Compito n. 1 Nome	Cognome	$Numero\ di\ matricola$
Compitino di Fisica A2 del 23 g	giugno 2003	
quindi massima attenzion ciascuna domanda sono in	e nei calcoli. La tolleranza prevista è : ndicati tra parentesi: attenzione, una ri	olo le risposte numeriche fornite dallo studente. Fare $\pm 5\%$ salvo ove diversamente indicato. I punteggi drisposta errata verrà valutata con il numero negativo meglio non rispondere che rispondere a caso!
• Modalità di risposta: scriv	vere il valore numerico della risposta nel	ell'apposito spazio e barrare la lettera corrispondente
• Si assumano i seguenti vale costante gas perfetti $R=3$		roblemi: intensità campo gravitazionale $g=10~\mathrm{m~s^{-2}}$
di raggio interno $R_i = 0.650$ m, m e densità $\delta = 5600$ kg/m ³ . $r_s = 0.340$ m saldato sulla supe pari lunghezza. Su tutto agisce l	nclinato a $\pi/4$ è appoggiato un anello e raggio esterno $R_e = 0.690$ m, lunghezz Al suo interno si trova un altro cilinericie interna e con la stessa densità di la forza gravitazionale. All'inizio il ciline o in modo da avere il cilindretto in alto n	zza L=0.1 ndretto di li prima e ndro tocca
1. Determinare la quota del $h \text{ [m]} = \boxed{0.638}$ A $\boxed{5.47}$	baricentro rispetto al punto di contatto B $\begin{bmatrix} 6.22 \end{bmatrix}$ C $\begin{bmatrix} 0.638 \end{bmatrix}$ D $\begin{bmatrix} 7.51 \end{bmatrix}$ H	o dell'anello sul piano. $(2,-1)$ E $\boxed{3.94}$
2. Determinare il momento di $I \text{ [kg m}^2] = \boxed{60.3}$ A $\boxed{18}$		E 543
L'anello cilindrico viene lasciato rotazioni complete:	libero di muoversi sulla superficie inclin	nata dove ruota senza slittare. Dopo esattamente du
3. Determinare in modulo il $v_b/v_a = \boxed{1.31}$ A $\boxed{36.4}$	rapporto tra la velocità del baricentro e B $\boxed{1.31}$ C $\boxed{1.81}$ D $\boxed{4.74}$ E $$	e quella del centro dell'anello. $(3,-1)$ 25.1
4. Determinare il modulo del $v_a \text{ [ms}^{-1}\text{]} = \boxed{7.58}$ A $\boxed{7}$	lla velocità del centro dell'anello. $(3,-1)$.58 B $\boxed{5.30}$ C $\boxed{4.38}$ D $\boxed{6.61}$	E 13.1
Si supponga che a questo punto significanti di energia).	l'anello abbia finito la discesa ed inizi a	a muoversi in piano (un piccolo raccordo evita perdite
	ma dell' anello nel moto successivo. $(2,-32.8)$ B $\boxed{1.42}$ C $\boxed{5.79}$ D $\boxed{12.0}$	in '
	te orizzontale della velocità del baricent 5.57 B 9.57 C 4.75 D 20.4	· · · · · · · · · · · · · · · · · · ·
un pistone mobile di massa $m=1$ biatomico; la parte di sinistra è ancora a $d=4.00$ m, i cui estren	= 2.00 kg a tenuta perfetta; nella parte è vuota e contiene una molla di costan	5 m ² , e lunghezza d =4.00 m è diviso in due parti de di destra si trovano n = 0.130 moli di gas perfetto e elastica K = 170 N/m e lunghezza a riposo par e e di fondo del recipiente. Il tutto è alla temperatura iche trascurabili.
1. Determinare il volume del $V [\mathrm{m}^3] = \boxed{0.333}$ A $\boxed{1.8}$	gas nello stato di equilibrio $(2,-1)$ 0 B 0.663 C 3.28 D 2.32	E 0.333
2. Determinare la forza eserc $F[N] = 227$ A 227	eitata dalla molla nello stato di equilibri B 381 C 1510 D 2090 E 6	

In una versione più realistica si supponga che recipiente, molla e pistone abbiano complessivamente una capacità termica di 5.00 J/K. Si supponga che il sistema faccia una trasformazione reversibile in cui il volume occupato dal gas nello stato finale è dimezzato ed il pistone è in equilibrio.

D 11.4 E 3.03

3. Determinare la frequenza delle piccole oscillazioni del pistone attorno allo stato di equilibrio (3,-1)

C 25.1

A 2.08

B 14.1

4.	4. Si calcoli la nuova temperatura di equilibrio. (2,-1)												
	T[K] =	70.0	A	35.7	В	70.0	C 60.0) D	12.7	Е	17.9		

5. Si trovi di quanto varia nella trasformazione l'energia interna totale (meccanica e termica) del sistema gas, recipiente, molla, (3,-1)

 $\Delta E [J] = \boxed{-1731}$ A $\boxed{-368}$ B $\boxed{-417}$ C $\boxed{-1730}$ D $\boxed{-9710}$ E $\boxed{-6060}$

6. Determinare la variazione di entropia del sistema gas, pistone, recipiente, molla durante la trasformazione reversibile descritta nel punto precedente. (3,-1)

 $\Delta S [J/K] = \boxed{-11.4}$ A $\boxed{-2.99}$ B $\boxed{-3.95}$ C $\boxed{-8.50}$ D $\boxed{-11.4}$ E $\boxed{-10.4}$

Compito n. 1