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Outlook

Motivations and simulation set-up
Ion dynamics after self-channeling

- “breaking” of channel walls
- electric “echo” effect
- laser beam breakup

Coherent structure generation
- structure patterns in plasma channels
- “hybrid” vortex-soliton structures
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Motivations

Proton diagnostic techniques allow to detect electric
and magnetic fields in laser plasmas with picosecond
resolution
Investigation of nonlinear laser-plasma dynamics,
particularly coherent structures (solitons, vortices)
generation is now possible
Simulations of laser-plasma interaction need to reach
picosecond time scales (thousands of laser periods)
Need to address the effect of ion motion on field
structures for such time scales
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duration τL = 150÷ 300TL (TL = λ/c)
⇒ I = 1018

÷ 1019 W/cm2,
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Variety of nonlinear effects
Top frame: laser field Ez

(scale magnified ×3 for 50 < x/λ < 250)
Bottom frame: ion density ni
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Variety of nonlinear effects
Top frame: laser field Ez

(scale magnified ×3 for 50 < x/λ < 250)
Bottom frame: ion density ni

Channel boring, beam breakup, formation of “solitons”,
quasi-regular patterns inside channels . . .
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Self-channeling and radial field evolution
At moderate intensity aL = 1.7 the laser pulse drills a regular
charge-displacement channel in the low-density region

The “radial”
space-charge
field (Ey)
changes its
profile along
the propagation
direction

[S.Kar et al., arXiv:physics/0702177]
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Ponderomotive electrostatic 1D model

- 1D electrostatic PIC simulation, cylindrical geometry
- Laser pulse action is included via the radial

ponderomotive force on electrons (as an “external”
driver)

Fp = −mec
2
∇
√

1 + a2(r, t)/2

a2(r, t) = a2
Le
−(r/r0)

2
−(t/τ)2

- Model equations
dpe

dt = −eEr + Fp,
dpi

dt = ZeEr
1
r

∂
∂r (rEr) = 4πρ = e(Zni − ne).

[A. Macchi et al, arXiv:physics/0701139]
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Echo effect in the radial field
1D electrostatic PIC simulation
aL = 2.7, τL = 300TL, rL = 7.5λ

Er appears back
(“echo”) where a
sharp spike of ni is
produced;
the spike then
“breaks” producing
a fast bunch
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Analysis of ion phase space show that hydrodynamical
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At breaking, strong
electron heating
occurs

A “sheath”
ambipolar field is
generated around
the density spike
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Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Beam breakup
The laser pulse breaks into three “filaments” originating
near the location of the ion density breaking

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.11/16



Leaking waveguide model

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.12/16



Leaking waveguide model
The self-guided laser pulse can be roughly modeled by two
overlapping plane waves with k1 = (kx, ky), k2 = (kx,−ky),

ky =
π

d
, kx =

√

ω2

c2
− k2

y

d k
k

1

2
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Leaking waveguide model
A sudden “leak” in the channel walls leads to the escape of
radiation at an angle

θ ' arctan

(

ky
kx

)

d
θ
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Leaking waveguide model

From the simulation d ' 7λ near the breaking point

tan θ ' 0.065,
ky
kx
'

λ

2d
'

1

14
= 0.071

300 320 340

110

120

130
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Slowly-varying structures
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Slowly-varying structures

Generation of both isolated and pattern-organized field
structures
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Slowly-varying structures

Both isolated “cavitons” or “post-solitons” and patterns in-
side density channels
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Slowly-varying structures

Axially symmetrical pattern inside the main channel, in the
low-density region
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Evolution of field structures
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Evolution of field structures

Pattern of standing “cavitons” grow
inside low-density channels (due to
the trapping of low-frequency light?)
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Evolution of field structures

Pattern of standing “cavitons” grow
inside low-density channels (due to
the trapping of low-frequency light?)

The are experimental indications of
the growth of slowly varying field
patterns inside channels

[see e.g. T.V.Liseikina et al,
arXiv:physics/0702177]
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Hybrid structures
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Hybrid structures
Structures from the pattern in the low-density region re-
veal a “hybrid” vortex-soliton nature with both oscillating
and quasi-static components
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Hybrid structures
Structures from the pattern in the low-density region re-
veal a “hybrid” vortex-soliton nature with both oscillating
and quasi-static components

EE

Bω

ω 0

Antisymmetric “soliton” fields:
oscillating Ez, Bx and By and
electrostatic Ex, Ey

A. Macchi – EPS Conference on Plasma Physics, Warsaw, July 2, 2007 – p.15/16



Hybrid structures
Structures from the pattern in the low-density region re-
veal a “hybrid” vortex-soliton nature with both oscillating
and quasi-static components

B0

J0 Antisymmetric “vortex” fields:
static Bz, Jx and Jy
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Hybrid structures
Structures from the pattern in the low-density region re-
veal a “hybrid” vortex-soliton nature with both oscillating
and quasi-static components

EE

Bω

ω 0 B0

J0

Toroidal structures in 3D?
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Conclusions

Effects of the ion dynamics following self-channeling
have been unfolded
Various types of coherent structures have been
observed in simulations
Next steps:

- hybrid structures in 3D
- experimental comparison
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