Continuum states using

the hypersherical harmonic adiabatic method

Paolo Barletta and Alejandro Kievsky

October 2006

1 – Overview

- the variational method
- introduction to the three-body system
- the hyperspherical adiabatic basis
- the adiabatic equations
- results and conclusions

2 – Variational method

Rayleigh-Ritz variational principle N basis functions $\{\phi_i\}, \psi_j = \sum_i C_i^{(j)} \phi_i$ $\sum_i (\mathcal{H}_{ik} - \varepsilon_j \mathcal{N}_{ik}) C_i^{(j)} = 0 \Rightarrow \text{best } C_i^{(j)}$ $(\mathcal{H}_{ik} = \langle \phi_i | \mathcal{H} | \phi_k \rangle, \mathcal{N}_{ik} = \langle \phi_i | \mathcal{N} | \phi_k \rangle)$ $\Rightarrow \varepsilon_j \ge E_j$

Kohn variational principle

$$\psi = \psi_c + \psi_a = \sum_i C_i \phi_i + (g + \mathcal{L}f)$$
$$[\mathcal{L}, E] = \mathcal{L} - 2\langle \psi | \mathcal{H} - E | \psi \rangle$$

Variational method

3 – Three-body: Introduction

Jacobi coordinates
$$\{x_i, y_i, \mu_i\}$$
:
$$\vec{x}_i = \frac{\vec{r}_j - \vec{r}_k}{\sqrt{2}}; \vec{y}_i = \sqrt{\frac{3}{2}} (\frac{\vec{r}_j + \vec{r}_k}{2} - \vec{r}_i); \mu_i = \hat{x}_i \cdot \hat{y}_i.$$
Hyperspherical coordinates $\{\rho, \theta_i, \mu_i\}$:
$$\rho^2 = \sqrt{\frac{1}{3}} (r^2 + s^2 + t^2) = x_i^2 + y_i^2$$

$$\theta_i = \tan^{-1}(y_i/x_i)$$
Jacobian
$$\rho^5 \cos^2 \theta_i \sin^2 \theta_i d\theta_i d\mu_i d\rho$$
Kinetic energy operator :
$$-\frac{\hbar^2}{2m} (\frac{d^2}{d\rho^2} + \frac{5}{\rho} \frac{d}{d\rho}) + \frac{L}{\rho^2}$$
Potential operator :
$$V = V(s) + V(t) + V(r)$$

Three-body: Introduction

4 – Hyperspherical approach:

$$\mathcal{H} = T_{\rho} + \frac{1}{\rho^2} L(\theta_i, \mu_i, \dots) + V(s, r, t)$$

$$L(\Omega)B_K(\Omega) = \lambda_K B_K(\Omega)$$

5 – Hyperspherical adiabatic approach I:

$$\mathcal{H}_{\Omega} = \frac{1}{\rho^2} L(\Omega) + V(s, r, t)$$

$$\mathcal{H}_{\Omega}\phi_{\nu}(\rho;\Omega) = U_{\nu}(\rho)\phi_{\nu}(\rho;\Omega)$$

$$\{\phi_{\nu}(\rho; \Omega), U_{\nu}(\rho)\}, \ \rho = \{\rho_i\}$$

$$\phi_{\nu}(\rho,\Omega) = \sum_{K} A_{K}^{\nu}(\rho) B_{K}(\Omega)$$
$$\sum_{K'} [(\lambda_{K}/\rho^{2} - U_{\nu})\delta_{K',K} + V_{K',K}(\rho)] A_{K}^{\nu}(\rho) = 0 \quad (K = 1, 2, ...)$$

October 2006 Paolo Barletta

6 – Hyperspherical adiabatic approach II:

$$\mathcal{H}_{\Omega}\phi_{\nu}(\rho;\Omega) = U_{\nu}(\rho)\phi_{\nu}(\rho;\Omega)$$
$$\Psi(\rho,\Omega) = \sum_{\nu} u_{\nu}(\rho)\phi_{\nu}(\rho;\Omega)$$

$$\sum_{\nu} \left[(T_{\rho} + U_{\lambda}(\rho) - E) \delta_{\lambda,\nu} + B_{\lambda,\nu}(\rho) + C_{\lambda,\nu} \frac{d}{d\rho} \right] u_{\nu}(\rho) = 0 \quad (\lambda = 1, 2, \ldots)$$

$$\frac{B_{\lambda,\nu}(\rho) = \langle \phi_{\lambda} | T_{\rho} | \phi_{\nu} \rangle, \ C_{\lambda,\nu}(\rho) = 2 \langle \phi_{\lambda} | \frac{d}{d\rho} | \phi_{\nu} \rangle.}{\{T_{\rho} + U_1(\rho) + B_{1,1}(\rho) - E\} u_1(\rho) = 0}$$

size of the problem : $N=N_L N_{eq}$

if $N_{eq}=N_B$ adiab. appr. eqv HH expansion

in general $N_{eq} \ll N_B$

Hyperspherical adiabatic approach II:

7 – Adiabatic Potentials

$$\begin{array}{l} \rho \rightarrow 0, V \rightarrow \text{const. } \{U_{\lambda}\} = \{U_n^{(0)}\} \\ \hline \rho \rightarrow \infty \{U_{\lambda}\} = \{U_n^{(0)}, E_2\}. \\ \text{recalling that } \rho^2 \propto s^2 + t^2 + r^2 \end{array}$$

Adiabatic Potentials

October 2006 Paolo Barletta

$$\mathcal{H}_{\Omega}\phi_{\nu}(\rho;\Omega) = U_{\nu}(\rho)\phi_{\nu}(\rho;\Omega)$$

$$\frac{\phi \to g/(\cos \theta_i \sin \theta_i)}{\rho \gg r_0 \Rightarrow V(s) = V(t) \approx 0, \ \ell = 0}$$
$$\left\{ -\frac{1}{2\rho^2} \frac{d^2}{d\theta^2} + V(r) \right\} g = 0$$
$$\sqrt{2}\rho \left(\pi/2 - \theta_i\right) \to w$$
$$\left\{ -\frac{d^2}{dw^2} + V'(w) \right\} g = 0$$

$$U_0(\rho) \approx E_{2B} + c/\rho^2 + \dots$$

 $U_n(\rho) \approx \lambda_K/\rho^2 + d/\rho^3 + \dots$

similar expansions for $B_{
u,\lambda}$, $C_{
u,\lambda}$

Asymptotic behaviour of $\{U(\rho)\}$:

October 2006 Paolo Barletta

9 – Strategy

- \checkmark the hyperspherical hamiltonian (\mathcal{H}_{Ω}) is solved on a grid $\{\rho_i\}$
- \checkmark the Ω basis set can be optimized for different ho_i
- the appropriate variational principle is applied
- convergence on adiabatic channels is seeked

Lowest adiabatic channel accounts for at least 90% of the desired observable!

10 – Results: bound and scattering states with CP

$$V(r) = A \exp\left[-(r/d)^2\right] \ \ A = 51.5 \ {\rm MeV} \ \ d = 1.6 \ {\rm fm}$$

$$\ell=0,\,E=-0.39774$$
 MeV, $\mathsf{a}_s=11.36$ fm

			scatt states (${\cal L}$ =	$= \tan \theta$)	
2 (MeV)	Ν	-0.30 (MeV)	-0.25 (MeV)	-0.15 (MeV)	-0.05 (MeV)
-0.4781	4	-76.3256	87.4769	78.2328	68.8296
-0.4810	8	-76.2439	87.3885	78.3206	68.9301
-0.4814	12	-76.2348	87.3795	78.3273	68.9387
-0.4815	16	-76.2329	87.3779	78.3279	68.9400
-0.4815	20	-76.2322	87.3773	78.3280	68.9403

(bound sta	ates	
	Ν	E_1 (MeV)	E_2 (MeV)	
	1	-9.7559	-0.4781	
	2	-9.7767	-0.4810	
	3	-9.7794	-0.4814	
	4	-9.7795	-0.4815	
	5	-9.7796	-0.4815	/

11 – Results: bound states with RP

nnp, potential AV14

N_c^1	E (MeV)			
	ad	HH		
3	-3.563	-3.564		
4	-4.130	-4.131		
5	-4.138	-4.139		
6	-4.174	-4.176		
7	-4.342	-4.346		
8	-4.424	-4.428		
${}^1 K_{max} = 10$				

Results: bound states with RP

12 – Conclusions

- In this work, we have applied the hyperspherical adiabatic (HA) method to the study of bound and scattering states of a three-nucleon system.
- The HA method operates as a two-step procedure.
- First, a set of adiabatic functions and potentials are obtained on a grid $\{\rho_i\}$,
- then a set of coupled differential eqs is solved (which is problem-independent)
- however, price to pay are numerical complications.
- Future work will address a full convergence for the realistic case
- and scattering at higher energies.