Compito n. 1 Nome	Cognome	Numero	di matricola
Compito di Fisica A1 del 10 giugr	о 2004		
quindi massima attenzione i ciascuna domanda sono indic	o da un computer, che analizzerà s nei calcoli. La tolleranza prevista è cati tra parentesi:m/s attenzione, un , per scoraggiare risposte casuali: è	$\pm \pm 5\%$ salvo ove diversame na risposta errata verrà valu	nte indicato. I punteggi di tata con il numero negativo
• Modalità di risposta: scriver	e il valore numerico della risposta r	nell'apposito spazio e barrar	e la lettera corrispondente.
• Si assumano i seguenti valor costante gas perfetti $R=8.3$	i per le costanti che compaiono nei p $1~{ m J}~{ m K}^{-1}~{ m mol}^{-1}.$	oroblemi: intensità campo g	gravitazionale $g = 10 \ ms^{-2}$,
piano orizzontale perfettamente li liscia, una pallina (corpo 3) di ma elastica 1.10 N/m e lunghezza a ri	sa 0.170 kg e il secondo (corpo 2) scio. Il secondo corpo sostiene sull ssa 0.120 kg e dimensioni trascurabi poso nulla, al centro della superficie elasticamente e centralmente con ve	a sua superficie superiore, dili legata elasticamente med e. Mentre il secondo corpo d	orizzontale e perfettamente liante una molla di costante
1 Si calcoli l'energia totale iniz $E[J] = \boxed{34.0} A \boxed{38.5}$		34.0	
2 Quanto vale la velocità del p $V_r \text{ [m/s]} = \boxed{-16.4} \text{A} \boxed{-11.8}$	orimo corpo dopo il rimbalzo? (2,-1 8 B -77.7 C -16.4 D -55		
	ita al sistema costituito dai corpi 2 B 52.8 C 161 D 111 E	e 3 dopo l'urto? (3,-1) 25.0	
4 Quanto vale la frequenza di ν [s ⁻¹] = $\boxed{0.499}$ A $\boxed{1.30}$	oscillazione del stesso sistema corpo B $\boxed{0.499}$ C $\boxed{0.596}$ D $\boxed{0.24}$	_	
5 Quanto vale la velocità del c $V_l \text{ [m/s]} = \boxed{3.40} \text{A} \boxed{3.40}$	pentro di massa dei corpi 2,3? $(2,-1)$ B $\boxed{7.75}$ C $\boxed{0.555}$ D $\boxed{10.3}$	E 4.02	
6 Quanto è la massima velocit $V_l \text{ [m/s]} = \boxed{6.79} \text{A } \boxed{0.964}$	à della pallina rispetto al laborator B 6.79 C 3.89 D 3.73	io? (2,-1) E 0.435	
7 Quale è l'ampiezza massima $A [m] = \boxed{1.08}$ A $\boxed{1.57}$	di oscillazione della pallina rispetto B $\boxed{1.13}$ C $\boxed{3.21}$ D $\boxed{1.08}$ I	o al centro di massa dei cor E 0.682	pi 2,3? (2,-1)
	lanciato in orbita geostazionaria spa a terra verso est. $R_t = 6.4 \times 10^6 \text{ m}$		uatore in direzione pratica-
	l missile sulla superfice della terra r -1.09×10^{10} B -1.59×10^{11}	ispetto ad un punto a dista $C = 8.32 \times 10^9$ D $= 1.8$	
Supponendo che il missile non car	nbi di massa durante il suo moto e	dopo aver individuato l'asse	e maggiore dell'orbita:
	bita di transizione che è tangente a -1.42×10^9 B -1.94×10^{10} C	lla terra e tangente all'orbit $C = -1.17 \times 10^{10}$ D $= -9.86$	
3 Quanto vale il momento ang	olare dell'orbita di transizione? (3,-	.1)	

 $v \text{ [m/s]} = \boxed{1584}$ A $\boxed{1160}$ B $\boxed{309}$ C $\boxed{2400}$ D $\boxed{3710}$ E $\boxed{1580}$

Alla base si opera per far restare il missile in orbita stazionaria.

A 1.21×10^{13}

 $4\,$ Quanto vale la velocità del missile quando arriva all'apogeo? (2,-1)

 $L [Js] = 1.15 \times 10^{13}$

C 1.73×10^{13}

D 1.15×10^{13}

E 1.41×10^{13}

B 2.92×10^{12}

5 Quanta è l'energia necessaria per adeguare il missile all'orbita stazionaria? (3,-1)

$$E_n [J] = 6.03 \times 10^8$$
 A 1.49×10^9 B 9.67×10^8 C 2.18×10^9 D 5.45×10^9 E 6.03×10^8

 $\,\,$ 6 Quanto è l'energia totale spesa in tutta l'operazione? (2,-1)

$$E_t \ [\mathrm{J}] = \boxed{1.00 \times 10^{10}} \quad \mathrm{A} \ \boxed{3.72 \times 10^{10}} \quad \mathrm{B} \ \boxed{1.49 \times 10^9} \quad \mathrm{C} \ \boxed{8.25 \times 10^9} \quad \mathrm{D} \ \boxed{1.49 \times 10^{10}} \quad \mathrm{E} \ \boxed{1.00 \times 10^{10}}$$

7 Di quanto varia l'energia totale nel caso che il lancio avvenisse verso ovest? (2,-1)

$$\Delta E [J] = \boxed{3.68 \times 10^7}$$
 A $\boxed{1.98 \times 10^7}$ B $\boxed{5.29 \times 10^6}$ C $\boxed{1.59 \times 10^7}$ D $\boxed{3.68 \times 10^7}$ E $\boxed{2.63 \times 10^6}$

Compito n. 1