,
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electric field
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...................

— oA o MCP detection |
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2 0.5 x 107 B CR39 detection
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Hot electron I
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“Confining” the hydrogen

H. Schwoerer et al, Nature 4

contentin a

small microdot on the rear surface leads
to a narrower energy spectrum of protons

39 (2006) 445

A similar microstructuring plus “decontamination” of hydorgen allows the

acceleration of Carbon ions

B. Hegelich et al, Nature 439 (2006) 441

Open problems: shot reproducibility, repetition rate, increase energy,

reduce spectral width, ...



TNSA-bases devices for dynamic control of protons

Concept: achieve focusing and energy selection of the proton
beam by “external” devices or by “target engineering”

CPA,
Divargent Haollow RCF stack : SN ]
fon cylinder ‘ ‘h (b}
CPA, baam e :
¥ . gy
. f O s " (
A Proton production foil 1 Dearm - Lkt . L

— Proton generating foil

()

Debye sheath of
hol electrons

initial stage expansion stage

Target

7 o
a a
g5

]

Laser-drivEn = Shaped targets designed as
cylindrical microlens electrostatic (*) lenses

Toncian et al., Science 312 (2006) 410 Kar et al., PRL 100 (2008) 105004

(*) Possible role of electromagnetic effects:
K.E.Quinn et al, PRL 102, 194801 (2009)



Observation of “backward” TNSA protons

Most experiment are affected by the laser prepulse: the
Interaction occurs with a preformed, inhomogeneous plasma
rather than with the solid-density, step-like target

For “high-contrast”, O
prepulse-free measurements, = 5l B
the density profile is sharp C [[I _
also at the front side: PR e N
a “symmetrical” TNSA in both T S .'*f:;f
forward and backward directions ¢ 3 TN, 1
! \ 5 P
IS observed for thin targets o q T
(electrons have time e °f AT
to reflux back) E .l /N
e AR
laser — | g T
Pulse {} ...-. L o » o
- 0.1 1 10 100
Foil thickness (pm)
= =) EIG. 1. Variation of maximum detectable proton energy as a
T.Ceccotti et al 10ns ions  function of target thickness. The FWD and BWD emissions for a
PRL 99 (2007) ' FWD BWD laser contrast of 10" (10°) and intensity of 5 > 10 W /em?

185002

(10" W /cm®) are represented, respectively, by open (solid)
circles and squares. Lines are a guide for the eve.



Very thin targets + ultrahigh intensities:
Radiation Pressure effects?

In petawatt (/~10° W/cm?)
experiments for “quite thin”} ® g
targets a highly collimated
dense plasma jet from the
rear side is observed

Interpretation:
due to front side ions

pushed forward by the
radiation pressure Interferometry data
of the laser pulse

& 100

(absence of jet for larger
thickness ascribed to
collisional ion stopping ’
In the target)

10

S.Kar, M.Borghesi, S.V.Bulanov, A.Macchi, i =
M.H.Key, T.V.Liseykina, A.J.MacKinnon, <
P.K.Patel, L.Romagnani, A.Schiavi , O.Willi, 2D PIC simulation (S.V. Bulanov)
PRL 100 (2008) 225004




Simulations suggest regime transition
at intensities ~ 10%* W/cm?

Results from “multi-parametric” PIC simulations:

_ . . _.H]gr'_'_mr"l_'_'_mr“l_'_'_""r“l_'_'_"'"“l_
for maximal ion energy an e g
optimal areal density n d 27 gl
exists for given intensity 7 = 10°F g v L )

— = il color: Ly/A
: — P = il & [l .-'-Jm]:u::LImI{IJDf
- ion energy scales Job e v AV 210" W20
' B =" fill: DIk Y S
with laser energy € <o % 7 Thng oot m4o
L A A-giA W25 {5x10% gg
as € Y2 for I<10”' W/cm® [JREN E 3 4
- 1 10 10 10 10
as € for I>10°' W/em® G 1 (hpm)]
L
FIG. 3 {color).  Proton maximum energy vs laser pulse energy
i . . for i = A, n, = 1n_,. The dashed lines exemplify possible
- transition is explained by ...

the dominance of
Radiation Pressure Acceleration

T.Esirkepov et al, PRL 96 (2006) 105001



Relativistic ions: the “Laser-Piston” regime

Ultra-relativistic interaction regime
“dominated by radiation pressure”:
efficient generation of relativistic,
highly monoenergetic and
collimated ions from ultrathin foils

T.Esirkepov, M.Borghesi, S.V.Bulanov,
G.Mourou, T.Tajima, PRL 92, 175003 (2004)

Required laser intensity

1> 10" W/cm?

The foreseen ion beam parameters
make this attractive as a driver of
low-energy neutrino sources

for studies of CP violation

inv ' >V oscillations

S.V.Bulanov, T.Esirkepov, P.Migliozzi, F.Pegoraro,
T.Tajima, F.Terranova, NIM A 540, 133 (2005)
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Radiation Pressure Acceleration:
transfering the momentum of light to matter

The acceleration of a massive mirror by light pressure is
particularly efficient when the velocity becomes close to the

speed of light (this suggested the “visionary” application of a
laser-propelled rocket 44 years ago:)
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INTERSTELLAR VEHICLE PROPELLED BY TERRESTRIAL LASER BEAM

By Pror, G, MARX
Institute of Thearatical Physics, Roland Edtvds University, Budapest

A breakthrough in efficiency
IS expected as we enter in
the relativistic regime

LASER




The “Light Sail” or (Accelerating Mirror) model

Model: a perfectly reflecting, rigid mirror

of mass M=ptS boosted by a plane light wave ©
. %

Mirror velocity as a function of the laser pulse — e
intensity / and duration 7 and of the surface -
density nef of of the target: .
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Energy per nucleon scales with /7

G.Marx, Nature 211, 22 (1966)
J.F.L.Simmons and C.R.Mclnnes, Am.J.Phys. 61, 205 (1993)



The “Light Sail” or (Accelerating Mirror) model

The efficiency of the acceleration process

can be obtained by a simple argument of W
conservation of “number of photons” —
plus the Doppler shift of the reflected light:
IS
T 1 —
N=— Wy = W b s
hw 1+
&y N w—w,) 20
' s 1ST 1+ 0

B—1=n—1

100% efficiency in the relativistic limit

G.Marx, Nature 211, 22 (1966)
J.F.L.Simmons and C.R.Mclnnes, Am.J.Phys. 61, 205 (1993)



Maximize the effect of Radiation Pressure:
the “optical mill” (Solar radiometer) example

The mill spins in
é_\ the opposite direction
to what we'd expect
\ thinking of P__only:
the heating of the
™ black (absorbing)
surface increases
A the thermal pressure
of the background gas
pP=2l/c (imperfect vacuum
in the bulb!)

In the high-intensity irradiation of a solid-density (plasma)
target, “heating” is due to “irreversible” energy absorption
Into electrons (those electrons driving in turn TNSA)

Is there a way to suppress (reduce) electron heating?



How to “switch off” fast electrons

Forced oscillations of the electrons it S e
across the plasma-vacuum interface " o
(L << A ) driven by the 2w component
of the JxB force (normal incidence) are
non-adiabatic and lead to

electron acceleration

(“vacuum heating” effect

at normal incidence)
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P. Gibbon, Short Pulse Laser Interaction
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How to “switch off” fast electrons

For circular polarization, i 5 e
the 2w component of the JxB o |
force vanishes:

- inhibition of electron acceleration
- “direct” ion acceleration

e, “dominance" of Radiation Pressure
at any laser intensity!
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Simulation of thin foil acceleration: CP vs. LP

- Carbon target, thickness d=0.04p m, rze=250rzc=4.3><1023 cm

- Laser: 26 fs pulse, 1=1.8x10%° W/cm?
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Simulation of thin foil acceleration: CP vs. LP

- Carbon target, thickness d=0.04p m, rze=250rzc=4.3><1023 cm

- Laser: 26 fs pulse, 1=1.8x10%° W/cm?
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Simulation of thin foil acceleration: CP vs. LP

- Carbon target, thickness d=0.04p m, rze=250rzc=4.3><1023 cm
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Simulation of thin foil acceleration: CP vs. LP

- Carbon target, thickness d=0.04p m, rze=250rzc=4.3><1023 cm
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Simulation of thin foil acceleration: CP vs. LP

- Carbon target, thickness d=0.04p m, rze=250rzc=4.3><1023 cm

- Laser: 26 fs pulse, 1=1.8x10%° W/cm?
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Simulation of thin foil acceleration: CP vs. LP

- Carbon target, thickness d=0.04p m, rze=250rzc=4.3><1023 cm

- Laser: 26 fs pulse, 1=1.8x10%° W/cm?
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“Optimal” thickness for thin foil RPA

For the foil to be accelerated as a whole, the thickness 7
must match the laser penetration depth d

p

>>d :the foil is accelerated “by slices”
p

[A.Macchi et al, PRL 94, 165003 (2005)]

f<<dp - all electrons are blown away: Coulomb explosion
of the foll

- the lower the mass and the higher the

final velocity and energy per nucleon
the thinner

the foil ~ .
the lower the reflectivity R and the
radiation pressure in the rest frame

~ P_=QI/)R

An “optimal” compromise can be reached for nm-thick foils
(technologically feasible!)



Model for nonlinear “relativistic” reflectivity
Ultrathin slab model: ne(x):n0f5(x) , foil thickness £<<A

Nonlinear reflectivity R=R(§,a0) can be computed analytically

approximated (but rather

1o precise) formula:

0.8+

~ 2 2
R=C7/(§°+1) fora<{
R={"la’ for a >¢

Pradz(ZI/c)R does not

depend on a fora >

0.6
. i

0.4 1

0.2

020 iz %

PN B I U S B SO A B o M e 1 | 2
<0 >0 69 (since I~a )

The maximum boost of the foil is at aOzC

[A.Macchi, S. Veghini, F. Pegoraro, PRL 103, 085003 (2009)]



Comparison of LS model with 1D PIC simulations

Laser pulse: a =5-50, 1=8 cycles (“flat-top” envelope)
Thin foil target: n =250n , 7=0.01-0.11 ({=7.8-78.5)
Energy spectra vs. a and 14
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Comparison of LS model with 1D PIC simulations

Laser pulse: a =5-50, 1=8 cycles (“flat-top” envelope)
Thin foil target: n =250n , 7=0.01-0.11 ({=7.8-78.5)
Energy spectra vs. a and 14 /
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Comparison of LS model with 1D PIC simulations

Laser pulse: a =5-50, 1=8 cycles (“flat-top” envelope)
Thin foil target: n =250n , 7=0.01-0.11 ({=7.8-78.5)
Energy spectra vs. a and 14
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Comparison of LS model with 1D PIC simulations

Laser pulse: a =2.9-29, 1=9 cycles (“sin

Thin foil tar , 7=0.005-0.0641
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The energy of the peak and the conversion efficiency are In
good agreement with the LS model modified to account for
nonlinear reflectivity effects

[A.Macchi, T. Lyseikina, S. Veghini, F. Pegoraro, New. J. Phys (2010)]



A rich dynamics beneath the simple LS model...

- The foil is not “rigid”: the radiation pressure separates electrons
from ions, charge separation effects are dominant

- self-organization of electrons and ions keep electrostaticand
radiation pressures in equilibrium and ensure “stable” acceleration
In a suitable parameter range

- 3D simulations confirm 1D scenario, while accounting for the
additional constraint of Conservation of the Angular Momentum
carried by the CP pulse

For details and further reading:

T.V.Liseikina et al,
Plasma Phys. Contr. Fus. 50,
124033 (2008)

A.Macchi et al, PRL 103, 085003
(2009)

A.Macchi et al, New.]J.Phys., in press

and (many) references therein




First experimental indications of CP-RPA

= - - - - 1 b - fl ¥ = ¥
i? 10t I ;. — carban C } 1o — carfban C"'_l
T | Lf\‘ protons E protons ||
E ' experirment k 1 ExpEriment :
% . Wl T [\ .
L 1) . L \ . ]
i | lingar 2 circular 5
E | polrization £ polarization |
[ { | [=3
[ S——— | 1o . . . ]
0 10 20 30 40 50 &0 73 80 90 O |0 20 30 40 50 &0 70 8O 90
eargy (e erergy (e
c) ——— d) ————
.| ==k . |=—r =45
_ 100 carbon C¥ |_|,_= .‘.'_EH:| _ 100 carbon CF |—L=11I {’|
£ giimuilution 5 \ wmulation
£ linear & circular
g 0 pohrizaton | g 19 polarization |
: . |
g a |
I I m\ A J
a 14 20 3 40 50 &0 T 40 50 0 I 20 30 40 50 &0 FO 80 0
energy (MaV) energy (May)

FIG. 2 {color). Experimentally observed proton { green curves)
and carbon C°* (red curves) spectra in the case of linear (a) and

circular (b) polarized irradiation of a 53 nm thickness DLC
foil. The comresponding curves as obtained from 2D PIC

simulations (c),(d) show excellent agreement with the measured
distributions at late times (red curves, ¢ = 221 fs after the arrival
of the laser pulse maximum at the target). A guasimonoener getic
peak generated by radiation-pressure acceleration is revealed for
circular polarization, being still isolated at the end of the laser-
target interaction (black curve, t = 45 fs).

A.Henig et al,
PRL 103 (2009) 245003
(MBI Berlin)

laser pulse:

45 fs, I=5X10" W/cm®

target:
Diamond-Like Carbon

ultrathin foils (3-10 nm)

Similar results obtained
by LIBRA collaboration
with GEMINI @ RAL, UK

(M.Borghesi,

talk at COULOMBO9,
Senigallia, Italy,
June 2009)



Conclusions

- Most experiments on ion (proton) acceleration from solid
targets reported so far are well explained by the TNSA mechanism

- The plasma expansion model gives a fair description of energy
scaling (but needs the input of “unknown” parameters...)

- TNSA offers a reliable framework for ion source development and
optimization (target engineering, dynamic beam control)

- Scaling of TNSA at higher intensities and suitability for foreseen
applications (fusion, hadrontherapy) is an open issue

- RPA of ultrathin targets is attractive due to favorable scalings, high
efficiency and monoenergeticity

- The Light Sail model offers a simple but effective description of RPA
- Experimental investigations of RPA with CP pulses are in progress

This talk may be downloaded from

www.df.unipi.it/~macchi/talks.html



Basis of theoretical and numerical modeling

“Plasma physics is just waiting for bigger computers”

df, s, dfa .
f p:t)_—f—'_ Xq f —|_prl f :0: {IZ(E,E)
Vlasov-Maxwell dt ot “ox " Op
system for
collisionless, o= BV xB), % =P
classical plasmas: o ’ Comays

Kinetic equations are
coupled to EM fields  ,x ¢ = S g [Epf, Jxt)= % g [dpvfe,

a=e,1 A=,z

VE=p VB=0, VxE=_-8B, VxB=J13E

Mostly used numerical approach: particle-in-cell (PIC) method
[Birdsall & Langdon, Plasma Physics via Computer Simulation (I10P, 1991)]

3D numerical simulations of “realistic” experimental conditions
IS most of the times beyond present-day supercomputing power

Models are needed to interpretate experiments and unfold the
underlying physics
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