Testing superscaling on nuclei at low q with different nuclear models and predictions on electroweak cross section

Marco Martini - Università di Lecce and INFN Sez. di Lecce

In collaboration with: M.Anguiano, G.Co' and A.M. Lallena

Topics

- * Scaling Procedure
- * Nuclear Models
- RFG
- SM
- RPA
- MEC
- FSI
- * Electron and Neutrino Cross Sections
- Scaling approach \iff full calculations
- Comparison with experiments (electron)
- Prediction on cross sections (neutrino)

Scaling General procedure

*Divide the experimental cross section (response) by an appropriate single-nucleon cross section (response), having contributions from Z protons and N neutrons with their corresponding form factors, to obtain a reduced cross section (response).

*Plot the reduced cross section (response) versus one or more appropriately chosen variables: if the results do not depend on some of these variables and a universal behavior is found one says that the results scale.

Scaling of the first kind \iff Independence of the momentum transfer qScaling of the second kind \iff Independence of k_F or A Superscaling \iff Both 1st- and 2nd- kind scaling Scaling of zeroth- kind \iff Independence of type of external operator **Relativistic Fermi Gas Model Universal Scaling Function** $f^{RFG}(\Psi) = \frac{3}{4} (1 - \Psi^2) \theta (1 - \Psi^2)$

Scaling variable
$$\Psi = \Psi_0 \left(1 + \Psi_0 \frac{k_F}{2q} \sqrt{\frac{q^2}{m^2} + 1} \right)$$

$$\Psi_{0} = \frac{2m}{k_{F}} \left[\sqrt{\left(\frac{\omega - E_{shift}}{2m}\right) \left(1 + \frac{\omega - E_{shift}}{2m}\right)} - \frac{q}{2m} \right]$$

Some effects not considered in the RFG model:

*Finite size of the system *Collective excitations *Meson Exchange Currents (MEC) *Final State Interactions (FSI)

Scaling ?

Electron scattering

$$\frac{d^2\sigma}{d\theta\,d\omega} = \sigma_M \left\{ \frac{(\omega^2 - q^2)^2}{q^4} R_L(\omega, q) + \left[\tan^2 \left(\frac{\theta}{2}\right) - \frac{\omega^2 - q^2}{2q^2} \right] R_T(\omega, q) \right\}$$

Longitudinal Response $R_L(\omega,q) = 4\pi \sum_{j=0} |\langle J_f | |C_J | |J_i \rangle|^2$

Transverse Response $R_T(\omega, q) = 4\pi \sum_{j=1} (|\langle J_f || \mathcal{E}_J || J_i \rangle|^2 + |\langle J_f || \mathcal{M}_J || J_i \rangle|^2)$

Scaling functions

$$f_L(\Psi) = k_F \frac{q^2 - \omega^2}{q m} \frac{R_L(\omega, q)}{Z(G_E^p)^2 + N(G_E^n)^2}$$

$$f_T(\Psi) = 2 k_F \frac{q m}{q^2 - \omega^2} \frac{R_T(\omega, q)}{Z(G_M^p)^2 + N(G_M^n)^2}$$

Semi-relativistic corrections $\epsilon_p \to \epsilon_p \left(1 + \frac{\epsilon_p}{2m}\right); R_L(q,\omega) \to \frac{q^2}{q^2 - \omega^2} R_L(q,\omega); R_T(q,\omega) \to \frac{q^2 - \omega^2}{q^2} R_T(q,\omega)$

Full circles: ¹²C; Empty squares: ⁴⁰Ca; – –RFG; — Empirical Scaling Function; — ¹²C, · · · ¹⁶O and - - ⁴⁰Ca with all the effects beyond RFG

Superscaling beyond RFG model Numerical comparison of the various scaling functions M scaling functions f_{α} ; $\alpha = 1, M$ each of them known for N values of the scaling variable Ψ_i ; i = 1, N $\Delta = \max_{i=1}^{N} \left[f^{max}(\Psi_i) - f^{min}(\Psi_i) \right]$ maximum distance $\mathcal{R} = \frac{1}{Nf^M} \sum_{i=1}^{N} \left[f^{max}(\Psi_i) - f^{min}(\Psi_i) \right]$ global properties

* \mathcal{R} =0, Δ =0 \iff Perfect Scaling - Only in the RFG * \mathcal{R} = 0.078 \pm 0.016, Δ = 0.169 \pm 0.002 \iff 2nd- kind scaling for f_L data at 570 MeV/c

Continuum shell model result

 $- {}^{12}C, \cdots {}^{16}O$ and $- {}^{40}Ca$; thicker lines: f_L , thinner lines: f_T circles ${}^{12}C$, squares ${}^{16}O$ and triangles ${}^{40}Ca$; horizontal bands: empirical \mathcal{R}, Δ

RPA

2.0

Folding

Phenomenological model used to describe hadronic processes and electron scattering cross section in order to take into account effects beyond the RPA G. Co', K.Q. Quader, R. Smith, J. Wambach, NPA 485 (1988) 61 J.E. Amaro, G. Co', A.M. Lallena, NPA 578 (1994) 365

known nuclear response $S^0(q, E)$

folding integral
$$S^{\text{FSI}}(q,\omega) = \int_0^\infty dE S^0(q,E) [h(E,\omega) + h(E,-\omega)]$$

folding function
$$h(E, \omega) = \frac{1}{2\pi} \frac{\Gamma(\omega)}{[E - \omega - \Delta(\omega)]^2 + [\Gamma(\omega)/2]^2}$$

$$\Gamma(\omega) = \frac{1}{\omega} \int_0^\omega d\epsilon [\gamma(\epsilon + \omega) + \gamma(\epsilon - \omega)]$$

single particle width
$$\gamma(\epsilon) = A\left(\frac{\epsilon^2}{\epsilon^2 + B^2}\right)\left(\frac{C^2}{\epsilon^2 + C^2}\right)$$

Scaling functions with the FSI

 $- {}^{12}C, \cdots {}^{16}O$ and $- {}^{40}Ca$; thicker lines: f_L , thinner lines: f_T circles ${}^{12}C$, squares ${}^{16}O$ and triangles ${}^{40}Ca$; horizontal bands: empirical \mathcal{R}, Δ

Inclusive electron scattering cross section -Figure Caption

The ¹²C data, measured at 37.5°, are from R.M. Sealock et al. Phys. Rev. Lett. 62, 1350 (1989), those of ¹⁶O, measured at 32.0°, are from M. Anguiano, A.M. Lallena and G. Co', Phys. Rev. C 53, 3155 (1996) and those of ⁴⁰Ca, measured at 45.5°, from C. Williamson et al., Phys. Rev. C 56, 3152 (1997). The full lines show the results of the complete calculations. The cross sections obtained with our f_L are shown by the dashed lines, and those obtained with the empirical scaling function are given by the dotted lines.

(ν_e, e^-) Reaction Differential Cross Section

$$\frac{d^{2}\sigma}{d\Omega d\omega} = \frac{G^{2}\cos^{2}\theta_{C}}{(2\pi)^{2}}|\mathbf{k}'|\epsilon'F(Z',\epsilon')\left\{\left(l_{0}l_{0}^{\star}+\frac{\omega^{2}}{q^{2}}l_{3}l_{3}^{\star}-\frac{\omega}{q}l_{3}l_{0}^{\star}\right)R_{CC}^{V}(\omega,q) + l_{0}l_{0}^{\star}R_{CC}^{A}(\omega,q) + l_{3}l_{3}^{\star}R_{LL}^{A}(\omega,q) + 2l_{3}l_{0}^{\star}R_{CL}^{A}(\omega,q) + \left[\frac{1}{2}(\vec{l}\cdot\vec{l}^{\star}-l_{3}l_{3}^{\star})\right]\left[R_{T}^{V}(\omega,q) + R_{T}^{A}(\omega,q)\right] + 2\left[-\frac{i}{2}(\vec{l}\times\vec{l}^{\star})_{3}\right]R_{T'}(\omega,q)\right\}$$

Vector (V) and Axial-vector (A) contributions in the Nuclear Response Functions

$$\begin{split} R_{CC}^{V}(\omega,q) &= 4\pi \sum_{j=0} |\langle J_{f}||\mathcal{C}_{J}^{V}||J_{i}\rangle|^{2} \quad ; \quad R_{CC}^{A}(\omega,q) = 4\pi \sum_{j=0} |\langle J_{f}||\mathcal{C}_{J}^{A}||J_{i}\rangle|^{2} \\ R_{CL}^{A}(\omega,q) &= 2\pi \sum_{j=0} (\langle J_{f}||\mathcal{C}_{J}^{A}||J_{i}\rangle^{*}\langle J_{f}||\mathcal{L}_{J}^{A}||J_{i}\rangle + \langle J_{f}||\mathcal{C}_{J}^{A}||J_{i}\rangle\langle J_{f}||\mathcal{L}_{J}^{A}||J_{i}\rangle^{*}) \\ R_{LL}^{A}(\omega,q) &= 4\pi \sum_{j=0} |\langle J_{f}||\mathcal{L}_{J}^{A}||J_{i}\rangle|^{2} \\ R_{T}^{V}(\omega,q) &= 4\pi \sum_{j=1} (|\langle J_{f}||\mathcal{E}_{J}^{V}||J_{i}\rangle|^{2} + |\langle J_{f}||\mathcal{M}_{J}^{V}||J_{i}\rangle|^{2}) \\ R_{T}^{A}(\omega,q) &= 4\pi \sum_{j=1} (|\langle J_{f}||\mathcal{E}_{J}^{A}||J_{i}\rangle|^{2} + |\langle J_{f}||\mathcal{M}_{J}^{A}||J_{i}\rangle|^{2}) \\ R_{T'}^{V}(\omega,q) &= 2\pi \sum_{j=1} (\langle J_{f}||\mathcal{E}_{J}^{V}||J_{i}\rangle^{*}\langle J_{f}||\mathcal{M}_{J}^{A}||J_{i}\rangle + \langle J_{f}||\mathcal{E}_{J}^{V}||J_{i}\rangle\langle J_{f}||\mathcal{M}_{J}^{A}||J_{i}\rangle^{*} + \langle J_{f}||\mathcal{E}_{J}^{A}||J_{i}\rangle\langle J_{f}||\mathcal{M}_{J}^{V}||J_{i}\rangle^{*}) \end{split}$$

Scaling Functions

$$\begin{split} f_{CC}^{V}(\Psi) &= k_{F} \frac{q^{2} - \omega^{2}}{q \, m_{N}} \frac{R_{CC}^{V}(\omega, q)}{N(G_{E}^{(1)})^{2}} \\ f_{LL}^{A}(\Psi) &= 4 \, k_{F} \frac{q \, m_{N}}{4m_{N}^{2} + q^{2} - \omega^{2}} \frac{R_{LL}^{A}(\omega, q)}{N(G_{A})^{2}} \\ f_{T}^{V}(\Psi) &= 2 \, k_{F} \frac{q \, m_{N}}{q^{2} - \omega^{2}} \frac{R_{T}^{V}(\omega, q)}{N(G_{M}^{(1)})^{2}} \\ f_{T}^{A}(\Psi) &= 2 \, k_{F} \frac{q \, m_{N}}{4m_{N}^{2} + q^{2} - \omega^{2}} \frac{R_{T}^{A}(\omega, q)}{N(G_{A})^{2}} \\ f_{T'}^{VA}(\Psi) &= 2 \, k_{F} \frac{q \, m_{N}}{\sqrt{q^{2} - \omega^{2}} \sqrt{4m_{N}^{2} + q^{2} - \omega^{2}}} \frac{R_{T'}^{VA}(\omega, q)}{NG_{M}^{(1)}G_{A}} \end{split}$$

Scaling analysis

(a), (b): $f_{CC}^V f_{LL}^A f_T^V f_T^A f_{T'}^{VA}$ for ¹⁶O; (c): circles ¹²C, squares ¹⁶O, triangles ⁴⁰Ca (d): $-{}^{12}C$, $\cdots {}^{16}O$ and $-{}^{40}Ca$; horizontal bands: empirical \mathcal{R} , Δ

Warning: low energy

Discrete vs Continuum MF vs RPA

Summary

*Scaling

SM: 1st- kind: $q \gtrsim 400$ MeV/c; 2nd-kind: q=700 MeV/c yes, q=300 MeV/c no; 0-kind: good RPA: for $q \gtrsim 500$ MeV/c effects negligible; 1st- kind: $q \gtrsim 400$ MeV/c; worsening with zero range interaction; 0-kind: slightly ruined MEC:1st- kind: $q \gtrsim 400$ MeV/c; inclusion of the Δ currents slightly decreases f_T FSI: responsible for the largest modifications of the SM results; do not strongly change scaling properties

*Electron and Neutrino Cross Sections

theoretical scaling functions empirical scaling function full calculations Appendix

Semi-relativistic corrections in neutrino case

$$\begin{aligned} R_{CC}^{V}(q,\omega) &\to \frac{q^{2}}{q^{2}-\omega^{2}}R_{CC}^{V}(q,\omega) \\ R_{LL}^{A}(q,\omega) &\to \left(1+\frac{q^{2}-\omega^{2}}{4m_{N}^{2}}\right)R_{LL}^{A}(q,\omega) \\ R_{T}^{V}(q,\omega) &\to \frac{q^{2}-\omega^{2}}{q^{2}}R_{T}^{V}(q,\omega) \\ R_{T}^{A}(q,\omega) &\to \left(1+\frac{q^{2}-\omega^{2}}{4m_{N}^{2}}\right)R_{T}^{A}(q,\omega) \\ R_{T'}^{VA}(q,\omega) &\to \sqrt{\frac{q^{2}-\omega^{2}}{q^{2}}}\sqrt{1+\frac{q^{2}-\omega^{2}}{4m_{N}^{2}}}R_{T'}^{VA}(q,\omega) \end{aligned}$$

Equivalent definition of scaling functions

$$f_{L}(\Psi) = k_{F} \frac{q}{m} \frac{R_{L}(\omega, q)}{Z(G_{E}^{p})^{2} + N(G_{E}^{n})^{2}}$$

$$f_{T}(\Psi) = 2 k_{F} \frac{m}{q} \frac{R_{T}(\omega, q)}{Z(G_{M}^{p})^{2} + N(G_{M}^{n})^{2}}$$

$$f_{CC}^{V}(\Psi) = k_{F} \frac{q}{m} \frac{R_{CC}^{V}(\omega, q)}{N(G_{E}^{(1)})^{2}}$$

$$f_{LL}^{A}(\Psi) = k_{F} \frac{q}{m} \frac{R_{LL}^{A}(\omega, q)}{N(G_{A})^{2}}$$

$$f_{T}^{V}(\Psi) = 2 k_{F} \frac{m}{q} \frac{R_{T}^{V}(\omega, q)}{N(G_{M}^{(1)})^{2}}$$

$$f_{T}^{A}(\Psi) = 1/2 k_{F} \frac{q}{m} \frac{R_{T}^{A}(\omega, q)}{N(G_{A})^{2}}$$

$$f_{T'}^{VA}(\Psi) = k_{F} \frac{R_{T'}^{VA}(\omega, q)}{NG_{M}^{(1)}G_{A}}$$

Empirical scaling function

$$f^{\text{emp}}(\Psi) = \frac{A \exp(-\Psi^2) + B\Psi^2 + C\Psi + D}{(\Psi + E)^2 + F^2}$$

A= 0.971, *B*=-0.067, *C*= 0.385, *D*= 0.145, *E*= 0.366, *F*= 1.900

RPA

SRC

Electron scattering

The longitudinal part superscales

⁴⁰ Ca: MF-RPA vs FLUKA

⁴⁰ Ca: MF-RPA vs RFG

* MF \simeq RFG ω_0 above 50 MeV

PRC 71, 015501 (2005), Amaro et al.: $\omega_0 \equiv \frac{1}{2M_i} (M_f^2 - M_i^2) \ge 0$; $\omega = \omega_0 + \frac{|Q^2|}{2M_i}$

¹²C and ¹⁶O: disc. vs cont., $(\bar{\nu}, e^+)$ - (ν, e^-) , MF vs RFG

¹²C: * relevant discrete contribution up to E_i = 100 or 150 MeV * $\sigma(\nu, e^-)_{DISC} \simeq \sigma(\bar{\nu}, e^+)_{DISC}$ * (ν, e^-) :MF_{CONT} \simeq RFG ω_0

Nuclear Structure

Scaling of the second kind

¹⁶O: MF vs RFG, Folding vs Scaling Double differential cross section

 $\epsilon_i = 1 \text{ GeV}; \theta = 30^\circ$

Relativistic kinematics: $\epsilon_p \rightarrow \epsilon_p (1 + \epsilon_p/2m_N)$

