
Compito n. 1 Nome	Cognome		Numero di matricola
Compito di Fisica A12 20 gen	naio 2004		
quindi massima attenzio ciascuna domanda sono	rretto da un computer, che analizzerà sone nei calcoli. La tolleranza prevista è indicati tra parentesi: attenzione, una ntesi, per scoraggiare risposte casuali: è	$\pm 5\%$ salvo ove di risposta errata ver	iversamente indicato. I punteggi di rrà valutata con il numero negativo
• Modalità di risposta: scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.			
• Si assumano i seguenti valori per le costanti che compaiono nei problemi: intensità campo gravitazionale $g = 10 \text{ m s}^{-2}$, costante gas perfetti $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.			
mente sulla sommità di un cu con angolo alla base di $\pi/6$ r senza attrito. Tutto il sistema	massa 0.930 kg e dimensioni trascurabi neo rettangolare di massa 2.30 kg e alte ad. Il cuneo può scivolare su un piano a è immerso in campo gravitazionale di i ante $t = 0$ s la pallina è lasciata libera d inato del cuneo.	zza 1.40 m orizzontale ntensità g ,	
Nell'istante infinitesimamente determinino:	precedente quello dell'arrivo della pallin	na sulla superficie o	prizzontale di appoggio del cuneo, si
1. L'energia cinetica totale E_c [J] = 13.0 A 76.	e del cuneo e della pallina.(2,-1) 6 B 48.5 C 13.0 D 15.9	E 92.5	
2. La velocità del cuneo nel sistema di riferimento del laboratorio. (1,-1) $V_c \text{ [m/s]} = \boxed{1.62} \text{A} \ \boxed{0.943} \text{B} \ \boxed{0.299} \text{C} \ \boxed{0.365} \text{D} \ \boxed{3.14} \text{E} \ \boxed{1.62}$			
3. Il modulo della componente della velocità della pallina parallela alla superficie orizzontale. (1,-1) v_{px} [m/s] = $\boxed{4.01}$ A $\boxed{0.331}$ B $\boxed{4.01}$ C $\boxed{1.25}$ D $\boxed{4.54}$ E $\boxed{0.865}$			
4. Il modulo della velocità relativa tra la pallina e il cuneo. (1,-1) $v_r [\text{m/s}^2] = \boxed{6.10} $ A $\boxed{1.82} $ B $\boxed{2.90} $ C $\boxed{0.595} $ D $\boxed{6.10} $ E $\boxed{1.64}$			
	te un raccordo morbido tra cuneo e pian za sulla superficie stessa, il cuneo incon 5.00 m. Si determini:		
5. Di quanto si è accorciat $\delta l \text{ [m]} = \boxed{1.74} \text{ A } \boxed{0.1}$	a la molla nel momento in cui il cuneo s 25 B $\boxed{1.09}$ C $\boxed{0.509}$ D $\boxed{1.74}$	uccessivamente si t $\to 0.564$	ferma? (2,-1)
6. In quanto tempo la velocità del cuneo si azzera, da momento del contatto con la molla.? (1,-1) $t [s] = \boxed{1.68} A \boxed{1.13} B \boxed{1.94} C \boxed{0.965} D \boxed{4.14} E \boxed{1.68}$			
7. A che altezza arriva la pallina dopo il rimbalzo, assumendo che l'urto con la superficie orizzontale sia elastico? (1,-1) $h \text{ [m]} = \boxed{0.269} \text{A} \boxed{1.45} \text{B} \boxed{0.534} \text{C} \boxed{2.64} \text{D} \boxed{1.87} \text{E} \boxed{0.269}$			
8. Quanto è lungo il primo $d [m] = \boxed{1.86}$ A $\boxed{1.86}$		5.65	

Problema 2:

Una puleggia di massa 0.430 kg e raggio di 0.0710 m è legata ad un punto P con un filo lungo 2 m avvolto nella sua gola interna di 3 cm di raggio (YoYo orizzontale) ed è libera di scivolare senza attrito su di un piano orizzontale. Il filo inizialmente è praticamente tutto avvolto all'interno della puleggia, che si trova ferma nel punto iniziale: il filo è massivo, ma inestensibile: si sa che la massa di filo inizialmente avvolta attorno alla puleggia è pari a 0.10 kg. All'istante t=0 s si colpisce la puleggia all'altezza del suo centro con un impulso pari a 10 Ns, in direzione parallela al filo, e verso tale da far srotolare il filo stesso: la puleggia si mette in moto rettilineo sul piano orizzontale.

Nei calcoli si consideri la puleggia come un cilindro di raggio dato con la parte di filo avvolto a distanza fissa dal centro della puleggia stessa. Si noti che durante il moto la massa effettivamente in movimento cambia, mano a mano che il filo si srotola; può aiutare nello svolgimento del problema identificare quale sia il centro istantaneo di rotazione.

- 1. Si calcoli la velocità iniziale del centro della puleggia. (2,-1) v_{cn} [m/s] = $\begin{bmatrix} 5.45 \end{bmatrix}$ A $\begin{bmatrix} 5.45 \end{bmatrix}$ B $\begin{bmatrix} 37.0 \end{bmatrix}$ C $\begin{bmatrix} 66.0 \end{bmatrix}$ D $\begin{bmatrix} 29.9 \end{bmatrix}$ E $\begin{bmatrix} 7.97 \end{bmatrix}$
- 2. Si determini l'energia totale del sistema. (2,-1) $E_{tot} [J] = \boxed{27.3} \quad A \boxed{13.9} \quad B \boxed{27.3} \quad C \boxed{23.4} \quad D \boxed{4.93} \quad E \boxed{6.96}$
- 3. Si determini la velocità angolare iniziale della puleggia. (1,-1) ω [Js] = $\begin{bmatrix} 182 \end{bmatrix}$ A $\begin{bmatrix} 38.6 \end{bmatrix}$ B $\begin{bmatrix} 43.8 \end{bmatrix}$ C $\begin{bmatrix} 182 \end{bmatrix}$ D $\begin{bmatrix} 1020 \end{bmatrix}$ E $\begin{bmatrix} 636 \end{bmatrix}$

Dopo un certo tempo la carrucola ha percorso un metro: Il sistema puleggia+filo nello svolgersi ha ovviamente diminuito la sua massa.

- 4. Si calcoli la velocità nel nuovo punto.(2,-1) $v \text{ [m/s]} = \boxed{5.61}$ A $\boxed{1.47}$ B $\boxed{1.94}$ C $\boxed{4.17}$ D $\boxed{5.61}$ E $\boxed{5.12}$
- 5. Quanto vale la accelerazione della puleggia? (2,-1) $a \text{ [m/s^2]} = \boxed{0.906}$ A $\boxed{0.364}$ B $\boxed{0.661}$ C $\boxed{0.421}$ D $\boxed{0.906}$ E $\boxed{1.23}$
- 6. Quanto vale la tensione del filo? (1,-1) $T\left[\mathbf{N}\right] = \begin{bmatrix} 0.351 \end{bmatrix} \quad \mathbf{A} \begin{bmatrix} 0.981 \end{bmatrix} \quad \mathbf{B} \begin{bmatrix} 0.351 \end{bmatrix} \quad \mathbf{C} \begin{bmatrix} 3.53 \end{bmatrix} \quad \mathbf{D} \begin{bmatrix} 4.21 \end{bmatrix} \quad \mathbf{E} \begin{bmatrix} 1.29 \end{bmatrix}$

Problema 3: Sono date 3.10 moli di gas perfetto biatomico che compiono il seguente ciclo: (1) a partire da un dato stato iniziale, una espansione isoterma reversibile alla temperatura 430 K, durante la quale il gas assorbe una quantità incognita di calore; (2) viene bloccato il volume del gas, e viene posto con una seconda sorgente termica ideale a temperatura 290 K; (3) una volta raggiunto l'equilibrio con la seconda sorgente termica, il gas viene compresso adiabaticamente sino alla condizione iniziale.

Determinare:

- 1. Di quanto varia l'entropia del gas durante la trasformazione 2? (2,-1) $\Delta S \text{ [J/T]} = \boxed{-25.4} \quad \text{A } \boxed{-33.1} \quad \text{B } \boxed{-158} \quad \text{C } \boxed{-25.4} \quad \text{D } \boxed{-21.0} \quad \text{E } \boxed{-341}$
- 2. Quanto è il calore scambiato dal gas durante la trasformazione 1? (2,-1) $Q[J] = \begin{bmatrix} 10908 \end{bmatrix}$ A $\begin{bmatrix} 1020 \end{bmatrix}$ B $\begin{bmatrix} 2250 \end{bmatrix}$ C $\begin{bmatrix} 10900 \end{bmatrix}$ D $\begin{bmatrix} 14300 \end{bmatrix}$ E $\begin{bmatrix} 4850 \end{bmatrix}$
- 3. Quanto è il lavoro fatto dal gas durante un ciclo? (2,-1) $\mathcal{L}\left[J\right] = \begin{bmatrix} 1892 & A & 2610 & B & 14200 & C & 3840 & D & 1890 \end{bmatrix} \quad \text{E } \boxed{3320}$
- 4. Di quanto cambia l'entropia delle sorgenti con cui viene in contatto il gas durante un ciclo? (2,-1) ΔS [J/K] = $\boxed{5.72}$ A $\boxed{5.72}$ B $\boxed{0.473}$ C $\boxed{1.42}$ D $\boxed{6.28}$ E $\boxed{11.6}$

Si supponga ora che la seconda sorgente termica con cui il gas viene messo in contatto abbia realmente una capacità termica finita, pari a 2000 J/K, e una temperatura iniziale uguale a quella specificata nella trasformazione (2) sopra, mentre la sorgente calda rimane una sorgente ideale.

- 5. Quale è il lavoro massimo che è possibile estrarre dal sistema, modificando opportunamente il ciclo? (2,-1)
 - $\mathcal{L}[J] = 58758$ A 280000 B 90500 C 58800 D 42000 E 82400

Compito n. 1