Compito n. 1 Nome	Cognome		Numero di matricola
Compito di Fisica A1 del 9 luglio 20	003		
quindi massima attenzione ne ciascuna domanda sono indica	i calcoli. La tolleranza prevista è	$\pm 5\%$ salvo ove d risposta errata ve	meriche fornite dallo studente. Fare iversamente indicato. I punteggi di rrà valutata con il numero negativo dere che rispondere a caso!
• Modalità di risposta: scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.			
• Si assumano i seguenti valori p costante gas perfetti $R=8.31$		problemi: intensità	a campo gravitazionale $g = 10 \text{ ms}^{-2}$,
	cola fissata al suolo ed è tirata su me è tutta stesa su un piano; poi	ı da un grosso gan İsi applica la forza	
1. Quanto vale l'accelerazione della corda quando raggiunge dieci metri di altezza. $(2,-1)$ $a [\mathrm{ms}^{-2}] = \boxed{2.34}$ A $\boxed{5.83}$ B $\boxed{13.3}$ C $\boxed{15.1}$ D $\boxed{2.34}$ E $\boxed{9.56}$			
2. Quanto vale la forza di trazione applicata dal gancio sulla corda quando il capo della corda raggiunge dieci metri di altezza. $(3,-1)$ $T [m] = 48.3$ $A 30.4$ $B 53.5$ $C 16.9$ $D 48.3$ $E 91.3$			
3. Trovare la quota a cui la fune $h \text{ [m]} = \boxed{66.1} \text{A} \boxed{1840} \text{E}$		si spezza. (2,-1)	
4. Trovare la velocità della fune p $v [\mathrm{m/s}] = \boxed{13.8}$ A $\boxed{13.8}$	nel momento in cui si spezza. (3,- B 9.69 C 8.00 D 12.1	1) E 24.0	
Nel caso in cui la carrucola introduca una forza dissipativa schematizzabile come una forza di intensità $R=1.30~\mathrm{N}$:			
5. Trovare la nuova quota a cui la fune raggiunge il carico di rottura R e si spezza. (3,-1) $h [m] = \boxed{64.6}$ A $\boxed{177}$ B $\boxed{7.66}$ C $\boxed{31.3}$ D $\boxed{64.6}$ E $\boxed{34.7}$			
6. Trovare la nuova velocità ragg $v \text{ [m/s]} = \boxed{13.5} \text{A} \boxed{9.10}$	iunta dalla corda prima di rompe B 15.6 C 7.76 D 33.3	rsi. (2,-1) E 13.5	
Problema 2, urti: Una pallina di massa $m = 0.490$ kg minori di un metro, con una forza e d'urto vale $b = 0.460$ m.			diffusore che la attrae, per distanze $v=100.0~\mathrm{m/s},\mathrm{mentre~il~parametro}$
	rispetto al centro diffusore? (1,-1 B 44.8 C 222 D 157 F	1) E 22.5	
nulla nel punto in cui la distar	l sistema prima di entrare nella re nza dal centro diffusore è zero? (3 B 4620 C 18300 D 25300	<u> </u>	a la forza di attrazione, assumendola
	lo tra la direzione di volo della gagente il centro diffusore. (2,-1) B 3.24 C 5.78 D 2.62	pallina appena en E 0.699	tra nel regione di azione del centro
4 Calcolare la distanza minima r_m [m] = $\begin{bmatrix} 0.439 \end{bmatrix}$ A $\begin{bmatrix} 0.224 \end{bmatrix}$	(r_m) della pallina dal centro diffu B $\boxed{0.439}$ C $\boxed{0.376}$ D $\boxed{0.0}$		
Immaginiamo per un attimo che il spazio:	campo di forza non sia limitato	ad un metro dal	centro, ma sia operativo in tutto lo
5 Trovare la distanza massima (r_M [m] = 3.00 A 0.637	r_M) della pallina dal centro.(3,-1) B $\boxed{0.721}$ C $\boxed{3.00}$ D $\boxed{16.8}$) E 10.5	

Ricordando che i raggi minimo e massimo corrispondono alle lunghezze dei due assi dell'orbita ellittica percorsa dalla pallina:

6 Determinare l'angolo di cui ruota il raggio vettore congiungente la pallina con il centro di forza tra l'istante iniziale e l'istante in cui la pallina si trova alla distanza minima (3,-1)

 $\theta \text{ [rad]} = \boxed{0.308} \quad \text{A} \quad \boxed{0.0806} \quad \text{B} \quad \boxed{0.107} \quad \text{C} \quad \boxed{0.229} \quad \text{D} \quad \boxed{0.308} \quad \text{E} \quad \boxed{0.281}$

Compito n. 1